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A B S T R A C T

Basal ganglia dysfunction in Parkinson's disease (PD) is thought to generate deficits in action control, but the
characterization of these deficits have been qualitative rather than quantitative. Patients with PD typically show
prolonged response times on tasks that instantiate a conflict between goal-directed processing and automatic
response tendencies. In the Simon task, for example, the irrelevant location of the stimulus automatically ac-
tivates a corresponding lateralized response, generating a potential conflict with goal-directed choices. We
applied a new computational model of conflict processing to two sets of behavioral data from the Simon task to
quantify the effects of PD and dopaminergic (DA) medication on action control mechanisms. Compared to
healthy controls (HC) matched in age gender and education, patients with PD showed a deficit in goal-directed
processing, and the magnitude of this deficit positively correlated with cognitive symptoms. Analyses of the
time-course of the location-based automatic activation yielded mixed findings. In both datasets, we found that
the peak amplitude of the automatic activation was similar between PD and HC, demonstrating a similar degree
of response capture. However, PD patients showed a prolonged automatic activation in only one dataset. This
discrepancy was resolved by theoretical analyses of conflict resolution in the Simon task. The reduction of
interference generated by the automatic activation appears to be driven by a mixture of passive decay and top-
down inhibitory control, the contribution of each component being modulated by task demands. Our results
suggest that PD selectively impairs the inhibitory control component, a deficit likely remediated by DA medi-
cation. This work advances our understanding of action control deficits in PD, and illustrates the benefit of using
computational models to quantitatively measure cognitive processes in clinical populations.

1. Introduction

Computational models of cognition provide a quantitative account
of behavioral data, and decompose performance into psychologically
meaningful processes. These models force researchers to be explicit
about underlying assumptions, and are increasingly used in clinical
research to isolate impaired cognitive processes associated with dis-
orders (Aschenbrenner et al., 2016; Frank, 2005; Frank et al., 2004; Ho
et al., 2014; Lee et al., 2015; Ratcliff et al., 2004; Shankle et al., 2013;
White et al., 2015, 2010a, 2010b). A growing body of evidence suggests
that basal ganglia dysfunction in Parkinson's disease (PD) is associated
with deficits in action control mechanisms, particularly in times of re-
sponse conflict (e.g., Chan et al., 2005; Praamstra et al., 1999;
Praamstra and Plat, 2001; Praamstra et al., 1998; Wylie et al., 2010;
Wylie et al., 2005). Interpretation of data has been driven primarily by
qualitative theories. The present study uses a new computational model
of conflict tasks (Ulrich et al., 2015) to shed light on the nature of action
control deficits in PD.

1.1. The effect of PD on action control mechanisms

Learning complex motor skills such as driving a car or playing the
violin is a slow and effortful process that engages goal-directed systems.
Motor plans become increasingly automatic with extensive training
(Logan, 1988; Shiffrin and Schneider, 1977; Servant et al., 2017). Al-
though automatic response tendencies are an important component of
adaptive behavior, they can sometimes conflict with goal-directed ac-
tions (Kornblum et al., 1990). Theories of conflict processing generally
assume that top-down inhibitory mechanisms are engaged to suppress
automatic response tendencies and achieve goals (Ridderinkhof, 2002;
Van den Wildenberg et al., 2010; but see Hommel, 1993, 1994).

Patients with PD typically show prolonged response times (RT)
compared to healthy controls (HC) on tasks that instantiate a conflict
between automatic response tendencies and goal-directed actions (e.g.,
Chan et al., 2005; Praamstra and Plat, 2001; Praamstra et al., 1998; van
Wouwe et al., 2016; van Wouwe et al., 2014; Wylie et al., 2012; Wylie
et al., 2010; Wylie et al., 2005; Wylie et al., 2009a, 2009b). This finding
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has been interpreted as reflecting a deficit in inhibitory control, re-
sulting in a greater sensitivity to interference. Recent studies, however,
suggest that goal-directed processing is also impaired in PD (de Wit
et al., 2011; Sharp et al., 2016).

Both goal-directed and inhibitory processes are mediated by basal
ganglia circuits, and by dopaminergic (DA) projections in those circuits
(Aron, 2007; Aron and Poldrack, 2006; Balleine and O'Doherty, 2010;
Frank, 2006; Jahanshahi et al., 2015; Yin and Knowlton, 2006). PD
severely compromises the brain's DA system, leading to altered pro-
cessing in the basal ganglia (Bernheimer et al., 1973; Kordower et al.,
2013; Redgrave et al., 2010; Robbins and Cools, 2014). Understanding
the nature of these alterations is critical for developing efficient ther-
apeutics. In the present work, we use a computational model of conflict
tasks to decompose cognitive processes involved in action control, and
quantify the effects of PD and DA medication.

1.2. Simon task: measuring response conflict

The Simon task offers one of the most sensitive experimental mea-
sures of conflict between goal-directed and automatic actions (Hommel,
2011; Kornblum et al., 1990). Participants are instructed to issue a left
or right hand button press response to an attribute (e.g., the color) of a
spatially lateralized stimulus. Responses are typically slower and less
accurate when the location of the stimulus and the response signaled by
the imperative attribute do not correspond (e.g., a left hand response to
a stimulus presented to the right visual half-field) than when they do, a
phenomenon known as the Simon effect (Simon and Small, 1969).
Theories of this effect assume that the irrelevant location of the sti-
mulus automatically primes a corresponding lateralized response (De
Jong et al., 1994; Hommel, 1993; Kornblum et al., 1990; Ridderinkhof,
2002). Plots of accuracy data as a function of RT quantiles (i.e., con-
ditional accuracy functions, or CAFs) provide support in favor of this
hypothesis (Gratton et al., 1988; Ridderinkhof, 2002; Servant et al.,
2014). For corresponding trials, accuracy is high and relatively constant
over the distribution of RTs. By contrast, non-corresponding trials are
associated with an early reduction of accuracy (Fig. 2A, upper panel),
betraying a fast response capture by the location of the stimulus.
Electrophysiological recordings have provided converging findings.
Early electrical activations of the motor cortex and response agonist
muscles associated with the spatially-driven response hand have been
observed in non-corresponding trials (Coles et al., 1985; C. W. Eriksen
et al., 1985; Leuthold, 2011; Servant et al., 2015, 2016).

