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Switch costs in task switching are commonly attributed to an executive control process of task-set
reconfiguration, particularly in studies involving the explicit task-cuing procedure. The authors propose
an alternative account of explicitly cued performance that is based on 2 mechanisms: priming of cue
encoding from residual activation of cues in short-term memory and compound cue retrieval of responses
from long-term memory. Their short-term priming account explains the repeated cue encoding benefit,
switch cost, reduction in switch cost with preparation time, and other effects. The authors develop a
mathematical model of their priming account and fit it to data from 3 experiments, demonstrating that a
set of basic psychological processes can produce several effects—including putative switch costs—
without switching tasks.
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A remarkable property of the human cognitive system is its
flexibility. As human beings, we can adapt to changing circum-
stances in a fraction of a second, often using external cues as
indicators of change. However, interpreting these cues in the
context of the other stimuli available to our senses is not always
straightforward, and occasionally it seems as if a modicum of
control is required to guide our actions. We are then confronted
with a fundamental issue in cognitive psychology: how the mind
controls itself. Many complex cognitive processes have been at-
tributed to mechanisms of executive control, such as selecting and
modifying task goals, devising strategies to achieve these goals,
programming and coordinating the subordinate processes needed
to implement the strategies, and monitoring and troubleshooting
performance (Logan, 1985, 2003; Monsell, 1996; Norman & Shal-
lice, 1986). Many situations are thought to engage executive
control, with recent research focusing on task switching.

In this article, we propose a short-term priming account of
explicitly cued task-switching performance that does not require
an executive control mechanism to switch tasks. We develop a
priming model based on our short-term priming account that is
written in the language of Logan’s (2002) instance theory of
attention and memory, which integrates Bundesen’s (1990) theory
of visual attention, Logan and Gordon’s (2001) theory of executive
control, Nosofsky’s (1986) generalized context model of catego-
rization, Logan’s (1988) instance theory of automaticity, and

Nosofsky and Palmeri’s (1997) exemplar-based random walk
model in a common mathematical framework. These theories
account for numerous phenomena in cognitive psychology, and
our priming model extends their coverage to the task-switching
domain with the modeling of cue encoding and response selection
processes. We develop the modeling of cue encoding processes
(Arrington & Logan, 2004; Logan & Bundesen, 2003, 2004) in
greater detail by linking them to repetition and associative priming
effects in short-term memory (STM). We integrate mechanisms
from models of categorization and memory retrieval (Gillund &
Shiffrin, 1984; Hintzman, 1986; Luce, 1959, 1963; Nosofsky,
1986; Raaijmakers & Shiffrin, 1981; Shepard, 1957) with a ran-
dom walk process (Nosofsky & Palmeri, 1997; Ratcliff, 1978) to
enable response selection by compound cue retrieval of response
categories from long-term memory (Dosher & Rosedale, 1989;
Ratcliff & McKoon, 1988). Modeling cue encoding and response
selection processes within a formal framework shared by a family
of models in the attention and memory literature (Logan, 2002,
2004) allows us to maintain connectivity with past research and
build a stronger foundation for future research.

Our exposition begins with an overview of task switching and
the explicit task-cuing procedure, outlining key findings and the-
oretical interpretations. We then introduce our priming account
and describe a mathematical model that instantiates its assump-
tions and mechanisms. We demonstrate that our priming model
can account for the critical effects from three experiments without
invoking executive control processes to switch tasks. We conclude
by discussing applications of the priming model, its limitations and
possible extensions, and implications concerning executive con-
trol, task sets, and strategies for theory development.

Task Switching

Overview

Task switching is a common paradigm for studying executive
control in cognitive psychology (e.g., Allport, Styles, & Hsieh,
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1994; Meiran, 1996; Rogers & Monsell, 1995), cognitive neuro-
science (e.g., Brass & von Cramon, 2004; Sohn, Ursu, Anderson,
Stenger, & Carter, 2000; Stoet & Snyder, 2004), clinical science
(e.g., Meiran, Levine, Meiran, & Henik, 2000; Woodward, Bub, &
Hunter, 2002), and aging (e.g., Kramer, Hahn, & Gopher, 1999;
Mayr, 2001; Salthouse, Fristoe, McGuthry, & Hambrick, 1998).
Task switching involves performing different tasks in alternation,
which is compared with performing the same task repeatedly.
Performance is measured in terms of response time (RT) and
accuracy, with the robust finding that responses are slower and less
accurate when one is alternating tasks than when one is repeating
tasks (e.g., Allport et al., 1994; Jersild, 1927; Meiran, 1996;
Rogers & Monsell, 1995; Rubinstein, Meyer, & Evans, 2001;
Spector & Biederman, 1976; for a review, see Monsell, 2003). The
difference in RT between task alternations and task repetitions is
interpreted as a switch cost related to the implementation of a task
set—a specific configuration of the cognitive system—in STM
(Monsell, 2003). From this perspective, the task set must change
for task alternations, but not for task repetitions.

