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Servant M, Tillman G, Schall JD, Logan GD, Palmeri TJ.
Neurally constrained modeling of speed-accuracy tradeoff during
visual search: gated accumulation of modulated evidence. J Neuro-
physiol 121: 1300–1314, 2019. First published February 6, 2019;
doi:10.1152/jn.00507.2018.—Stochastic accumulator models account
for response times and errors in perceptual decision making by
assuming a noisy accumulation of perceptual evidence to a threshold.
Previously, we explained saccade visual search decision making by
macaque monkeys with a stochastic multiaccumulator model in which
accumulation was driven by a gated feed-forward integration to
threshold of spike trains from visually responsive neurons in frontal
eye field that signal stimulus salience. This neurally constrained
model quantitatively accounted for response times and errors in visual
search for a target among varying numbers of distractors and repli-
cated the dynamics of presaccadic movement neurons hypothesized to
instantiate evidence accumulation. This modeling framework sug-
gested strategic control over gate or over threshold as two potential
mechanisms to accomplish speed-accuracy tradeoff (SAT). Here, we
show that our gated accumulator model framework can account for
visual search performance under SAT instructions observed in a
milestone neurophysiological study of frontal eye field. This frame-
work captured key elements of saccade search performance, through
observed modulations of neural input, as well as flexible combinations
of gate and threshold parameters necessary to explain differences in
SAT strategy across monkeys. However, the trajectories of the model
accumulators deviated from the dynamics of most presaccadic move-
ment neurons. These findings demonstrate that traditional theoretical
accounts of SAT are incomplete descriptions of the underlying neural
adjustments that accomplish SAT, offer a novel mechanistic account
of decision-making mechanisms during speed-accuracy tradeoff, and
highlight questions regarding the identity of model and neural accu-
mulators.

NEW & NOTEWORTHY A gated accumulator model is used to
elucidate neurocomputational mechanisms of speed-accuracy tra-
deoff. Whereas canonical stochastic accumulators adjust strategy only
through variation of an accumulation threshold, we demonstrate that
strategic adjustments are accomplished by flexible combinations of
both modulation of the evidence representation and adaptation of
accumulator gate and threshold. The results indicate how model-based
cognitive neuroscience can translate between abstract cognitive mod-
els of performance and neural mechanisms of speed-accuracy trad-
eoff.

decision making; frontal eye field; speed-accuracy tradeoff; stochastic
accumulator models

INTRODUCTION

Speed-accuracy tradeoff (SAT) is fundamental for adaptive
behavior (Heitz 2014). Canonical accumulator models provide
a simple account of SAT: perceptual evidence is accumulated
over time to a threshold that is adjusted strategically. Higher
thresholds generate slower, more accurate decisions; lower
thresholds generate faster, less accurate decisions (Bogacz et
al. 2006, 2010; Ratcliff and Smith 2004; cf. Rae et al. 2014).

Particular single neurons appear to instantiate an accumula-
tion of evidence to threshold (Ding and Gold 2010; Gold and
Shadlen 2007; Schall 2004; but see Latimer et al. 2015), with
neural dynamics of saccade-related, movement-related neurons
mirroring the dynamics of accumulator models (Hanes and
Schall 1996; Ratcliff et al. 2003). In monkeys performing
visual search decisions, most visually responsive neurons in
frontal eye field (FEF) instantiate a representation of visual
search object salience guiding attention and action (Bichot and
Schall 1999; Costello et al. 2013; McPeek 2006; Noudoost and
Moore 2011; Ramkumar et al. 2016; Schall and Hanes 1993;
Zhou and Desimone 2011). Our gated accumulator model
(GAM; Purcell et al. 2010, 2012) demonstrated that evidence
represented by these visually responsive neurons can drive
accumulation of evidence to threshold sufficient to predict
saccade response times (RTs) and errors and to replicate
dynamics of movement-related neurons.

GAM is a modeling framework generalizing accumulator
architectures (Ratcliff and Smith 2004) by allowing for inde-
pendent race, feedforward, or lateral inhibition (Bogacz et al.
2007; Usher and McClelland 2001), with the novel addition of
gated inhibition between the input evidence and accumulators.
To test whether visually responsive neurons provide a suffi-
cient representation of evidence driving accumulation, spike
trains recorded from these neurons were used as the input to
simulated accumulator units. Gated inhibition of spike train
inputs was necessary to predict observed search behavior and
quantitatively replicate movement neuron dynamics. Further
simulations suggested two potential mechanisms in GAM for
instantiating SAT (Purcell et al. 2012). Under the assumption
of identical GAM inputs between SAT conditions, slower,
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more accurate responses could be achieved either by elevating
threshold, which requires longer accumulation times (consis-
tent with canonical models), or by elevating the gate, which
primarily delays the onset of accumulation. The alternative of
increasing total accumulation excursion by reducing baseline is
not possible in the current GAM framework, as neural firing
rate is bounded at 0. Those simulations provided a proof-of-
concept that we test here on unique SAT data.

The first single-unit investigation of SAT sampled neurons
in the FEF of monkeys revealed multiple mechanisms of
control (Heitz and Schall 2012). Two monkeys performed a
visual search task with short, interleaved blocks of trials cued
to require fast, neutral, or accurate responding. Relative to the
fast condition, in the neutral and accurate conditions, visually
responsive neurons exhibited lower discharge rates before
search array presentation, reduced visual responses, and de-
layed selection of target from distractors. These findings were
recently replicated in a third monkey (Reppert et al. 2018),
demonstrating that the representation of the evidence driving
accumulation is modulated by SAT.

The influence of SAT on the neural accumulation of evi-
dence to threshold has yielded mixed results. A sample of
movement-related neurons from FEF of two monkeys showed
smaller excursion, with lower neural activation at RT (ART) on
accurate relative to neutral and fast conditions (Heitz and
Schall 2012). However, the few movement-related neurons
sampled from a third monkey showed the opposite pattern
(Reppert et al. 2018). It is unclear whether these heterogeneous
findings are due to sampling noise or reflect individual differ-
ences in SAT strategy. Moreover, in the superior colliculus
ART of movement neurons was invariant across SAT condi-
tions (Reppert et al. 2018), similar to observations in premotor
and motor cortex (Thura and Cisek 2016), as well as posterior
parietal cortex (Hanks et al. 2014).

Here, we test computationally the role of gate-and-threshold
modulation in neural control of SAT using the GAM frame-
work. Following Purcell et al. (2010, 2012), spike trains
recorded from visually responsive neurons drive GAM accu-
mulators to quantitatively predict RTs and errors in visual
search under different SAT instructions [behavioral and neural
data are from Heitz and Schall (2012) and Reppert et al.
(2018)]. Because GAM is a general architecture, we can use it
as a theoretical tool to test hypotheses about neurocomputa-
tional control over SAT. One possibility is that differences in
visually responsive neurons alone are sufficient to explain
differences across SAT conditions (hypothesis 1). This hypoth-
esis was not considered by Purcell et al. (2012) because their
simulations assumed identical visual neuron inputs across SAT
conditions. Other possibilities are that strategic adjustments in
gate (hypothesis 2) or threshold (hypothesis 3) are necessary as
well. These alternative hypotheses were tested quantitatively in
fits to correct and error RTs, as well as error rates across SAT
conditions.

MATERIALS AND METHODS

Behavior and Physiology

We modeled behavioral and neurophysiological data previously
collected from three macaque monkeys (Q, S, and Da) trained to
perform T/L visual search with short blocks of trials (10–20) cued to
be fast, neutral, or accurate. Analyses of these data have been reported

in previous publications (monkeys Q and S: Heitz and Schall 2012;
monkey Da: Reppert et al. 2018). Each trial started with a central
fixation point presented for ~1,000 ms. The monkeys were extensively
trained to associate the color of the fixation point with a SAT
condition (green: fast; black: neutral; red: accurate). The target (T or
L, varied across sessions) was presented at one of eight isoeccentric
locations, equally spaced around the fixation point at eccentricities
ranging from 8° to 12°. Distractors occupied the remaining locations
and were oriented randomly among the cardinal directions. A few
sessions incorporated homogeneous distractors. This search array
variant did not produce any difference of neural modulation or of
behavior and was, therefore, not dissociated by our modeling.

RTs were measured as the latency from search array presentation to
the initiation of the saccade. Response type (correct or error) was
determined by the end point of the saccade with respect to target
location. In the accurate condition, monkeys were rewarded if sac-
cades to the target exceeded an implicit response deadline [dynami-
cally fine-tuned such that ~20% of responses were too fast; S: 427 � 5
ms (means � SE), Q: 500 � 0 ms, Da: 437 � 7 ms]. Incorrect and
premature correct saccades were penalized by a 4,000 ms time out. In
the neutral condition, correct saccades were rewarded regardless of
RT. Incorrect saccades were followed by a 2,000 ms time out. In the
fast condition, monkeys were rewarded if saccades to the target
preceded an implicit response deadline (dynamically adjusted such
that ~20% of responses were too slow; S: 386 � 7 ms, Q: 364 � 10
ms, Da: 365 � 14 ms). Incorrect saccades made within the deadline
had no time out to promote quick responding.

Neurons were categorized on the basis of firing rate patterns
obtained in a memory-guided saccade task at the start of each session
(Bruce and Goldberg 1985). Visually responsive activity was indi-
cated by a significantly elevated firing rate in the interval 75–100 ms
after stimulus presentation compared with a 100-ms prestimulus
baseline. Presaccadic, movement-related activity was indicated by a
significantly elevated firing rate in the 100 ms before saccade initia-
tion compared with a firing rate in the interval 500–400 ms before
saccade initiation. Pure visual neurons exhibited visual activity but no
presaccadic activity. Visuomovement neurons showed both visual and
presaccadic activity. Movement neurons showed presaccadic activity
only.

Models

We used a neurally constrained GAM to identify and characterize
the neural loci of SAT modulations. We first introduce the general
architecture of accumulator models and describe the GAM frame-
work. We next detail our general modeling approach, which consists
in 1) driving GAM with spike data from FEF visually responsive
neurons and 2) optimizing GAM model parameters to fit observed
behavioral data. Unfortunately, we had a small sample of only 16
movement-related neurons in total (S: 8 neurons, Q: 6 neurons, Da: 2
neurons), which precluded a thorough and convincing quantitative
analysis and comparison of neural dynamics with accumulator model
dynamics—these counts contrast with an order of magnitude more
visually responsive neurons driving the accumulation of evidence (S:
72 neurons; Q: 71 neurons; Da: 21 neurons). A brief summary of these
analyses is provided in RESULTS. The input to GAM for each monkey
was restricted to the visual neurons recorded in that monkey.