Theories explaining the Simon effect differ with respect to the
evolution of the location-based automatic response priming.
Distributional analyses of RT have revealed that the magnitude of the
Simon effect decreases as processing time increases. This dynamic is
best appreciated with the delta plot technique (De Jong et al., 1994).
Delta plots represent the difference (y-axis) against the average (x-axis)
of equivalent RT quantiles between non-corresponding and corre-
sponding conditions (Fig. 2A, lower panel). Decreasing delta plots have
consistently been observed for healthy subjects, showing that the Simon
effect is maximal early in the course of processing and decreases for
higher RT quantiles (Pratte et al., 2010; Proctor et al., 2011; Schwarz
and Miller, 2012). Ridderinkhof (2002) activation-suppression theory
asserts that the location-based automatic response priming is actively
suppressed by a top-down inhibitory process that takes time to build
(see also Van den Wildenberg et al., 2010). Other theories propose that
the automatic response priming passively decays over time (e.g.,
Hommel, 1993, 1994, 2011). Our model-based analyses offer quanti-
tative estimates of the buildup and reduction of automatic response
priming, providing insight into these theoretical alternatives.

Comparisons of CAFs and delta plots from PD patients and HC
matched in age, gender and education in the Simon task have revealed
consistent patterns. The early dip of accuracy observed on CAFs in the
non-corresponding condition does not generally differ between PD and
HC, suggesting that the strength of automatic response capture by the

location of the stimulus is similar (van Wouwe et al., 2016, 2014; Wylie
et al., 2010). Delta plots, however, show an effect of disease, with a less
negative-going delta plot slope for PD than HC. This effect has been
interpreted in the context of the activation-suppression model
(Ridderinkhof, 2002). Specifically, the shallower delta plot observed for
PD is thought to reflect a deficit in top-down inhibitory response control
(Wylie et al., 2010). Interestingly, delta plots are normalized by DA
medication, suggesting that the deficit in inhibitory control is linked to
basal ganglia dysfunction induced by DA depletion (van Wouwe et al.,
2016).

It should be emphasized that theories of the Simon effect introduced
so far are qualitative. In the present work, we sought to provide a
quantitative account of behavioral data from PD patients and HC using
a computational model of conflict tasks (Ulrich et al., 2015). This
model, introduced below, has proven to account for RT distributions
and accuracy data observed in the Simon task, and corresponding
neurophysiological dynamics (Servant et al., 2016).

1.3. The diffusion model of conflict tasks (DMC)

The DMC (Ulrich et al., 2015) is an extension of the diffusion model
for decision-making (Ratcliff, 1978). The diffusion model has been
widely employed in basic and clinical research to decompose beha-
vioral performance from two-choice RT tasks into psychologically in-
terpretable processes (Ratcliff and McKoon, 2008; Ratcliff et al., 2016;
White et al., 2010b). The model assumes that task-relevant sensory
information is continuously accumulated until it reaches a threshold
level, and then the decision terminates in a choice and the response is
executed. Noise in physical stimulations and sensory systems makes the
process stochastic, potentially leading to an incorrect choice (Brunton
et al., 2013; Ratcliff, 1978). The diffusion model has four main para-
meters (Fig. 1, left). The rate of task-relevant sensory information ac-
cumulation is called the drift rate (v); it is determined by the quality of
the sensory information and the efficiency of attentional processes.
Decision thresholds (b: correct choice; -b: incorrect choice) regulate the
speed/accuracy strategy. Lower thresholds produce faster but less ac-
curate responding. The starting point (z) of the accumulation process
indexes response bias. The process is biased toward the response as-
sociated with the nearest threshold. The decision time is the latency
between the onset of the accumulation process and the first crossing of
a decision threshold. A residual processing latency (Ter), comprising
sensory encoding and motor execution components, is added to the
decision time to produce a RT. The model predicts the shape of RT
distributions for correct and incorrect responses, which can be specified
by the probability density function or from computer simulations.
These predictions can be fit to data to extract underlying parameters
(Ratcliff and Tuerlinckx, 2002).

The DMC extends the diffusion model framework by incorporating
components of automatic processing. Performance is determined by the
sum of automatic and goal-directed decision activations, an archi-
tecture reminiscent of a model of automaticity proposed by Logan
(Logan, 1980). Contrary to its predecessor, however, the DMC assumes
that the contribution of automatic processes is short-lived in conflict
tasks such as the Simon task (Ellinghaus et al., 2017; Lu and Proctor,
1995; Simon et al., 1976). The automatic decision activation Xa(t) is
modeled as a pulse-like gamma function that favors the correct re-
sponse in corresponding trials and the incorrect response in non-cor-
responding trials (Fig. 1, middle). Its expected mean as a function of
time is described by the following equation:
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Where a, τ and A are the shape, characteristic time and peak amplitude
of the gamma function respectively. The peak amplitude A quantifies
the strength of the automatic activation: the higher the peak amplitude,
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the stronger the automatic activation. In corresponding trials, auto-
matic and goal-directed processes converge to activation of the correct
choice, thereby facilitating RT and accuracy. In non-corresponding
trials, the automatic activation favors the incorrect choice, triggering
fast errors and slowing down RT (Fig. 1, right).