The predominant goal among researchers who study task
switching is to explain switch costs. In the past 10 years, two
primary accounts have emerged: task-set reconfiguration and task-
set priming. Proponents of task-set reconfiguration argue that
switch costs arise from an endogenous, time-consuming executive
control process that reconfigures the cognitive system to imple-
ment the relevant task set for task alternations (De Jong, 2000;
Meiran, 1996; Monsell, 1996; Rogers & Monsell, 1995; Rubin-
stein et al., 2001). An implicit assumption of task-set reconfigu-
ration is that once a task set is implemented, it remains in the same
state of activation until it has to be changed. Task repetitions
benefit from this prepared state because the relevant task set is in
place and no reconfiguration is necessary, resulting in faster per-
formance relative to task alternations. In this context, switch costs
could be construed as repetition benefits (see Ruthruff, Remington,
& Johnston, 2001), although the former term is often used to
emphasize the perceived role of executive control processes.

Proponents of task-set priming argue that switch costs arise in
part from proactive interference and associative priming of task
sets and stimulus–response bindings across trials (e.g., Allport et
al., 1994; Allport & Wylie, 1999, 2000; Waszak, Hommel, &
Allport, 2003, 2004; Wylie & Allport, 2000). Task-set priming is
based on the idea that associations learned between stimuli and
responses or tasks are retrieved and affect performance on any
given trial. Collections of stimulus–response or stimulus–task
bindings could be viewed as task sets, with residual activation of
these task sets interfering with the implementation of the relevant
task set for task alternations, resulting in slower responses (Allport
et al., 1994). Item-specific stimulus–response bindings also could
contribute to switch costs, with negative priming of responses from
retrieval of competing responses (Allport & Wylie, 2000; Koch &
Allport, in press; Waszak et al., 2003; Wylie & Allport, 2000).

Task-set priming theorists do not exclude executive control
from task switching, and there are authors who have argued that
priming and executive control processes both contribute to perfor-
mance (e.g., Goschke, 2000; Meiran, 2000a, 2000b; Meiran,
Chorev, & Sapir, 2000; Sohn & Anderson, 2001, 2003). Some
researchers have characterized stimulus–task bindings as “control
states” (Allport & Wylie, 1999, p. 293), arguing that priming
comes from an interaction between top-down and bottom-up fac-

tors. In models of task-set priming, switch costs are generated from
an interaction between task-set priming and executive control
input (Gilbert & Shallice, 2002; Yeung & Monsell, 2003). The
main difference between these models and task-set reconfiguration
is that executive control input is required on all trials; there is not
an executive control process that occurs only for task alternations.
If executive control is involved with both task alternations and task
repetitions, then switch cost is not a valid measure of the duration
of an executive control process.

The Explicit Task-Cuing Procedure

The focus of the present article is on task-set reconfiguration,
questioning whether the difference between task alternations and
task repetitions has to be interpreted as a switch cost reflecting the
duration of an executive control process. We examined this issue
with a method that has been frequently interpreted as providing
measures of task-set reconfiguration: the explicit task-cuing pro-
cedure (Shaffer, 1965; Sudevan & Taylor, 1987). A cue indicating
the task to be performed is presented prior to the target stimulus on
each trial. Subjects must respond to the target based on the task
signaled by the cue; the target alone is usually ambiguous. For
example, if the tasks are to classify digits as odd or even and higher
or lower than 5, the target 3 could be classified as odd or low. A
task cue (e.g., ODD–EVEN) accompanying the target allows an
unambiguous response to be selected.

An advantage of the explicit task-cuing procedure is the ability
to manipulate the delay between the onsets of the cue and target—
the stimulus onset asynchrony (SOA). Many researchers have
manipulated SOA to study preparatory processes in task switching
(e.g., Goschke, 2000; Koch, 2003; Logan & Bundesen, 2003,
2004; Mayr & Kliegl, 2000, 2003; Meiran, 1996, 2000a; Meiran,
Chorev, & Sapir, 2000; Monsell, Sumner, & Waters, 2003). The
cue allows for task-set reconfiguration prior to target onset. If SOA
is construed as time available for this advance preparation, then
increasing SOA should increase the chances of completing task-set
reconfiguration, reducing switch costs. There is evidence that
switch cost decreases with increasing SOA (but see Altmann,
2004), suggesting that cue-initiated task-set reconfiguration is
possible.

Much of the support for task-set reconfiguration is contingent on
how the explicit task-cuing procedure is interpreted. Until recently,
many researchers did not consider a critical aspect of the proce-
dure: Cue repetitions were confounded with task repetitions. With
a single cue assigned to each task, a task repetition always in-
volved a cue repetition, whereas a task alternation always involved
a cue alternation. The switch costs observed in previous studies
could be reinterpreted as benefits of repeated cue encoding—a
process that does not require executive control (Logan &
Bundesen, 2003). If switch costs are nothing more than differences
in cue encoding, then the task-set reconfiguration view is weak-
ened and the utility of the explicit task-cuing procedure for study-
ing executive control is placed in jeopardy (Logan, 2003).

