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How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching
situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to
select a response from long-term memory. In the present study, the authors tested how well a model of
compound cue retrieval could account for a complex pattern of congruency effects arising from a
procedure in which a cue, prime, and target were presented on each trial. A comparison of alternative
models of prime-based effects revealed that the best model was one in which all stimuli participated
directly in the process of retrieving a response, validating previous modeling efforts. Relations to current
theorizing about response congruency effects and models of response selection in task switching are
discussed.
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People live in a world of ambiguity where the same stimulus can
evoke different responses in a variety of contexts. A stimulus such as
the number 42 might be responded to as even; lower than 50; the
product of 6 and 7; a double-digit number; or possibly the answer to
life, the universe, and everything (Adams, 1979). Yet when people are
instructed to perform a specific task on an ambiguous stimulus (e.g.,
is 42 an odd or even number?), it is often trivial for them to come up
with a task-appropriate response (“even”) in a second or two, even if
they had just performed a different task on the same stimulus a
moment ago (e.g., is 42 lower or higher than 50?). This flexibility of
thought and action is considered to be a core element of cognitive
control, but one that is still something of a mystery (Monsell, 1996).
The mystery is most evident in task-switching situations, where a
target stimulus is typically ambiguous and may require different
responses for different tasks performed in rapid succession, raising the
issue of how a task-appropriate response is selected. The purpose of
the present study was to test a model of how this occurs (Schneider &
Logan, 2005).

Compound Cue Retrieval

In many task-switching experiments, the relevant task to per-
form on a target stimulus is indicated by a cue. For example, for
tasks involving target digits, the cue Parity might indicate an odd
or even judgment and the cue Magnitude might indicate a lower or
higher than 5 judgment (what we will refer to as parity and

magnitude tasks, respectively). Logan and Bundesen (2003, 2004;
see also Arrington & Logan, 2004) proposed a mechanism for
response selection under these circumstances—later formalized in
a mathematical model by Schneider and Logan (2005)—called
compound cue retrieval. The basic idea behind compound cue
retrieval is that the cue and the target are used as joint retrieval
cues to select a unique response from long-term memory. Each
stimulus provides evidence for one or more response categories
(e.g., the cue Parity provides evidence for odd and even; the target
3 provides evidence for odd and low), and it is the multiplicative
combination of evidence in the retrieval process that leads to
selection of the response category for which there is the most
evidence (e.g., odd).

Compound cue retrieval was one part of a larger model of task
switching proposed by Schneider and Logan (2005). The other part
was priming of cue encoding, which is the idea that the process of
encoding the cue can be primed by residual activation in short-
term memory of identical or associated cues across trials. Priming
of cue encoding was used to account for transition effects such as
switch costs (impaired performance for task switches compared
with task repetitions) and cue-repetition benefits (facilitated per-
formance for cue repetitions compared with task repetitions), as
well as their reduction across preparation intervals. Since the
publication of the 2005 article, the model or the conclusions drawn
from it have been the target of several investigations conducted by
ourselves (Arrington, Logan, & Schneider, 2007; Logan & Schnei-
der, 2006b; Logan, Schneider, & Bundesen, 2007; Schneider &
Logan, 2006, 2007) and by others (Altmann, 2006, 2007; Forst-
mann, Brass, & Koch, 2007; Jost, Mayr, & Rösler, 2008; Mayr,
2006; Monsell & Mizon, 2006; Travers & West, 2008). However,
all of these investigations focused on priming of cue encoding and
the distinction between task switching and cue switching. None of
them evaluated compound cue retrieval, despite references to the
“compound-cue model” (Altmann, 2006, 2007). The present in-
vestigation focuses on compound cue retrieval instead of differ-
ences between task switching and cue switching.
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The only test of compound cue retrieval was in Schneider and
Logan (2005), where we examined its ability to account for cue–
target congruency effects. In those experiments, parity and mag-
nitude tasks were cued by category labels (Odd and Even cued the
parity task, Low and High cued the magnitude task), which intro-
duced congruency relations between cues and targets. For exam-
ple, while either Odd or Even could cue a parity judgment of the
target 3, the cue Odd was congruent with the correct categorization
of the target (odd) whereas the cue Even was incongruent. In three
experiments, incongruent trials were slower and more error-prone
than were congruent trials. These response time (RT) and error rate
(ER) effects were successfully modeled with compound cue re-
trieval, whereby the difference in evidence favoring a correct
response over an incorrect response was greater on congruent trials
compared with incongruent trials, resulting in faster and more
accurate response selection. Subsequent studies explored the cue–
target congruency effect in different contexts (Arrington et al.,
2007; Logan & Schneider, 2006a), but those studies focused on
using the effect as a diagnostic for different types of cue repre-
sentations rather than as a test of compound cue retrieval. Thus, in
contrast to priming of cue encoding, there is a paucity of research
on compound cue retrieval as a mechanism for response selection
in task-switching situations.

Cues Versus Primes

As noted above, compound cue retrieval has been tested with
only category labels as cues (Schneider & Logan, 2005). A meth-
odological issue with the use of category-label cues is that they are
atypical of the cues used in most task-switching experiments,
which tend to be neutral with respect to specific response catego-
ries (e.g., using Parity and Magnitude as cues). A more theoretical
issue with category-label cues is that they integrate two elements:
a cue that indicates the task and a prime that suggests a specific
response category. Kantowitz and Sanders (1972) and Sudevan
and Taylor (1987) made an important distinction between cues and
primes, noting that cues were useful and necessary for task per-
formance whereas primes were potentially useful (if valid) but not
necessary. Given this distinction, one might argue that cues should
be critical for compound cue retrieval whereas primes should be
less important and serve as contextual elements that modulate
response selection. A major aim of the present study was to test
whether compound cue retrieval could accommodate this distinc-
tion between cues and primes.

A second, related aim was to isolate the locus of prime-based
effects in cognitive processing. In Schneider and Logan (2005), the
cue and prime elements of the category-label cues were incorpo-
rated in compound cue retrieval in the same way (because they
were one and the same entity). They were directly involved in the
retrieval process, altering the rate at which evidence accumulated
toward selecting one response over the other. For example, while
the cue Odd indicated that a parity judgment had to be made in
Schneider and Logan’s experiments, it was not predictive of an
odd or an even response. Yet in compound cue retrieval, there was
a priming effect whereby the rate of evidence accumulation toward
an odd response was slightly boosted. When the cue and the target
were congruent (e.g., Odd and 3), this facilitated response selec-
tion, but when they were incongruent (e.g., Odd and 4), this

impaired response selection. The result was a cue–target congru-
ency effect.

However, prime-based effects could have occurred in other ways
without directly affecting the retrieval process. In the model, a re-
sponse has been selected when the evidence in favor of that response
reaches a boundary or criterion relative to the alternative response.
The prime element of a category-label cue may affect the response
boundaries such that less evidence is required to reach a primed
boundary relative to an unprimed boundary. For example, the cue
Odd might lower the boundary for an odd response and possibly raise
the boundary for an even response. The correct boundary would be
reached faster on cue–target congruent trials than on incongruent
trials, resulting in a cue–target congruency effect. This is a different
conception of prime-based effects that challenges the way they were
modeled in Schneider and Logan (2005).

A more severe challenge would involve having prime-based
effects occur outside of compound cue retrieval altogether. Instead
of affecting response selection, the prime element of a category-
label cue could affect response execution. For example, the cue
Odd might partially activate the manual response associated with
odd, analogous to how irrelevant flanker stimuli can partially
activate their associated responses (e.g., Coles, Gratton, Bashore,
Eriksen, & Donchin, 1985; Gratton, Coles, Sirevaag, Eriksen, &
Donchin, 1988). This would speed responding on cue–target con-
gruent trials relative to incongruent trials, resulting in a cue–target
congruency effect (though it would likely be restricted to RT).