The DMC can be used to distinguish passive decay from activation-
suppression theories. Decay theory interprets the gamma function as
the growth and decay of automatic activation. Activation-suppression
theory interprets the gamma function as the activation and inhibition of
automatic activation. Decay should depend primarily on time, not
strategy, whereas inhibition should depend on strategy. We address this
issue in the discussion section. For now, we assume that the automatic
activation is actively suppressed. The onset latency and strength of
suppression can be derived from the gamma parameters. The onset of
suppression Sonset corresponds to the peak latency of the automatic
activation, Sonset = τ(a – 1). Let t90th denote the latency at which 90% of
the automatic activation has been emitted. Technically speaking, t90th
corresponds to the 90th percentile of the gamma percent point function.
Suppression strength Sstrength can be estimated by computing the dif-
ference between t90th and Sonset (Fig. 1, right). The larger Sstrength, the less
efficient the suppression.

The aim of the present work was to provide a model-based analysis
of action control mechanisms in PD. We fit the DMC to Simon task
behavioral data from PD and HC matched in age, gender and education
(van Wouwe et al., 2014; referred to as Dataset 1) to quantify the ef-
ficiency of goal-directed (parameter v) and inhibitory (gamma-derived
statistics Sonset and Sstrength) processes. We also measured the strength of
the location-based automatic activation (parameter A). Dataset 1 was
well suited for these purposes because it contained sufficient trials per
condition and a speed-accuracy manipulation, which further con-
strained model fits. Finally, we fit another Simon task dataset from PD
ON versus OFF DA medication (van Wouwe et al., 2016; referred to as
Dataset 2) to quantify the effect of DA medication on goal-directed and
inhibitory processes.

2. Methods

A brief overview of critical details about participants and experi-
mental procedures for Dataset 1 (van Wouwe et al., 2014) and Dataset 2
(van Wouwe et al., 2016) is recounted below.

2.1. Participants

Participants with PD were diagnosed by a neurologist specialized in

movement disorders. Ratings on the Hoehn and Yahr scale (Hoehn and
Yahr, 1967) and the Unified Parkinson's Disease Rating Scale (UPDRS)
indicated mild to moderate disease severity. All participants met the
following exclusion criteria: (i) schizophrenia, bipolar disorder or other
psychiatric disease known to affect cognitive functions and (ii) severe
mood disorder or medical condition known to interfere with cognition
(e.g., diabetes, pulmonary disease).

Dataset 1 featured 21 PD patients and 21 HC matched in age,
gender, education, and Mini-Mental Status Exam scores (MMSE;
Folstein et al., 1975). MMSE scores ranged 27–30, i.e. well beyond the
standard cut-off of 24 indicating cognitive impairment (Tombaugh and
McIntyre, 1992). Nineteen of the 21 PD patients were taking DA
medication, and were tested during the optimal “ON” phase of their DA
medication cycle.

Dataset 2 contained 55 PD patients and 56 HC matched in age,
gender, and education. PD patients were tested in their optimal ON
phase of their DA medication cycle (condition ON) versus after a 36- to
48 h withdrawal from their DA medication (condition OFF). The order
of visits was counterbalanced across patients. MMSE scores were not
available. Instead, PD patients completed the Montreal Cognitive
Assessment (MoCA) test (Nasreddine et al., 2005). Ratings indicated
very mild to minimal gross cognitive difficulties (all scores ≥ 23).

2.2. Procedure

Subjects from Dataset 1 completed 20 blocks of 40 trials from a
Simon task featuring a speed-accuracy manipulation. A central fixation
cross was presented at the center of the screen during the whole
duration of each block of trials. Stimuli (blue and green circles) were
presented to the left or right of fixation for 250 ms. A response deadline
was set at 1200 ms. The interstimulus interval was 1250 ms. In each
group, half of the subjects gave a right hand response to blue stimuli
and a left hand response to green stimuli. This mapping was reversed
for the other half. Speed and accuracy instructions were alternated
between blocks. At the end of each block, subjects were given a feed-
back on their performance to ensure compliance with instructions.

Subjects from Dataset 2 completed 4 blocks of 60 trials. The task
was similar to that used for Dataset 1 except that (i) subjects always had
to respond as fast and as accurately as possible (no speed-accuracy
manipulation), (ii) the response deadline was fixed at 1500 ms, and (iii)
the intertrial interval was 1750–2250 ms (randomly jittered using a
rectangular distribution).

Fig. 1. Architecture of the diffusion model
of conflict tasks (DMC). The decision process
is the sum of automatic and goal-directed
decision activations. The goal-directed de-
cision activation X(t) is similar to the stan-
dard drift diffusion model. The automatic
decision activation Xa(t) has a pulse-like
gamma shape. b: correct decision threshold
(incorrect threshold is at –b); v: drift rate of
the goal-directed process; A: peak amplitude
of the gamma function; Sonset: suppression
onset, corresponding to the peak latency of
the gamma function [Sonset = τ(a – 1)]; t90th:
90th percentile of the gamma percent point
function (i.e., the latency at which 90% of
the gamma automatic activation has been
emitted); Sstrength: suppression strength, de-
fined as t90th - Sonset.
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2.3. DMC fitting procedure

The DMC was fit to behavioral data from each subject individually
using a procedure developed by Ratcliff and collaborators (Ratcliff and
Smith, 2004; Ratcliff and Tuerlinckx, 2002). The model was simulta-
neously fit to correct and error RT distributions (.1, .3, .5, .7, .9
quantiles) and to accuracy data. Because the number of errors Ne was
generally low, particularly in the corresponding condition, we used an
adaptive procedure that only considered the median RT of errors if
0<Ne ≤ 5, three RT quantiles (.3, .5, .9) if 5<Ne ≤ 10, and five RT
quantiles (.1, .3, .5, .7, .9) if Ne>10. Because the DMC is mathema-
tically intractable (Ulrich et al., 2015), computer simulations were
performed using an integration constant dt = 1 ms to obtain model
predictions. The magnitude of within-trial noise, called diffusion coef-
ficient, was fixed at 4 (arbitrary value) to satisfy a mathematical scaling
property of the model (Ulrich et al., 2016). Because left and right re-
sponses were equiprobable, we assumed an unbiased starting point (z
= 0, halfway between correct and incorrect decision thresholds). Data
and model predictions were compared through a chi-square statistic.
For a standard Simon task with corresponding and non-corresponding
conditions (Dataset 2), the chi-square statistic has the following form:

∑ ∑=
−
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πij
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Where Ni is the number of observations per condition i. pij and πij are,
respectively, the observed and predicted proportions of trials in bin j of
condition i, which sum to 1 across each pair of correct and error dis-
tributions. The variable B represents the number of bins bounded by RT
quantiles across each pair of correct and error distributions. Conse-
quently, we have B= 8 if 0<Ne≤ 5, B= 10 if 5<Ne≤ 10, and B=
12 if Ne>10. The chi-square statistic was minimized with the Simplex
algorithm (Nelder and Mead, 1965) to obtain best-fitting parameters.
Because Simplex is sensitive to the initial parameter guess, we used 40
different starting points drawn from uniform distributions bounded by
previous fits of the model to data (Servant et al., 2016; Ulrich et al.,
2015). Twenty-five thousand trials per condition were simulated for
each minimization cycle. Next, we submitted the two best parameter
sets (obtained from different starting points) to additional Simplex runs,
and simulated 50,000 trials per condition and minimization cycle. The
DMC and fitting procedure were programmed in python. Codes were
run on Vanderbilt's advanced computing center for education and re-
search.

2.4. Model selection

We tested different DMC variants and compared their goodness-of-
fit performance using chi-square tests for nested models (for a similar
approach, see Boucher et al., 2007; Logan et al., 2015). The test statistic
is the difference χ2

Model A - χ2
Model B summed over subjects, where Model

A is nested in Model B. The number of degrees of freedom for the test is
the difference in the number of free parameters multiplied by the
number of subjects.

The DMC has 6 main parameters: upper (correct) decision threshold
(b; incorrect threshold is at -b), drift rate for the goal-directed process
(v), mean non-decision time (Ter), peak amplitude (A; positive in cor-
responding trials, negative in non-corresponding trials), shape (a), and
characteristic time (τ) of the gamma automatic activation. Ulrich et al.
(2015) further incorporated intertrial variability in nondecision time
and starting point, two assumptions inherited from the standard diffu-
sion model (Ratcliff, 2013; Ratcliff and Rouder, 1998). We thus eval-
uated the goodness-of-fit of 3 nested DMC variants: a model without
intertrial variability, a model with intertrial variability in nondecision
time (normally distributed with mean Ter and standard deviation σTer),
and a model with intertrial variability in nondecision time and starting
point (uniformly distributed with range σz). To account for the speed-

accuracy manipulation in Dataset 1, we further compared un-
constrained models (all parameters free to vary between speed and
accuracy conditions) against models in which one or more parameters
were fixed across conditions. Although speed pressure is considered to
mainly affect decision thresholds in the diffusion model framework
(Bogacz et al., 2010; Ratcliff and Smith, 2004), recent modeling and
neurophysiological studies suggest that it might also affect other
parameters such as drift rate (Cassey et al., 2014; Heitz and Schall,
2012; Rae et al., 2014) and nondecision time (Spieser et al., 2016;
White, Ratcliff, & Starns, 2011). Spieser et al. (2016) found an effect of
speed pressure on the electromyographic (EMG) activity of response
agonist muscles in a flanker task (B. A. Eriksen and Eriksen, 1974).
Specifically, the motor time (latency between the onset of EMG activity
and the mechanical response) was significantly shorter under speed
than accuracy instructions, and accounted for more than 20% of the
total effect on global RT. In light of these findings, we let the non-
decision time parameter (Ter) of the DMC model free to vary across
speed-accuracy instructions.

2.5. Parameter recovery

Computational models are only useful as measurement tools if their
parameters can be adequately recovered. Stochastic models with a high
number of free parameters (such as diffusion models) can be associated
with parameter tradeoffs and a sloppy spectrum of parameter sensi-
tivities (e.g., Gutenkunst et al., 2007). White, Servant, and Logan
(2017) recently conducted a parameter recovery study on the main
parameters of the DMC. The quality of the recovery monotonically in-
creased as the number of trials per condition increased, and was gen-
erally better for basic diffusion model parameters (b, v, Ter) than for
parameters driving the gamma automatic activation (a, τ, and A). For
the range of trials in Datasets 1 and 2 (100–200 trials per condition),
the corresponding trial range in the parameter recovery study yielded
correlations between simulated and recovered parameters of 0.81–.99
for basic diffusion model parameters and .4–.65 for gamma parameters.
Among gamma parameters, the peak amplitude A showed the best re-
covery results (0.59–0.65). In addition, gamma-derived statistics
showed good recovery (suppression onset Sonset: 0.88–91; suppression
strength Sstrength: .77–.83), validating their use in the present work.1

3. Results

3.1. Fits to Dataset 1 (van Wouwe et al., 2014)

Fig. 2A shows CAFs (upper panel) and delta plots (lower panel)
averaged across subjects for each group and condition of Dataset 1.
Each datapoint is accompanied by a 95% confidence interval assuming
a student's t distribution. van Wouwe et al. (2014) constructed delta
plots from 10 RT quantiles. We instead represented delta plots from the
5 RT quantiles (.1, .3, .5, .7, .9) used to fit the model to data. Delta plots
constructed from 5 versus 10 RT quantiles exhibited very similar trends.
Their slope was generally more negative-going for HC than PD, and
more negative-going for the accuracy than the speed condition. By
contrast, CAFs appeared relatively similar between HC and PD groups.
CAFs were constructed by sorting the RT data into 5 bins of equal size.
Accuracy in each bin (y-axis) was plotted against the corresponding
mean RT (x-axis). CAFs showed the typical early dip of accuracy in the
non-corresponding condition. This dip was more pronounced under