Accumulator models. Multialternative accumulator models of de-
cision making are characterized by multiple accumulator units, with
one unit associated with each response alternative. Perceptual evi-
dence in favor of a given response is accumulated in the correspond-
ing unit. The unit that first reaches a threshold of accumulated
evidence wins the race and determines what response is made
(whether correct or error) and when it is made (RT). Different sources
of noise (in the physical stimuli, in perceptual processing, intrinsic to
each accumulator), both within trials and across trials, make accumu-
lation trajectories stochastic, potentially leading to an incorrect
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choice, and leading naturally to predicted variability in RT. In the
canonical accumulator model framework, SAT is achieved by strate-
gic modulation of threshold. Higher thresholds generate slower but
more accurate responses (Bogacz et al. 2006; Ratcliff and Smith
2004).

A complete model of the eight-element visual search task used
by Heitz and Schall (2012) and Reppert et al. (2018) would require
eight accumulator units (Purcell et al. 2012), each one associated
with each potential saccade location in the array. Because search
array size was not manipulated in these particular experiments, we
followed Purcell et al. (2010) and simplified the modeling by
assuming only two accumulator units, one associated with the
target location and one associated with the distractor locations. Our
past modeling work has revealed that the additional complexity of
fully simulating the eight-element arrays buys little additional
theoretical insight at the cost of a near order of magnitude longer
simulation times.

Specifically, we assumed two accumulator units, mT and mD,
respectively, associated with a correct saccade toward the target
versus an error saccade toward a distractor (Fig. 1). Unit mT accumu-
lates perceptual evidence for the target vT. Unit mD accumulates
perceptual evidence for distractors vD. A basic race-to-threshold
accumulator architecture can be expanded by incorporating feedfor-
ward inhibition u between inputs or lateral inhibition � between
accumulators (Ratcliff 1978; Ratcliff and Smith 2004; Usher and
McClelland 2001).

Gated accumulator model. GAM is mathematically defined by the
following system of stochastic differential equations:

dmT �
dt

�
��vT�t� � uvD�t� � g�� � �mD�t� � kmT�t�� ��dt

�
�

dmD �
dt

�
��vD�t� � uvT�t� � g�� � �mT�t� � kmD�t�� ��dt

�
�

(1)

(see also Bogacz et al. 2006). The specific parameters in Eq. 1, g, u,
�, and k, respectively, correspond to gated inhibition, feedforward
inhibition, lateral inhibition, and leakage. The superscript � in the
term that includes gate (g) indicates that this quantity is posit-
ive-rectified.

The time constant, �, was set equal to 1 without loss of generality.

The stochastic term �dt � �� represents noise intrinsic to each
accumulator unit, with � normally distributed with mean 0 and
standard deviation 	. The values mT and mD accumulate to thresh-
old 
.

As noted earlier, we consider GAM a general modeling framework
in that it includes as special cases a number of proposed accumulator
model architectures: These include, with u � 0, � � 0, independent
race models (e.g., Brown and Heathcote 2008; Logan et al. 2014);
with � � 0, u free to vary, feedforward inhibition, diffusion-like
models (Mazurek et al. 2003; Ratcliff 1978); and with u � 0, � free
to vary, lateral inhibition, competing accumulator models (e.g., Usher
and McClelland 2001). Accumulation can be leaky by allowing k �
0. Because we used spike trains from visually responsive neurons (see
below) as input to the accumulator, based on the success of past work
(Purcell et al. 2010, 2012), all the models we explored allowed gated
inhibition, g � 0.

GAM inputs defined by FEF visually-responsive neurons. Accumu-
lator inputs vT and vD were derived from spike trains from both visual
and visuomovement neurons that selected the target from distractors
(S: 72 neurons; Q: 71 neurons; Da: 21 neurons), following methods
described by Purcell et al. (2010, 2012). Visual as well as visuomove-
ment neurons were included because 1) they represent the target

Fig. 1. Gated accumulator model (GAM) framework. Arrows indicate excitatory connectivity, while solid circles indicate inhibition. Accumulator units are driven
by spike trains recorded from frontal eye field (FEF) visually responsive neurons, while monkeys performed visual search under speed-accuracy tradeoff (SAT)
instructions. On each trial, N spike trains were randomly sampled and averaged to generate the input (v) to each accumulator unit (m). Trials in which the target
was located within the neuron’s response field were used to generate input vT to accumulator mT (associated with a saccade toward the target). Trials in which
a distractor was located within the neuron’s response field were used to generate input vD to accumulator mD (associated with a saccade toward a distractor).
A simulated saccade is initiated when accumulator unit activity reaches a threshold (
). GAM generalizes previous accumulator architectures, incorporating
independent race, as well as feedforward (�) or lateral (�) inhibition, with possible leakage (k), and the addition of novel gated inhibition (g) between the input
evidence and accumulators. Model parameters (highlighted in purple) were optimized to fit visual search performance in each SAT condition to characterize the
loci and mechanisms of SAT modulations.
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evidence used to guide gaze (Sato et al. 2001; Sato and Schall 2003;
Thompson et al. 1996) and 2) their presaccadic activity is not involved
in motor preparation (Ray et al. 2009). Each spike train was first
convolved with a kernel filter y(t) that resembles a postsynaptic
potential (Thompson et al. 1996):

y�t� � �1 � e�
t

�g� � e�
t

�d (2)

Time constants for the growth phase (�g) and the decay phase (�d)
were set at 1 ms and 20 ms, respectively, on the basis of measure-
ments of excitatory postsynaptic potentials. The resulting spike den-
sity function (SDF) was normalized to the maximum firing rate of the
neuron, regardless of condition and response type; this normalization
procedure, used by Heitz and Schall (2012), prevented neurons with
intrinsically high firing rates and large modulations from dominating
model inputs. SDFs were then sorted according to the location of the
target with respect to the neuron’s response field (RF), SAT condition
(fast versus accurate), and response made (correct versus incorrect)
when they were recorded. We only considered data from fast and
accurate conditions because the neutral condition was included in only
a small subset of sessions for monkeys Q and S, was not included at
all for monkey Da.

For each simulated trial in a particular condition, N SDFs associ-
ated with that condition were randomly sampled with replacement and
averaged to generate the input to a given accumulator; the quantity N
is a free parameter in the model that effectively determines the
signal-to-noise ratio of the input. Trials in which the target was
located within the neuron’s response field (RF) were used to generate
input vT to accumulator mT. Trials in which a distractor was located in
the neuron’s RF were used to generate input vD to accumulator mD

(Fig. 1). Ambiguous trials in which the target appeared on the
irregular border of the neuron’s RF were excluded. We also discarded
trials associated with a variation in single-unit isolation. Inconsistent
isolation was identified by pronounced variation in discharge rates
across trials, beyond that resulting from the SAT conditions, which
was associated with marked differences in discharge rates across trial
types. Additional criteria included assessment of excessively short
interspike intervals (�1 ms). Simulated trials for a given SAT con-
dition used SDFs sampled from that condition. In particular, the
number of simulated trials that used SDFs from correct and incorrect
trials was determined by the observed proportion of correct and
incorrect trials. The rationale behind this procedure was to simulate
the model in conditions similar to neurophysiological recordings.
Analyses and modeling reported in the RESULTS section include only
trials in which SAT deadlines were met. By using the same exclusion
criteria as Heitz and Schall (2012) and Reppert et al. (2018), this
allows the previous work to be compared directly to the present
computational modeling results. For the specific data included in this
model (considering only those sessions in which visually responsive
neurons were recorded), the proportion of trials in which SAT dead-
lines were missed in the fast and the accurate condition, respectively,
was 15.9% and 16.0% for monkey Q, 16.0% and 19.9% for monkey
S, and 13.5% and 24.5% for monkey Da. Note that we initially
attempted to fit the entire data set, regardless of whether responses met
SAT deadlines. Unfortunately, GAM could not capture premature
accurate and last fast trials because model inputs from visually
responsive neurons were dominated by the large majority of trials in
which SAT deadlines were met. Hence, the RTs and associated spike
rates used for model fitting were sampled from strictly corresponding
sets of trials only when the deadlines were met.

Spikes recorded after saccade initiation cannot contribute to the
decision process and were, thus, excluded. To prevent an artifactual
increase in variance of model inputs with RT, following Purcell et al.
(2010, 2012), we extended each SDF up to 6,000 ms poststimulus as
a Poisson process with a rate determined by the mean firing rate in the
�50 to �10-ms window before saccade initiation. This was done on
a trial-to-trial basis. A relatively large window was chosen to reduce

the likelihood of a null firing rate for the Poisson process. As in
Purcell et al. (2010, 2012), this procedure has only a minor impact on
the models that provide a good fit to data, because the observed and
simulated RTs are so similar. But it is necessary to converge on
best-fitting parameter estimates.

GAM simulations. Following Purcell et al. (2010, 2012), GAM was
simulated with inputs from 300 ms before the presentation of the
search array, until a threshold amount of visual evidence 
 was
reached. Saccadic RT was defined as the latency between stimulus
onset and threshold crossing, plus a residual ballistic motor execution
time of 15 ms. The ballistic time corresponds to the time necessary for
the brain stem to initiate the gaze shift (Scudder et al. 2002). Because
firing rates cannot be negative, accumulators were constrained to be
greater than 0. All GAM simulations incorporated a modest amount of
noise in the accumulator integration (� � 0.05), similar to Purcell et
al. (2012). Although pilot explorations showed that GAM could
capture search performance without noise in the accumulator units, we
incorporated a modest amount of Gaussian noise intrinsic to the
accumulator because it is a feature of many sequential sampling
models and provides an explanation for the tonic baseline discharge
rates of most FEF movement-related neurons (e.g., Bruce and Gold-
berg 1985; Schall 1991).

Model fitting procedure. GAM model architectures were fitted to
observed errors and correct and error RT distributions for speed and
accurate conditions for each monkey. Best-fitting parameters of a
particular GAM architecture were estimated with a commonly used
quantile-based method (Ratcliff and Smith 2004). For each session,
behavioral data were included if and only if visually responsive
neurons were recorded (S: 15/18 sessions, Q: 16/20, Da: 8/9). For
each condition, the models were simulated to produce RT quantiles
(0.1, 0.3, 0.5, 0.7, 0.9) and choice probabilities. These predicted
values were compared against observed data using a likelihood-ratio
2 statistic G2 (Ratcliff and Smith 2004; Smith and Ratcliff 2009):

G2 � 2�	
i�1

2

ni	
j�1

12

pijlog
pij

�ij

 (3)

The outer summation over i extends over the two SAT conditions
(fast versus accurate). The inner summation over j extends over the 12
bins bounded by RT quantiles (six bins for the distribution of correct
responses, and six bins for the distribution of error responses). The
quantity ni corresponds to the total number of trials n per SAT condition
i (S: fast � 10,201 trials, accurate � 10,215 trials; Q: fast � 11,217,
accurate � 12,028; Da: fast � 4,215, accurate � 3,939). The quantities
pij and �ij are the observed and predicted proportions of trials in RT bin
j of SAT condition i, respectively. The proportions sum to 1 across each
pair of correct and error distributions. This G2 statistic characterizes the
goodness-of-fit of the model to the correct and error RT distributions and
the correct and error choice probabilities simultaneously.

