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Abstract
Most current sequential sampling models have random between-trial variability in their parameters. These sources of
variability make the models more complex in order to fit response time data, do not provide any further explanation to how
the data were generated, and have recently been criticised for allowing infinite flexibility in the models. To explore and
test the need of between-trial variability parameters we develop a simple sequential sampling model of N-choice speeded
decision making: the racing diffusion model. The model makes speeded decisions from a race of evidence accumulators that
integrate information in a noisy fashion within a trial. The racing diffusion does not assume that any evidence accumulation
process varies between trial, and so, the model provides alternative explanations of key response time phenomena, such
as fast and slow error response times relative to correct response times. Overall, our paper gives good reason to rethink
including between-trial variability parameters in sequential sampling models

Keywords Response time · Sequential sampling models · Decision making

Evidence accumulation is arguably the most dominant
theory of how people make speeded decisions (see Donkin
& Brown, 2018, for a review), and it is typically
instantiated in sequential sampling models (e.g., Ratcliff,
1978; Usher & McClelland, 2001; Brown & Heathcote,
2008). These models provide an accurate account of correct
and error response time (RT) distributions as well as the
corresponding accuracy rates in speeded decision making
tasks. The models also allow researchers to translate the data
into the meaningful psychological parameters that generate
the data.

Sequential sampling models assume a simple cognitive
architecture consisting of stimulus encoding, response
selection, and overt response execution. To make a
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decision, people begin with an initial amount of evidence
for all response options, the starting point of evidence
accumulation (Fig. 1). From the starting point, more
evidence is continually sampled from the stimulus, which
accumulates at a rate of drift rate towards the corresponding
response threshold. When the accumulated evidence crosses
a response threshold this triggers the corresponding overt
response. The quality of evidence sampled from the
stimulus governs the drift rate, which can be interpreted
as the speed of information processing. Higher response
thresholds mean that a person needs more evidence to
trigger a response, and so, threshold settings represent how
cautious a person is. Starting points and response thresholds
can be different for different response options capturing any
inherit biases people have. The time necessary for processes
outside of evidence accumulation is the non-decision time,
which includes the time needed for perceptual encoding and
overtly executing a motor response.

Researchers often assume that the core parameters of
sequential sampling models, such as drift rates, starting
points, and non-decision times vary between trials. There
are a number of reasons for these sources of variability.
Below we will discuss the evidence for between-trial
variability in drift rates, starting points, and non-decision
times.
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Fig. 1 A typical sequential sampling model process. Only one
accumulator is illustrated, but multiple alternative decisions are
modeled by multiple racing accumulators (Usher &McClelland, 2001;
Brown & Heathcote, 2008; Brown & Heathcote, 2005) or single
accumulators with two boundaries (Ratcliff, 1978; Link & Heath,
1975)

Evidence for variability in drift rate

Ratcliff (1978) introduced drift-rate variability to model
item differences in a recognition-memory task using a single
accumulator model with two boundaries, which is known
as the drift diffusion model (DDM; Ratcliff and Tuerlinckx,
2002). In this paradigm, between-trial variability in drift
rate is thought to be analogous to the memory evidence
distributions in signal detection theory (e.g., Egan, 1958). In
recognition memory, sequential sampling models produce
the same conclusions about evidence variability as signal
detection theory (such as conclusions drawn from zROC
slopes; Starns & Ratcliff, 2014) and can accurately measure
relative differences in evidence variability when it is directly
manipulated (Starns, 2014; Osth et al., in press).

Without between-trial variability in drift rate the DDM
predicts perfect accuracy with unlimited processing time
(Usher & McClelland, 2001; Turner et al., 2017). The
variability is also useful because it enables the DDM to
predict the common finding of slower errors than correct
responses (Ratcliff & Rouder, 1998). In fact, between-trial
variability in drift rate is largely determined by the relative
speeds of correct and error RT distributions, rather than
the overall shape of the RT distributions and accuracy rates
(Ratcliff, 2013). Between-trial variability in drift rate is
not the only component that can predict relatively slow
error RTs. Within the DDM architecture, some researchers

suggest collapsing response boundaries as a function of
time (Ditterich, 2006a, b), which means less evidence is
needed to make a response over time and results in longer
decisions being less accurate. Link and Heath (1975) noted
that the random walk, which is a DDM in discrete time,
can predict unequal error and correct RT distributions
with certain distribution assumptions for the moment-to-
moment evidence accumulation rate, such as the Laplace
distribution.

Double-pass experiments also provide empirical evi-
dence for between-trial variation in drift rate (Ratcliff et al.,
2018). In these experiments, the same perceptual stimuli are
presented at two separate trials during an experimental ses-
sion. Typically there is strong agreement on performance of
these 2 trials. But if the drift rates of participants only vary
within-trial, then agreement on the two trials is no greater
than chance, meaning that between-trial variability in drift
rate is needed to capture the empirical data. Although, the
experiment does not determine if the variability is random
or systematic (Evans et al., in press).

There is also neurophysiological evidence for between-
trial variability in drift rates (Ratcliff et al., 2009; Ratcliff
et al., 2016). For example, researchers have sorted trials
of perceptual discrimination tasks by whether they show
high amplitude or low amplitude EEG. They then sorted
these two groups of trials by early stimulus related or late
decision related components of the EEG. They found that
for the early component trials, there were no differences
between the drift rates of the low amplitude and high
amplitude signals. But for the late component trials there
were differences between the drift rates between the low
amplitude and high amplitude trials. Because more positive
drift rates were obtained from data associated with more
positive EEG amplitudes, then it can be concluded that
single-trial amplitudes of the late EEG explain some of the
trial-to-trial variability in decision-related evidence.

Evidence for variability in starting points

In simple RT tasks, where participants only need to make
one response, starting-point is required to account for the
possibility of premature sampling (Laming, 1968), where
the evidence accumulation process begins before the onset
of the stimulus. In simple RT, participants cannot know to
start sampling evidence at the presentation of the stimulus
because the stimulus detection is itself the evidence being
accumulated (i.e., detection cannot be used to trigger the
detection process). In choice RT tasks, however, stimulus
onset provides the signal to start sampling evidence that dis-
criminates between different types of response options. One
may even find that the amount of variability in starting points
is smaller in choice paradigms than detection paradigms.
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Pre-mature sampling is the theoretical motivation for
starting point variability, but in relation to data, starting
point variability is often included in sequential sampling
models to explain the empirical finding that error responses
can be faster than correct responses (Laming, 1968; Smith
& Vickers, 1988; Ratcliff & Rouder, 1998; Ratcliff et al.,
1999).When considering neurophysiological evidence, we find
that differences in starting points across trials may be produced
by sequential effects (for example Fecteau &Munoz, 2003).

Variability in non-decision time

Researchers who use the DDM typically assume that
non-decision time is variable across trials. For example,
Ratcliff et al. (2004) found that including non-decision time
variability allowed the DDM to better fit the .1 quantile of
RT distributions from a lexical decision task (Ratcliff, 2002;
Ratcliff & Smith, 2004). Theoretically, non-decision time
variability is plausible because motor response times could
have small variability or stimuli may not be perceptually
encoded as efficiently on each trial.

Issues with assuming between-trial
variability

It is likely that some of the between-trial variability in
the core parameters in most sequential sampling models is
systematic and some is random (Evans et al., in press). A
key job for theory is to sort out the systematic variance and
explain it. Despite this, the current strategy in RT modeling
is to assume all the between-trial variability is random,
characterized by some probability distribution, such as a
uniform or a Gaussian. But, there are several issues with the
assumptions of random between-trial variability.

First, by adding these between trial sources of noise,
sequential sampling models have become more and more
complex in order to fit RT data. Models such as the
DDM (Ratcliff & Tuerlinckx, 2002) assume between-trial
variability in starting point, non-decision time, and drift rate
in addition to within-trail variability in drift rate. The problem
is that these extra between-trial variability parameters do
not always help. Sometimes fixing the values of certain
between-trial variability parameters can improve estimation
of the more psychologically interesting parameters (Lerche
& Voss, 2016). It is relatively difficult to accurately
estimate between trial variability parameters (Boehm
et al., 2018) and researchers have shown that models
that have no between-trial variability are able to detect
experimental effects better than the DDM with all between-
trial variability parameters (van Ravenzwaaij et al., 2017).