1 To simplify parameter estimation, Ulrich et al. (2015) fixed the shape parameter (a)
of the gamma function at 2. With this constraint, the characteristic time parameter τ

corresponds to the onset of suppression Sonset = τ(a – 1) = τ. White et al. (2017) con-
ducted an additional parameter recovery study on the DMC and fixed a at 2. The recovery
for Sonset (.8–.82) was poorer than for the unconstrained DMC model variant (0.88–.91).
Consequently, we treated the shape parameter of the gamma as a free parameter in our
modeling.
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speed pressure, showing that the proportion of fast errors increased.
We fit five nested DMC variants to data to identify the model that

provided the best fit. All parameters of Models 1, 2 and 3 were free to
vary across speed and accuracy conditions. Model 1 contained the main
DMC parameters (b, v, Ter, a, τ, and A). Model 2 incorporated intertrial
variability in nondecision time (σTer). Model 3 incorporated intertrial
variability in nondecision time and starting point (σz). We found that
intertrial variability in nondecision time was critical to capture the
shape of RT distributions for both HC (Model 1 - Model 2: χ2(42) =
1775, p< .001) and PD (Model 1 - Model 2: χ2(42) = 2117, p< .001).
The goodness-of-fit for Model 3 was significantly better than Model 2
(HC: χ2(42) = 106, p< .001; PD: χ2(42) = 252, p< .001), presumably
because σz captured fast guesses in the speed condition. Consistent with
this hypothesis, marginal χ2 differences between Model 2 and Model 3
were larger in the speed (HC: χ2 =81; PD: χ2 = 176) than the accuracy
condition (HC: χ2 = 25; PD: χ2 = 76).

We then compared Model 3 against a nested model in which the
drift rate for the goal-directed process (v) was constrained to be fixed
across speed-accuracy instructions (Model 4). The goodness-of-fit for

Model 3 was significantly better than Model 4 (HC: χ2(21) = 1161,
p< .001; PD: χ2(21) = 1656, p< .001). Constraining v to be fixed
across speed-accuracy instructions prevented the DMC from capturing
accuracy data. We finally considered a nested model in which gamma
parameters were fixed across speed-accuracy instructions (Model 5).
Model 5 failed to capture the shape of RT distributions (HC: χ2(63) =
1162, p< .001; PD: χ2(63) = 1808, p< .001).

CAFs and delta plots predicted by Model 3 averaged across subjects
are shown in Fig. 2A (dashed lines). The model captures all trends of the
data, and the majority of predictions fall into 95% confidence intervals.
Observed versus predicted RT quantiles of correct responses across in-
dividual subjects are displayed in Fig. 2B. Datapoints are gathered
around the ideal x = y line for each group and experimental condition,
diagnostic of a good fit.

The best-fitting parameters for Model 3 averaged across subjects are
shown in Table 1. We conducted mixed-design analyses of variance
(ANOVAs) to assess the effects of disease (between-subjects) and speed-
accuracy (within-subjects) on model parameters. The strength of the
automatic activation, as quantified by the peak amplitude of the gamma

Fig. 2. A and C: Observed (datapoints) versus predicted (x's) conditional accuracy functions (CAFs) and delta plots for each group and condition of Dataset 1 (panel A; van Wouwe et al.,
2014) and Dataset 2 (panel B, van Wouwe et al., 2016) averaged across subjects. Each datapoint is accompanied by a 95% confidence interval assuming a student's t distribution. B and D:
Observed (x-axis) versus predicted (y-axis) RT quantiles of correct responses across individual subjects and conditions from Dataset 1 (Panel B) and Dataset 2 (Panel D). comp: compatible
stimulus-response; incomp: incompatible stimulus-response.
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(A), did not differ between PD and HC, F(1, 40) = 1.06, p = .31. By
contrast, the onset of suppression (Sonset) was significantly delayed for
PD than HC, F(1, 40) = 15.11, p< .001. Suppression strength was also
less efficient for PD than HC, as revealed by larger values of Sstrength, F(1,
40) = 7.56, p = .009. Although the effect of disease on the drift rate of
the goal-directed process (v) failed to reach significance F(1, 40) =
1.76, p = .19, drift rate values were numerically smaller for PD than
HC.

Speed pressure significantly lowered decision thresholds F(1, 40) =
40.55, p< .001, consistent with previous work on the standard diffu-
sion model (e.g., Ratcliff and Smith, 2004). We also found significant
effects of speed pressure on the drift rate of the goal-directed process (v;
F(1, 40) = 20.9, p< .001) and the peak amplitude of the automatic
activation (A; F(1, 40) = 5.06, p = .03), suggesting that speed pressure
altered the efficiency of goal-directed processing and increased the
sensitivity to irrelevant stimulus information. Non-decision times (Ter)
were significantly faster in the speed than the accuracy instructions F(1,
40) = 62.39, p< .001, consistent with EMG results of Spieser et al.
(2016). The magnitude of the effect (30 ms) was close to that observed
on the EMG motor time (23 ms). No other main effects nor interactions
between disease and speed-accuracy instructions reached significance
(all ps> .1).

To facilitate comparison between Datasets 1 and 2, we computed an
additional mixed-design ANOVA on model parameters, considering
only those 19 PD patients that were tested in their optimal ON phase of
their DA medication cycle. This analysis revealed similar findings with
one exception: the effect of disease on the drift rate of the goal-directed
process was marginally significant, F(1, 38) = 3.50, p= .069. Note that
empirical delta plot patterns/analyses remained similar when con-
sidering PD ON patients only (Appendix A).

To summarize, model fits to Dataset 1 showed that the strength of
the automatic response capture by the irrelevant location attribute of
the stimulus was similar between PD and HC. However, inhibitory
control was delayed and less efficient for PD compared to HC, resulting
in a longer-lasting interference. The modeling also suggests a deficit in
goal-directed processing in PD, although this effect failed to reach
statistical significance.