Logan and Bundesen (2003) formally modeled task-set recon-
figuration and cue encoding processes to account for data from
experiments using the explicit task-cuing procedure with masked
cues (Experiments 1 and 2), multiple cues per task (Experiments 3
and 4), and varying intertrial intervals (Experiment 5). Three
models were developed: Model 1, which assumed there was task-
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set reconfiguration only; Model 2, which assumed there was a
repeated cue encoding benefit but no task-set reconfiguration; and
Model 2�1, which assumed that both processes influenced per-
formance. Across the five experiments, Model 1 provided the
poorest fits to the data, whereas Models 2 and 2�1 fared much
better. Logan and Bundesen considered Model 2 to provide the
best account of the data because Model 2�1 violated certain
assumptions and produced what they deemed to be unreasonable
parameter estimates in some cases. Logan and Bundesen argued
that switch costs in the explicit task-cuing procedure do not reflect
executive control.

Fractionating “Switch Cost” With Multiple Cues per Task

An important feature of the study by Logan and Bundesen
(2003) is their use of two cues per task in Experiments 3 and 4.
This design allows three types of transitions: cue repetitions (both
cue and task repeat), task repetitions (task repeats but cue
changes), and task alternations (both cue and task change). Pre-
vious studies using a single cue per task only allowed cue repeti-
tions and task alternations. With multiple cues per task, the dif-
ference between cue repetitions and task repetitions can be
interpreted as a repeated cue encoding benefit, whereas the differ-
ence between task repetitions and task alternations can be inter-
preted as a switch cost that is uncontaminated by cue repetitions.
Logan and Bundesen (2003) found substantial differences between
cue repetitions and task repetitions, but only small differences
between task repetitions and task alternations. They argued that
performance was based on a compound stimulus strategy, whereby
subjects retrieved a unique response from memory based on the
combination of the cue and the target. Such a strategy does not
require executive control but would benefit from repeated cue
encoding (also see Arrington & Logan, 2004).

Mayr and Kliegl (2003) also conducted experiments using the
explicit task-cuing procedure and multiple cues per task and ob-
tained different results than Logan and Bundesen (2003). Mayr and
Kliegl (2003) found a substantial difference not only between cue
repetitions and task repetitions but also between task repetitions
and task alternations. They proposed a two-stage model to account
for their data: cue-initiated retrieval of task rules from long-term
memory (retrieval stage) and application of the rules to the target
to generate a response (application stage). Mayr and Kliegl (2003)
argued that the retrieval stage produced the difference between cue
repetitions and task repetitions due to priming of the retrieval
process for cue repetitions. They argued that the application stage
produced the difference between task repetitions and task alterna-
tions, whereby the automatic application of task rules to the target
takes longer when switching tasks. Mayr and Kliegl’s (2003) and
Logan and Bundesen’s (2003) studies indicated that much of the
“switch cost” observed in previous research was due to cue-related
processing, but they differed in their interpretations and data
concerning switch costs uncontaminated by cue repetition.

Logan and Bundesen (2004) addressed the discrepancy between
the two earlier studies by manipulating the type of cues associated
with the tasks. Mayr and Kliegl (2003) used arbitrary letter cues,
whereas Logan and Bundesen (2003) used meaningful word cues.
Previous research has demonstrated that the types of cues associ-
ated with tasks influence switch costs; meaningful word cues
produce smaller switch costs than spatial or shape cues (Arbuth-

nott & Woodward, 2002; also see Miyake, Emerson, Padilla, &
Ahn, 2004). Logan and Bundesen (2004) argued that the abstract
nature of the letter cues used by Mayr and Kliegl (2003) may have
led subjects to invoke a mediating process involving access to task
names in memory. The task name would then be combined with
the target for retrieval of a response from memory.

To test this hypothesis, Logan and Bundesen (2004) conducted
two experiments in which tasks were cued by arbitrary letters or
meaningful words in separate blocks. They found little difference
between task repetitions and task alternations, except when letter
cues were used in the first block. These results and formal mod-
eling indicating that Model 2 of Logan and Bundesen (2003)
provided a good account of much of the data supported the idea
that a compound stimulus strategy was being used, but that it
required access to a mediator in the initial stages of performance.
Further evidence in support of the compound stimulus strategy
comes from a recent study by Arrington and Logan (2004), who
investigated whether the strategy was episodic or semantic by
manipulating the number of unique targets viewed by different
groups of subjects. The differences among transitions were very
similar across groups, leading Arrington and Logan to argue that
the compound stimulus strategy was based on the cue and the
target retrieving representations from semantic memory, at least
initially.

Research with multiple cues per task seems to indicate that the
explicit task-cuing procedure rarely involves executive control and
can be explained by a compound stimulus strategy. However, the
mechanisms underlying the compound stimulus strategy have not
been defined, and it is unclear how the strategy can arise solely
from bottom-up input. For example, in Model 2 of Logan and
Bundesen (2003), differences in cue encoding account for the
differences among transitions: When a cue repeats, cue encoding is
faster than when a cue changes. What is the basis for differences
in cue encoding? Logan and Bundesen (2003) suggested an answer
to this question that we examine and extend in the present study.
Moreover, statistically significant differences between task alter-
nations and task repetitions have been observed (Arrington &
Logan, 2004; Brass & von Cramon, 2004; Logan & Bundesen,
2003, 2004; Mayr & Kliegl, 2003), but Model 2 never predicts
such differences. How are these differences—which are suggestive
of switch costs—possible? Finally, it is important to understand
how the compound stimulus strategy can produce a unique re-
sponse; the underlying mechanism has yet to be modeled. How can
a response be selected using the cue and the target in combination?
The priming account we present in the next section provides
answers to all of these questions.