In summary, the locus of the prime-based component of the
cue–target congruency effect in Schneider and Logan’s (2005)
experiments is unclear. We had modeled the effect by assuming
that it influenced the retrieval process, but as noted above, a
cue–target congruency effect could just as easily have been pro-
duced by changing response boundaries or priming response exe-
cution. Category-label cues do not allow us to disentangle these
possibilities or to make a clear distinction between the roles of
cues and primes in cognitive processing. In the present study, we
addressed these issues by testing how our model of compound cue
retrieval could account for data from a task-switching procedure in
which the cue and the prime were separate stimuli, comparing the
fits of models in which there was no priming or priming by
changes to retrieval, response boundaries, or response execution.

The Present Study

In the experiment reported below, subjects performed parity and
magnitude tasks on single-digit targets. There were three stimuli on
each trial: cue, prime, and target. The cue was Parity or Magnitude,
and it indicated the task to perform, making it both useful and
necessary (Kantowitz & Sanders, 1972; Sudevan & Taylor, 1987).
The prime was a randomly selected category label—Odd, Even, Low,
or High—that was potentially useful (if valid) but not necessary. The
target was a digit from 1 to 9, excluding 5. On each trial the cue was
presented first, followed by the prime after a cue–prime interval
(CPI), then the target after a prime–target interval (PTI), after which
time a response was made. In the experiment, instead of focusing on
cue–target congruency, we were able to focus on four other types of
congruency (examples of each type are given in Table 1): Cue–prime
congruency: Whether the cue and the prime refer to the same task
(congruent; e.g., Parity and Odd) or to different tasks (incongruent;
e.g., Parity and Low). Prime–target congruency: Whether the prime
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indicates one of the target’s categories (congruent; e.g., Odd and 3) or
an alternative category (incongruent; e.g., Even and 3). Prime–
response congruency: Whether the prime is associated with the same
manual response as required for the target (congruent) or a different
response (incongruent; see Table 1 for examples). Response congru-
ency: Whether the target requires the same manual response for both
tasks (congruent) or different responses (incongruent).

The first three types of congruency are novel aspects of our
cue–prime–target procedure, whereas response congruency has
been examined in several studies (e.g., Brown, Reynolds, &
Braver, 2007; Kiesel, Wendt, & Peters, 2007; Meiran, 2005; Mei-
ran, Chorev, & Sapir, 2000; Meiran & Kessler, 2008; Monsell,
Sumner, & Waters, 2003; Sudevan & Taylor, 1987). The typical
finding is that response incongruent trials are slower and more
error-prone than are congruent trials. This effect was addressed
briefly in Schneider and Logan (2005, p. 362), where we noted that
it was present in our experiments and our model of compound cue
retrieval could produce it (though we did not explicitly model the
response congruency effects in our data).

Perhaps more important is whether and how compound cue
retrieval can account for the other types of congruency involving
primes. As noted above, primes could affect the retrieval process,
response boundaries, or response execution. Given that the primes
in the present procedure are not necessary for accurate task per-
formance (unlike in Schneider & Logan, 2005), a fourth alternative
is that the primes may have no effect on performance. In what
follows, we report the results of the experiment and then describe
a basic framework for modeling the data. We assess the ability of
four different models—representing no priming or priming of
retrieval, boundaries, or execution—to account for a relatively
complex pattern of congruency effects in both the RT and ER data.
If our past modeling of cue–target congruency effects in com-
pound cue retrieval was valid, then the retrieval model should
provide a better account of the data than do the alternative models.

Experiment

Method

Subjects. Thirty-six students from Vanderbilt University com-
pleted the experiment for course credit or $12.

Apparatus, tasks, and stimuli. The experiment was conducted
using E-Prime software (Psychology Software Tools, Pittsburgh,
PA) running on computers that displayed stimuli on monitors and
registered responses from keyboards. The tasks were parity and
magnitude judgments cued by the words Parity and Magnitude (5
mm high � 30–45 mm wide), respectively. The primes were the
words Odd, Even, Low, and High (5 mm high � 15–20 mm wide).
The targets were the digits 1–9 (5 mm high � 4 mm wide),
excluding 5. All stimuli were displayed in white on a black
background and viewed at a distance of about 50 cm.

Procedure. Instructions were presented onscreen and ex-
plained by the experimenter. Each trial began with the presentation
of a cue slightly above the midpoint of the screen, centered
horizontally. After the CPI (100 ms or 800 ms), a prime was
presented 12 mm below the cue. After the PTI (100 ms or 800 ms),
a target was presented 12 mm below the prime. Cue, prime, and
target remained onscreen until a response was made, after which
time the screen was cleared for 500 ms and then the next trial
commenced. Responses were made with the Z and / keys on the
keyboard, with same-task categories assigned to different keys and
all possible category–response mappings counterbalanced across
subjects. Reminders of the mappings appeared in the bottom
corners of the screen during the experiment.

On each trial, the cue, prime, target, CPI, and PTI were ran-
domly selected from a table with all 256 combinations of these
design elements. There were 1,024 trials, with every set of 256
trials including all combinations in the design. Breaks were al-
lowed after every block of 64 trials. Subjects were instructed to
respond quickly and accurately, and they were informed that the
prime might or might not be congruent with the cue or the target
on each trial.

Results

The first block, the first trial of each block, and trials with RT
exceeding 3,000 ms (1.4% of trials) were excluded from analysis.
Only correct trials were included in the RT analyses.

Transitions. Although our focus will be on congruency ef-
fects, we first report transition analyses to show that our cue–
prime–target procedure yielded typical task-switching data. Trials

Table 1
Examples of Cues, Primes, and Targets for Each Type of Cue–Prime Congruency, Prime–Target Congruency, Prime–Response
Congruency, and Response Congruency

Cue–prime
congruency

Prime–target
congruency

Prime–response
congruency

Response
congruency

Example stimuli
Correct
responseCue Prime Target

Incongruent Incongruent Incongruent Congruent Parity Low 8 /
Incongruent Incongruent Congruent Incongruent Parity Low 7 Z
Incongruent Congruent Incongruent Incongruent Parity Low 4 /
Incongruent Congruent Congruent Congruent Parity Low 3 Z
Congruent Incongruent Incongruent Incongruent Parity Odd 4 /
Congruent Incongruent Incongruent Congruent Parity Odd 8 /
Congruent Congruent Congruent Incongruent Parity Odd 7 Z
Congruent Congruent Congruent Congruent Parity Odd 3 Z

Note. These examples are based on having the response categories odd and low mapped onto the Z key and the response categories even and high mapped
onto the / key.
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were coded for transition, CPI, and PTI, and mean RTs and ERs
were each submitted to a repeated measures analysis of variance
(ANOVA) with those variables.

The RT data are shown in Figure 1. All effects except for the
three-way interaction ( p � .101) were highly significant (smallest
F � 21.16, all ps � .001, smallest �p

2 � .38). Task switches (816 ms)
were slower than task repetitions (708 ms); this switch cost decreased
from 130 ms to 86 ms as CPI increased, and it decreased from 139 to
77 ms as PTI increased, indicating that both intervals were effective.
In terms of the combined cue–target interval (CTI), switch cost
decreased from 168 ms to 60 ms as CTI increased from 200 ms
(CPI � 100 ms, PTI � 100 ms) to 1,600 ms (CPI � 800 ms, PTI �
800 ms). Besides the reductions in switch cost, there were reductions
in overall RT for both CPI (34 ms) and PTI (130 ms).

