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Task switching is used extensively to study executive 
control (Monsell, 2003). A typical task-switching experi-
ment involves repeating and alternating tasks across trials, 
yielding a difference in response time (RT) and accuracy 
between task alternations and task repetitions known as a 
switch cost. One interpretation of the switch cost is that it 
reflects executive control processes that reconfigure the 
cognitive system when tasks are switched (e.g., Meiran, 
1996; Rogers & Monsell, 1995). Another interpretation is 
that the switch cost arises from positive and negative prim-
ing in memory (e.g., Allport & Wylie, 2000; Schneider & 
Logan, 2005). These interpretations are not mutually exclu-
sive, but both of them are concerned with what the switch 
cost represents, making it important to understand which 
factors affect switch costs in task-switching procedures.

The present study was motivated by a recent issue con-
cerning the explicit task-cuing procedure, in which the task 
performed on each trial is indicated by a cue presented 
prior to the target stimulus (Sudevan & Taylor, 1987). An 
increased delay between the cue and the target (stimulus 
onset asynchrony, or SOA) often leads to a decreased 
switch cost, an effect interpreted by some authors as evi-
dence for advance reconfiguration by executive control 
processes (e.g., Meiran, 1996). Such interpretations are 
based on a version of the explicit task-cuing procedure 
involving only one cue per task, which confounds cue 
repetition with task repetition (i.e., whenever the task re-
peats, the cue repeats; whenever the task changes, the cue 

changes). To disentangle cue repetition from task repetition, 
some researchers have used multiple cues per task (e.g., 
Logan & Bundesen, 2003, 2004; Mayr & Kliegl, 2003), 
enabling three types of transitions: cue repetitions (cue and 
task repeat), task repetitions (cue changes but task repeats), 
and task alternations (cue and task change). The difference 
between task repetitions and cue repetitions can be inter-
preted as a repeated-cue-encoding benefit, whereas the dif-
ference between task alternations and task repetitions can 
be interpreted as a switch cost.

Logan and Bundesen (2003) and Mayr and Kliegl (2003) 
investigated the differences between transitions with mul-
tiple cues per task and arrived at different results and 
conclusions. Logan and Bundesen (2003) found a large 
repeated-cue-encoding benefit and little or no switch cost. 
On the basis of their results and formal modeling of the 
data, they argued that explicitly cued performance reflects 
cue-encoding effects and not executive control processes. 
In contrast, Mayr and Kliegl found a large repeated-cue-
encoding benefit and a large switch cost. On the basis of 
their results, they argued that explicitly cued performance 
reflects two processes: cue-based retrieval of task rules 
from memory and application of task rules to the target 
(producing the repeated-cue-encoding benefit and the 
switch cost, respectively).

Many procedural differences could have contributed 
to the different patterns of data obtained by Logan and 
Bundesen (2003) and Mayr and Kliegl (2003); the cues, 
tasks, targets, and transition frequencies differed between 
the studies. Logan and Bundesen (2003, Experiment 3) 
used meaningful word cues for numerical judgments of 
single digits (e.g., odd–even and parity cued an odd–even 
judgment), with frequencies of cue repetitions, task rep-
etitions, and task alternations of .25, .25, and .50, respec-
tively. Mayr and Kliegl used arbitrary letter cues for per-
ceptual judgments of colored forms (e.g., G and S cued a 
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color judgment), with all transitions having a frequency 
of .33 because specific task alternations were omitted (see 
Mayr & Kliegl, 2003, p. 364). Logan and Bundesen (2004) 
investigated how cue type (meaningful vs. arbitrary cues) 
affected performance. Subjects performed two blocks of 
trials: One block involved meaningful word cues, and the 
other block involved arbitrary letter cues. Block order was 
counterbalanced across subjects. Word cues produced lit-
tle or no switch cost, regardless of block order. Letter cues 
produced a sizable switch cost when they were used in the 
first block, but not in the second block. These results sug-
gest that cue type was partly responsible for the different 
patterns of data obtained by Logan and Bundesen (2003) 
and Mayr and Kliegl.