Second, the between-trial variability assumptions are not
part of the process model that explains how the RT data are
generated. The core process of sequential sampling models
is the integration of evidence to a threshold, which explains
how someone makes a decision, but the between-trial
variability assumptions provide no additional explanation
of the decision process and are simply added to help the
models fit data. That is not to say there is no evidence
for decision parameters being different across trials, but
that assuming between-trial variability represented as some
probability distribution does not do the job of good
theory in distinguishing between systematic and random
variability.

Finally, given the recent claims of Jones and Dzhafarov
(2014) – that certain between-trial drift variability assump-
tions can allow infinite flexibility of sequential sampling
models (but see Heathcote et al., 2014; Smith et al., 2014) –
it is important to explore and test models that do not make
these assumptions.

Given these issues with the assumptions of between-
trial variability, we test the necessity of the assumptions by
evaluating the performance of a sequential sampling model
that drops the between-trial sources of noise. We use the
racing diffusion model (RDM), which relies on within-trial
variability in drift rate instead of between-trial variability
in drift rate. In the past, versions of racing diffusion
models have been fit to choice RT data (Leite & Ratcliff,
2010; Teodorescu & Usher, 2013), but these models were
applied using extensive Monte Carlo simulation methods.
Moreover, racing Ornstein-Uhlenbeck diffusion processes
have been used in more complex models that account
for choice RT and confidence judgements (Ratcliff, 2009;
Ratcliff & Starns, 2013). Trish Van Zandt developed closed
form equations for the likelihood of racing diffusions to
account for performance in the stop signal paradigm (Logan
et al., 2014). By dropping the stop signal component we
can apply a more general model of N-choice decision
making, for example see Osth and Farrell (2019) and Turner
(2019).

In this paper we fit the RDM to several previously
published empirical data sets demonstrating that it can
account for the full distribution of correct and error RTs
as well as accuracy rates. We also fit the Linear Ballistic
Accumulator (LBA; Brown and Heathcote, 2008) to the
same data and compare how the RDM model performs
relative to the LBA, which assumes drift rates vary
between-trials rather than within-trials. We then assess the
correspondence between the key RDM and LBA parameters
to understand the mimicry between models that assume
within-trial variability instead of between-trial variability.
Before testing the RDM with model fitting, we first
discuss the details of the RDM and how it accounts for
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benchmark RT phenomena without between-trial variability
parameters.

The racing diffusionmodel

The RDM represents the process of choosing between
N alternatives (1, 2, 3, ..., N) using N racing evidence
accumulators. In Fig. 2, we illustrate a two-choice RDM
that represents a decision between ‘left’ and ‘right’ –
perhaps in a task where participants need to determine if
dots on a screen are moving to the left or to the right.
The accumulators begin with an initial amount of evidence
(k) that increases at a noisy rate with mean v toward the
response threshold b. The evidence accumulation process
stops when the first accumulator reaches its respective
threshold. The winning accumulator determines the overt
response and the time taken to reach the response threshold
determines the decision time. To compute RTs, a constant
time Ter , which is the parameter that represents non-
decision processing time, is added to the decision time.
Non-decision processes are often thought to represent both
perceptual encoding and preparing motor responding (i.e.,
[t]ime for [e]ncoding and [r]esponding).

The RDM can have two sources of variability, one source
of between-trial variability and one source of within-trial
variability. The starting points of evidence accumulation are
drawn from a uniform distribution between the interval of
0 and A. The second source of noise is the within-trial
variation of drift rate, or change in evidence X. This noise

is mathematically described by the following stochastic
differential equation (the Wiener diffusion process):

dX(t) = v · dt + s · dW(t), (1)

where s · dW(t) represents the Wiener noise process with
mean 0 and variance s2 · dt .

If the model only has within-trial drift rate variability
and no between-trial starting point variability, then the Wald
distribution (Wald, 1947) describes the first-passage time
distribution for a single accumulator with positive drift rate
toward a positive response threshold. The Wald distribution
(Wald, 1947) is often used to explain simple RT data,
where participants only need to make one type of response
(Heathcote, 2004; Ratcliff & Van Dongen, 2011; Ratcliff
& Strayer, 2014; Ratcliff, 2015; Schwarz, 2001; Heathcote,
2004; Anders et al., 2016; Tillman et al., 2017). The Wald
probability density function is:

fi(t |b, v) = b(2πt3)−
1
2 exp

[
− 1

2t
(vt − b)2

]
, (2)

where b and v are the response threshold and drift rate,
respectively. When the model includes non-decision time,
response times are described by a shifted-Wald distribution,
with a shift equal to the non-decision time.

The RDM can also include between-trial variability in
starting point, but as we show in the subsequent section, it
is not required for fast errors. Starting point variability also
accounts for when participants are uncertain about when
to start sampling evidence (Laming, 1968). On some trials,
participants may begin sampling before the trial begins

Fig. 2 The Racing Diffusion Model (RDM) and its parameter values: response boundary (b), mean drift rate (v), between trial variability in
starting point (A), and non-decision time (Ter )
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resulting in a higher starting point. 1
A

is the probability
density function of the uniform starting point distribution.
The probability density function of finishing times for
the RDM with within-trial variability in drift rate and
between-trial variability in starting point can be computed
analytically (Logan et al., 2014). Using φ(x) and �(x) to
represent the density and cumulative distribution functions
of the standard normal distribution, respectively, and with

α = (b − A − tv)√
t

(3)

and

β = (b − tv)√
t

(4)

then:

gi(t |b, v, A) = 1

A

[
−v�(α) + 1√

t
φ(α) + v�(β) − 1√

t
φ(β)

]

(5)

for v > 0 and A > 0, and the Wiener process standard
deviation is assumed to be 1. If v = 0, then

gi(t |b, A) = 1

A

[
1√
t
φ(α) − 1√

t
φ(β)

]
, (6)

and ifA = 0 then the associated probability density function
is Eq. 2. The cumulative distribution function is presented
in the Appendices A, B and C.

In the RDM, there is a race between N accumulators and
we want to know the time taken for the first accumulator to
reach the threshold. The probability of the first accumulator
finishing from all accumulators is given by the following
defective probability density function:

gi(t) = fi(t)
∏
j �=i

(1 − Fj (t)), (7)

where fi(t) and Fj (t) are the probability density and cumu-
lative density functions of first-passage time distributions
for the ith and j th accumulators.1 Substituting Eqs. 2, 5, or 6
for the probability density distributions in Eq. 7 allows us to
generate likelihood functions to fit the RDM model to data.

Slow errors and fast errors from racemodels

Multi-accumulator models predict slow errors by virtue of
the race architecture, where the error accumulator is slower
than the correct accumulator on average (Smith & Vickers,
1988; Townsend & Ashby, 1983). The LBA accounts for
fast errors by including both starting point variability and
between-trial variability. In a speed emphasized condition,

1The distribution is defective because it is normalized to the
probability of its associated response.

participants set their response thresholds close to the
top of the starting point distribution. If the accumulator
corresponding to the error response samples near the top of
the starting point distribution and the correct accumulator
samples closer to the bottom, then there is little time
for the correct accumulator to overtake and win the race.
Thus, error responses in this situation occur because the
accumulator started close to the threshold, which also
results in relatively fast responses.

In Fig. 3, we present a simulation to demonstrate how
the RDM predicts fast and slow error RTs relative to correct
RT. We generated 10, 000 trials for a single participant for
a range of different threshold values. The threshold, b, was
systematically varied from 0 to 2. The other parameters
were fixed to the following values: A = 1 (when included),
VCorrect = 4, VError = .5, Ter = 0.2. Due to the race
architecture, the RDM predicts slow errors when the error
drift rate is slower than the correct drift rate and the response
thresholds are high enough to negate early terminating
errors due to within-trial noise. However, when the response
thresholds are close to the starting point, the RDM predicts
fast errors due to the within-trial drift rate variability.2 So
the RDM can account for fast and slow errors with only
one source of noise. Fast errors in the RDM with only
within-trial drift rate variability are at most 10 ms faster
than the mean correct RT (left panel of Fig. 3). With starting
point variability, fast errors from the RDM get up to 40
ms faster than the mean correct RT (right panel of Fig. 3).
The lowest thresholds considered produced RTs of 211 ms
and the largest thresholds produced RTs of 770 ms, which
covers a range that we would expect to see in empirical
data. Although, a survey of papers where enough RT data
is reported suggests that fast errors are at least 40 ms faster
than correct RTs (e.g., Ratcliff & Rouder, 2000; Logan
et al., 2014).