Mean ER was 4.3%. Task switches (5.6%) were more error-
prone than task repetitions (2.9%), F(1, 35) � 65.16, MSE � 7.56,
p � .001, �p

2 � .65, and this switch cost decreased from 3.2% to
2.0% as PTI increased, F(1, 35) � 5.33, MSE � 4.25, p � .05,
�p

2 � .13. No other effects were significant (all ps � .17).
Congruency. For the congruency analyses, trials were coded

for cue–prime, prime–target, prime–response, and response con-
gruency (see Table 1 for examples). Given that the four types of
congruency do not enable a complete factorial design, mean RTs
and ERs were each submitted to two repeated measures ANOVAs:
a 2 (cue–prime congruency) � 2 (prime–target congruency) � 2
(response congruency) ANOVA and a 2 (cue–prime congru-
ency) � 2 (prime–response congruency) � 2 (response congru-
ency) ANOVA. We collapsed over transition, CPI, and PTI be-
cause preliminary analyses including those variables revealed that
neither CPI nor PTI interacted with any type of congruency in RT
or yielded uninterpretable four-way interactions in ER. Null inter-
actions with CPI and PTI can be attributed to the fact that most of
the congruency relations do not exist until the target has been
presented, by which time both intervals have elapsed. Transition
only had the effect of increasing the response congruency effect by
17 ms in RT and 3.0% in ER on task-switch trials compared with
task-repetition trials. It turned out that the prime–target and prime–
response congruency effects were largely restricted to cue–prime
congruent trials, for which both variables are perfectly correlated
(see Table 1), leading to similar results. Therefore, we include the
prime–response congruency data for completeness, but we focus

on the results from the first ANOVA and only when warranted do
we refer to the results from the second ANOVA.

The RT data are shown in Figure 2A. Cue–prime incongruent
trials (772 ms) were slower than congruent trials (751 ms), F(1,
35) � 20.70, MSE � 1,568.47, p � .001, �p

2 � .37. Prime–target
incongruent trials (765 ms) were slower than congruent trials (758
ms), F(1, 35) � 4.19, MSE � 745.47, p � .05, �p

2 � .11 (for the
comparable-sized prime–response congruency effect, p � .098,
�p

2 � .08). Response incongruent trials (786 ms) were slower than
congruent trials (738 ms), F(1, 35) � 83.08, MSE � 1,973.66, p �
.001, �p

2 � .70. There was an interaction between cue–prime
congruency and prime–target congruency, F(1, 35) � 6.74,
MSE � 1,059.93, p � .05, �p

2 � .16 (for the comparable interac-
tion involving prime–response congruency, p � .05, �p

2 � .15),
reflecting a prime–target congruency effect on cue–prime congru-
ent trials (16 ms) but not on incongruent trials (–3 ms). No other
interactions were significant (all ps � .18).

The ER data are shown in Figure 2B. Cue–prime incongruent
trials (4.5%) were more error-prone than congruent trials (3.9%),
F(1, 35) � 6.63, MSE � 3.73, p � .05, �p

2 � .16. Prime–target
incongruent trials (4.5%) were more error-prone than congruent
trials (3.9%), F(1, 35) � 6.35, MSE � 3.91, p � .05, �p

2 � .15,
though the same did not hold for prime–response congruency,
where a 0.2% difference failed to reach significance, p � .27.
Response incongruent trials (6.9%) were more error-prone than
congruent trials (1.6%), F(1, 35) � 74.22, MSE � 26.77, p � .001,
�p

2 � .68. There was an interaction between cue–prime congruency
and response congruency, F(1, 35) � 8.47, MSE � 4.67, p � .01,
�p

2 � .19, reflecting a larger response congruency effect on cue–
prime incongruent trials (6.0%) than on congruent trials (4.5%).
The only other interaction near significance was between cue–
prime congruency and prime–response congruency, F(1, 35) �
3.75, MSE � 4.44, p � .061, �p

2 � .10, reflecting a prime–
response congruency effect on cue–prime congruent trials (0.7%)
but not on incongruent trials (–0.3%). Note that the prime–target
congruency effect was comparable on cue–prime congruent and
incongruent trials (0.7% and 0.5%, respectively). No other inter-
actions approached significance (all ps � .13). The ER data were
generally consistent with the RT data (see Figure 2), and there was
no evidence of a speed–accuracy tradeoff.
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Figure 1. Transition data for response time as a function of cue–prime interval and prime–target interval. Error
bars represent standard errors of the means. TS � task switch; TR � task repetition.
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Discussion

The transition analyses showed that our cue–prime–target pro-
cedure yielded typical task-switching data, with large switch costs
in RT and ER. The switch cost in RT decreased with both CPI and
PTI, consistent with several studies involving one cue per task
where reductions in switch cost across preparation intervals have
been obtained (e.g., Koch, 2001, Experiment 4; Logan &
Bundesen, 2003; Mayr, 2002; Meiran, 1996; Meiran et al., 2000;
cf. Altmann, 2006).

The congruency analyses showed a somewhat complex pat-
tern of effects. Response congruency yielded the largest effects
in both RT and ER, but there were also smaller cue–prime and
prime–target (or prime–response) congruency effects, with the
latter being largely restricted to cue–prime congruent trials,
more so for RT than for ER (where prime–target and prime–
response congruency effects were rather weak). The question of
interest is whether and how our model of compound cue retrieval
can account for this pattern of congruency effects. If the data can
be modeled by including the prime as a joint cue in the retrieval
process (i.e., as an additional term in compound cue retrieval), then
the present set of congruency effects would be explained in much
the same way as the cue–target congruency effects in Schneider
and Logan (2005).

Modeling

Basic Framework

The present modeling framework is an extension of the model for
compound cue retrieval developed by Schneider and Logan (2005).
Compound cue retrieval involves using multiple pieces of evidence in
combination to select a response from long-term memory (Logan &
Bundesen, 2003; Ratcliff & McKoon, 1988). The evidence drives a
random-walk decision process (for an overview, see Ratcliff, 2001)
that involves stochastic accumulation of evidence for alternative re-
sponses until a response boundary is reached, meaning that the evi-
dence in favor of one response has exceeded the evidence in favor of
the other response by some criterion. At this point, the response
associated with that boundary (i.e., the response for which there is the
most evidence) has been selected and can be executed. The specific
random-walk process used for compound cue retrieval is Nosofsky
and Palmeri’s (1997) exemplar-based random-walk model, which
belongs to a broader family of models of attention and memory
(Logan, 2002) and the general class of sequential sampling models
(Ratcliff & Smith, 2004).

The compound cue retrieval process begins to accumulate evi-
dence toward a specific response after all stimuli presented during
a trial have been encoded, yielding semantic representations of
their associated response categories (Arrington & Logan, 2004;
Arrington et al., 2007). Stimuli are represented by � values indi-
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Figure 2. Congruency data (bars) and predictions of the retrieval model (points) for response time and error
rate (Panels A and B, respectively). Error bars represent standard errors of the means. Resp � response; Cong �
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cating the strength of evidence they provide for each response
category. The total evidence for response category i is the product
of the evidence from cue x, prime y, and target z described in the
following equation (cf. Hintzman, 1986; Raaijmakers & Shiffrin,
1981; see Logan, 2002, pp. 385–386, for discussion of why �
values would multiply):

�(i|x, y, z) � ��i|x� � ��i|y� � ��i|z�. (1)

This multiplicative combination of evidence is the essence of
compound cue retrieval. Note that in Schneider and Logan (2005),
the cue and the prime were one and the same, resulting in only two
multiplicands in Equation 1.

An assumption made by Schneider and Logan (2005) about
compound cue retrieval is that if a stimulus has yet to be encoded,
its � value equals zero. When this happens, the products calculated
from Equation 1 will equal zero for all response categories, so no
evidence will be accumulated toward selecting a response. An
implication of this assumption is that response selection and the
congruency effects attributed to it are not affected by manipula-
tions of CPI and PTI because compound cue retrieval does not lead
to evidence accumulation until both intervals have elapsed. The
null interactions between the various types of congruency and CPI
and PTI in the data (see the Results section) provide some support
for this constraint on response selection. However, it is important
to be clear that this assumption and its implications do not rule out
and should not be confused with effects of CPI and PTI on
alternative stages of processing (e.g., cue encoding) involved in
producing other effects (e.g., transition effects). The part of
Schneider and Logan’s (2005) model dealing with priming of cue
encoding explicitly relates changes in CTI to differences in cue-
encoding time that are manifest in transition effects. Understand-
ing that compound cue retrieval is a different part of the model is
crucial for understanding the effects that specific independent
variables may or may not have on response selection.