A Short-Term Priming Account of Explicitly Cued
Performance

We developed a short-term priming account of explicitly cued
performance in task-switching situations that explains differences
among transitions without invoking an executive control mecha-
nism to switch tasks (also see Altmann, 2003, 2004). We focused
on the explicit task-cuing procedure for several reasons. First, it is
a common method for studying task switching (e.g., Arbuthnott &
Woodward, 2002; Arrington, Altmann, & Carr, 2003; Arrington &
Logan, 2004; Goschke, 2000; Koch, 2003; Logan & Bundesen,
2003, 2004; Mayr & Kliegl, 2000, 2003; Meiran, 1996, 2000a,
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2000b; Meiran, Chorev, & Sapir, 2000). Second, we wanted to
account for situations involving unpredictable, explicitly cued
transitions. Task-set priming accounts address experiments in
which transitions occur predictably (in blocks, cycles, or se-
quenced runs) or single-task performance is studied following
performance of competing tasks (e.g., Allport et al., 1994; Allport
& Wylie, 1999, 2000; Altmann, 2002; Koch & Allport, in press;
Waszak et al., 2003, 2004; Yeung & Monsell, 2003). Moreover,
computational models of task-set priming deal with situations
without explicit cues (Gilbert & Shallice, 2002; Yeung & Monsell,
2003). Third, the explicit task-cuing procedure provides some of
the strongest support for task-set reconfiguration; the reduction in
switch cost with SOA suggests that task-set reconfiguration can
begin prior to target onset. We demonstrate that bottom-up pro-
cesses can produce the reduction in switch cost, indicating that this
effect cannot be attributed unequivocally to an executive control
process.

Overview of the Experiments

Before we describe our priming account, it is helpful to give an
overview of the experiments that we used to assess it. We con-
ducted three experiments using the explicit task-cuing procedure.
The tasks were to classify single-digit targets as odd or even and
higher or lower than 5. Each task was associated with multiple
cues, permitting cue repetitions, task repetitions, and task alterna-
tions. The main difference between the present study and the
studies by Logan and Bundesen (2003, 2004) and Mayr and Kliegl
(2003) is the selection of cues and their associations to the targets
and response categories. We chose cues that were strongly asso-
ciated to permit a stringent assessment of our priming account: the
specific response categories associated with the tasks (i.e., ODD
and EVEN were cues for the odd–even task and HIGH and LOW
were cues for the high–low task). Two types of cue–target con-
gruency emerge with these cues: The cue and target can be
associated with the same response category (congruent; e.g.,
ODD–3) or different response categories (incongruent; e.g., ODD–
4). The differences among transitions and the effects of cue–target
congruency are closely linked in our priming account as described
below.

Basic Mechanisms and Assumptions

Our priming account is based on two mechanisms: priming of
cue encoding from residual activation of cues in STM and com-
pound cue retrieval of response categories from long-term mem-
ory. Priming of cue encoding accounts for differences among
transitions, and compound cue retrieval accounts for differences in
cue–target congruency.

Priming of cue encoding. Before a cue can be used to retrieve
responses from long-term memory, it must be encoded into STM.
Following Logan and Bundesen (2003), cue encoding is construed
as a race between comparison processes that match the perceptual
representation of the presented cue to its transient representation in
STM and to its permanent representation in long-term memory.
Cue encoding time is determined by whichever comparison pro-
cess finishes first. We assume the rate of comparison to long-term
memory is constant for all transitions, but the rate of comparison
to STM depends on the transition. Consequently, differences be-

tween transitions are due to differences in cue encoding time,
which result from different rates of comparison to STM as de-
scribed later.

Once a cue is encoded, its perceptual representation serves as a
retrieval cue for response categories in long-term memory. For
clarity, we denote cues in uppercase italic letters (e.g., ODD) and
response categories in lowercase italic letters (e.g., odd). Cues are
associated with response categories with strengths that depend on
the associations between response categories. We assume that odd
is associated with even (and vice versa) and high is associated with
low (and vice versa), but each pair of response categories is only
weakly associated with the other pair. These assumptions are
supported by free association norms (Nelson, McEvoy, & Schre-
iber, 1999).1 The associations between response categories enable
a cue to be associated with multiple response categories with
varying strengths. For example, ODD is strongly associated with
odd, partially associated with even, and unassociated with high and
low. Strongly and partially associated response categories will be
retrieved into STM, so ODD will only retrieve odd and even, but
with more strength for odd due to a stronger association. Unasso-
ciated response categories such as high and low would not be
retrieved with any strength beyond some baseline level.

When a response category that is only partially associated with
the presented cue is retrieved, we assume that the perceptual
representations of cues strongly associated with that response
category become partially activated in STM. For example, if the
presented cue is ODD, odd and even will be retrieved, and we
assume that EVEN becomes partially activated in STM due to its
strong association with even. Partial activation of cues occurs
indirectly through retrieval of associated response categories be-
cause it is unlikely that perceptual representations would activate
each other, although it is not inconceivable that semantic associ-
ations might lead to orthographic associations.