What remains unclear is whether the switch cost was 
affected by any of the other procedural differences be-
tween past studies. The focus of the present study was on 
transition frequency (how often subjects repeat and switch 
tasks). Switch costs might vary as a function of transi-
tion frequency, but data on the issue are scarce. Meiran, 
Chorev, and Sapir (2000, Experiment 1) used the explicit 
task-cuing procedure with a single cue per task (permit-
ting only cue repetitions and task alternations) to study 
the performance of different groups of subjects who ex-
perienced either equal frequencies of each transition or a 
higher frequency of cue repetitions (.67) than of task al-
ternations (.33). Frequency condition did not interact sig-
nificantly with transition or response–cue interval (SOA 
was fixed at 117 msec). In the alternating runs procedure, 
in which tasks are cued by the spatial position of the tar-
get in a predictable cycle (permitting task repetitions and 
task alternations), a few researchers have investigated the 
effect of increasing the frequency of task repetitions by 
manipulating run length (the number of consecutive tri-
als with the same task). An examination of the data from 
Rogers and Monsell (1995, comparing the results from 
Experiments 3 and 6) hints at a slightly increased switch 
cost across different groups of subjects as the frequency 
of task repetitions increased from .50 to .75, but Monsell, 
Sumner, and Waters (2003, Experiment 1) observed no 
significant change in switch cost as the frequency of task 
repetitions increased from .50 to .75 to .88 in a within-
subjects comparison.

The limited extant research on transition frequency 
suggests that it has little or no effect on switch cost, but 
it has rarely been manipulated systematically in a within-
subjects design, and never in the explicit task-cuing pro-
cedure with multiple cues per task. To address this issue, 
we conducted an experiment similar to that in Logan and 
Bundesen (2003, Experiment 3), except that transition 
frequency was manipulated directly. Subjects repeated 
and alternated between two tasks: classifying single-digit 
targets as odd/even or as high/low with respect to 5. The 
odd/even task was cued by the words odd–even or the word 
parity, and the high/low task was cued by the words high–
low or the word magnitude. Two cues per task permitted 
cue repetitions, task repetitions, and task alternations. The 
subjects experienced these transitions according to three 

frequency conditions in separate experimental sessions: 
cue repetitions frequent, task repetitions frequent, and 
task alternations frequent. In each frequency condition, 
one type of transition occurred on .70 of the trials (pro-
viding the name for the condition), and each of the other 
types of transitions occurred on .15 of the trials. Each 
transition within each frequency condition could occur 
at five SOAs (0, 100, 200, 400, and 800 msec), allow-
ing our analysis to extend beyond differences in mean RT 
to examine whether transition frequency alters the time 
course function (the change in RT with SOA) associated 
with performance.

METHOD

Subjects
Each of eighteen individuals from Vanderbilt University com-

pleted three experimental sessions in exchange for $30.

Apparatus and Stimuli
The experiment was conducted using Dell Dimension comput-

ers connected to standard QWERTY keyboards and Sony Trinitron 
monitors. The tasks involved classifying single-digit targets as odd/
even or as high/low with respect to 5. The odd/even task was cued 
by odd–even (37 � 7 mm) or parity (28 � 7 mm), and the high/low 
task was cued by high–low (37 � 7 mm) or magnitude (43 � 7 mm). 
The targets were the digits 1, 2, 3, 4, 6, 7, 8, and 9 (each 4 � 7 mm). 
The cues and targets were displayed in white font on a black back-
ground. Viewed at a distance of about 60 cm, 10 mm of the display 
subtended approximately 1º of visual angle.

Procedure
The subjects completed each experimental session in private rooms 

after providing informed consent before their first session. Instruc-
tions concerning the tasks, cues, targets, and response–key mappings 
were given before the experiment commenced. A reminder of the 
response–key mappings was posted below the computer screen for the 
duration of the experiment.

A session consisted of 10 blocks of trials (separated by self-paced 
rest periods) in a specific frequency condition. Each block included 
101 trials, with the first trial involving the random selection of a 
task, cue, and SOA. The remaining 100 trials were constructed using 
a pseudorandom algorithm that generated the appropriate number of 
trials for each transition, equally divided among the five SOAs. For 
example, for each block in the cue-repetitions-frequent condition, 
70 trials were cue repetitions (14 trials per SOA), 15 trials were 
task repetitions (3 trials per SOA), and 15 trials were task alterna-
tions (3 trials per SOA). The target associated with each trial was 
selected randomly. The distribution of transitions within each block 
was completely random, and all the blocks in a session and across 
subjects were generated independently. Data for all the frequency 
conditions were obtained in separate sessions for each subject, and 
the order in which the subjects experienced the frequency conditions 
was counterbalanced. Sessions were typically run on separate days, 
except for some subjects who had two sessions in 1 day that were 
separated by a few hours (e.g., morning and afternoon sessions).