The total evidence for each response category determines how
quickly that category is retrieved from long-term memory. Assum-
ing no differential biases toward specific response categories
across conditions, � values correspond to rates of retrieval from
long-term memory (see Schneider & Logan, 2005, pp. 348–349).
As a result, the probability of retrieving response category i is the
ratio of its evidence over the summed evidence for all response
categories j in the response set R (Luce, 1959):

P�i|x, y, z� �
��i|x, y, z�

�
j�R

��j|x, y, z�
. (2)

Given that two response categories were assigned to each response
key in the experiment and subjects had to choose a response key to
press, response key k was chosen with this probability:

P�k|x, y, z� � �
i�k

P�i|x, y, z�. (3)

In other words, the probabilities of retrieving the two response
categories mapped onto the same response key are summed to give
the probability of choosing that key. The probabilities yielded by
Equation 3 represent the rates at which evidence accumulates for
selecting a response during the random-walk decision process
(Nosofsky & Palmeri, 1997). Assuming that the correct and

incorrect responses (kc and kic, respectively) have unequal
probabilities, which they did in all our model fits, the time per
step of the random walk (RTstep) and the number of steps (Nstep)
it takes for the random walk to reach response boundary A for
a correct response instead of response boundary B for an
incorrect response are given by

RTstep�x, y, z� �
1

�
j�R

��j|x, y, z�
(4)

and

Nstep�x, y, z� �
1

P�kc|x, y, z� � P�kic|x, y, z�
�	1�A � B� � 	2�B�
,

(5)

respectively, where

	1 �
�P�kc|x, y, z�⁄P�kic|x, y, z�
A � B � 1

�P�kc|x, y, z�⁄P�kic|x, y, z�
A � B � 1
(6a)

and

	2 �
�P�kc|x, y, z�⁄P�kic|x, y, z�
B � 1

�P�kc|x, y, z�⁄P�kic|x, y, z�
B � 1
. (6b)

The total time for compound cue retrieval, RTCCR, is the product
of the time per step and the number of steps of the random walk:

RTCCR�x, y, z� � RTstep�x, y, z� � Nstep�x, y, z�. (7)

To generate a prediction for RT, we added compound cue retrieval
time to a base RT value (RTbase) that represents the time required
by all nondecisional processes (e.g., stimulus encoding and re-
sponse execution):

RT � RTbase � RTCCR. (8)

A prediction for accuracy can be generated by using this equation,
which determines the probability of choosing the correct response:

P�kc|x, y, z� �
1 � �P�kic|x, y, z�⁄P�kc|x, y, z�
B

1 � �P�kic|x, y, z�⁄P�kc|x, y, z�
A � B. (9)

Equations 1–9 represent the basic framework for modeling com-
pound cue retrieval, which differs from that of Schneider and
Logan (2005) only by the inclusion of the prime as a term in the
equations. Within this framework, we developed four models to
investigate the role of primes in performance. One model involves
no priming, and the other models implement priming in different
ways, with primes affecting the retrieval process, response bound-
aries, or response execution. These models correspond to the four
alternatives outlined earlier.

Models

No priming. In this model, primes have no differential effects
on performance across conditions. For cues and targets, we assume
there are different evidence parameters (� values) for associated
and unassociated response categories (�ct-a and �ct-u, respec-
tively). Table 2 indicates which of these evidence parameters is
used in Equation 1 for each response category for the example
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stimuli in Table 1. For primes, we assume a single evidence
parameter, �prime-u, that is set equal to �ct-u for all conditions,
making it a constant in Equation 1. For example, for a trial
involving the cue Magnitude, the prime Odd, and the target 3, the
evidence from the cue, �(i | x), would be �ct-a for low and high and
�ct-u for odd and even; the evidence from the prime, �(i | y), would
be �prime-u for all categories; and the evidence from the target,
�(i | z), would be �ct-a for low and odd and �ct-u for high and even.
We assume equal boundaries for the random walk (represented by
C, where A � B � C) and a single RTbase value. The no-priming
model has four free parameters: �ct-a, �ct-u, C, and RTbase.

Retrieval. In this model, primes affect the retrieval process
(more specifically, the rate of evidence accumulation) by provid-
ing differential evidence in favor of specific response categories.
Instead of assuming a single evidence parameter for primes, we

introduced different evidence parameters for strongly associated,
moderately associated, and unassociated response categories
(�prime-p, �prime-a, and �prime-u, respectively). Table 2 indicates
which of these evidence parameters is used in Equation 1 for each
response category for the example stimuli in Table 1. For example,
for a trial involving the prime Odd, the evidence from the prime,
�(i | y), would be �prime-p for odd, �prime-a for even (because odd
and even are associated; see Nelson, McEvoy, & Schreiber, 1999),
and �prime-u for low and high. Consequently, the evidence from the
prime is not a constant in Equation 1. As in the no-priming model,
�prime-u is set equal to �ct-u. In the model fits reported below,
�prime-p was estimated as a proportion of �ct-a and �prime-a was
estimated as a proportion of �prime-p to reflect the idea that primes
would exert a fraction of the effects of cues and targets because
they are potentially useful (if valid) but not necessary for accurate
task performance. However, note that this is equivalent to letting
�prime-p and �prime-a be free parameters subject to ordinal con-
straints; therefore, for ease of exposition and cross-model compar-
isons, we will refer to � values rather than proportions. The
retrieval model has six free parameters: �ct-a, �ct-u, �prime-p,
�prime-a, C, and RTbase.

Boundary. In this model, primes affect the response bound-
aries rather than the rate of evidence accumulation toward those
boundaries. This model is equivalent to the no-priming model
except A � B in Equations 5, 6a, 6b, and 9, allowing for different
response boundaries for primed and unprimed responses (Cprimed

and Cunprimed, respectively, where the correspondence with A and
B depends on prime–response congruency). For example, for a
trial involving the prime Odd, the boundary for the response key
onto which odd is mapped would be primed (i.e., Cprimed) and the
alternative boundary would not be primed (i.e., Cunprimed). If
Cprimed �Cunprimed, then this creates an asymmetry whereby the
random walk does not have to go as far to reach one boundary as
it does to reach the other. In terms of prime–response congruency,
the prime creates an asymmetry such that on a prime–response
congruent trial, the correct response boundary is primed (i.e., A �
Cprimed, B � Cunprimed), whereas on a prime–response incongruent
trial, the incorrect response boundary is primed (i.e., B � Cprimed,
A � Cunprimed). The boundary model has five free parameters:
�ct-a, �ct-u, Cprimed, Cunprimed, and RTbase.

Execution. In this model, primes do not affect response selec-
tion at all. Instead, they affect execution of the manual response.
This model is equivalent to the no-priming model except there are
different values of RTbase for primed and unprimed responses
(RTbase-primed and RTbase-unprimed, respectively). For example, for a
trial involving the prime Odd, execution of the response onto
which odd is mapped would be primed (i.e., RTbase-primed) and the
alternative response would not be primed (i.e., RTbase-unprimed). If
RTbase-primed �RTbase-unprimed, then one response can be executed
faster than the other. In terms of prime–response congruency, on a
prime–response congruent trial, execution of the correct response is
primed, whereas on a prime–response incongruent trial, execution of
the incorrect response is primed. The execution model has five free
parameters: �ct-a, �ct-u, C, RTbase-primed, and RTbase-unprimed.