Fitting empirical data

In this section, we fit the RDM to empirical data sets from
Ratcliff and Rouder (1998), Ratcliff and Smith (2004), Rae
et al. (2014), and Van Maanen et al. (2012). These data
sets were chosen because the conclusions reported in the
original papers included effects on drift rates, thresholds,
or both these parameters. In a later section, we also fit a
data set with non-decision time effects, but the analysis
is used to investigate differences in non-decision time
estimates between popular sequential sampling models and
the RDM. We also fit the LBA model because it is an

2The DDM also contains within-trial drift rate variability, but because
evidence for one response counts against evidence for the other
response, only having within-trial noise leads to the model predicting
equally fast correct and error response time distributions.
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Fig. 3 Results of the RDM simulation. We plot error response times minus correct response times as a function of response threshold. Y-axis
values below the dashed line represent fast errors relative to correct and values above the line represent slow errors. Barplots along the x-axis show
the accuracy rates for each simulated data set

established model in the field making it a useful benchmark.
Furthermore, the RDM and LBA only differ in their
assumption about whether to include within-trial variability
or between-trial variability in drift rate, and so, comparing
the two will highlight differences between within-trial and
between-trial drift rate assumptions.

We adapted R code provided with Logan et al. (2014)
and hierarchical Bayesian methods to fit the models to data.
The parameters of the RDM that we estimate are v, B, A,
and Ter , where s is fixed to 1 unless mentioned otherwise.
For all fits reported, instead of estimating b, we estimate the
parameter B, which represents the difference between b and
A. This prevented any starting points from being sampled
above the response threshold. All other parameter variations
will be discussed on a case-by-case basis in the subsequent
sections. More details of our fitting procedure are presented
in the Appendices B and C.

Rouder et al. 1998

We used experiment 1 in Ratcliff and Rouder (1998),
which was originally fit with the DDM. In this experiment,
participants made brightness discriminations of pixel arrays
displayed on a computer screen. Specifically, they were
asked to determine whether the arrays were of high or low
brightness. Like the original study, we fixed all parameters
across all conditions except for response thresholds and drift
rate. There were 33 levels of brightness and we collapsed
these into seven, as most brightness levels contained
homogenous RT and accuracy rates (cf. Donkin et al.,
2009a). We allowed drift rate to vary across the seven
brightness conditions. The experiment included blocks with
an accuracy emphasis and blocks with a speed emphasis.
In the accuracy emphasis condition, participants were told
to respond as accurately as possible. In the speed emphasis

condition, participants were told to respond as quickly
as possible. Speed or accuracy emphasis are assumed to
influence the response thresholds of participants (but see
Rae et al., 2014).

In Fig. 4, for each participant, we plot the empirical
mean RTs against response probabilities for the 7 collapsed
stimulus conditions and speed/accuracy conditions. The
response probability axis shows correct responses to the
right of the .5 point and errors are to the left of .5.
This means that each correct response to the right has a
corresponding error response to the left. In both the RDM
and LBA panels, the top points show data from the accuracy
condition and the bottom points show data from the speed
condition.

In the speed condition, RTs were below 400 ms across the
entire accuracy range. The blue points in the figure, which
are posterior predictives generated from 100 samples from
the subject level joint posterior distributions, show that both
the RDM (top panel) and the LBA (bottom panel) capture
this flat function. In the accuracy condition, RTs are more
than double the speed condition and both models predict this
trend. However, RTs also vary from 400 ms to 900 ms across
response probability and both models appear to significantly
miss this trend for participant KR, especially in the middle
accuracy range.

The empirical data contain both fast and slow error
RTs relative to correct RTs and the RDM could capture
these trends. For instance, in brightness condition 6, for
participant KR, the empirical mean correct RT is 542
ms in the accuracy condition and 308 ms in the speed
condition. Error RT is 568 ms in the accuracy condition
and 292 ms in the speed condition. If we inspect the
posterior predictive mean RTs generated from the mean
of the posterior distribution of the RDM model, we find
that in brightness condition 6, for participant KR, correct



Psychon Bull Rev

Fig. 4 Mean RT (red and green dots) and posterior predicted mean RT (blue dots) from the RDM model (top panel ‘A’) and LBA model (bottom
panel ‘B’) for subjects JF, KR, and NH from Ratcliff & Rouder (1998). The upper and lower data points are for accuracy and speed emphasis
conditions, respectively. The left side of each plot represents error responses and the right side of each plot represents correct responses to the
same stimuli

RT is 539 ms in the accuracy condition and 319 ms in
the speed condition. Moreover, error RT is 566 ms in the
accuracy condition and 289 ms in the speed condition.
Overall, the RDM captures many of the complex empirical
trends present in the benchmark (Ratcliff & Rouder, 1998)
data set.

The best fitting parameters are shown in Fig. 5. Both
the RDM and LBA have higher thresholds in the accuracy
condition compared to the speed condition. Moreover, the
correct drift rates increased and error drift rates decreased
as a function of stimulus difficulty, where 1 and 7 were the
easiest conditions and 4 was the hardest condition.

Ratcliff et al. (2004)

Ratcliff and Smith (2004) fit the DDM to data from
a lexical decision task in which participants identified
whether a string of letters was a word or a non-word. In
experiment 1 from the paper, participants were presented
with words that occurred often (high frequency), rarely (low
frequency), or very rarely (very low frequency) in everyday
language. Participants were also presented non-words that
were generated from the high frequency, low frequency, or

very low frequency words. Drift rates varied as a function
of how difficult the stimuli were to classify, such that, more
difficult (i.e., lower frequency words) stimuli produced
lower drift rates. We replicate their drift rate finding here
with the RDM.

For both the RDM and LBA models, we allowed drift
rate and non-decision time to vary over stimulus difficulty,
which is a recommended parameterization for lexical-
decision tasks (Donkin et al., 2009b), but see also Tillman
et al. (2017). To summarize the empirical RT distributions,
we present five quantile estimates (.1, .3, .5, .7 and .9) in
Fig. 6. The .1, .5, and .9 quantiles represent the leading
edge, median, and upper tail of the distribution, respectively.
These plots are defective cumulative distribution functions,
meaning that RT is shown along the x-axis and the upper
asymptote of the function represents the probability of that
response. In other words, the proportion of correct (green)
and incorrect (red) responses are along the y-axis.

Both models capture the accuracy rates and correct RT
distributions well. The models mostly differ in their account
of the error RTs. The RDM consistently under predicts
the upper tail of the error RT distribution and the LBA
consistently over predicts the upper tail. The over prediction
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Fig. 5 The group-level mean posterior distributions for the RDM and LBA fits to the Rouder et al. data set. The top two panels show correct and
error drift rates for the RDM and LBA, with the median of the posterior and 95% credible intervals. In the bottom panel, we table the median B,
A, and T er parameters with the 95% credible intervals in parenthesis

is larger and more pervasive than the under prediction,
however. The misses are likely due to the difficulty in
estimating reliable parameters from relatively few data
points, which is the case for the .9 quantile of the error RT

distribution. Importantly, both models capture the key trend
of RTs slowing as a function of stimulus difficulty.

The best fitting parameters are shown in Fig. 7. The
correct drift rates decreased and the error drift rates

Fig. 6 Empirical and predictive defective cumulative distribution plots
of the .1, .3, .5, .7, and .9 RT quantile for each stimulus condition
from experiment 1 of Ratcliff et al. (2004) – high frequency (HF), low-
frequency (LF), very-low-frequency (VLF), and pseudo-words (PW).
Posterior predictives are shown for both the RDM (left) and LBA

(right) model. The green (correct) and red (error) dots represent the
empirical data and the blue dots represent the predicted data. Note the
predicted data consists of 100 separate data sets generated from the
subject-level joint posterior distribution
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Fig. 7 The group-level mean posterior distributions for the RDM and LBA fits to the Ratcliff and Rouder (1998) data set. The top two panels
show correct and error drift rates for the RDM and LBA, with the median of the posterior and 95% credible intervals. The middle panel shows
the non-decision times for the RDM and LBA. In the bottom panel, we table the median B and A parameters with the 95% credible intervals in
parenthesis

increased as a function of stimulus difficulty. The effects of
stimulus difficulty on non-decision were quite small (¡5 ms)
in the RDM and the RDM also estimated non-decision times
more than 70 ms higher than the LBA.