Each trial began with a fixation display consisting of two plus 
signs (each 3 � 3 mm) arranged vertically in the center of the 
screen. After 500 msec, the screen was erased, and a cue was pre-
sented 5 mm below the position previously occupied by the top plus 
sign. After a variable SOA (0, 100, 200, 400, or 800 msec), a target 
was presented below the cue, 5 mm above the position previously 
occupied by the bottom plus sign. The cue and target remained on-
screen until the subject responded by pressing the “Z” or “/” key. 
Odd and high responses were assigned to the “Z” key, and even and 
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low responses were assigned to the “/” key for all the subjects. After 
a response, the screen was erased for 500 msec; then the next trial 
commenced.

RESULTS

The first block of each session was considered prac-
tice, allowing the subjects to gain experience with the 
frequency condition and response–key mappings. The 
practice block, the first trial of each block, and trials with 
RT exceeding 3,000 msec (1.3% of all the trials) were 
excluded from all the analyses. Incorrect trials were ex-
cluded from the RT analysis. The mean number of correct 
observations per cell in the experimental design was 25 
for the least frequent transitions and 120 for the most fre-
quent transitions. Mean RT and accuracy (as a percentage 
of correct responses) across subjects for each combination 
of frequency condition, transition, and SOA are provided 
in Table 1, and mean RTs are plotted as points in Figure 1. 
The RT and accuracy data were submitted to separate 3 
(frequency condition) � 3 (transition) � 5 (SOA) re-
peated measures ANOVAs (see Table 2 for a summary of 
these results). Planned contrasts were conducted using the 
relevant error terms from the ANOVAs.

Accuracy Analysis
Mean accuracy was 95.8% and did not differ among 

frequency conditions. Accuracy was lower for task alter-
nations (94.0%) than for task repetitions (96.9%) and cue 
repetitions (96.3%) [F(1,34) � 37.49, p � .01], which 
did not differ [F(1,34) � 1.42, p � .24]. The difference 
in accuracy between task alternations and the average 
for task repetitions and cue repetitions was smaller when 
task alternations were frequent (1.3%) than when cue rep-
etitions were frequent [2.6%; F(1,68) � 5.76, p � .05], 

which was smaller than when task repetitions were fre-
quent [4.0%; F(1,68) � 6.82, p � .05]. Within-subjects 
correlations between RT and accuracy did not suggest any 
speed–accuracy trade-offs; therefore, subsequent analy-
ses focused on RT.

Response Time Analysis
Mean RT was longer when task alternations were fre-

quent (879 msec) than when cue repetitions were frequent 
(777 msec) and when task repetitions were frequent 
(785 msec) [F(1,34) � 13.60, p � .01], which did not 
 differ [F(1,34) � 1]. Mean RT for task alternations 
(885 msec) was longer than that for task repetitions 
(819 msec) [F(1,34) � 25.44, p � .01], which was longer 
than that for cue repetitions (737 msec) [F(1,34) � 38.94, 
p � .01]. Mean RT decreased as SOA increased, reflecting 
the time course function typically observed in explicitly 
cued  performance.