Summary. Although these models may not exhaust the space
of possibilities by which priming could occur, they allow for a
comparison of alternative models constructed within the same
framework. In three of the models (no priming, boundary, and
execution), primes do not affect the retrieval process itself (i.e.,

Table 2
Evidence Parameters Used to Model Different Experimental
Conditions

Example stimuli

Category i

Evidence

Cue x Prime y Target z �(i  x) �(i  y) �(i  z)

Parity Low 8 odd �ct-a �prime-u �ct-u

Parity Low 8 even �ct-a �prime-u �ct-a

Parity Low 8 low �ct-u �prime-p �ct-u

Parity Low 8 high �ct-u �prime-a �ct-a

Parity Low 7 odd �ct-a �prime-u �ct-a

Parity Low 7 even �ct-a �prime-u �ct-u

Parity Low 7 low �ct-u �prime-p �ct-u

Parity Low 7 high �ct-u �prime-a �ct-a

Parity Low 4 odd �ct-a �prime-u �ct-u

Parity Low 4 even �ct-a �prime-u �ct-a

Parity Low 4 low �ct-u �prime-p �ct-a

Parity Low 4 high �ct-u �prime-a �ct-u

Parity Low 3 odd �ct-a �prime-u �ct-a

Parity Low 3 even �ct-a �prime-u �ct-u

Parity Low 3 low �ct-u �prime-p �ct-a

Parity Low 3 high �ct-u �prime-a �ct-u

Parity Odd 4 odd �ct-a �prime-p �ct-u

Parity Odd 4 even �ct-a �prime-a �ct-a

Parity Odd 4 low �ct-u �prime-u �ct-a

Parity Odd 4 high �ct-u �prime-u �ct-u

Parity Odd 8 odd �ct-a �prime-p �ct-u

Parity Odd 8 even �ct-a �prime-a �ct-a

Parity Odd 8 low �ct-u �prime-u �ct-u

Parity Odd 8 high �ct-u �prime-u �ct-a

Parity Odd 7 odd �ct-a �prime-p �ct-a

Parity Odd 7 even �ct-a �prime-a �ct-u

Parity Odd 7 low �ct-u �prime-u �ct-u

Parity Odd 7 high �ct-u �prime-u �ct-a

Parity Odd 3 odd �ct-a �prime-p �ct-a

Parity Odd 3 even �ct-a �prime-a �ct-u

Parity Odd 3 low �ct-u �prime-u �ct-a

Parity Odd 3 high �ct-u �prime-u �ct-u

Note. The evidence parameters are used in Equation 1 to calculate the �
product for each response category. For the no-priming, boundary, and
execution models, �prime-u � �prime-a � �prime-p. Table 1 indicates the
congruency relations associated with each set of stimuli. Table 3 indicates
the best-fitting parameter values of each model for the group fits. �ct-a and
�ct-u � evidence from the cue or the target for associated and unassociated
response categories, respectively; �prime-p, �prime-a, and �prime-u � evidence
from the prime for strongly associated, moderately associated, and unas-
sociated response categories, respectively.
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they do not change the probabilities in Equations 2 and 3) because
a single evidence parameter, �prime-u, is used for all conditions. It
is only in the retrieval model that primes differentially affect the
rate of evidence accumulation, making this model the closest
conceptually to the way we modeled priming from category-label
cues in Schneider and Logan (2005). Consequently, the extent to
which the retrieval model accounts for the data better than do the
alternative models can be taken as validation of our previous
modeling efforts and support for compound cue retrieval as a
mechanism for response selection in task-switching situations.

Model Fitting

Each model was fit to both the RT and ER congruency data (a
total of 16 data points) with the Solver routine in Microsoft Excel
to minimize the root mean squared deviation (RMSD) between
data and model predictions. To generate this composite measure
and give relatively equal weight to both dependent variables, we
converted ER to accuracy (percentage of correct responses) and
multiplied it by 10 to place it on a similar scale to RT (as in
Schneider & Logan, 2005). This approach seemed to work well,
yielding similar SDs across conditions (29 for both RT and scaled
accuracy) and ranges (80 for RT and 66 for scaled accuracy). For
the model predictions reported below, we converted accuracy back
to ER. From the composite fits, we calculated separate RMSDs for
RT and accuracy as well as the proportion of variance explained by
the model (r2) in each case.

We fit the models to the group data in Figure 2 and to the
individual-subject data. However, the group data were much more
stable than were the individual-subject data for model fitting,
especially with respect to the smaller congruency effects in the
data, some of which were less than 10 ms in RT or less than 1.0%
in ER. Although these small effects were reliable across subjects
(see the Results section), they were not necessarily present in every
subject’s data pattern. Distortions in the data pattern due to noise
at the individual-subject level may outweigh possible distortions
due to averaging at the group level, and under these circumstances,
group fits may be better than individual-subject fits (Cohen, San-
born, & Shiffrin, 2008). For these reasons, we report the results of
both kinds of fits (which produced similar results), but we focus on
the fits to group data.

The model fits were constrained as follows: First, all parameter
values � 0. For the � values, this constraint means that stimuli
provide evidence for and not against response categories. Second,
A and B � 10 and A � B for all but the boundary model. Third, all
� values � 1 to provide an upper bound on the evidence from each
stimulus. Fourth, �ct-u � �prime-u � �prime-a � �prime-p � �ct-a,
which reduces to �ct-u � �prime-u � �prime-a � �prime-p � �ct-a for
all models except for the retrieval model. This constraint can be
decomposed as follows: For all models, �ct-u � �ct-a to capture the
assumption that cues and targets associated with a response cate-
gory are likely to provide more evidence for that category than are
unassociated cues and targets. We set �ct-u � �prime-u because
unassociated primes are likely to be unassociated with a response
category to the same degree as are unassociated cues and targets.
All �prime values fall within the range of the �ct values to
capture the idea that primes with some degree of association
would exert a fraction of the effects of associated cues and
targets because they are potentially useful (if valid) but not

necessary for accurate task performance. For all models except
for the retrieval model, �prime-u � �prime-a � �prime-p so that
primes do not differentially affect the retrieval process in those
models. For the retrieval model, �prime-u � �prime-a � �prime-p to
allow for differential priming effects on retrieval. The conse-
quences of having certain �prime values be equal to each other in
the retrieval model are explored below. Relaxing most of these
constraints had little effect on the group fits.

Results

Group fits. All models produced a response congruency effect
in RT (48 ms for all models compared with an observed effect of
48 ms) and ER (5.2%, 5.0%, 5.2%, and 5.2% for the no-priming,
retrieval, boundary, and execution models, respectively, compared
with an observed effect of 5.3%). This occurred because the effect
is largely driven by the evidence from the target and how proba-
bilities of retrieving different response categories are mapped onto
response keys (Equation 3). For example, for a trial involving the
cue Parity and the target 3, the probability of selecting the re-
sponse key for odd will be higher if odd and low are mapped onto
the same key (response congruent) than if they are mapped onto
different keys (response incongruent). Note that although Schnei-
der and Logan (2005, p. 362) mentioned that compound cue
retrieval could produce a response congruency effect, the present
study represents the first time we have actually fit models to
response congruency data and shown that compound cue retrieval
can produce an effect of comparable magnitude to what is ob-
served in data.

The models differ when it comes to the other congruency
effects. The no-priming model failed to produce cue–prime,
prime–target, and prime–response congruency effects. It predicted
the same value for all response incongruent trials (see the tall bars
in Figure 2) and the same value for all response congruent trials
(see the short bars in Figure 2). The boundary and execution
models also failed to produce a cue–prime congruency effect;
however, they did produce a prime–target congruency effect on RT
that was restricted to cue–prime congruent trials, though the effect
was smaller (6 ms) than in the data (16 ms). Although the bound-
ary and execution models also produced a prime–response con-
gruency effect, they did not produce the observed interaction with
cue–prime congruency. Neither model was able to produce the
interaction between cue–prime congruency and response congru-
ency in ER, and given that the execution model differs from the
no-priming model only in its effects on RT, it also failed to
produce a prime–target congruency effect in ER. In summary,
none of these models—no priming, boundary, or execution—
provided a satisfactory account of the data.

In contrast, the retrieval model captured the major effects in the
data. Its predictions are plotted with the data in Figure 2. It was the
only model to produce a cue–prime congruency effect, equaling
the magnitudes of the effect in both RT and ER (21 ms and 0.6%,
respectively). It produced prime–target and prime–response con-
gruency effects on RT that were restricted to cue–prime congruent
trials, but unlike with the boundary and execution models, the
magnitude of the effect (13 ms) in the retrieval model was much
closer to the data (16 ms). It also produced a prime–target con-
gruency effect on ER, though the effect was somewhat smaller
(0.2%) than in the data (0.6%). In contrast with the other models,
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the retrieval model also produced the interaction between cue–
prime congruency and response congruency in ER, where the
response congruency effects on cue–prime incongruent and con-
gruent trials (5.6% and 4.5%, respectively) were close to those in
the data (6.0% and 4.5%, respectively).