Rae et al. (2014)

The experiment from Rae et al. (2014) was like the
experiment from Ratcliff and Rouder (1998). Participants
had to choose whether the stimulus was predominately
light or dark. The authors manipulated speed and accuracy
emphasis on alternating blocks of trials. Despite a similar
task design to Ratcliff and Rouder (1998), the authors found
that speed instructions, relative to accuracy instructions,
not only lead to a decrease in thresholds, but a decrease
in the difference between correct and error drift rates.
The difference between correct and error drift rates in

accumulator models can be interpreted as discrimination
between evidence for correct and error responses, and is
comparable to the drift rate in the DDM.

We fit both the RDM and LBA model and allowed
response thresholds, drift rates, and non-decision time to
vary with speed/accuracy emphasis, which is in line with the
original authors’ best fitting model. We summarize the data
in Fig. 8 with defective cumulative distribution functions.
The RDM predicted the tails of the correct RT distribution
well, but under predicted the means and leading edge (i.e.,
the .1 quantile). The LBA under predicted all quantiles for
the correct RT distribution and both models over predicted
the error RTs. In the empirical data, the accuracy condition
did not contain slow errors, which maybe reflective of the
small change in accuracy rates across speed and accuracy.
Yet, the fast errors that were present in both conditions were
captured by the models.



Psychon Bull Rev

Fig. 8 Empirical and predictive defective cumulative distribution plots of the .1, .3, .5, .7, and .9 RT quantile for speed and accuracy conditions
from experiment 1 of Rae et al. (2014). Posterior predictives are shown for both the RDM (top) and LBA (bottom) model. The green (correct) and
red (error) dots represent the empirical data and the blue dots represent the predicted data. The predicted data consists of 100 separate data sets
generated from the subject-level joint posterior distribution

In terms of best fitting parameters, which we present
in Table 1, the difference between correct and error drift
rates were larger in the accuracy condition compared to the
speed condition for both the RDM and LBA – replicating
the original authors novel findings. The response thresholds

were also higher in the accuracy condition for both models,
which is reflected in the A parameter. Allowing A to vary
over speed and accuracy was in line with the original
author’s parameterization and is analogous to a threshold
manipulation because B was fixed across conditions.

Table 1 Median values from the group-level mean posterior from the RDM and LBA fit to Rae et al. (2014). 95% credible intervals are presented
in parenthesis

Model Condition v Correct v Error A B Ter

RDM Speed/Light 4.55 (4.17,4.93) 3.08 (2.77,3.38) 0.39 (0.03,0.71) 1.04 (0.87,1.18) 0.134 (0.091,.160)

Speed/Dark 4.01 (3.68,4.52) 3.44 (3.12,3.76) 0.28 (0.02,0.55) 1.04 (0.87,1.19) 0.134 (0.091,.160)

Accuracy/Light 4.27 (3.80,4.73) 2.58 (2.19,2.97) 0.32 (0.02,0.82) 1.04 (0.87,1.18) 0.162 (0.134,.186)

Accuracy/Dark 4.17 (3.73,4.59) 2.56 (2.15,2.98) 0.49 (0.05,0.89) 1.04 (0.87,1.19) 0.162 (0.134,.186)

LBA Speed/Light 3.77 (3.49,4.05) 3.29 (3.01,3.57) 0.74 (0.33,0.94) 0.96 (0.76,1.12) 0.010 (0.001,0.038)

Speed/Dark 3.83 (3.51,4.15) 3.22 (3.00,3.44) 0.86 (0.28,1.14) 0.97 (0.75,1.12) 0.010 (0.001,0.038)

Accuracy/Light 3.83 (3.61,4.05) 2.72 (2.50,2.96) 1.07 (0.36,1.42) 0.96 (0.76,1.12) 0.025 (0.001,0.068)

Accuracy/Dark 3.64 (3.38,3.89) 2.82 (2.61,3.03) 0.98 (0.47,1.24) 0.97 (0.75,1.12) 0.025 (0.001,0.068)

Non-decision time is in milliseconds
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VanMaanen et al. (2012)

Hick’s law is a benchmark phenomenon for speeded N
choice experiments (Hick, 1952; Hyman, 1953). In general,
it states that the mean RT increases linearly with the
logarithm of the number of choice alternatives. If no
parameters can vary over set size, then multi-accumulator
models predict that the mean RT decreases and the error
rate increases with the number of response options (cf.
Logan, 1988). In racing accumulator models, the mean RT
decreases as a function of N because the observed RT
distribution is made up of the minima of finishing time
distributions fromN accumulators. With more runners in the
race there is a higher probability of sampling a faster winner
(i.e., statistical facilitation; Raab, 1962).

Multi-accumulator models can account for Hick’s law
several ways. There could be normalization in evidence
input to the model (e.g., Brown et al., 2008; Hawkins et al.,
2012). For example, normalization in the RDM occurs when
we constrain all the drift rates for all accumulators by having
them sum to 1. It is also the case that multi-accumulator
models can predict Hick’s law by allowing drift rates to
vary over set size (Van Maanen et al., 2012; Logan et al.,
2014) or by exponentially increasing response thresholds
with set size (Usher et al., 2002). The latter explanation
may be contested based on neurophysiology. For instance,
if we grant that accumulator models are represented by
populations of pre-saccadic movement neurons in brain
regions such as frontal-eye-field (Teller, 1984; Purcell et al.,
2010; Purcell et al., 2012), then we should expect the peak
firing rates of frontal-eye-field movement cells to increase
with set size. However, evidence from single cell recordings
suggest that the movement cells reach a fixed firing rate
immediately before initiating saccade responses in visual
search tasks (Hanes & Schall, 1996) and the firing rates are
invariant across set sizes (Woodman et al., 2008)

Variants of racing diffusion models have accounted for
Hick’s law in simulation (Leite & Ratcliff, 2010) and in
the stop signal paradigm (Logan et al., 2014). To test
whether the RDM can be fit to N-choice data and can
capture the log-linear relationship between RT and response
alternatives, we fit a previously published Hick’s law data
set from Van Maanen et al. (2012). Rather than commit
to any explanation of Hick’s law here, we follow the
parameterization of Van Maanen et al., and allow A, B,
v and Ter to vary over set size for both the RDM and
LBA.

Specifically, we fit the “spaced” condition from exper-
iment 2, which was a motion dots task that required 5
participants to choose between 3, 5, 7, or 9 decision alterna-
tives. In addition to Hick’s law, we are testing whether the
RDM can account for both the full distribution of RTs and
accuracy rates associated with making N choice decisions.

In Fig. 9, both the RDM and LBA can account for how
accuracy, mean RT, and correct and error RT distributions
change across 3, 5, 7, and 9 response alternatives. In general,
both models capture the correct distributions well and only
miss on the .9 quantile for error RTs. In set size 3 for
the LBA, the posterior predictions for the last .9 quantile
are spread out to 2.2 seconds. However, there were only
37 error RTs in that condition across all participants, and
so, accurate parameter estimation is difficult. In the top
right of both the set size 3 panels is mean RT plotted as a
function of the logarithm of response set size. In green is
the empirical data, which shows a linear increase across log
set size demonstrating Hick’s law. Both the RDM and LBA
could predict this trend.

In Fig. 10, the RDM appears to capture changes in the
data and Hick’s law with a decrease in correct drift rate.
Unlike our other fits, the RDM estimated non-decision
times lower than the LBA, but the estimates were quite
varied as shown by the width of the 95% credible intervals.

Comparingmodels

To compare the LBA and RDM fits we used a model
selection exercise to determine what model has a better
account of the empirical data. The aim here is to determine
if the RDM does as well as the LBA, which is currently a
successful sequential sampling model of choice RT.

One way to choose between models is to assess their
“usefulness”. One metric of usefulness is how well a model
predicts future data. A model’s ability to predict future
data reflects how well the model captures the important
signal (i.e., parts of the data we are interested in) in the
data that is common between the current data and future
data. Models that do poorly are usually either too simple,
meaning that do not capture the signal, or too complex,
meaning they capture the signal and noise, where the noise
is not the same in future data. We used the widely applicable
information criterion (WAIC Watanabe, 2010) to assess the
out-of-sample predictive accuracy of the LBA and RDM.
The model with the lowest WAIC has the best out-of-sample
predictive accuracy and we will select between models with
this metric. More details about our model selection exercise
are presented in Appendix C.