Because the models use Monte Carlo simulations, such as random
sampling of observed spike trains as input, they are associated with
complex error surfaces making parameter estimation more challeng-
ing than it might be for simpler deterministic models. In principle,
these challenges could be mitigated by using an infinitely large
number of simulated trials, but then parameter estimation would take
infinitely long. For any parameter estimation of Monte Carlo models,
a balance must be struck between precise parameter estimation and
the amount of time allowed for that parameter estimation to converge.
Additionally, different parameter estimation toolkits perform better
with certain classes of models. During pilot testing, we evaluated the
performance of three different optimization routines: Simplex (Nelder
and Mead 1965), particle swarm (Kennedy and Eberhart 1995), and
differential evolution (Storn and Price 1997). These routines were
implemented using the inspyred library for Python (Garrett 2012), and
each showed some difficulties in optimizing the fits of models to data.

Simplex generated the smallest G2 values when a very large
number of starting points (�100) were used. Thus, we employed a
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two-step simplex optimization procedure. In the first step, we used
150 starting points for each parameter drawn from uniform distribu-
tions spanning a wide range of plausible values. Each model was
simulated 20,000 times per condition using an integration constant
dt � 5 ms. Best-fitting parameters were used to constrain the param-
eter space during the second optimization step, in which starting
points were drawn from uniform distributions with means determined
by previous fits and range equal to the mean � 20%. Each model was
simulated 10,000 times per condition using an integration constant
dt � 1 ms and 50 Simplex starting points. This method provided
relatively stable optimization results. Fitting each model on Vander-
bilt’s Advanced Computing Center for Research and Education high-
performance computing cluster required several days.

Because model simulations started 300 ms before the onset of the
search array, with poorly fitting parameter values, an accumulator
could hit the decision threshold before stimulus onset. This behavior
was penalized by setting predicted RT � 0 ms, with response type
(correct versus error) determined by the winning accumulator. Con-
versely, the accumulator could meander below the decision threshold,
failing to generate a RT. Our extension of SDFs up to 6,000 ms after
stimulus onset mitigated this problem. The proportion of trials that
failed to converge before the 6,000-ms simulation deadline is reported
in RESULTS for each model, monkey, and condition (and was very
small for the best-fitting models).

Model selection. For each monkey and GAM model class (race,
diffusion-like, and competitive), we first compared the quantitative fit
of two model variants: a model in which gate and threshold were
constrained to be the same between SAT conditions (referred to as
model Midentical), and a model in which gate and threshold were free
to vary between SAT conditions (Mgate,threshold); all other model
parameters were assumed to be the same between SAT conditions.
This comparison tested hypothesis 1: if the differences in the visually
responsive inputs between SAT conditions are sufficient to account
for the behavioral data, then Midentical should not fit significantly
worse than Mgate,threshold. If Midentical does fit significantly worse than
Mgate,threshold, then Mgate,threshold was compared with alternative mod-
els in which only gate (Mgate) or only threshold (Mthreshold) was free
to vary between SAT conditions. This comparison allowed us to
identify whether control over gate (hypothesis 2) or control over
threshold (hypothesis 3) is necessary to capture behavior as a function
of SAT.

Following standard model comparison practices (Lewandowsky
and Farrell 2011), the minimized G2 values were converted to Akaike
information criterion (AIC) and Bayesian information criterion (BIC)
statistics to penalize for model complexity and perform model selec-
tion. The AIC and BIC, for binned data, are

AIC � G2 � 2m

BIC � G2 � mlogN (4)

where m is the number of free parameters and N the number of
observations used in the G2 computation. The best model is the one
associated with the smallest AIC/BIC statistic. However, because we
did not use an infinite number of simulated trials, there will be
uncertainty in model predictions, and, hence, uncertainty in G2, AIC,
and BIC values. We do not want to make model comparison decisions
based on a point estimate of a somewhat noisy model fit statistic. To
circumvent this problem, we simulated each model 1,000 times using
best-fitting parameters to obtain a distribution of G2, AIC, and BIC
(these values roughly approximated a bell-shaped distribution). The
95% central range (range of values between the 2.5 and 97.5 quan-
tiles) of these distributions was then used to guide model selection and
was augmented with graphical displays to identify potential misfits.
Note that the penalty term offered by AIC and BIC statistics was
generally negligible compared with the large variability in G2 (see
RESULTS section). Consequently, model selection must be interpreted
with some caution.

Quantification of FEF movement neurons and accumulator
dynamics. Movement-related neurons in FEF are involved in the
initiation of saccades (Segraves 1992); these neurons are encountered
less frequently than visually responsive neurons (Bruce and Goldberg
1985; Schall 1991). Unfortunately, we had a sample of only 16
movement-related neurons in total (S: 8 neurons, Q: 6 neurons, Da: 2
neurons), which precluded a thorough and convincing quantitative
comparison of neural dynamics with accumulator model dynamics.
Conclusions based on comparing model versus neural dynamics
should be considered secondary.

Spike trains from movement-related neurons were convolved and
normalized in the same way as spike trains from visual neurons.
Neural dynamics were quantified as described by Woodman et al.
(2008) (see also Purcell et al. 2010, 2012): For each monkey and
condition, trials in which a saccade was made correctly to a target in
the neuron’s movement field (MF) were sorted by RT and grouped
into bins of 10 trials. The binning procedure allowed us to increase the
signal-to-noise ratio of the movement responses while avoiding dis-
tortions generated by averaging trials associated with a wide range of
RTs.

In each bin, SDFs were averaged, and five measures of movement
neuron dynamics were measured: 1) baseline activity was computed
as the mean firing rate in the 200-ms interval before stimulus onset; 2)
onset of firing rate increases as computed from the change of firing
rate in 30-ms intervals sampled in 1-ms increments from array
presentation. Onset was defined as the center of the earliest interval
satisfying two criteria: 1) averaged activity was 2 SD above baseline
and 2) averaged activity remained 2 SD above baseline when the
interval was moved forward for 30 ms. Onset could not be estimated
for some bins when, for example, the firing rate did not grow to at
least 2 SD above baseline. 3) ART was computed from movement
responses aligned on saccade initiation and was the average activity in
the interval from �20 to �10 ms before the saccade (Hanes and
Schall 1996). 4) Rate of growth was estimated by dividing the
difference between ART and activity at the beginning of the increase
by the time elapsed between ART and the beginning of the increase. 5)
Excursion was the difference between ART and baseline activity. We
observed cases where measures of growth rate and excursion were
negative; we did not remove these negative values from our analyses
(their proportion is reported in RESULTS).

Neurons were included in these analyses when at least 30 trials
(3 bins) were recorded (as in Purcell et al. 2012). To determine
how changes in each measure accounted for variation in RT across
SAT conditions, each measure was averaged across bins. For each
monkey and SAT condition, we report these statistics averaged
across neurons, with a 95% confidence interval obtained using a
bootstrap procedure (1,000 samples). A confidence interval could
not be estimated for monkey Da, because only two movement
neurons were recorded.

To measure accumulator dynamics, for each model, we simulated
a number of correct trials per SAT condition equal to the average
number of correct trials in which the target appeared in the MF of the
neuron (S: fast � 120 trials, accurate � 110; Q: fast � 160, accu-
rate � 180; Da: fast � 100; accurate � 90), using parameter values
obtained by fitting the model to behavioral data. Simulated trajectories
(from the winning accumulator associated with a saccade toward the
target) were then rescaled within a plausible range of firing rates.
Model trajectories were then converted into Poisson spike trains to
approximate the contribution of spiking variance to the data. Simu-
lated model trajectories were then quantified using the exact same
algorithms we applied to the observed neural data. For each model and
SAT condition, these simulations and analyses were performed 1,000
times, and we report predicted statistics on accumulator dynamics
averaged across simulations.
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RESULTS

Behavior and Neurophysiology

We modeled behavior and neurophysiology from three ma-
caque monkeys (Q, S, and Da) performing a saccade visual
search for a T among L’s or L among T’s with short blocks of
trials (10–20) cued for fast or accurate responding (Fig. 2A).

Behavior of each monkey revealed a SAT, characterized by
faster mean RT and increased error rate under speed pressure
(Fig. 2B). Cumulative RT distributions for each monkey,
condition, and response type (correct versus error) are dis-
played in Fig. 3. To present both the RT distributions and

accuracy values on the same graph, RT quantiles (0.1, 0.3, 0.5,
0.7, 0.9) were weighted by their corresponding proportion of
correct and error responses. This plot, termed defective cumu-
lative RT distribution, is routinely used in the cognitive mod-
eling literature to depict behavioral data and model fits. For
example, the proportion of correct responses from monkey S in
the fast condition was 0.65, so weighted RT quantiles from the
corresponding defective cumulative RT distribution are (0.1,
0.3, 0.5, 0.7, 0.9) � 0.65 � (0.065, 0.195, 0.325, 0.455,
0.585). Further characterization of performance is available in
Reppert et al. (2018).

Figure 4 shows normalized FEF visually responsive neuron
activity averaged across neurons for each monkey, SAT con-
dition, and response type. On correct trials, activity initially
increased after the onset of the search array and evolved to
discriminate the location of the target. Specifically, activity
evoked by a target became larger than activity evoked by a
distractor. The reversed pattern was observed on error trials,
demonstrating that errors are caused by incorrect representa-
tion of a distractor as if it were the target (Heitz et al. 2010;
Reppert et al. 2018; Thompson et al. 2005). As a consequence,
simulated trials sampled from error trials generally produced
an incorrect response.

Previous analyses of visually responsive neuron activity
revealed three SAT-related modulations (Heitz and Schall
2012; Reppert et al. 2018). SAT cues induced a modulation of
baseline firing rate in ~50% of neurons. For most neurons,
baseline firing rate was higher after a fast cue and lower after
an accurate cue. The magnitude of visually responsive neuron
activity also increased under speed stress, and target selection
occurred earlier. SAT is, thus, partly accomplished by pro-
nounced changes in the representation of the evidence by
visually responsive neurons in FEF. Our modeling will ask
whether these modulations are sufficient by themselves to
explain behavioral data during SAT.