The critical aspect of the RT data concerns the differ-
ences between transitions across frequency conditions. The 
difference between task alternations and task repetitions—
the switch cost—was smaller when task alternations 
were frequent (12 msec) than when cue repetitions were 
frequent (75 msec) [F(1,68) � 13.49, p � .01], which 
was smaller than when task repetitions were frequent 
(112 msec) [F(1,68) � 4.66, p � .05]. The difference be-
tween task repetitions and cue repetitions—the repeated-
cue-encoding benefit—was smaller when task repetitions 
were frequent (52 msec) than when task alternations were 
frequent (100 msec) and when cue repetitions were fre-
quent (95 msec) [F(1,68) � 9.47, p � .01], which did not 
differ [F(1,68) � 1]. The differences between transitions 
decreased as SOA increased, in agreement with previous 
results (e.g., Meiran, 1996). There was also a significant 
three-way interaction (see Table 2), indicating that the 

Table 1
Mean Response Time (RT, in Milliseconds) and Accuracy (Percentage of Correct Responses) Across Subjects at Each 

Stimulus Onset Asynchrony (in Milliseconds) as a Function of Frequency Condition and Transition (With Standard Errors)

Stimulus Onset Asynchrony

0 100 200 400 800

Frequency Condition  Transition  Measure  M  SE  M  SE  M  SE  M  SE  M  SE

Cue repetitions frequent Cue repetition RT 793 35 698 30 665 29 650 30 636 30
Accuracy 96.6 1.0 96.9 0.9 96.8 1.0 95.9 1.2 96.8 0.9

Task repetition RT 927 52 831 46 777 46 710 39 672 39
Accuracy 97.9 0.7 97.5 0.9 97.7 0.9 96.9 1.0 97.7 0.6

Task alternation RT 1,031 57 942 52 880 53 751 43 688 43
Accuracy 93.9 1.3 94.6 1.4 94.1 1.5 94.8 1.7 95.1 1.6

Task repetitions frequent Cue repetition RT 845 46 748 36 672 31 664 36 636 29
Accuracy 95.4 1.2 96.7 1.1 96.9 1.0 96.5 1.5 96.5 1.1

Task repetition RT 892 43 810 43 748 37 698 35 677 31
Accuracy 97.2 0.7 96.8 0.8 96.4 1.0 96.3 1.0 96.5 1.1

Task alternation RT 1,046 50 971 51 880 47 764 40 726 41
Accuracy 91.0 2.0 90.2 1.6 93.0 1.8 94.4 1.5 94.2 1.6

Task alternations frequent Cue repetition RT 964 56 886 53 776 48 696 39 719 43
Accuracy 94.7 1.7 95.4 1.4 97.7 1.3 95.4 1.6 96.7 1.4

Task repetition RT 1,092 64 967 66 887 61 808 50 788 55
Accuracy 95.8 1.8 96.5 1.9 96.5 1.9 96.9 1.4 97.3 1.2

Task alternation RT 1,077 61 982 57 912 57 839 56 794 54
    Accuracy  94.9  1.4 94.5 1.3 95.0 1.6 95.0 1.7 95.9 1.3
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time course function for each transition differed across 
frequency conditions; this aspect of the data will be ex-
amined in detail in the next section.

Modeling Analysis
The three-way interaction in the RT data suggests that 

transition frequency affects a process occurring during 
the SOA that differs among transitions. Logan and Bunde-
sen (2003) argued that differences between transitions can 

be attributed to differences in the process of encoding the 
cue during the SOA.1 To examine the potential role of cue 
encoding in producing our pattern of results, we estimated 
cue-encoding times for each transition in each frequency 
condition.

Following Logan and Bundesen (2003), we assume that 
RT reflects the sum of cue encoding and residual pro-
cessing times, with the contribution of cue-encoding time 
to RT varying as a function of SOA. Residual process-
ing time is assumed to include target encoding, response 
selection, response execution, and remaining processes. 
Logan and Bundesen (2003) developed a model of the 
time course function in which performance is based on 
a probability mixture of two base RTs. When the cue 
has not been encoded, RT � RTBase � μ, where RTBase 
represents an asymptotic base RT (residual processing 
time) and μ represents mean cue-encoding time. When 
the cue has been encoded, RT � RTBase. Cue-encoding 
time is assumed to be distributed exponentially, and the 
cumulative distribution of cue-encoding times determines 
the probability that the cue has been encoded at a given 
SOA. Consequently, RT � RTBase � μ with a probability 
of exp[�SOA/μ], and RT � RTBase with a probability of 
1 � exp[�SOA/μ], yielding the following equation when 
combined:

 RT � RTBase � μ ⋅ exp[�SOA/μ]. (1)

To determine the best possible fit of Equation 1 to our 
data, we developed an 18-parameter model with a sepa-
rate RTBase and μ for each transition in each frequency 
condition. Using the Solver routine in Microsoft Excel to 
minimize the root-mean-squared deviation (RMSD) be-
tween observed and predicted values, the 18-parameter 
model fit the 45 RT data points with RMSD � 15.86 and 
product–moment correlation r � .992.