The main conclusion of our model comparison was that
the RDM performs at least as well as the well-known
LBA model. In Table 2 we show that the RDM is the
preferred model for the Ratcliff and Smith (2004) and
Rae et al. (2014) data sets and the LBA is the preferred
model for the Ratcliff and Rouder (1998) and Van Maanen
et al. (2012) data set. The columns showing the log-
pointwise-predictive density (lppd), which is a measure of
goodness of fit (without a complexity penalty), show that
the winning models are preferred because they better fit
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Fig. 9 Empirical and predictive defective cumulative distribution plots
of the .1, .3, .5, .7, and .9 RT quantile for each stimulus condition
from experiment 2 of Van Maanen et al. (2012) – labels 3, 5, 7, and
9 correspond to conditions that included 3, 5, 7, and 9 response alter-
natives. Posterior predictives are shown for both the RDM (left) and
LBA (right) model. The green (correct) and red (error) dots represent

the empirical data and the blue dots represent the predicted data. Note
the predicted data consists of 100 separate data sets generated from
the subject-level joint posterior distribution. Presented in the set size 3
panel of each model plot is the mean RT as a function of log set size,
which demonstrates Hick’s law. Both models capture the log-linear
relationship between mean RT and set size

Fig. 10 The group-level mean posterior distributions for the RDM and
LBA fits to the Van Maanen et al. (2012) data set. The top panels show
median and 95% credible intervals for the A, B, v, and Ter parameters

for the RDM. The bottom panel shows the median and 95% credible
intervals for the A, B, v, and Ter parameters for the LBA
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Table 2 WAIC model selection results

Data Set LBA lppd RDM lppd LBA pD RDM pD WAIC Diff

Ratcliff et al. (1998) 1986 1953 61 71 −56

Ratcliff et al. (2004) 8924 9406 248 213 929

Rae et al. (2014) 16892 17695 538 582 1650

Van Maanen et al. (2012) −4474 −4536 133 90 −168

WAIC column is the difference in WAIC between LBA and RDM. Positive values are in favor the RDM model

pD = Number of effective parameters

lppd = log pointwise predictive density (i.e., goodness of fit)

aspects of the data in question rather than simply being more
parsimonious. In terms of parsimony, we found that the
RDM was the simpler model for two of the four data sets.
For some data sets, there does not appear to be complete
agreement between model selection metrics and the plotted
observed and predicted data. For example, in the Rouder
et al. (1998) data set, the LBA model qualitatively has
larger misses to the mean RT, especially for the subject
KR. Despite this, the LBA model was preferred by WAIC.
In Table 2 the goodness of fit, the number of effective
parameters, and the WAIC values are presented, which can
be used to understand this disagreement. From these values
we can see that the LBA is selected due to the model having
a better fit to the overall data (not just the mean RT) and
because it is less complex in terms of the number of effective
parameters.

Interim conclusion

So far, we have shown that the RDM model is able
to account for benchmark RT phenomena, including full
error and correct RT distributions, accuracy rates, N-choice
performance, the speed-accuracy trade-off, and fast and
slow errors relative to correct. We have also shown that
the RDM can fit previously published empirical data at
least as well as the LBA model. In what follows, we will
assess the extent of correspondence between the RDM’s and
LBA’s key parameters. Following this analysis, we explore

non-decision time estimates of DDM, LBA, as well as the
RDM.

Cross-fitting analysis

The cross-fitting analysis determines the correspondence
between the drift rate, response threshold and non-decision
time parameters of the RDM and LBA models. The analysis
involved generating RT and choice data from each model
and systematically changing each of the parameters. If the
model parameters correspond then systematically changing
a parameter of one model, generating data from this model,
and then fitting the simulated data with the other model will
result in similar changes in the corresponding parameter.
Like the method of Donkin et al. (2011), we simulated a
single participant in a two-choice experiment with three
conditions: easy, medium, and hard. There were 20,000
trials in each condition.

We generated data for both the RDM and LBA using
the parameter values in Table 3. To generate data, we
fixed parameter values at their default values (see Table 3)
and systematically varied either drift rate, threshold, or
non-decision time. Varied parameters took values from 50
equally spaced points with a range like those observed in
practical applications. For each parameter set we generated
60,000 observations. For simulation purposes, v was defined
as the difference between the correct and error drift rate. We

Table 3 Parameter values used to generate data sets used in the cross-fit simulation. Default values are parameter values used when fixed across
simulations

Model v.Easy v.Medium v.Hard B Ter s A

LBA Min 2.1 2 1.8 .25 .2 .75 −
Max 3.6 3.5 3.3 .5 .4 1.5 −
Default 2.3 2.2 2 .5 .3 1 .5

RDM Min 2.1 2 1.8 .25 .2 − −
Max 3.6 3.5 3.3 .5 .4 − −
Default 2.3 2.2 2 .5 .3 1 .5



Psychon Bull Rev

calculated vCorrect as 2+(v/2) and vError as 2−(v/2). With
this parameterization, we just compare the correspondence
between the v parameter of the LBA and RDM. Only v

could vary over the three difficulty conditions.
For each simulated data set, we estimated posterior

distributions via a Bayesian estimation routine. The mean
values of the posterior distributions are plotted in Figs. 11
and 12. Both figures show the effect of changing drift rate,
threshold, and non-decision time in the data generating
model on the parameter values from the recovering
model. A monotonically increasing function along the main
diagonal suggests the analogous parameters in the RDM and
LBA correspond. If the parameters of the generating model
only selectively influence the corresponding parameters of
the recovering model, then there will be vertical lines with
no slope in the off-diagonal panels.

In Figs. 11 and 12, we can see that the main diagonals
show the monotonically increasing function, suggesting the
corresponding parameters of the RDM and LBA agree.
We also observed that the RDM systematically recovered
higher non-decision times than the LBA, and the LBA
systematically recovered lower non-decision times than the
RDM. We replicate this trend in a subsequent analysis
and show how this can lead to the two models arriving at
different conclusions about non-decision time effects.

In the top center panel of Fig. 11, we can see that
increases in drift rate of the LBA can lead to increases in
response threshold in the RDM. Furthermore, the center
right panel shows that increases in threshold can cause
increases in non-decision time. In the center left panel of
Fig. 12, we show that increases in the RDM’s threshold
can lead to increases in the LBA’s drift rate. In the center

Fig. 11 Changes in parameters corresponding to response threshold, non-decision time, and drift rate in the RDM caused by systematic changing
of LBA model parameters
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Fig. 12 Changes in parameters corresponding to response threshold, non-decision time, and drift rate in the LBA caused by systematic changing
of RDM model parameters

left panel of Fig. 12, we see that increases in the RDM
threshold can lead to increases in the LBA drift rate. Overall,
and despite some small violations of selective influence we
show that the key parameters of the two models agree.

Finally, we also varied between-trial drift rate variability
of the LBA over 50 equally spaced values. Unlike the
previous analysis, we fit the RDM to these data but only
allowed within-trial drift rate variability to vary over the
50 data sets and fixed all other parameters at their default
values. In Fig. 13, we can see that increases in between
trial variability leads to increases in within-trial drift rate
variability. The recovered values of within-trial variability
had a smaller range than the generating values of between-
trial variability. The RDM likely has a smaller range because
noise in the model’s decision processes is sampled from a
Gaussian distribution at each time step where the LBA is a

single sample from the Gaussian distribution on each trial.
Because the RDM samples at each time step rather than each
trial, the variability in samples cumulates over time within a
trial.

Themagnitude of non-decision time

The results from our cross-fitting analysis suggest that the
RDM systematically estimates higher non-decision times
than the LBA. Because of the sparse literature on the
reliability of non-decision time estimates in sequential
sampling models, we fit the DDM, LBA, and RDM using
hierarchical Bayesian methods to a previously published
data set that found effects on non-decision time. van
Ravenzwaaij et al. (2012) analyzed data from a motion dots
task with the DDM and found that alcohol consumption
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Fig. 13 Changes in the within-trial drift rate variability parameter of
the RDM caused by systematic changing of the LBA between-trial
drift rate variability parameter

decrease non-decision time values. The authors concluded
that alcohol impaired cognitive and motor/perceptual
encoding capacity.

We calculated the non-decision time values from the
median of the group-level posterior mean. As shown in
Table 4, non-decision time from the DDM increased from
275 ms in placebo doses to 285 ms for high alcohol
doses.3 With the LBA, non-decision time was 162 ms for
placebo doses and this decreased to 140 ms for high alcohol
doses. Therefore, if researchers had used the LBA, they
would conclude that alcohol consumption does not lead to
motor/perceptual encoding deterioration and that alcohol
doses reduce motor/perceptual encoding time. Finally, non-
decision time from the RDM increased from 251 ms in
placebo doses to 256 ms for high alcohol doses, and so,
researchers would conclude that alcohol had practically no
effect on non-decision processes.