Figure 5 shows normalized movement-related neuron activ-
ity averaged across neurons for each monkey and SAT condi-
tion, when a saccade was correctly made to the target in the
neuron’s MF. For monkeys Q and S, Heitz and Schall (2012)
reported a baseline shift in 29% of movement neurons. They
also reported that the growth rate, ART, and excursion between
baseline and ART were larger on average in the fast condition.
However, an analysis of each movement neuron revealed some
heterogeneity in ART and excursion between SAT conditions.
For monkey S, five neurons showed larger ART and excursion
in the fast condition, and three neurons showed the opposite
pattern. For monkey Q, five neurons showed larger ART and
excursion in the fast condition, and one neuron showed the
opposite pattern. The two movement neurons recorded from
monkey Da showed larger ART and excursion in the accurate
condition (Reppert et al. 2018).

Model Fits to Behavioral Data

We compared fits of specific architectural variants of GAM
to the performance data from the three monkeys. Model vari-
ants were defined along a 3 (model class: race versus diffusion-
like versus competitive) � 4 (parameters allowed to vary
between SAT conditions: no parameter [Midentical], gate and
threshold [Mgate,threshold], gate [Mgate], threshold [Mthreshold])
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Fig. 2. Visual search task and behavioral data. A: monkeys were trained to
search for a T (or L) in a circular array of seven randomly oriented, inhomo-
geneous L (or T). In short blocks of trials, monkeys were cued to be fast (green
fixation point) or accurate (red fixation). Reward contingencies and time
deadlines enforced performance standards. B: mean response time (left) and
error rate (right) for each monkey in fast (green) and accurate (red) conditions
aggregated across sessions in which visually responsive neurons were re-
corded. Stars plot predicted mean response time and error rate from the most
flexible gated accumulator model (GAM) class that allowed for variation of
both gating inhibition and threshold termination of the accumulation process
(monkey S: Mgate,threshold diffusion-like; monkey Q: Mgate,threshold diffusion-
like; monkey Da: Mgate,threshold competitive).
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model matrix, constructed to test different hypotheses about
the mechanistic locus of SAT.

Best-fitting parameters and fit statistics [95% central
range (CR) around G2, AIC, and BIC] for each GAM variant
are reported in Table 1. The fit quality of each model can
further be appreciated in Fig. 3, where data and model
predictions are represented as defective cumulative RT
distributions. Percentages of simulated trials that hit a
threshold before stimulus onset or failed to reach a threshold
after 6,000 ms of simulation time are reported in Table 1 for
each monkey, model variant, and SAT condition. These
percentages were very small for the best-fitting models and
will not be further discussed.

We first compared Midentical and Mgate,threshold to test whether
the differences in visually responsive neurons alone are suffi-
cient to account for the performance adjustments of SAT

(hypothesis 1). Model fits to behavioral data from monkey S
were somewhat equivocal. The lowest 95% CR around G2,
AIC, and BIC statistics was achieved by Mgate,threshold diffu-
sion-like, suggesting that the observed modulations of visually
responsive inputs are not sufficient to account for SAT behav-
ior. The best-fitting parameters of this model disclosed a higher
decision threshold in the accurate than in the fast condition,
consistent with the canonical accumulator model account. That
said, Fig. 3 shows that both Midentical and Mgate,threshold diffu-
sion-like/competitive provide a good fit to the data, with
substantial mimicry between models (i.e., no features of the
data were captured by one model that could not be captured by
another). A detailed look at Table 1 indicates that the 95% CR
around AIC and BIC for these models are adjacent or even
overlap. Our modeling cannot unequivocally distinguish be-
tween these two hypotheses.

Fig. 3. Visual search performance and model predictions. Correct
and error response time quantiles from each monkey in the fast
(green) and accurate (red) conditions are plotted as defective
cumulative response time (RT) distributions in which each distri-
bution asymptotes at the observed proportion of the respective type
of trial. Accordingly, the distributions for correct trials asymptote
at higher proportions than the distributions of error trials. Values
predicted by the indicated gated accumulator model (GAM) archi-
tectures are plotted in black. Different architectures are distin-
guished along a 3 (model class: race, diffusion-like, competitive) � 4
[parameters varying between speed-accuracy tradeoff (SAT) condi-
tions: no parameter (Midentical), gate and threshold (Mgate,threshold), gate
only (Mgate), threshold only (Mthreshold)]. Nonshaded subplots high-
light best-fitting models. For monkey S, Mgate, and Mthreshold were not
fit because Midentical did not fit significantly worse than Mgate,threshold.
For monkey Q, Mgate,threshold provided the best fit. For monkey Da
Mgate,threshold and Mthreshold provided indistinguishable best fits.
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A comparison of Midentical and Mgate,threshold for monkeys Q
and Da revealed considerably lower 95% CR around fit statis-
tics for Mgate,threshold than Midentical, whatever the model class
(race, diffusion-like, competitive). Mgate,threshold provided a
good fit to the data, whereas Midentical failed to capture the RT
distribution of correct responses in the accurate condition (Fig.
3). Best-fitting parameters for Mgate,threshold showed a consis-
tent pattern across the two monkeys and model classes, with a
larger threshold and a lower gate in the accurate than in the fast
condition. Thus, we explored whether variation in gate (Mgate,
hypothesis 2) or threshold (Mthreshold, hypothesis 3) alone was
sufficient to capture the behavioral data across SAT conditions.
For monkey Da, 95% CR around AIC and BIC strongly
overlapped for Mgate,threshold and Mthreshold, suggesting that
strategic adjustments in threshold are sufficient to capture the
behavioral data. Mthreshold competitive provided a slightly bet-
ter fit performance than Mthreshold race, although Mthreshold
competitive failed to capture the RT distribution of errors in the
accurate condition. This failure is not surprising, because the
number of visual neurons and trials completed was smaller for
monkey Da (see MATERIALS AND METHODS), resulting in fewer
error trials in the accurate condition. For monkey Q, 95% CR
around AIC and BIC were smaller for Mgate,threshold than Mgate
and Mthreshold, suggesting that control over both gate and
threshold is necessary to explain the behavioral data. Mgate,th-

reshold race, diffusion-like, and competitive provided a good fit

to data, with strong mimicry between models and comparable
parameter values.

The inferences from our analyses are based on the ability of
the model to estimate parameters accurately. The excessive
time required to simulate and fit GAM precludes a detailed
parameter recovery study (see White et al. 2017), but we did
simulate data from the model with the best-fitting parameters
and then fit the model to the simulated data. The parameters
recovered in the fits to the simulations agreed well with the
parameters we used to drive the simulations.

In summary, GAM fits for monkeys Q and Da both show
that the pronounced modulations of visually responsive neu-
rons between SAT conditions, when used as input to simulated
accumulators, cannot account for the performance adjustments
of SAT. For both of these monkeys, while Midentical approxi-
mated the differences in median (and mean) RT between fast
and accurate conditions, Midentical failed to fit the RT distribu-
tions. To fit the complete performance measures, strategic
adjustments in threshold (Da) or in both gate and threshold (Q)
are necessary. Moreover, the threshold for the accurate condi-
tion must exceed that for the fast condition, consistent with the
canonical accumulator model explanation of SAT effects. We
note that Mgate produced a far closer correspondence between
observed data and model predictions than that for Midentical.

Fig. 4. Averaged, normalized discharge rates of frontal eye field visually
responsive neuron samples aligned to array presentation when the target (thick)
or distractors (thin) appear in the response field on correct (left) and error
(right) fast (green) and accurate (red) trials for each monkey. Shaded areas
represent means � SE. For each monkey, search errors occur when the
visually responsive neurons treat a distractor as if it were the target.

Fig. 5. Averaged, normalized discharge rates of frontal eye field movement-
related neuron samples aligned to array presentation (left) and saccade initia-
tion (right) when the target appears in the movement field on correct fast
(green) and correct accurate (red) trials for each monkey. Shaded areas
represent means � SE. For neurons recorded in monkeys Q and S, the average
activation at response time was lower on average for accurate relative to fast
trials. The opposite was observed for neurons recorded in monkey Da.
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In contrast, model fits for monkey S revealed that both
Midentical and Mgate,threshold fit the data, with slight quantitative
superiority for Mgate,threshold. While these comparisons were
somewhat equivocal, model comparisons for monkey S did
reveal that some form of competition between alternatives, via
either feedforward (diffusion-like) or lateral (competitive) in-
hibition, are required to account for the observed data (follow-
ing Purcell et al. 2010, 2012).

Dynamics of FEF Movement Neuron Activity and GAM
Accumulator

Unfortunately, neural recordings yielded a smaller than
desired sample of 16 movement-related neurons in total (S: 8
neurons, Q: 6 neurons, Da: 2 neurons), which contrasts by an
order of magnitude with the more visually responsive neurons
driving the accumulation of evidence (S: 72 neurons; Q: 71
neurons; Da: 21 neurons). Nevertheless, given that further data
collection was not possible and that these data are unique, we

offer the following analysis with necessary caveats. We focus
first on results from monkeys S and Q from which the most
movement-related neurons were recorded.

We measured the baseline discharge rate, the onset of
accumulation, the growth rate, ART, and the excursion between
baseline and ART. Averaged measures of movement-related
neuron activity from trials in which a saccade was made
correctly to a target in the neuron’s MF are displayed in Fig. 6
for both monkeys in accurate and fast conditions. Monkeys S
and Q showed consistent trends. On average, the onset of
activation occurred earlier, and growth rate was larger in the
fast condition. Note that growth rate was very small in the
accurate condition, especially for monkey Q (Q: 0.02
spikes·s�1·ms�1; S: 0.05 spikes·s�1·ms�1). This phenomenon
is partly due to a high percentage of RT bins in which growth
rate was negative (47%; see Table 2). Such a high percentage
suggests abnormal accumulation dynamics compared with nor-
mal trajectories for such neurons. As reported by Heitz and

Table 1. GAM fits to behavioral data


 g N k � � G2 95% CR AIC 95% CR BIC 95% CR % Early % Late

Monkey S
Midentical R 67 0.346 32 0.0061 2,570–2,996 2,578–3,004 2,610–3036 0*, 0† 0.08*, 4.38†

D 13 0.345 80 0.0051 0.550 1,109–1,397 1,119–1,407 1,159–1,447 0*, 0† 0.08*, 1.45†
C 41 0.360 113 0.0074 0.0060 1,278–1,578 1,288–1,588 1,327–1,628 0*, 0† 0*, 0.13†

Mgate,threshold

R 46*, 117† 0.624*, 0.479† 24 0.0004 1,636–1,734 1,648–1,746 1,696–1,794 0*, 0† 0.01*, 0.01†
D 19*, 28† 0.276*, 0.268† 73 0.0009 0.626 840–1,090 854–1,104 910–1,160 0.01*, 0† 0*, 0.04†
C 33*, 36† 0.434*, 0.428† 125 0.0072 0.0079 1,126–1,395 1,140–1,409 1,196–1,465 0*, 0† 0*, 0.01†