3.2. Fits to Dataset 2 (van Wouwe et al., 2016)

Fig. 2C displays CAFs (upper panel) and delta plots (lower panel)
averaged across subjects for each group (HC, PD OFF DA medication,
PD ON) of Dataset 2. van Wouwe et al. (2016) showed that the delta
plot slope was less negative-going for PD OFF than HC, and did not
differ between PD ON and HC. The latter appears in sharp contrast with
empirical findings from Dataset 1. Remember that 90% of PD patients
in Dataset 1 were tested during the optimal ON phase of their DA
medication cycle, and their delta plot was significantly less negative-
going compared to HC. This discrepancy between studies will be thor-
oughly discussed in the general discussion.

We fit Model 1 (main DMC parameters), Model 2 (DMC with in-
tertrial variability in nondecision time σTer) and Model 3 (DMC with
intertrial variability in nondecision time and starting point σz) to be-
havioral data from each subject. Consistent with previous fits, we found
that intertrial variability in nondecision time was critical to capture the
shape of RT distributions for all groups (Model 1 - Model 2; HC: χ2(56)
= 1512, p< .001, PD OFF: χ2(55) = 1346, p< .001, PD ON: χ2(55) =
1094, p< .001). The goodness-of-fit of Model 3, however, was not
significantly better than Model 2 (HC: χ2(56) = 65, p = .18, PD OFF:
χ2(55) = 53, p = .53, PD ON: χ2(55) = 43, p = .89). Thus, intertrial
variability in starting point was not necessary for good fits. Predicted
CAFs and delta plots averaged across subjects are displayed in Fig. 2C
(dashed lines). The model captures all trends of the data, and the ma-
jority of predictions fall into 95% confidence intervals.

The best-fitting parameters averaged across subjects are shown in
Table 2. As a first step, we conducted independent t-tests to assess the
effect of disease (comparison PD OFF versus HC) on model parameters.2

The strength of the automatic activation (A) did not differ between PD
OFF and HC t(109) = 0.12, p = .99, consistent with previous findings.
Although suppression onset (Sonset) was delayed and suppression
strength (Sstrength) reduced for PD OFF relative to HC, these modulations
failed to reach significance (t(109) = −1.12, p = .27 and t(109) =
−.92, p = .36 respectively). Disease significantly altered the drift rate
of the goal-directed process (v), t(109) = 2.09, p = .039. No other
comparison reached significance (all ps> .1).

As a second step, we performed paired t-tests to assess the effect of
DA medication on model parameters (comparison PD OFF versus ON).
Although suppression onset occurred earlier for PD ON than PD OFF,
this effect failed to reach significance, t(54) = .95, p = .35. No other
comparison reached significance. For completeness, we computed in-
dependent t-tests between HC and PD ON. Consistent with results re-
ported for PD OFF, this analysis revealed a significantly reduced drift
rate of the goal-directed process (v) for PD ON compared with HC, t
(109) = 2.17, p = .033. No other comparison reached significance.

Table 1
Best-fitting DMC parameters to Dataset 1 (van Wouwe et al., 2014) averaged across
subjects.

HC accuracy HC speed PD accuracy PD speed

DMC parameters
b 65.8 54.5 63.3 54.2
v 0.486 0.418 0.457 0.387
A 25.1 27.2 22.5 25.9
a 2.3 2.5 2.5 2.8
τ (ms) 41.2 52.4 59.1 54.2
Ter (ms) 324 292 312 283
σTer (ms) 42.7 48.5 46 47.2
σz 43.9 48.1 46.8 53
Gamma-derived statistics
Sonset (ms) 47.1 69.2 80.5 86.2
Sstrength (ms) 120 158 179 170

Note. The DMC was simulated with an integration constant dt = 1 ms and a diffusion
coefficient fixed at 4. b: upper (correct) decision threshold (incorrect threshold is at –b); v:
drift rate of the controlled process; Ter: mean nondecision time; σr: intertrial variability in
nondecision time; σz: intertrial variability in starting point; A, a, τ: peak amplitude, shape,
and characteristic time of the gamma automatic activation; Sonset: suppression onset,
corresponding to the peak latency of the gamma automatic activation [Sonset = τ(a-1)];
Sstrength: suppression strength, computed as t90th - Sonset where t90th is the 90th percentile of
the gamma percent point function (i.e., the latency at which 90% of the gamma automatic
activation has been emitted). Parameters Ter, σr, τ, and gamma-derived statistics Sonset and
Sstrength are in milliseconds (ms). Other parameters are in units of diffusion coefficient
(arbitrary).

Table 2
Best-fitting DMC parameters to Dataset 2 (van Wouwe et al., 2016) averaged across
subjects.

HC PD OFF PD ON

DMC parameters
b 66.3 70.2 72.1
v 0.485 0.437 0.434
A 25.8 25.8 24.4
a 2.3 2.5 2.4
τ (ms) 49 52 53.5
Ter (ms) 350 362 365
σTer (ms) 47.6 55 53.7
Gamma-derived statistics
Sonset (ms) 62.5 76.5 65.7
Sstrength (ms) 146 159 158

2 Because the sampling distribution of model parameters is unknown, we also con-
ducted permutation tests. t-tests and permutation tests yielded virtually similar results.
For sake of clarity and brevity, we only report results from t-tests.
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To summarize, modeling results for Dataset 2 showed that PD im-
pairs goal-directed processing. Contrary to Dataset 1, we found no ef-
fect of disease on inhibitory control parameters. In addition, we found
no evidence for a modulatory role of DA medication on any of the
model parameters.