To learn more about the differences in non-decision
time estimates from the LBA and RDM we simulated
the processes of both models 100 times. In Fig. 14, we
present three simulations: the RDM with no start point
variability, and the LBA both with and without start point
variability. The results show that the RDM without start
point variability has its fastest finishing times around 100
ms, but the LBA without starting point variability has its
fastest finishing times around 200 ms. If we add a non-
decision time value of 100 ms to both these models then
the fastest RT for the RDM will be approximately 200 ms

3Note that the original authors found an increase of 19 ms rather than
10 ms in non-decision time between placebo and high alcohol doses.

Table 4 Median non-decision time values from the group-level mean
posterior. 95% credible intervals are presented in parenthesis

Model Placebo Moderate High

LBA 162 (125,192) 149 (103,182) 140 (117,161)

RDM 251 (245,256) 253 (246,260) 256 (247,264)

DDM 275 (269,281) 275 (270,280) 285 (276,295)

Non-decision time is in milliseconds

and the LBA will be 300 ms. Thus, the LBA will need a
smaller non-decision time value to produce comparable RTs
to the RDM. The LBA can produce faster finishing times
by increasing the starting-point variability, as shown in the
bottom right panel, but this will also affect the accuracy
rates of the model.

General discussion

Sequential sampling models account for both response
times (RT) and accuracy rates in a range of different
speeded decision making paradigms. These models assume
decisions result from evidence accumulation to a response
threshold. The models allow researchers to draw conclu-
sions about speed of processing, caution, bias, and the time
needed for perceptual encoding and motor responding. Yet,
the success of these models has been dependent on auxiliary
assumptions about the process components of the models
varying from trial-to-trial. We argued that these between-
trial variability assumptions are not founded on any process
explanations and are simply added to help the models fit
data. This can be problematic because the predictive abil-
ity of sequential sampling models is partly determined by
distributional assumptions of between-trial variability.

To test the necessity of the between-trial variability
components, we further developed a multi-accumulator
race model – the racing diffusion model (RDM) – that
dropped some of these assumptions and showed that it can
still provide an accurate account of RT data. We showed
that the RDM with only within-trial variation in drift rate
can produce key response time phenomena, such as fast
and slow errors relative to correct responses. The RDM
was compared to the linear ballistic accumulator (LBA),
which is a race model with between-trial variability in drift
rates and starting points. The RDM replaced the between-
trial variability in drift rate with within-trial variability in
drift rate and was able to fit data as well as the LBA,
accounting for both RT and accuracy rates in tasks involving
lexical decisions, brightness discriminations, motion dots,
and manipulations of response set size, stimulus difficulty
and speed/accuracy emphasis.



Psychon Bull Rev

Fig. 14 Simulations of a single accumulator of the LBA and RDM process. The red arrows in the top left panel and the bottom two panels
represents the length of time that goes by without any process finishing. Parameter values are shown in the top right panel. Note that the S
parameter is the between-trial variability for the LBA and the within-trial variability for the RDM

Our work questions the necessity of some between-trial
variability assumptions that have become routinely assumed
by sequential sampling models. Given the evidence that was
provided in the introduction for between-trial variability in
drift rates, starting points, and non-decision time, we will
now discuss the evidence in the context of what we have
found testing the RDM.

Evidence for variability in drift rate

The original justification for including between-trial vari-
ability in the DDM was to account for item differences in
recognition memory experiments (Ratcliff, 1978) and for
slower errors than correct responses.

However, the RDM without between-trial variability
in drift rate provides a good account of benchmark RT
data. The multi-accumulator architecture naturally predicts

slow errors as a consequence of the race. Furthermore,
eliminating the between-trial variability in drift rate
allows for a simpler likelihood equation speeding up the
model fitting procedure. And so, when researchers are
not interested in questions related to the between-trial
variability components, then faster models such as the RDM
could be an appropriate alternative. In principle, RDM could
have between-trial variability in all its parameters, and it
may be fruitful to develop such a model in the future if the
data require it. Some of these additions have already been
implemented in simple RT experiments (e.g., Tillman et al.,
2017).

More recent empirical findings, such as the double
pass experiment, also provide evidence for between-trial
variability in drift rate (Ratcliff et al., 2018). The problem
is that these findings did not distinguish between systematic
and random sources of between-trial variability in drift
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rate (Evans et al., in press). For example, in the double
pass experiment the same perceptual stimuli are presented
at two separate trials during an experimental session and
so we would assume the two drift rates for the different
trials are correlated. However, the between-trial drift rate in
most sequential sampling models is just a univariate normal
distribution with no information about the correlation
between the two drift rates of the same stimulus. The only
way to capture the relationship between two instances of
the same stimulus is to assign the same (or similar) drift
rate to the two trials. And so, although we have evidence
that drift rates are not the same across trials, this does not
justify capturing between-trial variability using probability
distributions that provide no additional explanation.

Infinite model flexibility

Jones and Dzhafarov (2014) claimed that certain between-
trial drift rate variability assumptions can allow infinite
flexibility of sequential sampling models (cf. Heathcote
et al., 2014; Smith et al., 2014). Our cross-fitting analysis
can shed light on this claim. The only difference between
the RDM with starting point variability and the linear
ballistic accumulator (LBA; Brown & Heathcote, 2008), is
whether drift rate varies within-trial or between-trial. But
what should the distributional form of this variability be?

There is a principled reason to assume that within-trial
drift rate variability is Gaussian. If we assume that the
random increments in the evidence accumulation process
are independent, then the functional central limit theorem
states that the distribution of increments converge to a
Gaussian (Donsker, 1951).

Jones and Dzhafarov (2014) claim that the between-trial
Gaussian distribution assumption of drift rate is simply an
implementation detail in the LBA. Yet, we found that the
between-trial drift variability in LBA and the within-trial
drift variability in the RDM are positively linearly related.
In addition to this relationship, Eq. 5 (the RDM density
function) is closely related to the LBA’s density function,
where

α = (b − A − tv)

ts
(8)

and

β = (b − tv)

ts
(9)

then:

gi(t |b, v, A) = 1

A
[−v�(α)+sφ(α)+v�(β)−sφ(β)] (10)

where s is the standard deviation of the between-trial drift
rate. Equation 5 simply replaces s with 1√

t
, assuming the

RDM has a diffusion coefficient of 1. 1√
t
in the RDM

represents the accumulated noise from taking evidence
samples from a normal distribution at each time step. On the
other hand, s in the LBA represents the noise from taking
a single evidence sample on each trial from the normal
distribution. And so, the between-trial drift rate assumptions
of the LBA are justified in this regard. The LBA is a
tractable proxy for speeded decision models that assume
Gaussian within-trial noise, which as we argue, is justified
by the functional central limit theorem.

Evidence for variability in starting points

The variability in starting points allow for sequential sam-
pling models to account for error RTs that are faster than cor-
rect RTs. The LBA also needs this source of noise to account
for the speed-accuracy trade-off. Yet in the current paper,
we showed that the RDM with only within-trial drift rate
variability can generate fast errors of about 10ms. For errors
that are much faster than correct responses, researchers can
assume starting point variability in the RDM too.

In future work, researchers could attempt to systemat-
ically model some of the starting-point variability using
a model such as the RDM that can do without ran-
dom starting-point variability. For example, the amount of
starting-point variability is likely affected by the outcomes
of previous decisions – sequential effects (cf. Jones et al.,
2013). A key limitation of many sequential sampling models
is that they assume each response is independent of the next
(but see Brown et al., 2008), and they capture the sequential
effects in the starting point variability parameter. In theory,
the RDM could be used to estimate the starting point on
each trial.

Variability in non-decision time

Non-decision time variability across trials allows the DDM
to better fit the .1 quantile of RT distributions from a
lexical decision task (Ratcliff, 2002; Ratcliff & Smith,
2004). A major concern is that this source of noise
adds another numerical integration to the DDM equation,
slowing down the model fitting process. The slowdown may
not be justified given the variability in non-decision time
is relatively small. The variability in non-decision time will
be completely dominated by other sources of noise. For
example, the standard deviation in the non-decision time is
typically less than one-quarter of the standard deviation in
the decision time, meaning it has little influence on the RT
distribution (Ratcliff, 2002).