Overall, the retrieval model provided a superior account of the
congruency effects in the RT and ER data, a conclusion that is also
borne out by the measures of goodness of fit (summarized in Table
3, which also gives the best-fitting parameter values for each
model). The composite RMSD was smaller for the retrieval model
(4.0) relative to all other models (9.6, 9.4, and 9.4 for the no-
priming, boundary, and execution models, respectively). None of
the priming models are nested within one another (i.e., one priming
model cannot be formed from another priming model just by
holding certain parameter values constant), so it is not possible to
compare their fits with nested model comparisons. However, the
no-priming model is nested within all the priming models, so it can
be used as a baseline to assess the degree to which each imple-
mentation of priming improves the goodness of fit to the data over
no priming. Nested model comparisons involving the composite r2

values indicated that the retrieval model fit significantly better than
did the no-priming model, F(2, 10) � 33.97, p � .001, whereas the
boundary and execution models did not fit significantly better than

did the no-priming model, both Fs(1, 11) � 1. However, these
comparisons should be interpreted with some caution because the
composite r2 values are inflated by global differences between RT
and scaled accuracy that are captured by all models. For this
reason, it is useful to examine the separate fit indices for both
variables, which are also provided in Table 3. The retrieval model
produced an excellent fit to RT (RMSD � 4.4 and r2 � .97) and
scaled accuracy (RMSD � 3.6 and r2 � .98), whereas the other
models achieved much poorer fits to RT (mean RMSD � 12.1 and
mean r2 � .80) compared with scaled accuracy (mean RMSD �
5.7 and mean r2 � .95).

Individual-subject fits. The fits to individual-subject data
yielded similar results. The mean fit indices are summarized in
Table 4. For the composite and separate fit indices, RMSD was
smaller and r2 was larger for the retrieval model compared with the
other models. Moreover, the means of the individual-subject pre-
dictions from the retrieval model were almost identical to the
group predictions plotted in Figure 2 (RMSD � 2.0 and r2 �
.99998). Nested model comparisons involving the composite r2

values indicated that the retrieval model fit significantly better than
the no-priming model for 14 of the 36 subjects, whereas the
boundary and execution models fit significantly better than the
no-priming model for 9 and 10 of the 36 subjects, respectively. For
readers who are curious as to why the retrieval model did not fit
significantly better than the no-priming model for a greater number
of subjects, we reiterate the earlier point that the composite r2

values are inflated by global differences between RT and scaled
accuracy, and at both the group and individual-subject levels, this
works against finding significant differences between model fits.
In principle, this issue could be addressed by performing nested
model comparisons separately for RT and scaled accuracy, but
given that there are only eight data points per dependent variable,
such comparisons would have extremely low statistical power.
However, if one focuses on numerical differences between model
fits, it is noteworthy that the mean r2 value calculated separately
for RT was much higher for the retrieval model (r2 � .63)
compared with all other models (r2 � .33, .44, and .48 for the
no-priming, boundary, and execution models, respectively; see
Table 4).

The means of the best-fitting parameter values and their asso-
ciated 95% confidence intervals are also summarized in Table 4.
These values are generally in agreement with the values obtained
from the group fits (see Table 3), although for each model there
was either one (execution model) or two (no-priming, retrieval,
and boundary models) group parameters that fell outside of the
individual-subject confidence intervals. An important consider-
ation when interpreting these results is that on occasion, a “best-
fitting” parameter value from an individual-subject fit was equal to
or near the minimum or maximum value allowed during model
fitting, impairing reliable estimation of other parameter values.

Model Flexibility and Complexity

For both the group fits and the individual-subject fits, the retrieval
model provided a better account of the data than did the alternative
models. We interpret these results as support for the idea that
primes participate directly in the process of retrieving a response,
consistent with the modeling by Schneider and Logan (2005).
However, an alternative interpretation is that the retrieval model

Table 3
Best-Fitting Parameter Values and Measures of Goodness of Fit
for the Group Fits

Variable

Model

No priming Retrieval Boundary Execution

Parameters
�ct-u .065 .055 .063 .065
�ct-a .408 .384 .402 .408
�prime-u .065 .055 .063 .065
�prime-a .065 .059 .063 .065
�prime-p .065 .062 .063 .065
C 2.25 2.07 2.25
Cunprimed 2.22
Cprimed 2.18
RTbase 533 498 524
RTbase-unprimed 536
RTbase-primed 529

Measures of
goodness of fit

RMSD 9.6 4.0 9.4 9.4
r2 .9995 .9999 .9995 .9995
RMSD (RT) 12.4 4.4 12.0 12.0
r2 (RT) .7877 .9728 .8002 .8016
RMSD (Acc) 5.7 3.6 5.8 5.7
r2 (Acc) .9553 .9839 .9528 .9553

Note. Bold-faced parameters were free parameters in the model fits.
�ct-u and �ct-a � evidence from the cue or the target for unassociated
and associated response categories, respectively; �prime-u, �prime-a, and
�prime-p � evidence from the prime for unassociated, moderately asso-
ciated, and strongly associated response categories, respectively; C �
response boundary when equal boundaries are assumed; Cprimed

and Cunprimed � response boundaries for primed and unprimed re-
sponses, respectively; RTbase � base response time; RTbase-primed and
RTbase-unprimed � base response times for primed and unprimed re-
sponses, respectively; RMSD � root mean squared deviation between
data and model predictions; r2 � proportion of variance in the data
explained by the model; RT � response time; Acc � scaled accuracy.

130 SCHNEIDER AND LOGAN



produced a superior fit only because it is more flexible or more
complex than the other models. In this section, we investigate
whether model flexibility and complexity mitigate the conclusions
we have drawn from the model fits.

Model flexibility. Is the retrieval model more flexible than the
alternative models in accounting for data? To address this ques-
tion, we investigated how well each model could fit data that was
generated by itself and by the other models (e.g., see Cohen et al.,
2008). Using the fits to individual-subject data, we calculated the
means of the individual-subject predictions for each model and
used them as the “data” to which all models were fit. For example,
if the model generating the data was the no-priming model, then
the means of the individual-subject predictions of the no-priming
model were used as the data to which all models were fit. Every
model was used to generate data; therefore, each model was fit to
four data sets. If the retrieval model is more flexible than the
alternative models, then it should fit each data set almost as well
as the model that generated the data.

The RMSD values for all fits are provided in Table 5. When the
no-priming model generated the data, all models fit equally well,
with negligible RMSD values. This result is not surprising because
the no-priming model is nested within the other models, so all of

the priming models can be reduced to the no-priming model and
produce the same predictions. When one of the priming models
generated the data, the results were more telling: In each case, the
model generating the data provided the best fit to the data. For
example, when the retrieval model generated the data, it provided
a much better fit (RMSD � 0.89) than did the alternative models
(mean RMSD � 10.21). Critically, when either the boundary
model or the execution model generated the data, the retrieval
model produced only the third-best fit (see the third and fourth
columns of Table 5). The execution model produced the second-
best fit to the data generated by the boundary model, whereas the
boundary model produced the second-best fit to the data generated
by the execution model, possibly suggesting some degree of model
mimicry. These results indicate that the retrieval model is not
overly flexible in its ability to fit data because it did not provide the
best (or even the second-best) fit to data generated by the other
priming models. Thus, the superior fit of the retrieval model to the
experimental data cannot be attributed to greater flexibility (see
also Cohen et al., 2008).

A further conclusion that can be drawn from these results is that
averaging over individual subjects who had different sets of best-
fitting parameter values did not distort the group data patterns to
which the models were fit. For each of the priming models, the
model that generated the data at the individual-subject level was
also the model that provided the best fit to the group data derived
by averaging the individual-subject predictions (see Table 5). This
correspondence suggests that the earlier model fits to the group
data from the experiment were not compromised by averaging,
although we note that this conclusion does not necessarily extend
beyond the class of models investigated in the present study.