Examination of the best-fitting parameter values in the 
18-parameter model (see Table 3) suggested that a sim-
pler model could be derived from it, so we developed a 9-
parameter model with a separate RTBase for each frequency 
condition and two values of μ for each transition: μ for 
when the transition was frequent (μF) and μ for when the 
transition was infrequent (μIF). The 9-parameter model fit 
the data with RMSD � 20.18 and r � .987. The 9-parameter 
model is nested within the 18-parameter model, allowing
us to test the significance of the difference in goodness 
of fit. The correlation between observed and predicted 
values was not significantly larger for the 18-parameter 
model than for the 9-parameter model [F(9,27) � 1.99, 
p � .08], indicating that the latter model is sufficient to 
account for the data.

Examination of the best-fitting parameter values in the 9-
parameter model (see Table 3) suggested two ways of pro-
ducing a simpler model. First, RTBase when cue repetitions 
were frequent (625 msec) was about the same as RTBase 
when task repetitions were frequent (641 msec), indicating 
that they could be combined into a common RTBase associ-
ated with frequent repetitions. Separate RTBase parameters 
for frequent repetitions and frequent alternations could be 

Figure 1. Mean response time across subjects at each stimulus 
onset asynchrony as a function of transition (task alternation, 
task repetition, and cue repetition) and frequency condition (top, 
middle, and bottom panels represent cue-repetitions-frequent, 
task-repetitions-frequent, and task-alternations-frequent condi-
tions, respectively). Points represent observed data, and lines rep-
resent predictions of the six-parameter model.
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argued to reflect different levels of interference that affect 
residual processes such as response selection.2

Second, we noticed a conspicuous relationship between 
μF and μIF for each transition. For cue repetitions, task rep-
etitions, and task alternations, the ratios of μF to μIF were 
.837, .814, and .823, respectively. Cue-encoding times ap-
peared to exhibit the following simple relationship:

 μF � μIF ⋅ f, (2)

where f represents a frequency priming factor with a mean 
value of .824 across transitions. In other words, cue encod-
ing is faster by about .176 (i.e., 1 � f ) when a transition 
is frequent than when it is infrequent. To assess whether 
Equation 2 provides an adequate account of the data, we 
developed a 6-parameter model with an RTBase for fre-

quent repetitions, an RTBase for frequent alternations, a 
separate μIF for each transition, and f (used to calculate 
μF for each transition). The 6-parameter model fit the 
data with RMSD � 21.07 and r � .986; its predictions 
are plotted as lines in Figure 1.3 The best-fitting param-
eter values were the following: RTBase for frequent rep-
etitions � 633 msec, RTBase for frequent alternations � 
740 msec, μIF for cue repetitions � 191 msec, μIF for 
task repetitions � 308 msec, μIF for task alternations � 
403 msec, and f � .828 (see Table 3 for comparison with 
the 18- and 9-parameter models). The 6-parameter model 
is nested within the 18-parameter model (when specific 
values of μ are constrained to equal the values calculated 
using f ), allowing us to test the significance of the dif-
ference in goodness of fit. The correlation between ob-

Table 2
Summary Table for the ANOVAs Conducted on 

Mean Response Times and Accuracy

Response Time Accuracy

Effect  df  F  MSe  F  MSe

Frequency condition (F) 2,34 6.84** 128,040.94 0.71** 104.39
Transition (T) 2,34 63.91** 23,477.35 19.46** 32.29
SOA (S) 4,68 142.24** 12,695.73 3.28** 8.33
F � T 4,68 9.65** 6,589.54 6.59** 8.87
F � S 8,136 1.81** 4,289.33 0.81** 9.82
T � S 8,136 9.57** 4,025.25 1.49** 11.73
F � T � S  16,272 3.52** 3,219.78 1.08** 9.11
*p � .05. **p � .01.