We assume that the activation of cues in STM decays in the
interval between trials (Altmann, 2002; Altmann & Gray, 2002).
When a cue is presented on trial n, there will be residual activation
for cues from trial n – 1. In the race between the comparisons to
short- and long-term memory described earlier, residual activation
from trial n – 1 for the cue presented on trial n will facilitate the
comparison to STM. The perceptual representation of the pre-
sented cue will match a decayed trace in STM, priming that
comparison process (i.e., increasing the speed of that runner in the
race). Stronger residual activation leads to more priming, resulting
in faster cue encoding.

Differences among transitions arise from differences in residual
activation that prime cue encoding. For example, assume ODD
was the cue on trial n – 1. When a cue is presented on trial n, there
will be strong residual activation for ODD, intermediate residual
activation for EVEN, and little or no residual activation for HIGH

1 The proportion of subjects who produce a target word in response to a
cue word can be interpreted as a measure of the associative strength
between the two words. The free association norms compiled by Nelson et
al. (1999) list the following production proportions (as cue–target pairs) for
the words used in the present study: ODD–EVEN � .558, EVEN–ODD �
.621, HIGH–LOW � .655, and LOW–HIGH � .777. Each target was the
most frequent free associate to the cue, suggesting strong associations. The
remaining pairs (e.g., ODD–HIGH) never occurred together by free asso-
ciation and can be considered to have much weaker associations.
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and LOW. These different amounts of residual activation will
affect the rate of comparison to STM in the race to encode the cue
on trial n. If the cue on trial n is ODD (i.e., a cue repetition), cue
encoding will benefit from strong residual activation because the
rate of comparison to STM will be increased. Cue encoding will be
fast due to repetition priming. If the cue on trial n is EVEN (i.e., a
task repetition), cue encoding will benefit from intermediate re-
sidual activation because the rate of comparison to STM will be
increased, but to a lesser extent than for cue repetitions because of
less residual activation. Cue encoding will be fast due to associa-
tive priming. If the cue on trial n is HIGH or LOW (i.e., a task
alternation), cue encoding will not benefit much from little or no
residual activation because the rate of comparison to STM will be
essentially unchanged. Cue encoding will be slow due to a lack of
priming. Cue encoding time is a substantial component of RT
except at long SOAs, so different rates of cue encoding can
produce differences in RT. It follows that differences among
transitions emerge from differential priming of cue encoding. Cue
repetitions are faster than task repetitions (i.e., a repeated cue
encoding benefit) because repetition priming is greater than asso-
ciative priming of cue encoding. Task repetitions are faster than
task alternations (i.e., a “switch cost”) because associative priming
is greater than no priming of cue encoding.

Compound cue retrieval. Once a cue and a target have been
encoded, a response has to be selected. We propose that the cue
and the target combine as a compound cue for retrieving response
categories from long-term memory (Dosher & Rosedale, 1989;
Logan & Bundesen, 2003, 2004; Ratcliff & McKoon, 1988). The
cue and the target will retrieve response categories from long-term
memory with different strengths based on preexisting associations
between response categories (as described above) and between
targets and response categories. We assume that subjects already
know whether a target is odd or even and high or low with respect
to 5; none of the subjects in our experiments lacked such
knowledge.

Response selection is based on the multiplicative combination
of the strengths for each response category (cf. Gillund & Shiffrin,
1984; Hintzman, 1986; Raaijmakers & Shiffrin, 1981). When the
cue and the target are both strongly associated with the same
response category (e.g., ODD and 3 with odd), the product of their
strengths will be large, resulting in a high probability of retrieving
that response category. When the cue and the target are weakly
associated or unassociated with the same response category (e.g.,
ODD and 3 with high), the product of their strengths will be small,
resulting in a low probability of retrieving that response category.
Intermediate products can occur when either the cue or the target
is strongly or partially associated with a response category (e.g.,
ODD and 3 with even).

Differences in cue–target congruency are predicted to arise from
the differences among products. For congruent trials (e.g., ODD–
3), the largest product exists for the correct response category
(odd), resulting in a high probability of retrieving that response
category. For incongruent trials (e.g., EVEN–3), the largest product
also exists for the correct response category (odd) because the cue
is partially associated with that response category and the target is
strongly associated with that response category. The probability of
retrieving the correct response category will not be as high as for
congruent trials because of the difference in associative strength
with the cue, but it will be higher relative to the probabilities of

retrieving incorrect response categories. A high probability for
retrieving the correct response category leads to a fast RT and high
accuracy. The differences in retrieval probabilities between con-
gruent and incongruent trials predict a cue–target congruency
effect: Congruent trials will be faster and more accurate than
incongruent trials. Furthermore, our priming account implies a
close relationship between cue–target congruency and priming of
cue encoding because both effects rely on the same strengths of
association between response categories. This relationship allows
us to model these effects using the same parameters, as described
below.