Monkey Q
Midentical

R 30 0.796 23 0.0004 18,308–19,665 18,316–19,673 18,348–19,705 0*, 0† 0.03*, 10.31†
D 12 0.622 47 0.0004 0.377 17,275–18,573 17,285–18,583 17,325–18,623 0*, 0† 0*, 9.08†
C 48 0.098 111 0.0130 0.0078 11,331–12,268 11,341–12,278 11,381–12,318 0*, 0† 0*, 6.96†

Mgate,threshold

R 8*, 160† 1.005*, 0.494† 50 0.0001 740–1,005 752–1,017 800–1,065 0*, 0† 0.01*, 0†
D 9*, 178† 0.846*, 0.378† 47 0 0.158 708–960 722–974 778–1,030 0*, 0† 0*, 0†
C 7*, 156† 1.018*, 0.473† 62 0.0003 0.0003 802–1,064 816–1,078 872–1,135 0*, 0† 0.01*, 0†

Mgate

R 163 0.321*, 0.497† 34 0 3,232–3,818 3,242–3,828 3,282–3,868 0*, 0† 0*, 0†
D 160 0.279*, 0.450† 35 0 0.082 3,244–3,800 3,256–3,812 3,304–3,860 0*, 0† 0*, 0†
C 91 0.398*, 0.606† 156 0 0.0041 1,768–2,235 1,780–2,247 1,828–2,296 0*, 0† 0*, 0.05†

Mthreshold

R 155*, 270† 0.335 26 0.0002 2,557–3,002 2,567–3,012 2,607–3,052 0*, 0† 0*, 0†
D 156*, 270† 0.191 27 0.0004 0.220 2,531–2,980 2,543–2,992 2,591–3,040 0*, 0† 0*, 0†
C 36*, 105† 0.571 133 0.0001 0.0144 1,257–1,606 1,269–1,618 1,317–1,666 0*, 0† 0*, 10.87†

Monkey Da
Midentical

R 8 0.940 38 0.0006 3,109–3,426 3,117–3,434 3,145–3,462 0*, 0† 0.16*, 4.47†
D 9 0.926 37 0.001 0.002 3,105–3,422 3,115–3,432 3,150–3,467 0*, 0† 0.22*, 6.44†
C 8 0.924 42 0.0008 0.0302 2,941–3,229 2,951–3,239 2,986–3,275 0*, 0† 0.10*, 4.80†

Mgate,threshold

R 20*, 126† 0.838*, 0.582† 19 0.0001 713–858 725–858 767–912 0.01*, 0† 0*, 0.03†
D 10*, 123† 0.834*, 0.458† 23 0.0010 0.124 652–804 666–818 716–867 0*, 0 0.28*, 0.15†
C 40*, 91† 0.673*, 0.621† 49 0.0003 0.0117 518–722 532–736 581–786 0*, 0† 0*, 0.54†

Mgate

R 159 0.225*, 0.443† 16 0.0011 883–1,057 893–1,067 928–1,102 0.01*, 0† 0*, 0.23†
D 167 0.210*, 0.436† 15 0.0008 0.026 863–1,029 875–1,041 917–1,083 0.02*, 0† 0*, 0.09†
C 53 0.491*, 0.732† 61 0.0002 0.0155 841–1,073 853–1,085 895–1,127 0.0*, 0† 0*, 0.1†

Mthreshold

R 76*, 167† 0.515 13 0 782–941 792–951 827–986 0.08*, 0† 0*, 0†
D 73*, 157† 0.447 14 0.0003 0.109 799–958 809–968 844–1,003 0.20*, 0† 0*, 0.01†
C 38*, 100† 0.593 44 0.0003 0.0101 548–738 560–750 602–792 0*, 0† 0*, 0.44†

*Parameter values allowed to vary between speed-accuracy tradeoff (SAT) conditions (fast). †Parameter values allowed to vary between SAT conditions
(accurate). AIC, Akaike information criterion; BIC, Bayesian information criterion; C, gated competitive model; D, gated diffusion-like model; R, gated race
model. Empty cells indicate the parameters were fixed to 0 for a particular architecture. Rows in italics indicate best-fitting models. Note that a few diffusion-like
and competitive models failed to produce better fits than their parent race model (e.g., Mgate, threshold competitive for monkey Q, Midentical diffusion-like for
monkey Da). This failure is indicated by comparable parameter values with the parent race model and strong overlap in 95% central range (CR) intervals. % Early
shows the percentage of simulated trials that hit a threshold before array presentation. % Late shows the percentage of simulated trials that failed to reach a
threshold after 6,000 ms of simulation time for each SAT condition. N, number of spike trains sampled from frontal eye field (FEF) visually responsive neurons
to generate salience input; 
, threshold; g, gate; k, leakage; �, feedforward inhibition; �, lateral inhibition.
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Fig. 6. Movement neuron modulations and model predictions. Observed neural discharge rates and model accumulator trajectories were characterized by
measuring baseline firing rate, onset of activation, growth rate, ART, and excursion between baseline and ART averaged across response time (RT) bins
of trials for fast (left) and accurate (right) speed-accuracy tradeoff (SAT) conditions. Observed (black) and predicted values of each measure for each gated
accumulator model (GAM) architecture (cyan: race; magenta: diffusion-like; yellow: competitive) are plotted together. Each plus sign plots the measure
from one neuron. Black circles plot data averaged across neurons and are accompanied by a bootstrap 95% confidence interval. Colored circles plot
predictions from each GAM architecture averaged across 1,000 simulations with parameter values obtained by fitting the model to behavioral data.
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Schall (2012), both ART and excursion between baseline and
ART were larger on average in the fast than in the accurate
condition, although as noted earlier, there was some heteroge-
neity across neurons.

Predictions from each GAM architectural variant were ob-
tained by simulating the models 1,000 times per SAT condi-
tion, using parameter values that provided the best fit to the
behavioral data. Simulated model trajectories were rescaled
and converted to simulated spike trains that were analyzed
using the same algorithms applied to observed movement
neurons. Predictions from each GAM variant averaged over the
1,000 simulations are shown in Fig. 6. Note the slight differ-
ence in predicted mean ART between SAT conditions for
models than do not allow threshold to vary (Midentical and
Mgate). These variations reflect the joint influence of four
factors: the small and different number of trials per SAT
condition in each model simulation (identical to the average
number of correct trials in which the target fell in the MF of the
neuron; see MATERIALS AND METHODS), noise in model predic-
tions, Poisson spike noise, and latency/amplitude distortions
introduced by the convolution of spike trains. Abnormal mea-

sures of model dynamics (% of bins in which an onset of
activation could not be detected, % of bins in which growth
rate was negative, and % of bins in which excursion between
baseline and ART was negative) are reported in Table 2. Four
main observations emerge from these results:

1. Predictions from race, diffusion, and competitive models
show substantial mimicry within each model variant
(Midentical, Mgate,threshold, Mgate, Mthreshold).

2. Midentical captures all aspects of movement-related neuron
dynamics in the fast condition for both monkeys. The
majority of predictions fall into the 95% confidence
intervals. Midentical also captures several aspects of the
movement-related neuron data in the accurate condition,
such as the very slight reduction in baseline firing rate,
longer onset of activation, and reduction of growth rate.
However, this model logically fails to explain the ob-
served variation of ART and excursion across SAT con-
ditions.

3. Models that allow threshold to vary between SAT con-
ditions (Mgate,threshold and Mthreshold) predict a higher
threshold and larger excursion in the accurate condition,

Table 2. Abnormal measures of FEF movement-related neuron activity and GAM accumulation dynamics

Failure to Detect Onset of
Activation % Bins Negative Growth Rate % Bins Negative Excursion % Bins

Monkey S
Data 11*, 21† 9*, 22† 4*, 9†

Midentical R 5*, 0† 9*, 6† 0*, 0†
D 24*, 5† 10*, 10† 1*, 0†
C 5*, 0† 9*, 7† 0*, 0†

Mgate,threshold R 44*, 1† 51*, 8† 11*, 0†
D 36*, 3† 29*, 9† 4*, 0†
C 6*, 0† 11*, 7† 0*, 0†

Monkey Q
Data 18*, 11† 9*, 47† 6*, 6†

Midentical R 23*, 2† 3*, 2† 0*, 0†
D 39*, 5† 5*, 2† 0*, 0†
C 9*, 0† 4*, 1† 0*, 0†

Mgate,threshold R 71*, 0† 79*, 2† 45*, 0†
D 72*, 0† 79*, 2† 45*, 0†
C 72*, 0† 79*, 1† 46*, 0†

Mgate

R 10*, 0† 12*, 1† 0*, 0†
D 10*, 0† 13*, 1† 0*, 0†
C 11*, 0† 10*, 1† 0*, 0†

Mthreshold R 23*, 0† 29*, 1† 3*, 0†
D 21*, 0† 31*, 1† 3*, 0†
C 53*, 0† 44*, 1† 10*, 0†

Monkey Da
Data 80*, 6† 50*, 0† 45*, 0†

Midentical R 24*, 2† 2*, 1† 0*, 0†
D 22*, 2† 2*, 1† 0*, 0†
C 28*, 2† 2*, 1† 0*, 0†

Mgate,threshold R 52*, 0† 57*, 0† 22*, 0†
D 60*, 0† 71*, 0† 40*, 0†
C 19*, 0† 17*, 0† 2*, 0†

Mgate R 3*, 0† 5*, 0† 0*, 0†
D 3*, 1† 5*, 0† 0*, 0†
C 24*, 2† 1*, 0† 1*, 0†

Mthreshold R 13*, 0† 14*, 0† 1*, 0†
D 12*, 0† 14*, 0† 1*, 0†
C 25*, 0† 21*, 0† 3*, 0†

*Parameter values allowed to vary between speed-accuracy tradeoff (SAT) conditions (fast). †Parameter values allowed to vary between SAT conditions
(accurate). Note: The onset of activation is required to compute the rate of growth (see MATERIALS AND METHODS). Consequently, the percentage of negative
growth rate reported in the table is computed from those response time bins of trials in which the onset of activation could be detected. FEF, frontal eye field;
GAM, gated accumulator model. Rows in italics indicate best-fitting models.
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which was opposite the observed pattern of neural mod-
ulation. This disparity is particularly prominent for mon-
key Q, because the best-fitting GAM threshold was con-
siderably higher in the accurate relative to the fast con-
dition (Table 1). When rescaled into a plausible range of
discharge rate, this large parametric variation generates a
small difference in discharge rate between baseline and
ART in the fast condition and, thus, a high percentage of
abnormal measures of model dynamics, at odds with
observed data (Table 2).