Table 3
Best-Fitting (and Calculated) Parameter Values 

for the 18-, 9-, and 6-Parameter Models

Number of
Parameters
in Model

Frequency Condition  Transition  Parameter  18  9  6

Cue repetitions frequent Cue repetition μ 146 159 159
RTBase 635 625 633

Task repetition μ 262 310 308
RTBase 657 625 633

Task alternation μ 405 404 403
RTBase 623 625 633

Task repetitions frequent Cue repetition μ 197 190 191
RTBase 629 641 633

Task repetition μ 221 252 255
RTBase 667 641 633

Task alternation μ 373 404 403
RTBase 668 641 633

Task alternations frequent Cue repetition μ 267 190 191
RTBase 678 740 740

Task repetition μ 309 310 308
RTBase 748 740 740

Task alternation μ 299 332 334
RTBase 768 740 740

All  All  f  –  –  .828

Note—To enable comparison with the 18-parameter model, parameters that were absent 
in the 9- and 6-parameter models were calculated using parameters that were present 
in those models (see the text for details). Identical values within a column reflect the 
same parameter.
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served and predicted values was not significantly larger 
for the 18-parameter model than for the 6-parameter 
model [F(12,27) � 1.84, p � .09], indicating that the lat-
ter model is sufficient to account for the data.4 The fit of 
the 6-parameter model suggests that when a transition is 
frequent, cue encoding for that transition is primed, which 
explains the observed interaction between frequency con-
dition, transition, and SOA.

DISCUSSION

Our findings demonstrate that transition frequency 
strongly affects explicitly cued performance: Switch cost 
was small when task alternations were frequent, larger 
when cue repetitions were frequent, and even larger when 
task repetitions were frequent. Modeling of the time 
course functions in the data revealed a common frequency 
priming effect for all the transitions: Cue encoding was 
faster when a transition was frequent than when it was 
infrequent. We will consider two interpretations of the 
relationship between priming of cue encoding and transi-
tion frequency: automatic priming from memory retrieval 
of accumulated instances of past transitions and strategic 
priming from transition expectancies due to sensitivity to 
the frequency conditions.

Automatic priming of cue encoding is possible if the 
transition experienced on each trial is stored in memory 
and the presented cue activates cues for the next trial that 
are consistent with instances of past transitions (e.g., 
Logan, 1988). Activation of a forthcoming cue would 
prime subsequent cue encoding, resulting in a shorter 
RT on the next trial. Transition frequency would deter-
mine how many instances of each transition are avail-
able for retrieval from memory; if priming is a function 
of the relative frequencies of different transitions stored 
in memory, frequent transitions would produce greater 
priming than would infrequent transitions. For example, 
when task alternations are frequent, transitions such as 
high–low to parity and high–low to odd–even will be ex-
perienced more often than transitions such as high–low 
to magnitude and high–low to high–low. The high–low 
cue will become episodically associated with task alterna-
tions more than with task repetitions and cue repetitions. 
Consequently, when the high–low cue is presented, the 
parity and odd–even cues will become activated and will 
prime cue encoding on the next trial if one of those cues 
is presented.

Strategic priming of cue encoding is an alternative in-
terpretation that is possible if subjects come to expect spe-
cific transitions, due to their sensitivity to the frequency 
conditions. The transition experienced on each trial could 
be stored in memory, as in the automatic priming ac-
count, and priming of cue encoding would result from 
activating cues for the next trial. Strategic priming dif-
fers from automatic priming in that the activation of cues 
arises from subjects’ expectancies about the likelihood of 
specific transitions, not from the retrieval of instances of 
past transitions. Expectancies would change across fre-
quency conditions as subjects learn the different sets of 

cuing contingencies. The idea that transition expectancies 
can be altered already has support in the literature. Dreis-
bach, Haider, and Kluwe (2002) conducted experiments 
in which subjects’ expectancies about transitions were 
manipulated by presenting a cue that indicated which 
task (or transition) was most probable on the current trial. 
Transitions occurred randomly, with equal frequencies 
across all trials. The main finding was that RT increased 
as probability decreased for both task repetitions and task 
alternations but switch costs were invariant when calcu-
lated from transitions with equal probabilities. Applied to 
our results, subjects’ expectancies might become tuned to 
the different frequency conditions, resulting in strategic 
priming of expected cues that would facilitate cue encod-
ing for frequent transitions, as compared with infrequent 
transitions. Our present results do not allow us to distin-
guish between strategic and automatic priming, but it is 
possible that both types of priming are involved in perfor-
mance (Neely, 1977; Posner & Snyder, 1975).