Summary. Our priming account explains differences among
transitions with differential priming of cue encoding and differ-
ences in cue–target congruency with different probabilities of
retrieving the correct response category by compound cue re-
trieval. No executive control process such as task-set reconfigura-
tion has to be invoked to switch tasks. Moreover, there is no need
to invoke different task sets or to switch task sets for task alter-
nations. There is only a single task set that permits flexible
performance of either task because the underlying mechanisms of
encoding and retrieval are identical for both tasks. This task set
involves encoding the cue, encoding the target, and responding
with what is retrieved from memory via compound cue retrieval.

The Priming Model

A criticism of task-set reconfiguration is that it tends to be
underspecified (Logan & Gordon, 2001). How does task-set re-
configuration occur? To avoid a similar criticism of our priming
account, we formalized our mechanisms of cue encoding and
compound cue retrieval, first as a computer simulation and then as
a mathematical model. To avoid redundancy, we describe only the
mathematical model and its fits to experimental data.

Cue encoding. Following Logan and Bundesen (2003, 2004;
also see Arrington & Logan, 2004), we assume that RT on each
trial is the sum of cue encoding and residual processing times.
Response selection time is separate from residual processing time
in the priming model, but to simplify our exposition at this point,
we allow response selection to be subsumed in residual processing.
The contribution of cue encoding time to RT is assumed to vary as
a function of SOA, yielding a time-course function. At SOA � 0,
when the cue has not been encoded prior to target onset,

RT � RTBase � �, (1)

where RTBase is residual processing time (which includes target
encoding and response execution) and � is mean cue encoding
time. At a long SOA, when the cue has been encoded prior to
target onset,

RT � RTBase. (2)

Cue encoding time is assumed to be exponentially distributed.
An advantage of exponential distributions is that they involve a
single parameter representing the rate of processing, making them
mathematically tractable for modeling purposes. For this reason,
exponential distributions are found in many formal models of
cognitive processing (Townsend & Ashby, 1983). We assume that
the probability that a cue has been encoded during a particular
SOA is determined by the cumulative distribution of cue encoding
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times. RT is determined by Equation 1 with a probability of
exp[–SOA/�] and by Equation 2 with a probability of 1 –
exp[–SOA/�]. When these probabilities are combined (see Logan
& Bundesen, 2003),

RT � RTBase � � � exp[�SOA/�]. (3)

Equation 3 allows the priming model to capture the time-course
function observed in explicitly cued performance. As SOA in-
creases, the contribution of cue encoding time to RT decreases,
resulting in a faster RT. We assume that residual processing time
is constant across conditions.

Following Logan and Bundesen (2003, p. 578), mean cue en-
coding time � for each transition is based on a race between two
comparison processes: vSTM, the rate of comparison of the pre-
sented cue to its transient representation in STM, and vLTM, the
rate of comparison of the presented cue to its permanent represen-
tation in long-term memory. We assume that the times required for
the comparisons to short- and long-term memory are both expo-
nentially distributed. Consequently, the distribution of finishing
times for the race between the comparison processes will also be
exponentially distributed with a rate parameter that is equal to the
sum of the rate parameters for the runners in the race (i.e., vSTM �
vLTM). Thus, mean cue encoding time is as follows:

� �
1

�STM � �LTM
. (4)

The presented cue has been encoded when it matches either a
short- or long-term memory representation, with cue encoding
time determined by the comparison process that finishes first. As
the strength of the representation of the presented cue in STM
increases, vSTM increases and � decreases. There are separate
values of � for cue repetitions, task repetitions, and task alterna-
tions due to differences in vSTM that are described below.

The critical factor influencing vSTM is residual activation from
the preceding trial for the presented cue. For presented cue x, vSTM

is calculated as the strength of evidence � for response category i
associated with cue x from the preceding trial multiplied by an
STM decay factor d:

�STM � ��i�x� � d. (5)

Strong residual activation for the presented cue (i.e., a large �
value that has decayed) results in a faster rate of comparison to
STM (Equation 5), leading to faster cue encoding (Equation 4).
The present formulation of the priming model only involves re-
sidual activation from the immediately preceding trial. It could be
extended to deal with residual activation from multiple preceding
trials by including power-function decay of cues across trials; this
extension is considered in the context of long-term priming in the
General Discussion section. STM decay is a constant in Equation
5 because the time between the response on the preceding trial and
the onset of the cue on the present trial is a constant in our
experiments. We assume that decay occurs during the interval
when no cue is available for processing, not during the SOA when
the presented cue is being encoded.

Differences in residual activation arise from differences in the
activation of cues from the preceding trial. Recall that if the
presented cue is ODD, odd and even will be retrieved, and we
assume that EVEN becomes partially activated in STM. For sim-

plicity, we assume that the activation of cues in STM corresponds
to � values reflecting the strengths of associations between cues
and response categories in long-term memory: �P is the evidence
for the response category strongly associated with the presented
cue, �A is the evidence for the response category partially associ-
ated with the presented cue based on associations between re-
sponse categories in long-term memory, and �U is the evidence for
the response category unassociated with the presented cue. Stron-
ger associations imply stronger evidence for a response category
(or activation of a cue); it follows that �P � �A � �U.