4. Best-fitting parameters for Mgate (monkey Q) showed
lower gating inhibition for the fast than the accurate
condition (Table 1). The model, thus, predicts a substan-
tial elevation of baseline and a smaller excursion in the
Fast condition, inconsistent with observed neural dyn-
amics.

The two movement-related neurons recorded from monkey
Da exhibited higher ART and greater excursion in the accurate
relative to the fast condition (Reppert et al. 2018), a pattern
opposite to that observed on average for monkeys S and Q.
Models that allowed threshold to vary between SAT conditions
(Mgate,threshold and Mthreshold) capture these modulations. The
models also account for the high percentage of RT bins in
which the onset of activation and growth rate could not be
detected in the fast condition (Table 2), due the small firing rate
difference between baseline and ART. The architectures Midentical
and Mgate could not capture the large modulations of ART and
excursion between SAT conditions.

DISCUSSION

This work evaluated alternative hypotheses about neurocom-
putational control accomplishing SAT using the GAM theo-
retical framework applied to the first neurophysiological data
collected during SAT (Heitz and Schall 2012; see also Reppert
et al. 2018). In previous work, simulations of GAM showed
that increased gating of the input to the accumulators or
increased threshold of evidence accumulation provide two loci
for flexible control over SAT (Purcell et al. 2012). Single-unit
neurophysiology data from three monkeys revealed systematic
modulations of FEF visually responsive neurons across SAT
conditions (Heitz and Schall 2012; see also Reppert et al.
2018). Parallel modulations of visually responsive neurons in
the superior colliculus has also been found (Reppert et al.
2018). Using the GAM framework, we examined whether
these input modulations were alone sufficient to explain per-
formance across SAT conditions. If not, then, were adjust-
ments in gate or threshold necessary as well? To test these
alternative hypotheses, we used spike trains from visually
responsive neurons that distinguish target from distractors as
input to accumulator units in GAM and compared the quanti-
tative fit to behavioral data for different architectural variants.
Secondarily, we also examined whether the trajectories of the
accumulator units replicated the dynamics of movement neu-
rons, as found in the original GAM implementations (Purcell et
al. 2010, 2012).

Model fits showed differences in SAT strategies across
monkeys. We found that a higher threshold in the accurate than
in the fast condition was necessary to capture search perfor-
mance for monkeys Q and Da, and a higher level of gating
inhibition was also necessary in the fast condition for monkey

Q. While a higher threshold also fit the accurate relative to the
fast condition for monkey S, a model using only the modula-
tion of the visual inputs explained most of the variability in
search performance.

Canonically, SAT is accomplished through adjustment of
threshold alone (Bogacz et al. 2006; Ratcliff and Smith 2004;
cf. Rae et al. 2014). These findings demonstrate that this
approach, while effective in fitting performance data, provide
an incomplete account of the neurocomputational mechanisms
governing SAT. Modulation of input evidence representations,
as well as modulation of decision processes, contributes to
SAT. Recent functional MRI (fMRI) and electrophysiological
studies in humans indicate an even more complex picture.
Modulations have been found along the sensorimotor hierar-
chy, ranging from early sensory areas (Ho et al. 2012), cortico-
striatal circuits (Forstmann et al. 2008; Ivanoff et al. 2008; van
Veen et al. 2008), to motor cortex (Osman et al. 2000; Rinke-
nauer et al. 2004) and differential muscle activation (Reppert et
al. 2018; Spieser et al., 2017).

In our previous work, validation of neurally constrained
accumulator models was constrained and guided by comparing
observed dynamics of movement-related neurons with trajec-
tories of model accumulators (Boucher et al. 2007; Logan et al.
2014; Purcell et al. 2010, 2012; Purcell and Palmeri 2017). The
validity of the GAM model approach was reinforced by the
quantitative replication of observed movement neuron dis-
charge rates by the trajectories of the model accumulators.
Here, we aimed similarly to compare neural dynamics to model
dynamics during SAT. Unfortunately, the sample of move-
ment-related neurons in FEF during this SAT task was an order
of magnitude smaller than that of visually responsive neurons
used to derive accumulator model predictions, and more data
cannot be collected. Hence, conclusions drawn from these
valuable data must be cautious.

The best-fitting models quantitatively captured many aspects
of the movement-related neuron dynamics between SAT con-
ditions such as baseline firing rate, onset of activation, and
growth rate. They failed to predict the higher ART observed on
average in the fast relative to the accurate condition for
monkeys S and Q (Heitz and Schall 2012). However, although
not emphasized in the original Heitz and Schall study, a
reanalysis of these data showed that a few movement neurons
exhibited the opposite pattern, consistent with the models.
Moreover, the two movement-related neurons recorded from
monkey Da showed higher ART in the accurate relative to the
fast condition (Reppert et al. 2018).

One can also wonder about the quality of fit to performance
by models constrained with threshold parameters correspond-
ing to the levels in the neural data. In preliminary work, we
explored constraining the GAM threshold 
 according to ob-
served variations of ART between SAT conditions. For monkey
S, this neurally constrained GAM provided a reasonable fit to
data, even when the gate was constrained to be fixed across
SAT conditions. This should not be surprising given the
relatively small amplitude of the ART variation across SAT
conditions and the good fit of Midentical. For monkey Q, how-
ever, the neurally constrained model variant provided a fit as
bad as Midentical, with a dramatic misfit of RT distributions in
the accurate condition. The conclusions drawn from this anal-
ysis must be moderated by the limited sample of movement
neurons. Still, the incompatibility of the variation of GAM
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threshold 
 and neural ART observed across SAT conditions
seems clear.

Further research is needed to determine whether the diver-
sity of movement-related neuron dynamics represents true
functional differences or arises only from sampling variability,
exacerbated by small sample sizes. Nevertheless, other recent
single-unit recordings challenge the canonical assumption of
higher threshold in the accurate relative to the fast condition.
First, a sample of movement-related neurons in superior col-
liculus exhibited equivalent ART in the accurate and fast con-
ditions (Reppert et al. 2018). Second, two neurophysiological
studies showed equivalent ART, but lower baseline and
build-up firing rates for accurate relative to fast in premotor
and motor cortex (Thura and Cisek 2016) and in the lateral
intraparietal area (Hanks et al. 2014). This pattern could be
interpreted as consistent with the accomplishment of SAT
through adjustment of the total excursion of evidence accumu-
lation. In contrast, Heitz and Schall (2012) showed that the
magnitude of neural excursion in FEF was insufficient to
account for the magnitude of variation RT across SAT condi-
tions. Moreover, the latter two studies interpret SAT in terms
of an additional process referred to as urgency, which facili-
tates response production independent of evidence. Therefore,
the pattern of neurophysiological and performance changes
observed with SAT are not reconciled by simple changes in
total accumulation excursion. Thus, across multiple data sets,
the requirement of higher accumulation threshold in the accu-
rate relative to the fast condition is incompatible with the
dynamics of movement-related neurons. The implications of
this difference will require further empirical work and theoret-
ical consideration. For now, the available evidence raises
questions about the transparency of the mapping between
model and neural threshold and suggests that the two measures
may be incommensurate (see also Zandbelt et al. 2014).

Psychologically inspired accumulator models do not incor-
porate details of response effectors. However, to understand
how FEF movement neuron activity could vary systematically
across SAT conditions, while saccade velocity appeared not to
vary, Heitz and Schall (2012) introduced an integrated accu-
mulator model. This parametric model assumed that the longer,
lower activity of FEF movement neurons on accurate trials and
the briefer, higher activity on fast trials were integrated over
time by the brain stem saccade generator to produce saccades
of matched velocities across SAT conditions. We note here,
though, that a reanalysis of the saccade velocity profiles using
the more sensitive measure of saccade vigor showed systematic
variations with SAT conditions, monkeys, and RT (Reppert et
al. 2018). Although these new observations undermine the
logic of the integrated accumulator model, the problem re-
mains of understanding the connection between the threshold
of psychological models, the discharge rate of neurons, and the
dynamics of muscle contractions.

The GAM framework instantiates the main accumulator
model architectures, including race, diffusion, and competition,
with or without leakage, and with or without gate. An inter-
esting path for future research would be to explore a GAM
variant in which the gate is initially set high enough to prevent
visual neurons from activating movement neurons and then
dropping to 0 or some value g after some time tg (g and tg being
free parameters). SAT could be accomplished by exerting
control over tg, which would modulate the onset of evidence

accumulation. We verified the viability of this model architec-
ture in preliminary analyses. However, this model would nec-
essarily predict an invariance of the baseline activity of FEF
movement neurons across SAT conditions, a prediction incon-
sistent with the baseline shift observed in FEF and SC neurons.

Of course, SAT could entail modulations not instantiated
within the GAM framework. For example, Cassey et al. (2014)
analyzed some RT distributions from monkeys Q and S and
suggested that the monkeys were timing responses relative to
the enforced deadline (Heitz 2014; Wickelgren 1977). Such
timing mechanisms are not part of standard accumulator mod-
els of decision making (but see Finnerty et al. 2015). However,
modulation of movement-related neurons may have been in-
fluenced by a wide variety of processes outside of GAM, such
as working memory (e.g., Murray et al. 2017), time-keeping
(Hanks et al. 2011; Jazayeri and Shadlen 2015), urgency (e.g.,
Thura and Cisek 2016), response set and preparation (e.g.,
Dorris and Munoz 1998; Lecas et al. 1986; Wise 1985), or
top-down control signals (e.g., Lo et al. 2015).

To conclude, this new GAM framework offers the first
translation between canonical mechanistic accounts of speed-
accuracy tradeoff through adjustment of threshold alone and
observed neural mechanisms of SAT. The results provide
further evidence that the instantiation of control over speed and
accuracy during decision making is more complex than previ-
ously envisioned by either cognitive neuroscientists or mathe-
matical psychologists. While the canonical account of evidence
accumulation to a flexible bound remains adequate to charac-
terize behavioral performance, understanding how model pa-
rameters map onto neural processes will require further appli-
cation of a model-based cognitive neuroscience approach
(Forstmann et al. 2011; Forstmann and Wagenmakers 2015;
Palmeri et al. 2017; Turner et al. 2017) that combines the
computational insights from mathematical psychology and
cognitive modeling with the empirical observations of the brain
from cognitive neuroscience and, in particular, neurophysiol-
ogy.

ACKNOWLEDGMENTS

We thank Richard Heitz for providing the data and advising its interpretation.
We also thank the Vanderbilt Advanced Center for Computing for Research and
Education for access to the high-performance computing cluster. Requests for
materials should be addressed to TJP (e-mail: thomas.j.palmeri@vanderbilt.edu)
or JDS (e-mail: jeffrey.d.schall@vanderbilt.edu).