4. Discussion

The aim of the present work was to provide a model-based analysis
of action control mechanisms in PD and HC matched in age, gender,
and education. Previous studies suggest a deficit in the ability to resolve
conflict between goal-directed processing and automatic response ten-
dencies in PD, but the nature of this deficit remains unclear. We mod-
eled two Simon task behavioral datasets (van Wouwe et al., 2014,
2016) with the DMC (Ulrich et al., 2015) to decompose cognitive
processes involved in action control, and quantify the effects of PD and
DA medication. Our results indicate some inconsistencies between the
two datasets that we sought to explain and reconcile in the following
sections.3

4.1. A deficit in inhibitory control in PD?

The modeling of Dataset 1 (van Wouwe et al., 2014; Simon task
featuring a speed-accuracy manipulation) and Dataset 2 (van Wouwe
et al., 2016; standard Simon task) showed that the strength of the lo-
cation-based automatic activation, as quantified by the peak amplitude
of the gamma function A, was similar for PD ON and HC subjects. This
finding suggests that disease doesn’t affect response capture. Although
suppression statistics Sonset and Sstrength were significantly larger for PD
ON than HC in Dataset 1, these effects were not replicated in Dataset 2.
This failure reflects inconsistencies in delta plot patterns between the
two studies. Ulrich et al. (2015) demonstrated that the slope of the delta
plot predicted by the DMC is largely determined by the onset of sup-
pression (Sonset). Specifically, the slope of the delta plot becomes more
positive as Sonset increases. Consistent with our modeling, van Wouwe
et al. (2014) found a significantly more positive-going delta plot for PD
ON than HC in both accuracy and speed conditions. This modulation,
however, was not replicated in their subsequent work (van Wouwe
et al., 2016): delta plots were not significantly different between PD ON
and HC. As we discuss below, the discrepancy might be caused by a
variation in the amount of inhibitory control engaged in the two Simon
task variants.

Qualitative theories of the Simon effect diverge as to whether the
location-based automatic activation decays passively (Hommel, 1993,
1994, 2011) or is actively suppressed (Ridderinkhof, 2002). As outlined
in the Introduction section, passive decay should depend primarily on
time, and should be the same regardless of subjects’ speed-accuracy
strategy. Consequently, decay theory predicts a similar time-course of
the automatic activation across speed and accuracy instructions, con-
sistent with the modeling of Dataset 1. Neither the main effect of speed
pressure nor the interaction between disease and speed pressure on
suppression statistics (Sonset and Sstrength) reached statistical significance.
However, a rapid look at model parameters in Table 1 shows that
suppression onset (Sonset) is delayed and suppression strength (Sstrength)
is weaker under speed pressure for HC only. Indeed, separate ANOVAs
for HC and PD showed a marginally significant effect of speed pressure
on Sonset and Sstrength for HC (F(1, 20) = 4.14, p = .055 and F(1, 20) =
3.04, p = .096 respectively), but not for PD (all ps> .1), suggesting
that (i) an inhibitory control component also contributes to the re-
duction of the automatic activation and (ii) this component might be
selectively impaired in PD. The contribution of the two components
(passive decay and active suppression) to the reduction of the

automatic activation might be largely determined by context, which
might explain why empirical findings currently favor both accounts
(e.g., Hommel, 1993, 1994; Ridderinkhof, 2002). Arguably, demands
on inhibitory control processes were generally higher for Dataset 1 than
Dataset 2, due to the incorporation of a speed-accuracy manipulation. If
PD selectively impairs the inhibitory control component, we would thus
expect an effect of disease on suppression parameters in Dataset 1 only.
This is exactly what we found. Our modeling results are thus consistent
with the view that inhibitory control mechanisms are impaired in PD
(e.g., Chan et al., 2005; Praamstra and Plat, 2001; Praamstra et al.,
1998; van Wouwe et al., 2016; van Wouwe et al., 2014; Wylie et al.,
2012; Wylie et al., 2010). They also suggest that the reduction of in-
terference in the Simon task is driven by a mixture of inhibitory control
and passive decay, the contribution of each component being modu-
lated by context. This hypothesis deserves further investigation. Con-
text may refer to the environment or the way the task is performed. A
recent study showed a decrease of the Stroop effect when subjects were
standing than when they were sitting, suggesting that body posture
modulates cognitive control mechanisms (Rosenbaum et al., 2017).
Context also refers to experimental manipulations such as urgency,
proportion of non-corresponding trials, or relevance of the location
attribute of the stimulus. For example, Ridderinkhof (2002) intermixed
regular color-Simon trials with 25% of trials in which subjects had to
respond on the basis of the location of the stimulus (context where
location was the target aspect of the stimulus, condition ‘CLT’) versus
25% of trials in which subjects had to respond to the shape of the sti-
mulus (context where location could always be ignored, condition
‘CLI’). Demands on inhibitory control processes should be stronger for
CLI than CLT. Accordingly, the slope of the delta plot was more positive
for CLT than CLI. This path of research should be pursued in order to
better understand the relative contributions of decay versus inhibitory
control to the reduction of interference in the Simon task.

An alternative, although not necessarily exclusive, explanation of
the empirical and modeling inconsistencies between Datasets 1 and 2
concerns variations in DA-related variables between samples of PD
patients. DA medication daily dose intensity, as quantified by Levodopa
Equivalent Daily Dose (LEDD), was higher on average for PD patients
from Dataset 2 (M = 732; SD = 431) than PD patients from Dataset 1
(M = 547; SD = 244). PD might thus impair inhibitory control me-
chanisms, but this deficit might be improved by DA medication. van
Wouwe et al. (2016) reported a significantly more positive delta plot for
PD OFF compared with PD ON and HC, although the amplitude of the
modulation was small (see Fig. 2C, lower panel). Accordingly, our
modeling revealed a numerical trend for delayed suppression in PD OFF
compared to PD ON and HC (Table 2). This numerical trend, however,
was small and non-significant. Noise in model fits4 might have hurt our
ability to detect a significant effect of DA medication on suppression
parameters, if this effect does exist. To get further insight into the re-
lationship between DA medication and inhibitory control, we computed
the Pearson correlation coefficient between LEDD and suppression
parameters (Sonset and Sstrength) in each dataset and condition. We found
a significant correlation between suppression strength (Sstrength) and
LEDD in the speed condition of Dataset 1, r = −.48, p = .039. The
higher the LEDD, the stronger the suppression. No other correlation
reached statistical significance (all ps> .1). Consequently, DA medi-
cation likely improves the PD-related deficit in inhibitory control, but
this effect might be hard to detect in Dataset 2 due to (i) the small
contribution of inhibitory control to performance and (ii) noise in
model fits.