Model complexity. Although the retrieval model provided a
better account of the data than did the alternative models, it did so
with at least one more free parameter than any other model (recall
that the no-priming, boundary, execution, and retrieval models
have four, five, five, and six free parameters, respectively). Is the
superior fit of the retrieval model due solely to its greater com-
plexity? To address this question, we conducted parameter sensi-
tivity analyses (e.g., see Li, Lewandowsky, & DeBrunner, 1996) to
determine how strongly the predictions of the retrieval model
depend on the two free parameters (�prime-p and �prime-a) that make
it more complex than the no-priming model. For these analyses,
we focused on two effects in the RT data that were central to the
success of the retrieval model: the cue–prime congruency effect

Table 4
Mean Best-Fitting Parameter Values With 95% Confidence
Intervals, and Measures of Goodness of Fit for the Individual-
Subject Fits

Variable

Model

No priming Retrieval Boundary Execution

Parameters
�ct-u .083 � .022 .084 � .030 .084 � .026 .083 � .023
�ct-a .506 � .070 .493 � .071 .514 � .074 .507 � .069
�prime-u .083 � .022 .084 � .030 .084 � .026 .083 � .023
�prime-a .083 � .022 .093 � .033 .084 � .026 .083 � .023
�prime-p .083 � .022 .097 � .034 .084 � .026 .083 � .023
C 2.62 � 0.48 2.77 � 0.68 2.63 � 0.50
Cunprimed 2.62 � 0.51
Cprimed 2.61 � 0.53
RTbase 465 � 66 460 � 54 439 � 71
RTbase-unprimed 471 � 65
RTbase-primed 464 � 66

Measures of
goodness of fit

RMSD 23.5 19.0 22.0 21.8
r2 .9972 .9982 .9975 .9977
RMSD (RT) 28.0 21.5 25.8 25.1
r2 (RT) .3315 .6347 .4441 .4823
RMSD (Acc) 15.5 14.4 15.3 15.5
r2 (Acc) .5698 .5913 .5600 .5698

Note. Bold-faced parameters were free parameters in the model fits.
�ct-u and �ct-a � evidence from the cue or the target for unassociated
and associated response categories, respectively; �prime-u, �prime-a, and
�prime-p � evidence from the prime for unassociated, moderately asso-
ciated, and strongly associated response categories, respectively; C �
response boundary when equal boundaries are assumed; Cprimed

and Cunprimed � response boundaries for primed and unprimed re-
sponses, respectively; RTbase � base response time; RTbase-primed and
RTbase-unprimed � base response times for primed and unprimed re-
sponses, respectively; RMSD � root mean squared deviation between
data and model predictions; r2 � proportion of variance in the data
explained by the model; RT � response time; Acc � scaled accuracy.

Table 5
RMSD Between Data Generated by Each Model (Means of
Individual-Subject Predictions) and Predictions of Each Model
Fit to That Data

Model fit to data

Model generating data

No priming Retrieval Boundary Execution

No priming 0.01 10.50 1.84 2.26
Retrieval 0.01 0.89 1.35 1.84
Boundary 0.01 10.02 0.45 1.31
Execution 0.01 10.12 0.67 0.01

Note. The no-priming model is nested within the other models. RMSD �
root mean squared deviation.
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and the Cue–Prime Congruency � Prime–Target Congruency in-
teraction. For each analysis, we generated the predictions of the
retrieval model as we varied �prime-p and �prime-a independently
from .055 to .065 in steps of .001 while keeping all other parameter
values fixed at their best-fitting values from the group fit (see
Table 3; note that �prime-u � .055). Instead of evaluating changes
in RMSD or r2 across the parameter space (cf. Li et al., 1996), we
focused on the magnitude and direction of the effect produced by
each combination of parameter values.

The results are presented in Figure 3A for the cue–prime con-
gruency effect and in Figure 3B for the Cue–Prime Congruency �
Prime–Target Congruency interaction effect (represented by the
contrast: cue–prime congruent/prime–target incongruent – cue–
prime congruent/prime–target congruent – cue–prime incongruent/
prime–target incongruent � cue–prime incongruent/prime–target
congruent). The points in each plot, from smallest to largest,
represent effects of 1–8 ms, 9–16 ms, 17–24 ms, 25–32 ms, and
33� ms, respectively (the absence of a point represents an effect
of 0 ms). Filled and unfilled points represent positive and negative
effects, respectively. Gray-filled points represent the observed
effects in the data. Dashed lines represent trajectories through the
parameter space where two of the three �prime values are equal,
making the retrieval model equivalent to a five-parameter model
(like the boundary and execution models). The bottom-left corner
of each plot is where all three �prime values are equal, making the
retrieval model identical to the four-parameter no-priming model.

Regarding the cue–prime congruency effect (see Figure 3A), it
is evident that the retrieval model can produce the effect over a
wide range of parameter values, with the only exception being
when all three �prime values are equal. There is a region of the
parameter space spanning from the upper-left corner to the lower-
right corner of the plot where the model produces an effect that
approximates the magnitude of the observed effect in the data.
Critically, there are several points (viz., the gray-filled points that
fall on the dashed lines) where the retrieval model produces an effect
of the appropriate magnitude even though it is equivalent to a five-
parameter model, making it no more complex than the boundary or
execution models. Thus, a simpler version of the retrieval model
that has the same number of free parameters as the alternative
priming models can produce the cue–prime congruency effect,
implying that its ability to do so is not a consequence of model
complexity but a reflection of the way in which priming is instan-
tiated in the model.

Regarding the Cue–Prime Congruency � Prime–Target Con-
gruency interaction (see Figure 3B), it is evident that a more
constrained range of parameter values is required to produce the
effect. As in the preceding analysis, no effect is produced when all
three �prime values are equal. There is also no effect when the
retrieval model is reduced to a five-parameter model by making
�prime-p � �prime-a (the diagonal dashed line in the plot). When
�prime-p � �prime-a (the lower-right “triangle” of the plot), the
model produces an effect in the wrong direction. It is only when
�prime-p � �prime-a (the upper-left “triangle” of the plot) that the
model produces an effect in the correct direction and, for a small
region of the parameter space, an effect of the appropriate mag-
nitude. Critically, there are points (viz., the gray-filled points that
fall on the vertical dashed line) where the retrieval model
produces an effect of the appropriate magnitude even though it
is equivalent to a five-parameter model, illustrating once again

that the model’s ability to produce the effect is not a conse-
quence of model complexity.

The parameter sensitivity plots in Figure 3 indicate that a
five-parameter version of the retrieval model, where �prime-p �
�prime-a � �prime-u, can produce effects of the appropriate magni-
tudes. From a mathematical modeling perspective, one might
prefer the five-parameter model over the original six-parameter
model (where �prime-p � �prime-a � �prime-u) because of its par-
simony (i.e., it can account for the same effects with one less free
parameter). From a cognitive modeling perspective, we prefer the
six-parameter model because of theoretical considerations related
to how the model parameters map onto psychological constructs.
To elaborate, each �prime value represents the strength of associ-
ation between a prime word and a response category in semantic
memory. On the basis of free association norms (Nelson et al.,
1999) and intuitive reasoning, we argue that each prime is differ-
entially associated with each category. For example, we assume
that the category odd has a strong association with the prime Odd
(�prime-p, because the word is an orthographic representation for
the category), a moderate association with the prime Even
(�prime-a, because of semantic associations between odd and even
in memory), and no associations with the primes Low and High
(�prime-u). Separate �prime values are required to represent these
differential associations, with �prime-p � �prime-a � �prime-u (see
also Schneider & Logan, 2005). Thus, we have a prime example
(pardon the pun) of a situation in which the evaluation of model
complexity should go beyond counting the number of free param-
eters and include consideration of psychological constraints related
to the meaning of those parameters.