Our modeling of transition frequency effects in explic-
itly cued task switching indicates that differences between 
transitions are related to priming of cue encoding. A direct 
implication is that differences between transitions may 
reflect differences in cue-encoding time, which raises un-
certainty about interpreting “switch costs” as evidence 
for reconfiguration. It is possible that the difference be-
tween task alternations and task repetitions still reflects 
reconfiguration, in which case it is important to distin-
guish between the effects of executive control processes 
and those of more basic psychological processes. But an 
intriguing possibility is that an interaction of the latter pro-
cesses may be all that is needed to explain task-switching 
performance.
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NOTES

1. Some authors have argued that the differences between transitions 
also reflect decay of the task set from the preceding trial, on the basis of 
the observation that switch cost decreases as the response–cue interval 
(RCI) increases (e.g., Meiran et al., 2000). Our experiment included 
an RCI of 1,000 msec, providing a reasonable amount of time for this 
decay. Furthermore, many researchers have demonstrated that there are 
strong SOA effects independent of RCI effects (e.g., Logan & Bundesen, 
2003; Meiran et al., 2000); therefore, our modeling of cue encoding dur-
ing the SOA is not compromised.

2. Logan and Bundesen (2003, 2004) argued that response selection 
could be accomplished via compound cue retrieval, with the encoded 
cue and target acting as joint retrieval cues for selecting a response. 
In their formal models, cue encoding was reflected in μ, and response 
selection was reflected in RTBase. Schneider and Logan (2005) modeled 
the response selection component of RTBase and suggested that decayed 
traces of past cues could accumulate in long-term memory and be re-
trieved to participate in compound cue retrieval. Activation of past cues 
could positively or negatively prime compound cue retrieval, resulting 

in a shorter or longer RTBase. Applied to our experiment, when cue rep-
etitions or task repetitions are frequent, only a subset of cues will be 
experienced over short runs of trials, allowing dissipation of activation 
of past irrelevant cues, decreased interference in response selection, 
and a short RTBase. When task alternations are frequent, all cues will 
be experienced over short runs of trials, resulting in recent activation of 
past irrelevant cues, increased interference in response selection, and a 
long RTBase. These different levels of interference based on transition 
frequency could be modeled with separate RTBase parameters, as was 
done in the present study.

3. The only noticeable discrepancy between the observed data and 
the model predictions in Figure 1 is the fit to cue repetitions in the task-
alternations-frequent condition. The quality of the fit is not due to the 
6-parameter model’s having fewer parameters (the 18-parameter model 
has a similar fit) but is likely the result of instability in the time course 
function for that condition.

4. To examine the possibility that our results and model fits were dis-
torted by long-term effects across sessions, we conducted an analysis 
involving only the first-session data. A repeated measures ANOVA with 
transition and SOA as within-subjects factors and frequency condition 
as a between-subjects factor mirrored the earlier analysis, except that the 
main effect of frequency condition was no longer significant [F(2,15) � 
1.40, MSe � 660,329.77, p � .28], the frequency condition � transi-
tion interaction became marginally significant [F(4,30) � 2.31, MSe � 
18,372.91, p � .08], and the three-way interaction became marginally 
significant [F(16,120) � 1.59, MSe � 4,425.35, p � .08]. These results 
are likely due to decreased statistical power and increased variability in 
the data. The pattern of differences between transitions was relatively 
unaffected, except that the switch cost in the cue-repetitions-frequent 
condition increased to equal that in the task-repetitions-frequent condi-
tion. All the models were fit to the reduced data set, and the 6-parameter 
model fit with RMSD � 31.42 and r � .981, which was not signifi-
cantly worse than the 18-parameter model (r � .989) [F(12,27) � 1.56, 
p � .16]. The best-fitting parameter values in the 6-parameter model 
were slightly higher than those in the original fit, due to a longer overall 
RT, but the value of f was relatively unchanged between the new and the 
original fits (.811 and .828, respectively).
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