A recent meta-analysis of studies comparing performance from PD
patients and HC on tasks that presumably engage inhibitory control
suggests that disease duration interacts with DA medication to produce

3 To facilitate comparison between the 2 datasets, we only consider modeling results
from the 19 PD ON patients from Dataset 1 in the discussion section.

4 Dataset 2 featured a relatively small number of trials per condition (see Methods),
which necessarily alters the validity of parameter estimates (White et al., 2017).
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modulations of performance (Manza et al., 2017). Specifically, DA
medication seems to improve inhibitory control for PD patients with
shorter disease duration. However, the average disease duration was
close between the two samples of PD ON patients from Dataset 1 (M =
6.4 years) and Dataset 2 (M = 6 years). In addition, we did not find any
significant correlation between disease duration and suppression
parameters (Sonset and Sstrength) in each Dataset (all ps> .1). Conse-
quently, disease duration is unlikely to have played a modulatory role
in the present empirical and modeling findings.

To summarize, our analyses suggest that PD impairs inhibitory
control, a deficit likely remediated by DA medication. They also suggest
that the reduction of interference in the Simon task is driven by a
mixture of inhibition control and passive decay, the contribution of
each component being modulated by context.

4.2. The effect of PD on goal-directed processing

Beyond parameters related to the location-based automatic activa-
tion, our modeling revealed a lower rate of task-relevant sensory evi-
dence accumulation (parameter v) in PD than HC, demonstrating a
deficit in goal-directed processing. The rate of task-relevant sensory
evidence accumulation in the diffusion model framework is thought to
depend on the efficiency of sensory encoding and attentional processes
(Ratcliff and Smith, 2004; Smith and Ratcliff, 2009; White et al., 2011).
The model, however, does not allow for decomposition of these two
processing components.

The effect of disease on goal-directed processing was significant in
Dataset 2, but only marginally significant in Dataset 1. The comparison
between PD ON and OFF in Dataset 2 suggests that this deficit is not
related to DA-related variables: drift rate values were very similar be-
tween the two groups of patients (PD ON: v = 0.434; PD OFF: v =
0.437). Beyond differences in DA-related variables, samples of PD pa-
tients from Datasets 1 and 2 differ in terms of cognitive symptoms. PD
patients from Dataset 1 showed high cognitive functioning, as indicated
by scores at ceiling on the MMSE (range 27–30). However, the sample
of PD patients from Dataset 2 allowed from mild to minimal gross
cognitive difficulties (range 23–30 on the MoCA). Consequently, the
deficit in goal-directed processing might be mediated by cognitive
symptoms. To test this hypothesis, we computed the Pearson correla-
tion coefficient between the drift rate of the controlled process (para-
meter v) and MoCA scores for PD patients from Dataset 2. This corre-
lation was high and significant for both groups (PD ON: r = .46,
p< .001; PD OFF: r = .35, p< .001, see Fig. 3), showing that greater
cognitive difficulties are associated with slower goal-directed proces-
sing. This finding appears consistent with the lack of effect of DA

medication on parameter v, as MoCA is typically used to assess extra-
basal ganglia progression of PD to frontal areas (e.g., Nazem et al.,
2009; but see discussion below).5

Our findings add to the growing body of evidence showing a deficit
in goal-directed processing in PD (de Wit et al., 2011; Sharp et al.,
2016). In addition, they suggest that cognitive impairment is an im-
portant mediator of the goal-directed deficit, which might explain
discrepant results in the literature (Redgrave et al., 2010; Robbins and
Cools, 2014). However, grey zones remain. De Wit et al. (2011) did not
find an effect of DA medication on goal-directed processing, consistent
with our findings. By contrast, Sharp et al. (2016) found that the deficit
in goal-directed processing in PD was completely restored by DA
medication. The reason for this discrepancy is unclear. Neuroimaging
studies have shown that the striatal DA deficit in PD is a strong pre-
dictor of frontal lobe executive dysfunction (Bruck et al., 2001; Jokinen
et al., 2009), consistent with positive results of Sharp and colleagues.
However, DA-independent factors such as the deterioration of choli-
nergic pathways, β-amyloid plaque and Lewy body depositions in PD
also contribute to frontal dysfunction (e.g., Bohnen et al., 2012;
Jellinger, 2006). In addition, the neurobiological effects of DA medi-
cation remain poorly characterized, and variations in DA medication
type (e.g., DA agonist monotherapy, levodopa monotherapy) and LEDD
between samples might contribute to the discrepant results.

To summarize, our model-based analyses suggest that PD impairs
inhibitory control, a deficit likely remediated by DA medication. They
also suggest that the reduction of interference in the Simon task is
driven by a mixture of inhibition control and passive decay, the con-
tribution of each component being modulated by context.
Consequently, observed variations in delta plot patterns should be in-
terpreted with caution. Finally, our modeling highlights a deficit in
goal-directed processing in PD, mediated by early cognitive symptoms
and extra-basal ganglia progression of PD to frontal areas. This work
illustrates the benefit of using computational models to quantitatively
measure cognitive processes in clinical populations.
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Fig. 3. Correlation between the drift rate of the goal-directed
process (parameter v) and MoCA scores for PD OFF (left panel)
and PD ON (right panel) patients from Dataset 2 (van Wouwe
et al., 2016). Also shown are lines of best fit (dashed lines).

5 For completeness, we computed the correlation between MoCA scores and suppres-
sion parameters (Sonset and Sstrength) for each group of PD patients from Dataset 2. These
correlations were not significant (all ps> .1).
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Supplementary data associated with this article can be found in the
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