General Discussion

The goal of the present study was to test a model of compound
cue retrieval, a mechanism by which responses can be selected in
task-switching situations. Compound cue retrieval has been ne-
glected in previous investigations of our modeling work, with the
only test of it coming in the study in which the mechanism was
formally developed (Schneider & Logan, 2005). However, the use
of category-label cues in that study masked an important distinc-
tion between cues and primes (Kantowitz & Sanders, 1972; Sude-
van & Taylor, 1987), making it unclear whether compound cue
retrieval could accommodate the distinction and leaving an open
question as to the locus of prime-based effects.

In the present study, we used a cue–prime–target procedure that
allowed us to make a clear distinction between cues and primes
and to examine a broad range of congruency effects in task-
switching performance. We explored four models by which prime-
based effects might or might not occur (no-priming, retrieval,
boundary, and execution models) and found that only the retrieval
model—wherein primes affect the rate of evidence accumulation
during response selection—was able to account for the complex
pattern of congruency effects in both the RT and ER data, regard-
less of whether model fitting was done at the group or individual-
subject level. Additional analyses revealed that the superior fit of
the retrieval model could not be explained by model flexibility or
complexity.

The retrieval model is consistent with how category-label cues
and the associated cue–target congruency effects were modeled in
Schneider and Logan (2005), thereby validating that modeling
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effort. At the heart of the retrieval model is the idea that the cue,
prime, and target combine multiplicatively in response selection
(Equation 1), serving as joint cues for retrieving response catego-
ries from long-term memory. This is the essence of compound cue

retrieval as a mechanism for response selection in task switching,
enabling different responses to the same stimulus in different task
contexts. In the remainder of this article, we draw connections
between our model and current theorizing about response congru-
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Figure 3. Parameter sensitivity plots for the cue–prime congruency effect (Panel A) and the Cue–Prime
Congruency � Prime–Target Congruency interaction effect (Panel B) for response time produced by the retrieval
model (see text for details). eta_prime-p � �prime-p; eta_prime-a � �prime-a.

133COMPOUND CUE RETRIEVAL



ency effects and highlight relations between compound cue re-
trieval and other theoretical proposals for response selection in
task switching.

Response Congruency

The largest congruency effect in both the RT and ER data was
the response congruency effect, for which there has been a recent
surge of interest in the task-switching literature (e.g., Brown et al.,
2007; Kiesel et al., 2007; Meiran, 2005; Meiran & Kessler, 2008;
Wendt & Kiesel, 2008). Drawing upon distinctions made by Pa-
shler and Baylis (1991), Meiran and Kessler (2008) outlined two
routes by which response congruency effects could occur. The
mediated route involves translating a target representation into a
response-category representation, which in turn is translated into a
response representation that can eventually be used for response
execution. The route is said to be mediated because of the inter-
mediate formation of the response-category representation in what
Meiran and Kessler referred to as active long-term memory. In
contrast, the nonmediated route involves translating a target rep-
resentation directly into a response representation, bypassing the
formation of a response-category representation. Meiran and
Kessler argued that response congruency effects reflect the medi-
ated route, and they provided some evidence in support of this
argument.

Our modeling of response congruency effects with compound
cue retrieval is very much consistent with Meiran and Kessler’s
(2008) proposal (see also Meiran, 2000). In all four models (recall
that they all produced response congruency effects), what matters
in the evidence accumulation process is not the specific targets per
se, but the strengths of evidence for response categories associated
with those targets. A critical aspect of compound cue retrieval is
the formation of these response-category representations, which
then map onto response keys in such a way (see Equation 3) that
the probability of choosing the correct response is greater on
congruent trials than on incongruent trials, producing response
congruency effects in RT and ER. Thus, the model instantiates and
uses the mediated route to generate response congruency effects.

Although the response congruency effect arises from a mediated
route in compound cue retrieval, the model is not incompatible
with the effect also arising in part from a nonmediated route
involving direct target–response translation, for which there is
some evidence (Kiesel et al., 2007; Wendt & Kiesel, 2008). On
some trials, particularly those involving congruent targets, it would
likely be more efficient to bypass compound cue retrieval and
directly select a response. One could even imagine a race occurring
between the mediated and nonmediated routes on each trial (Lo-
gan, 1988), with a response congruency effect arising from which-
ever route wins the race. This sort of race was not instantiated in
our model, but there is nothing in the model that precludes it.

Theoretical Relations

While many theories of task switching are more concerned with
higher level processing associated with switching tasks (e.g., task-
set selection, attentional control setting, rule retrieval) than with
lower level processing associated with performing tasks (e.g.,
stimulus encoding, response selection, response execution), there
are formal models that address the question of how response

selection occurs in task-switching situations (e.g., Brown et al.,
2007; Gilbert & Shallice, 2002; Meiran, 2000; Sohn & Anderson,
2001). Our model of compound cue retrieval is similar in certain
respects to some of these models, and it is worth highlighting these
similarities to show that the present theoretical stance is not
restricted to our specific modeling framework.

In Gilbert and Shallice’s (2002) parallel distributed processing
(PDP) model of task switching, the evidence that is used to select
a response comes from two main inputs. First, there is bottom-up
input in the form of a target representation. Second, there is
top-down input reflecting the current task demand, which would
presumably be indicated by a cue representation in the context of
a task-cuing procedure. Both inputs are summed (along with other
inputs) to determine the evidence for various responses. A re-
sponse has been selected when the evidence for one response
exceeds that of the other responses by some criterion. The use of
multiple inputs to drive an evidence accumulation process is
similar to compound cue retrieval at a conceptual level. Further-
more, response selection in the PDP model is similar to our model
at a formal level, with Gilbert and Shallice (p. 310) noting that
their model implements a random walk to select a response. Given
these similarities, it might be possible for the PDP model to
account for the congruency effects from our cue–prime–target
procedure by including the prime as an additional source of
bottom-up input in the evidence accumulation process, as in the
retrieval model.

A somewhat different conception of response selection was
proposed by Meiran (2000) in his model of task switching, wherein
targets and responses are represented at a cognitive level in terms
of response categories. A target representation is determined by
perceptual input (e.g., the target) and by task-set input that biases
the representation toward task-relevant response categories. Task-
set input presumably arises from a cue representation indicating
the relevant task to which the target representation should be
biased. To select a response, the evidence for each response
category in the target representation is multiplied by the corre-
sponding evidence in the response representation (which reflects
the response given on the previous trial); we then summed these
products to yield what Meiran calls potency values for each
response. The difference in potency values determines response
strength, which determines how quickly (and conceivably also
how likely) a response will be selected. The focus on response-
category representations in response selection resonates with our
model of compound cue retrieval, as does the multiplicative com-
bination of different inputs to yield potency values (which might
be loosely mapped onto the � products in Equation 1). The idea
that the speed of response selection is determined by differences in
potency is similar to the notion that the random walk in compound
cue retrieval will finish more quickly as the difference in � values
in favor of selecting the correct response (or the retrieval proba-
bility in Equation 3) becomes more extreme. If Meiran’s model
were applied to our cue–prime–target procedure, primes would
likely be modeled by having them bias target representations in
much the same way as cue-elicited task sets. This would affect the
potency values used in response selection, similar to how primes
affect the � products used in response selection in the retrieval
model.

The models of Gilbert and Shallice (2002) and Meiran (2000)
are two examples of how the ideas embodied in our model of
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compound cue retrieval can be interpreted in the context of other
modeling frameworks. While these models differ from one another
on the surface, there appear to be some deeper conceptual simi-
larities in how they achieve response selection in task-switching
performance. Identifying these similarities is important during a
time when there seems to be an ever-increasing number of models
in the literature and a tendency to focus on differences between
models rather than the similarities that may spawn more integra-
tive theory development. By taking ideas that are common to
several models and using them to build newer and better models of
task switching, researchers may be able to take bigger steps toward
understanding the flexibility ascribed to cognitive control and how
it is that people can give different responses to a stimulus such as
42. Once that is done, then perhaps the next steps will be toward
understanding the answer to life, the universe, and everything.
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