A constant non-decision time provides a substantial
computational speed up, which is one reason why a
constant value is useful for the more parsimonious LBA
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and RDM. Whether a constant value of non-decision time
is overly simplistic is yet to be formally investigated
– in fact, the distributional properties of non-decision
times are not well understood (Ratcliff, 2013; Verdonck
& Tuerlinckx, 2015). We know that assuming normal and
exponential distributions of non-decision time leads to
parameter recovery issues in the DDM (Ratcliff, 2013). Yet,
there is some evidence that non-decision times do have
a non-negative positive skewed distribution (Verdonck &
Tuerlinckx, 2015)

Perhaps the biggest concern is that even without
between-trial variability, there are problems with the
reliability of non-decision time estimates between different
sequential sampling models. In a simulation study, Donkin
et al. (2011) found that the DDM reliably estimates larger
non-decision times than the LBA. In practice, the DDM
also typically produces higher estimates than the LBA.
For instance, when the LBA was fit to data from Ratcliff
and Rouder (1998), the model produced non-decision time
estimates (Brown & Heathcote, 2008, Table 2) between 27-
66ms lower than the DDM (Ratcliff & Rouder, 1998, Table
1). In some instances, the DDM estimates non-decision
times greater than 400 ms (Gomez et al., 2015), leaving 62-
118ms of the mean RTs to be accounted for by the decision
process.

It is not clear what the most appropriate magnitude
for non-decision time is. Perceptual encoding time for
simple visual stimuli can be as fast as 50 ms (Bompas &
Sumner, 2011), while key-press responses can be as fast
as 66 ms (Smith, 1995, p. 585). More recently, researchers
have related measurements of electrophysiology in monkeys
(Cook & Maunsell, 2002), and MEG and EEG in humans
(Amano et al., 2006; Tandonnet et al., 2005; Vidal et al.,
2011) to the RTs to detect simple visual stimuli. By doing
so, researchers could partition out the time needed for visual
perception, which is approximately 150-200 ms. Given that
non-decision time is the sum of perceptual encoding and
response production time, for 2 or N choice tasks with a key
press response modality and stimuli as complex as motion
dots, for example, we should expect non-decision time to be
at least 200 ms.

One could argue that the magnitude of non-decision
time isn’t so important for drawing conclusions from
sequential sampling models. Instead, researchers care about
reliable differences between conditions of an experiment.
However, Heathcote and Hayes (2012) demonstrated that
non-decision time decreases with practice in a lexical
decision task, but only for the DDM, not the LBA. Our own
non-decision time analysis supports the idea that researchers
could draw different conclusions from different sequential
sampling models about perceptual encoding and motor
response times.

Conclusion

In its simplest form, the RDM only has one source
of variability: within-trial variability in drift rate. The
simplicity of the RDM allowed us to test the necessity
of between-trial variability in sequential sampling model
parameters. Overall, we found good reasons to rethink
including between-trial variability parameters in sequential
sampling models. And at the very least, the minimal
assumptions of the RDMmake it a good candidate to model
systematic variability in decision processes.

Author Note This research was supported by National Eye Institute
grant no R01 EY021833 and the Vanderbilt Vision Research Center
(NEI P30-EY008126).

Appendix A: Cumulative density function

The cumulative density function for the RDM was derived
for Logan et al. (2014), but only the R code for the function
was available. For completeness, we present the equation
here.

The CDF for the RDM is a Wald distribution with
variability in start point. The PDF for the Wald distribution
is

f (t | b, v) = b√
2πt3

exp

{
−1

2

(vt − b)2

t

}
,

where b and v are the threshold and drift rate, respectively,
of a diffusion process with a single absorbing boundary (b).
This PDF can be integrated over t to give the corresponding
CDF

F(t | b, v) = �

(
vt − b√

t

)
+ exp (2vb)�

(−vt − b√
t

)
.

The starting point z < b of the process is implicitly equal
to 0 in these expressions. Noting that a non-zero start point
with threshold b is equivalent to a process with a zero start
point and threshold b − z, so we can write

F(t | b, v, z) = F(t | b − z, v)

= �

(
vt − (b − z)√

t

)
+ exp (2v(b − z))

×�

(−vt − (b − z)√
t

)
. (11)

Our goal is to compute the CDF for the mixture
the starting point z, where z follows a uniform[0, A]
distribution. That is, we desire an expression for

F(t | b, v, A) = 1

A

∫ A

0
F(t | b, v, z)dz.
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We begin by noting first that the CDF � of the standard
normal distribution can be written as a transformation of
the error function:

�(x) = 1

2

(
x√
2

)
+ 1

2
. (12)

Therefore we can rewrite Eq. 11 as

F(t | b, v, z)= 1

2

[
1 + exp(2v(b − z)) +

(
vt − (b − z)√

2t

)

+ exp (2v(b−z))

(−vt − (b − z)√
2t

)]
. (13)

Because the integration to be performed has a number of
steps, for clarity we write

F(t | b, v, z) = 1

2
[α(z) + β(z) + γ (z) + δ(z)] ,

where

α(z) = 1,

β(z) = exp(2v(b − z)),

γ (z) =
(

vt − (b − z)√
2t

)
, and

δ(z) = exp(2v(b − z))

(−vt − (b − z)√
2t

)
,

and we will integrate each term over z and then add the
results to obtain F(t | b, v, A).

α(z) and β(z)

The first two terms are trivial:

1

A

∫ A

0
α(z)dz = 1,

and

1

A

∫ A

0
β(z)dz = exp 2vb

2vA
(1 − exp(−2vA)) .

γ (z)

We solve the integral of γ (z) by noting first that∫ x

0
(u)du = x(x) + 1√

π

(
exp(−x2) − 1

)
.

Through the change of variable

u = vt − (b − z)√
2t

,

we see that

1

A

∫ A

0
γ (z)dz = 1

A

∫ A

0

(
vt − (b − z)√

2t

)
dz

=
√
2t

A

∫ a2

a1

(u)du, (14)

where

a1 = vt − b√
2t

and a2 = vt − (b − A)√
2t

.

Equation 14 is equal to
√
2t

A

[∫ a2

0
(u)du −

∫ a1

0
(u)du

]
, (15)

and the signs of a1 and a2 are irrelevant given the symmetry
of the function (x). Because∫ ai

0
(u)du = ai(ai) + 1√

π

(
exp(−a2i ) − 1

)
,

substitution into Eq. 15 yields

1

A

∫ A

0
γ (z)dz =

√
2t

A

[
a2(a2) + 1√

π

(
exp(−a22) − 1

)

−a1(a1) − 1√
π

(
exp(−a21) − 1

)]
.

Letting αi = √
2ai and substituting back the transformation

of the error function in Eq. 12 gives

1

A

∫ A

0
γ (z)dz = −1 + 2

√
t

A
{[α2�(α2) − α1�(α1)]

+ [φ (α2) − φ (α1)]} , (16)

where φ(x) is the standard normal PDF.

δ(z)

The function δ(z)must be integrated by parts. We first apply
a change of variable as was used to integrate γ (z), that is,

x = −vt − (b − z)√
2t

.

Then

1

A

∫ A

0
δ(z)dz = 1

A

∫ A

0
exp(2v(b − z))

×
(−vt − (b − z)√

2t

)
dz

=
√
2t

A

∫ b2

b1

exp
(
−2v(x

√
2t + vt)

)
(x)dx

=
√
2t

A
exp

(
−2tv2

)

×
∫ b2

b1

exp
(
−2v

√
2tx

)
(x)dx,

where

b1 = −vt − b√
2t

and b2 = −vt − (b − A)√
2t

.

Setting

u = (x) and v′ = exp
(
−2v

√
2tx

)
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and noting that

u′ = 2√
π
exp

(
−x2

)
and v = − 1

2v
√
2t

exp(−2v
√
2tx),

integrating by parts gives

1

A

∫ A

0
δ(z)dz

=
√
2t

A
exp

(
−2tv2

) ∫ b2

b1

exp
(
−2v

√
2tx

)
(x)dx

=
√
2t

A
exp

(
−2tv2

) [(
− 1

2v
√
2t

exp(−2v
√
2tb2)(b2)

+ 1

2v
√
2t

exp(−2v
√
2tb1)(b1)

)

+
∫ b2

b1

1

v
√
2tπ

exp
(
−x2 − 2v

√
2tx

)
dx

]

=
√
2t

A
exp

(
−2tv2

) [(
− 1

2v
√
2t

exp(−2v
√
2tb2)(b2)

+ 1

2v
√
2t

exp(−2v
√
2tb1)(b1)

)

+ 1

v
√

t
exp(2tv2)

∫ b2

b1

1√
2π

exp
(
−(x + v

√
2t)2

)
dx

]

= exp
(−2tv2

)
2vA

[(
− exp(−2v

√
2tb2)(b2)

+ exp(−2v
√
2tb1)(b1)

)

+ exp(2tv2)
(
(b2 + v

√
2t) − (b1 + v

√
2t)

)]
.