Residual activation for the presented cue depends on the � value
from the preceding trial for the presented cue (Equation 5). Dif-
ferences in priming of cue encoding across transitions occur be-
cause of different � values: �P when the cue repeats, �A when the
cue changes and is associated with the preceding cue, or �U when
the cue changes and is unassociated with the preceding cue. It
follows that vSTM will be high for cue repetitions, intermediate for
task repetitions, and low for task alternations, resulting in mean
cue encoding times (Equation 4) that are fast, intermediate, and
slow, respectively. Differences among transitions (repeated cue
encoding benefits and “switch costs”) arise from differential prim-
ing of cue encoding in the priming model.

Differences among transitions decrease with SOA because
priming affects cue encoding and the contribution of cue encoding
to RT decreases with SOA, leading to smaller differences among
transitions at long SOAs. In the priming model, the reduction in
“switch cost” with preparation time is due to a reduction in the
contribution of cue encoding to RT, not an executive control
process such as task-set reconfiguration. At an infinite SOA, the
priming model predicts no differences among transitions (i.e., no
residual switch costs) because cue encoding will no longer con-
tribute to RT; we discuss this aspect of the model in more detail in
the General Discussion section.

Compound cue retrieval. Once a cue and a target have been
encoded, they have to be categorized and a response has to be
selected. We assume that the same � values used in cue encoding
are used in compound cue retrieval. These � values determine the
rates of retrieving different categorizations of cues and targets
from long-term memory; larger � values lead to faster retrieval
rates. The probability P of retrieving response category i, given
cue x and target y, is the ratio of the retrieval rate v for categori-
zations of i to the sum of the retrieval rates for categorizations of
j, where j is any of the response categories in the response set R:

P�i�x, y� �
��i�x, y�

�
j�R

��j�x, y�
. (6)

Equation 6 is the Shepard–Luce choice rule (Luce, 1959, 1963;
Shepard, 1957), which is a core component in many models of
cognition (see Logan, 2004). The rate parameter v is derived from
the product of the evidence � that cue x and target y are associated
with response category i and the bias � toward selecting response
category i:

��i�x, y� � ��i�x, y��i. (7)

The bias � in Equation 7 is a top-down parameter determined by
the subject (Logan & Gordon, 2001). We assume an equal bias for
all response categories and set � to 1.0. Additional top-down
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parameters related to the categorization of stimuli from multiobject
displays (e.g., attention weights and priority parameters, as in
Bundesen, 1990; Logan & Gordon, 2001) have been omitted from
Equation 7 because they are also assumed to be 1.0; there is only
one cue and one target presented on each trial. In this regard, the
priming model differs from other models of task switching in that
there is no differential top-down input on task repetition and task
alternation trials (Gilbert & Shallice, 2002; Yeung & Monsell,
2003). Consequently, � can be substituted directly for v in Equa-
tion 6, such that the probability of retrieving a response category
is based solely on bottom-up input:

P�i�x, y� �
��i�x, y�

�
j�R

��j�x, y�
. (8)

The � value for each response category in Equation 8 is deter-
mined jointly by the cue and the target. This joint evidence is the
product of the evidence � for response category i given cue x and
the sum of the evidence � for response category i given target y,
where y belongs to the target stimulus set S associated with
response category i:

��i�x, y� � ��i�x� � �
y�Si

��i�y�. (9)

Equation 9 represents compound cue retrieval: Evidence from
the cue and the target combine multiplicatively to retrieve response
categories from long-term memory (Ratcliff & McKoon, 1988).
Multiplicative combination of evidence from multiple sources is a
central component of many models of memory retrieval (e.g.,
Gillund & Shiffrin, 1984; Hintzman, 1986; Raaijmakers & Shif-
frin, 1981), but we note that the multiplicative combination in the
priming model does not reflect a gestalt or configural representa-
tion of the cue and the target. Instead, the cue and the target are
considered to be separate inputs that converge on a common
response category; evidence for that response category is only
available if both inputs are present simultaneously. In the context
of Equation 9, if the target has yet to be encoded, the evidence
from that input is zero, which makes the combined evidence for the
response category equal to zero. Summation of evidence for all
targets associated with a response category is not essential for our
present model fits, but it provides a framework for the priming
model to interface with models of categorization that deal with
similarity among targets (e.g., Nosofsky, 1986; Nosofsky & Palm-
eri, 1997). For example, if the target set consisted of items that
differed in similarity, then a target could provide some evidence
for multiple, similar targets. Summation of evidence for all targets
would allow the similarity within the target set to influence com-
pound cue retrieval.

For the experiments reported below, two response categories
were mapped onto each response key. The probability of selecting
response key An (where n � {1, 2} for the two response keys) is
the sum of the retrieval probabilities (from Equation 8) of the
response categories i that are assigned to that response key:

P�An�x, y� � �
i�An

P�i�x, y�. (10)

Note that Equation 10 involves experimentally defined associa-
tions between unassociated response categories at a conceptual

level. We assume that subjects have to maintain spatial mappings
between selected responses and physical response keys to execute
their responses.