GRANTS

This work was supported by National Institutes of Health grants NEI
R01-EY021833, R01-EY08890, and NEI P30-EY008126; by Robin and Rich-
ard Patton through the E. Bronson Ingram Chair in Neuroscience; and by the
Temporal Dynamics of Learning Center (NSF SMA-1041755).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

M.S. performed experiments; M.S., G.T., J.D.S., G.D.L., and T.J.P. ana-
lyzed data; M.S., G.T., J.D.S., G.D.L., and T.J.P. interpreted results of
experiments; M.S. prepared figures; M.S. drafted manuscript; M.S., G.T.,
J.D.S., G.D.L., and T.J.P. edited and revised manuscript; M.S., G.T., J.D.S.,
G.D.L., and T.J.P. approved final version of manuscript; J.D.S., G.D.L., and
T.J.P. conceived and designed research.

1312 NEUROCOMPUTATIONAL MECHANISMS OF SPEED-ACCURACY TRADEOFF

J Neurophysiol • doi:10.1152/jn.00507.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Vanderbilt Univ (129.059.122.013) on July 3, 2019.

mailto:jeffrey.d.schall@vanderbilt.edu


REFERENCES

Bichot NP, Schall JD. Effects of similarity and history on neural mechanisms
of visual selection. Nat Neurosci 2: 549–554, 1999. doi:10.1038/9205.

Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. The physics of
optimal decision making: a formal analysis of models of performance in
two-alternative forced-choice tasks. Psychol Rev 113: 700–765, 2006.
doi:10.1037/0033-295X.113.4.700.

Bogacz R, Usher M, Zhang J, McClelland JL. Extending a biologically
inspired model of choice: multi-alternatives, nonlinearity and value-based
multidimensional choice. Philos Trans R Soc Lond B Biol Sci 362: 1655–
1670, 2007. doi:10.1098/rstb.2007.2059.

Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S. The neural
basis of the speed-accuracy tradeoff. Trends Neurosci 33: 10–16, 2010.
doi:10.1016/j.tins.2009.09.002.

Boucher L, Palmeri TJ, Logan GD, Schall JD. Inhibitory control in mind
and brain: an interactive race model of countermanding saccades. Psychol
Rev 114: 376–397, 2007. doi:10.1037/0033-295X.114.2.376.

Brown SD, Heathcote A. The simplest complete model of choice response
time: linear ballistic accumulation. Cognit Psychol 57: 153–178, 2008.
doi:10.1016/j.cogpsych.2007.12.002.

Bruce CJ, Goldberg ME. Primate frontal eye fields. I. Single neurons
discharging before saccades. J Neurophysiol 53: 603–635, 1985. doi:10.
1152/jn.1985.53.3.603.

Cassey, P, Heathcote, A, Brown, SD. Brain and behavior in decision-making.
PLoS Comput Biol 10: e1003700, 2014. doi:10.1371/journal.pcbi.1003700.

Costello MG, Zhu D, Salinas E, Stanford TR. Perceptual modulation of
motor—but not visual—responses in the frontal eye field during an urgent-
decision task. J Neurosci 33: 16,394–16,408, 2013. doi:10.1523/JNEUROSCI.
1899-13.2013.

Ding L, Gold JI. Caudate encodes multiple computations for perceptual
decisions. J Neurosci 30: 15747–15759, 2010. doi:10.1523/JNEUROSCI.
2894-10.2010.

Dorris MC, Munoz DP. Saccadic probability influences motor preparation
signals and time to saccadic initiation. J Neurosci 18: 7015–7026, 1998.
doi:10.1523/JNEUROSCI.18-17-07015.1998.

Finnerty GT, Shadlen MN, Jazayeri M, Nobre AC, Buonomano DV. Time
in cortical circuits. J Neurosci 35: 13,912–13,916, 2015. doi:10.1523/
JNEUROSCI.2654-15.2015.

Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY,
Ridderinkhof KR, Wagenmakers E-J. Striatum and pre-SMA facilitate
decision-making under time pressure. Proc Natl Acad Sci USA 105: 17,538–
17,542, 2008. doi:10.1073/pnas.0805903105.

Forstmann BU, Wagenmakers EJ, Eichele T, Brown S, Serences JT.
Reciprocal relations between cognitive neuroscience and formal cognitive
models: opposites attract? Trends Cogn Sci 15: 272–279, 2011. doi:10.1016/
j.tics.2011.04.002.

Forstmann BU, Wagenmakers E-J. An Introduction to Model-Based Cog-
nitive Neuroscience. New York: Springer, 2015.

Garrett A. inspyred (version 1.0.1) (software). Inspired Intelligence. https://
github.com/aarongarrett/inspyred, 2012.

Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci
30: 535–574, 2007. doi:10.1146/annurev.neuro.29.051605.113038.

Hanes DP, Schall JD. Neural control of voluntary movement initiation.
Science 274: 427–430, 1996. doi:10.1126/science.274.5286.427.

Hanks T, Kiani R, Shadlen MN. A neural mechanism of speed-accuracy
tradeoff in macaque area LIP. eLife 3: e02260, 2014. doi:10.7554/eLife.
02260.

Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN. Elapsed decision
time affects the weighting of prior probability in a perceptual decision task.
J Neurosci 31: 6339–6352, 2011. doi:10.1523/JNEUROSCI.5613-10.2011.

Heitz RP. The speed-accuracy tradeoff: history, physiology, methodology, and
behavior. Front Neurosci 8: 150, 2014. doi:10.3389/fnins.2014.00150.

Heitz RP, Cohen JY, Woodman GF, Schall JD. Neural correlates of correct
and errant attentional selection revealed through N2pc and frontal eye field
activity. J Neurophysiol 104: 2433–2441, 2010. doi:10.1152/jn.00604.2010.

Heitz RP, Schall JD. Neural mechanisms of speed-accuracy tradeoff. Neuron
76: 616–628, 2012. doi:10.1016/j.neuron.2012.08.030.

Ho T, Brown S, van Maanen L, Forstmann BU, Wagenmakers EJ, Serences
JT. The optimality of sensory processing during the speed-accuracy tradeoff. J
Neurosci 32: 7992–8003, 2012. doi:10.1523/JNEUROSCI.0340-12.2012.

Ivanoff J, Branning P, Marois R. fMRI evidence for a dual process account
of the speed-accuracy tradeoff in decision-making. PLoS One 3: e2635,
2008. doi:10.1371/journal.pone.0002635.

Jazayeri M, Shadlen MN. A neural mechanism for sensing and reproducing
a time interval. Curr Biol 25: 2599–2609, 2015. doi:10.1016/j.cub.2015.08.
038.

Kennedy J, Eberhart R. Particle swarm optimization (Abstract). IEEE
International Conference on Neural Networks IV. Perth, Australia, Nov.
27–Dec. 1, 1995.

Latimer KW, Yates JL, Meister ML, Huk AC, Pillow JW. Single-trial spike
trains in parietal cortex reveal discrete steps during decision-making. Sci-
ence 349: 184–187, 2015. doi:10.1126/science.aaa4056.

Lecas JC, Requin J, Anger C, Vitton N. Changes in neuronal activity of the
monkey precentral cortex during preparation for movement. J Neurophysiol
56: 1680–1702, 1986. doi:10.1152/jn.1986.56.6.1680.

Lewandowsky S, Farrell S. Computational Modeling in Cognition: Princi-
ples and Practice. Thousand Oaks, CA: Sage, 2011.

Lo CC, Wang CT, Wang XJ. Speed-accuracy tradeoff by a control signal
with balanced excitation and inhibition. J Neurophysiol 114: 650–661,
2015. doi:10.1152/jn.00845.2013.

Logan GD, Van Zandt T, Verbruggen F, Wagenmakers EJ. On the ability
to inhibit thought and action: general and special theories of an act of
control. Psychol Rev 121: 66–95, 2014. doi:10.1037/a0035230.

Logan GD, Yamaguchi M, Schall JD, Palmeri TJ. Inhibitory control in
mind and brain 2.0: blocked-input models of saccadic countermanding.
Psychol Rev 122: 115–147, 2015. doi:10.1037/a0038893.

Mazurek ME, Roitman JD, Ditterich J, Shadlen MN. A role for neural
integrators in perceptual decision making. Cereb Cortex 13: 1257–1269,
2003. doi:10.1093/cercor/bhg097.

McPeek RM. Incomplete suppression of distractor-related activity in the
frontal eye field results in curved saccades. J Neurophysiol 96: 2699–2711,
2006. doi:10.1152/jn.00564.2006.

Murray JD, Jaramillo J, Wang X-J. Working memory and decision making
in a fronto-parietal circuit model. J Neurosci 37: 12,167–12,186, 2017.
doi:10.1523/JNEUROSCI.0343-17.2017.

Nelder JA, Mead R. A simplex method for function minimization. Comput J
7: 308–313, 1965. doi:10.1093/comjnl/7.4.308.

Noudoost B, Moore T. Control of visual cortical signals by prefrontal
dopamine. Nature 474: 372–375, 2011. doi:10.1038/nature09995.

Osman A, Lou L, Muller-Gethmann H, Rinkenauer G, Mattes S, Ulrich R.
Mechanisms of speed-accuracy tradeoff: evidence from covert motor processes.
Biol Psychol 51: 173–199, 2000. doi:10.1016/S0301-0511(99)00045-9.

Palmeri TJ, Love BC, Turner BM. Model-based cognitive neuroscience. J
Math Psychol 76, Pt B: 59–64, 2017. doi:10.1016/j.jmp.2016.10.010.

Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ.
Neurally constrained modeling of perceptual decision making. Psychol Rev
117: 1113–1143, 2010. doi:10.1037/a0020311.

Purcell BA, Palmeri TJ. Relating accumulator model parameters and neural
dynamics. J Math Psychol 76, Pt B: 156–171, 2017. doi:10.1016/j.jmp.
2016.07.001.

Purcell BA, Schall JD, Logan GD, Palmeri TJ. From salience to saccades:
multiple-alternative gated stochastic accumulator model of visual search. J
Neurosci 32: 3433–3446, 2012. doi:10.1523/JNEUROSCI.4622-11.2012.

Rae B, Heathcote A, Donkin C, Averell L, Brown S. The hare and the
tortoise: emphasizing speed can change the evidence used to make deci-
sions. J Exp Psychol Learn Mem Cogn 40: 1226–1243, 2014. doi:10.1037/
a0036801.

Ramkumar P, Lawlor PN, Glaser JI, Wood DK, Phillips AN, Segraves
MA, Kording KP. Feature-based attention and spatial selection in frontal
eye fields during natural scene search. J Neurophysiol 116: 1328–1343,
2016. doi:10.1152/jn.01044.2015.

Ratcliff R. A theory of memory retrieval. Psychol Rev 85: 59–108, 1978.
doi:10.1037/0033-295X.85.2.59.