Transforming (x) back to �(x) and substituting βi = √
2bi ,

and recalling that αi = √
2ai , we obtain

1

A

∫ A

0
δ(z)dz

= 1

vA

{
[�(α2) − �(α1)] − [

exp (2v(b − A)) � (β2)

− exp (2vb) � (β1)
]

+1

2

[
exp (2v(b − A)) − exp (2vb)

]}
. (17)

The solution

The CDF of the Wald distribution with uniform variability
in start point is given by

F(t | b, v, A) = 1

2A

∫ A

0
(α(z) + β(z) + γ (z) + δ(z)) dz.

Adding the four integrals computed in Sections “α(z) and
β(z)” through “δ(z)” gives

1

A

∫ A

0
(α(z) + β(z) + γ (z) + δ(z)) dz

= 1

vA
(�(α2) − �(α1)) + 2

√
t

A
(α2�(α2) − α1�(α1))

− 1

vA

[
exp(2v(b − A))�(β2) − exp(2vb)�(β1)

]

+2
√

t

A
(φ(α2) − φ(α1)) .

Therefore,

F(t | b, v, A)

= 1

2vA
(�(α2) − �(α1)) +

√
t

A
(α2�(α2) − α1�(α1))

− 1

2vA

[
exp(2v(b − A))�(β2) − exp(2vb)�(β1)

]

+
√

t

A
(φ(α2) − φ(α1)) .

Appendix B: Model structure and fitting
method

Each parameter for each subject was stochastically depen-
dent on a group level distribution, φθ , where the subscript θ
denotes the subject level parameter. We assumed that each
group level distribution φθ was a truncated normal distri-
bution, where φθ ∼ N(μ, σ) | (lower, upper). For each
group level distribution, the distribution range was the same
as the hyper-priors on the group level mean parameter. We
set hyper-priors on the group level parameters where the
mean of φθ had the following priors: A ∼ N(.5, .5)|(0, ∞),
B ∼ N(.5, .5)|(0, ∞), v ∼ N(2, 2)|(−∞, ∞), T0 ∼
N(.3, .3)|(0, 1). The standard deviation of φθ had a Gamma
prior with shape parameter α and rate parameter β, where
standard deviation ∼ �(α = 1, β = 1). Priors supported a
range of values identified in a literature review reported by
Matzke and Wagenmakers (2009).

We estimated posterior distributions of parameter values
using the differential evolution Markov Chain Monte Carlo
method (DE-MCMC; Ter Braak, 2006; Turner et al.,
2013). DE-MCMC has been shown to efficiently estimate
parameters of hierarchical versions of models similar
to the RDM (e.g., Turner et al., 2015; Turner et al.,
2013). For all model fits in the paper we ran the DE-
MCMC algorithm with 40 chains. The starting points of
these chains were drawn from the following distributions:
A ∼ N(.5, .5)|(0, ∞), B ∼ N(.5, .5)|(0, ∞), v ∼
N(2, 2)|(−∞, ∞), Ter ∼ N(.3, .3)|(0, 1), where N(m, sd)

indicates a normal distribution with mean m and standard
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distribution sd and the numbers after the | indicate the
distribution range.

Part of approximating posterior distributions via sam-
pling is deciding when convergence has been obtained, at
which we are confident that samples represent the pos-
terior distribution. All samples prior to convergence are
discarded. To decide the point of convergence we both visu-
ally inspected the chains and discarded all samples prior to
the R̂ statistic being less than 1.01 (Gelman & Rubin, 1992).
R̂ represents the stability of parameter estimates within and
between chains. The calculation involves comparing the
within-chain and between-chain variances, as differences
between the two sources of variance indicates a lack of sta-
bility in estimates, and potentially non-convergence. R̂ has
a value upwards of 1 with values closer to 1 indicating that
the variance between chains is similar to the variance within
chains, and thus, indicating better convergence.

Upon reaching the R̂ criterion, we drew 5000 additional
samples for each chain. To save memory during computing,
and given the high auto-correlation within-chains, we
thinned the posterior by only keeping every 10th iteration.
These 20000 (i.e., 40 chains × 500 iterations) samples
constituted our posterior distribution estimates. For all
model fits the Wiener process standard deviation is fixed
to s = 1. We also provide R code to implement the
RDM model, which we host on the related Open Science
Foundation web page: https://osf.io/m4btq/.

Appendix C: Model selectionmethod

The gold standard for estimating the out-of-sample pre-
dictive accuracy of a model is cross-validation (Geisser &
Eddy, 1979), but this method is computationally expensive
and therefore we used a computationally cheap approxi-
mation to cross-validation. We used the widely applicable
information criterion (WAIC; Watanabe, 2010) to assess the
out-of-sample predictive accuracy of the LBA and RDM.
WAIC requires calculating a goodness-of-fit value of a
model and subtracting a value from this that represents the
complexity of the model. In this regard, WAIC is like the
well-known Akaike’s information criterion (AIC; Akaike,
1974) or the Bayesian information criterion (BIC; Schwarz,
1978), but is applicable to hierarchical Bayesian models.

The first step to calculating WAIC is to compute for
each posterior sample of post1, ..., postS the likelihood of
each data point yi from data y1, ..., yN . For each data point,
we calculate the average likelihood Pr(yi) over the entire
posterior distribution as follows:

Pr(yi) = 1

S

S∑
s=1

Pr(yi |θs) (18)

We then sum the log-likelihood over all data points to get
the log point-wise predictive density, lppd, where:

lppd =
N∑

n=1

logPr(yi). (19)

The lppd is a biased estimate of how well the model
predicts future data. It is biased because the data we use
to evaluate the model is the same data we use to build
the model. Essentially, in addition to fitting the signal
in the data, the model has been optimized to fit noise
in the data that will not be present in future data. The
lppd overestimates the model’s predictive accuracy and to
approximate an unbiased estimate we subtract a measure
of the model’s complexity from lppd. One measure of
complexity is the effective number of parameters pWAIC .
The effective number of parameters is a count of the total
number of model parameters, but the metric accounts for
the fact that all parameters in the model do not contribute to
model’s fit equally, and so, a parameter’s contribution to the
count can be values between 0 and 1. To compute pWAIC ,
we first calculate the variance in log-likelihood across data
points for each posterior sample, where:

V (yi) = V arS
s=1(logPr(yi |θs)). (20)

We then sum the variance in log-likelihood over data
points to get an estimate of the effective number of
parameters, where:

pWAIC =
N∑

n=1

V (yi) (21)

Using Eqs. 19 and 21 we can compute WAIC as follows:

WAIC = −2(lppd − pWAIC) (22)

Appendix D: Model recovery

We generated a synthetic data set by simulating the RDM
model for an experiment with easy, medium, and hard
difficulty, where difficulty effects were generated from
systematic changes in the drift rate parameter. Thirty
subjects were generated from the group-level distribution
and we fit all of the simulated data sets with the RDMmodel
using same parameterization as the generating distributions.
Presented in Fig. 15 we display the generating group-level
parameter values superimposed on the recovered group-
level posterior distributions. The generating values of the
group level distribution fall within the group-level posterior
estimates of each parameter. In Fig. 16, we show that the
mean of the subject-level posterior distribution correlates
well with the subject-level generating parameters. Both
our group-level and subject level simulation show a good
recovery of parameters for the RDM.

https://osf.io/m4btq/
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Fig. 15 Mean of group-level posteriors of generating parameters values are represented by the red triangle and the group-level posteriors of
recovered parameter values are denoted by the blue histograms. Red triangles are all contained within the posterior distributions suggesting good
recovery of parameters
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Fig. 16 Scatterplots showing the mean of subject-level posteriors of generating parameters as a function of the mean subject-level recovered
parameter values. Dots along the diagonal represent good recovery of parameters
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