Ratcliff R, Cherian A, Segraves M. A comparison of macaque behavior and
superior colliculus neuronal activity to predictions from models of two-
choice decisions. J Neurophysiol 90: 1392–1407, 2003. doi:10.1152/jn.
01049.2002.

Ratcliff R, Smith PL. A comparison of sequential sampling models for
two-choice reaction time. Psychol Rev 111: 333–367, 2004. doi:10.1037/
0033-295X.111.2.333.

Ray S, Pouget P, Schall JD. Functional distinction between visuomovement
and movement neurons in macaque frontal eye field during saccade coun-
termanding. J Neurophysiol 102: 3091–3100, 2009. doi:10.1152/jn.00270.
2009.

Reppert TR, Servant M, Heitz RP, Schall JD. Neural mechanisms of
speed-accuracy tradeoff of visual search: saccade vigor, the origin of

1313NEUROCOMPUTATIONAL MECHANISMS OF SPEED-ACCURACY TRADEOFF

J Neurophysiol • doi:10.1152/jn.00507.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Vanderbilt Univ (129.059.122.013) on July 3, 2019.

https://doi.org/10.1038/9205
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1098/rstb.2007.2059
https://doi.org/10.1016/j.tins.2009.09.002
https://doi.org/10.1037/0033-295X.114.2.376
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1152/jn.1985.53.3.603
https://doi.org/10.1152/jn.1985.53.3.603
http://dx.doi.org/e1003700
https://doi.org/10.1371/journal.pcbi.1003700
https://doi.org/10.1523/JNEUROSCI.1899-13.2013
https://doi.org/10.1523/JNEUROSCI.1899-13.2013
https://doi.org/10.1523/JNEUROSCI.2894-10.2010
https://doi.org/10.1523/JNEUROSCI.2894-10.2010
https://doi.org/10.1523/JNEUROSCI.18-17-07015.1998
https://doi.org/10.1523/JNEUROSCI.2654-15.2015
https://doi.org/10.1523/JNEUROSCI.2654-15.2015
https://doi.org/10.1073/pnas.0805903105
https://doi.org/10.1016/j.tics.2011.04.002
https://doi.org/10.1016/j.tics.2011.04.002
https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1126/science.274.5286.427
http://dx.doi.org/e02260
https://doi.org/10.7554/eLife.02260
https://doi.org/10.7554/eLife.02260
https://doi.org/10.1523/JNEUROSCI.5613-10.2011
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.1152/jn.00604.2010
https://doi.org/10.1016/j.neuron.2012.08.030
https://doi.org/10.1523/JNEUROSCI.0340-12.2012
http://dx.doi.org/e2635
https://doi.org/10.1371/journal.pone.0002635
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1016/j.cub.2015.08.038
https://doi.org/10.1126/science.aaa4056
https://doi.org/10.1152/jn.1986.56.6.1680
https://doi.org/10.1152/jn.00845.2013
https://doi.org/10.1037/a0035230
https://doi.org/10.1037/a0038893
https://doi.org/10.1093/cercor/bhg097
https://doi.org/10.1152/jn.00564.2006
https://doi.org/10.1523/JNEUROSCI.0343-17.2017
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1038/nature09995
https://doi.org/10.1016/S0301-0511(99)00045-9
https://doi.org/10.1016/j.jmp.2016.10.010
https://doi.org/10.1037/a0020311
https://doi.org/10.1016/j.jmp.2016.07.001
https://doi.org/10.1016/j.jmp.2016.07.001
https://doi.org/10.1523/JNEUROSCI.4622-11.2012
https://doi.org/10.1037/a0036801
https://doi.org/10.1037/a0036801
https://doi.org/10.1152/jn.01044.2015
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1152/jn.01049.2002
https://doi.org/10.1152/jn.01049.2002
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1152/jn.00270.2009
https://doi.org/10.1152/jn.00270.2009


targeting errors, and comparison of the superior colliculus and frontal eye
field. J Neurophysiol 120: 372–384, 2018. doi:10.1152/jn.00887.2017.

Rinkenauer G, Osman A, Ulrich R, Muller-Gethmann H, Mattes S. On the
locus of speed-accuracy trade-off in reaction time: inferences from the
lateralized readiness potential. J Exp Psychol Gen 133: 261–282, 2004.
doi:10.1037/0096-3445.133.2.261.

Sato T, Murthy A, Thompson KG, Schall JD. Search efficiency but not
response interference affects visual selection in frontal eye field. Neuron 30:
583–591, 2001. doi:10.1016/S0896-6273(01)00304-X.

Sato TR, Schall JD. Effects of stimulus-response compatibility on neural
selection in frontal eye field. Neuron 38: 637–648, 2003. doi:10.1016/
S0896-6273(03)00237-X.

Schall JD. Neuronal activity related to visually guided saccades in the frontal
eye fields of rhesus monkeys: comparison with supplementary eye fields. J
Neurophysiol 66: 559–579, 1991. doi:10.1152/jn.1991.66.2.559.

Schall JD. On building a bridge between brain and behavior. Annu Rev
Psychol 55: 23–50, 2004. doi:10.1146/annurev.psych.55.090902.141907.

Schall JD, Hanes DP. Neural basis of saccade target selection in frontal eye field
during visual search. Nature 366: 467–469, 1993. doi:10.1038/366467a0.

Scudder CA, Kaneko CS, Fuchs AF. The brainstem burst generator for
saccadic eye movements: a modern synthesis. Exp Brain Res 142: 439–462,
2002. doi:10.1007/s00221-001-0912-9.

Segraves MA. Activity of monkey frontal eye field neurons projecting to
oculomotor regions of the pons. J Neurophysiol 68: 1967–1985, 1992.
doi:10.1152/jn.1992.68.6.1967.

Smith PL, Ratcliff R. An integrated theory of attention and decision making in visual
signal detection. Psychol Rev 116: 283–317, 2009. doi:10.1037/a0015156.

Spieser L, Servant M, Hasbroucq T, Burle B. Beyond decision! Motor
contribution to speed-accuracy trade-off in decision-making. Psychon Bull
Rev 24: 950–956, 2017. doi:10.3758/s13423-016-1172-9.

Storn R, Price K. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. J Glob Optim 11: 341–359,
1997. doi:10.1023/A:1008202821328.

Thompson KG, Bichot NP, Sato TR. Frontal eye field activity before visual
search errors reveals the integration of bottom-up and top-down salience. J
Neurophysiol 93: 337–351, 2005. doi:10.1152/jn.00330.2004.

Thompson KG, Hanes DP, Bichot NP, Schall JD. Perceptual and motor
processing stages identified in the activity of macaque frontal eye field
neurons during visual search. J Neurophysiol 76: 4040–4055, 1996. doi:
10.1152/jn.1996.76.6.4040.

Thura D, Cisek P. Modulation of premotor and primary motor cortical
activity during volitional adjustments of speed-accuracy trade-offs. J Neu-
rosci 36: 938–956, 2016. doi:10.1523/JNEUROSCI.2230-15.2016.

Turner BM, Forstmann BU, Love BC, Palmeri TJ, Van Maanen L.
Approaches to analysis in model-based cognitive neuroscience. J Math
Psychol 76: 65–79, 2017. doi:10.1016/j.jmp.2016.01.001.

Usher M, McClelland JL. The time course of perceptual choice: the leaky,
competing accumulator model. Psychol Rev 108: 550–592, 2001. doi:10.
1037/0033-295X.108.3.550.

van Veen V, Krug MK, Carter CS. The neural and computational basis of
controlled speed-accuracy tradeoff during task performance. J Cogn Neu-
rosci 20: 1952–1965, 2008. doi:10.1162/jocn.2008.20146.

White CN, Servant M, Logan GD. Testing the validity of conflict drift-
diffusion models for use in estimating cognitive processes: a parameter-
recovery study. Psychon Bull Rev 25: 286–301, 2018. doi:10.3758/s13423-
017-1271-2.

Wickelgren WA. Speed-accuracy tradeoff and information processing dynamics.
Acta Psychol (Amst) 41: 67–85, 1977. doi:10.1016/0001-6918(77)90012-9.

Wise SP. The primate premotor cortex: past, present, and preparatory. Annu
Rev Neurosci 8: 1–19, 1985. doi:10.1146/annurev.ne.08.030185.000245.

Woodman GF, Kang MS, Thompson K, Schall JD. The effect of visual
search efficiency on response preparation: neurophysiological evidence for
discrete flow. Psychol Sci 19: 128–136, 2008. doi:10.1111/j.1467-
9280.2008.02058.x.

Zandbelt B, Purcell BA, Palmeri TJ, Logan GD, Schall JD. Response times
from ensembles of accumulators. Proc Natl Acad Sci USA 111: 2848–2853,
2014. doi:10.1073/pnas.1310577111.

Zhou H, Desimone R. Feature-based attention in the frontal eye field and area
V4 during visual search. Neuron 70: 1205–1217, 2011. doi:10.1016/j.
neuron.2011.04.032.

1314 NEUROCOMPUTATIONAL MECHANISMS OF SPEED-ACCURACY TRADEOFF

J Neurophysiol • doi:10.1152/jn.00507.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Vanderbilt Univ (129.059.122.013) on July 3, 2019.

https://doi.org/10.1152/jn.00887.2017
https://doi.org/10.1037/0096-3445.133.2.261
https://doi.org/10.1016/S0896-6273(01)00304-X
https://doi.org/10.1016/S0896-6273(03)00237-X
https://doi.org/10.1016/S0896-6273(03)00237-X
https://doi.org/10.1152/jn.1991.66.2.559
https://doi.org/10.1146/annurev.psych.55.090902.141907
https://doi.org/10.1038/366467a0
https://doi.org/10.1007/s00221-001-0912-9
https://doi.org/10.1152/jn.1992.68.6.1967
https://doi.org/10.1037/a0015156
https://doi.org/10.3758/s13423-016-1172-9
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1152/jn.00330.2004
https://doi.org/10.1152/jn.1996.76.6.4040
https://doi.org/10.1523/JNEUROSCI.2230-15.2016
https://doi.org/10.1016/j.jmp.2016.01.001
https://doi.org/10.1037/0033-295X.108.3.550
https://doi.org/10.1037/0033-295X.108.3.550
https://doi.org/10.1162/jocn.2008.20146
https://doi.org/10.3758/s13423-017-1271-2
https://doi.org/10.3758/s13423-017-1271-2
https://doi.org/10.1016/0001-6918(77)90012-9
https://doi.org/10.1146/annurev.ne.08.030185.000245
https://doi.org/10.1111/j.1467-9280.2008.02058.x
https://doi.org/10.1111/j.1467-9280.2008.02058.x
https://doi.org/10.1073/pnas.1310577111
https://doi.org/10.1016/j.neuron.2011.04.032
https://doi.org/10.1016/j.neuron.2011.04.032