The preceding equations describe how response categories are
retrieved but not how responses are selected. We assume that
evidence (Equation 9) and probabilities (Equations 8 and 10)
associated with response categories are used to select responses
based on Nosofsky and Palmeri’s (1997) exemplar-based random
walk model. Other authors have also suggested or used random
walks for compound cue retrieval (Dosher & Rosedale, 1989;
Ratcliff & McKoon, 1988).

In random walk models, response categories are retrieved from
long-term memory and accumulate over time in separate response
counters until a criterion is reached (for an overview, see Ratcliff,
2001). Response counters are incremented at discrete time inter-
vals or steps of the random walk (cf. continuous accumulation as
in diffusion models; Ratcliff, 1978) until the difference between
the counters meets a response criterion K, at which point the
response associated with the higher counter is selected. The value
of K is determined by the subject, not by the stimuli (Logan &
Gordon, 2001). We assume a fixed value of K, making it a constant
in all equations.

The drift rate of the random walk—the rate of evidence accu-
mulation for a specific response category—is the ratio of the
amount of evidence for that response category to the summed
evidence for all response categories (Equation 8, although our
implementation of a two-choice random walk involves Equation
10). A high probability of retrieving a response category produces
a fast drift rate, whereas a low probability produces a slow drift
rate.

Different response categorizations race against one another and
each step of the random walk is determined by whichever catego-
rization has the fastest finishing time. This process continues until
the random walk meets the response criterion. We assume each
response categorization has an exponentially distributed finishing
time and that the finishing times for the race are exponentially
distributed with a rate equal to the sum of the retrieval rates for
each response categorization. Consequently, the time per step of
the random walk, RTStep, is the reciprocal of the sum of the
retrieval rates for all response categories j, given cue x and target
y (Nosofsky & Palmeri, 1997; also see Logan, 2002; Logan &
Gordon, 2001). This value is equivalent to the denominator of
Equation 8:

RTStep�x, y� �
1

�
j�R

��j�x, y�
. (11)

The number of steps for the random walk to terminate, NStep,
given cue x and target y, is calculated from the probabilities from
Equation 10 (which correspond to drift rates) and the response
criterion K, where we assume that K does not differ among
responses. Consequently, the number of steps is determined by the
following set of equations derived by Busemeyer (1982) and
adapted from Nosofsky and Palmeri (1997):

NStep�x, y� �
1

P�A1�x, y� � P�A2�x, y�
��1�2K� � �2�K��,

if P�A1�x, y� 	 P�A2�x, y�, (12)
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where

�1 �
�P�A1�x, y�/P�A2�x, y��2K � 1

�P�A1�x, y�/P�A2�x, y��2K � 1
and

�2 �
�P�A1�x, y�/P�A2�x, y��K � 1

�P�A1�x, y�/P�A2�x, y��K � 1
.

Mean compound cue retrieval time (i.e., response selection time),
RTCCR, is equal to the mean time for the random walk to finish
with cue x and target y, which is the product of the time per step
(Equation 11) and the number of steps (Equation 12):

RTCCR�x, y� � RTStep�x, y� � NStep�x, y�. (13)

The probability that the random walk selected the correct response
key Ac (if response key A1 is associated with the correct response
category) is given by the equation (Nosofsky & Palmeri, 1997)

P�Ac�x,y� �
1 � �P�A2�x, y�/P�A1�x, y��K

1 � �P�A2�x, y�/P�A1�x, y��2K ,

if P�A1�x, y� 	 P�A2�x, y�. (14)

Compound cue retrieval time is separate from residual processing
time, so Equation 3 can be amended to calculate RT:

RT � RTBase � RTCCR � � � exp��SOA/��. (15)

Differences in cue–target congruency occur because of different
� values across response categories in compound cue retrieval. On
congruent trials (e.g., ODD–3, where the correct response is odd),
�(odd � ODD, 3) will be high because both �(odd � ODD) and
�(odd � 3) will be equal to �P (see Equation 9). The probability of
correctly selecting odd as a response will be high, resulting in high
accuracy, and the drift rate of the random walk will be fast,
resulting in a fast compound cue retrieval time. On incongruent
trials (e.g., EVEN–3, where the correct response is odd), �(odd �
EVEN, 3) will be relatively high (but not as high as on congruent
trials) because �(odd � EVEN) will be equal to �A and �(odd � 3)
will be equal to �P. Evidence for the corresponding response
category, �(even � EVEN, 3), will be lower, however, because
�(even � EVEN) will be equal to �P but �(even � 3) will be equal
to �U. When evidence from the cue and the target is combined
multiplicatively in Equation 9, there will be greater evidence for
odd than even, but compared with congruent trials, the probability
of correctly selecting odd as a response will be slightly lower,
resulting in lower accuracy, and the drift rate of the random walk
will be slower, resulting in a slower compound cue retrieval time.
The differences in RT and accuracy between incongruent and
congruent trials represent the cue–target congruency effect. Sam-
ple calculations for producing the cue–target congruency effect are
available as an online supplement (http://dx.doi.org/10.1037/
0096-3445.134.3.343.supp).

Summary. The priming model instantiates the assumptions
and mechanisms in our priming account to explain differences
among transitions and cue–target congruency. As noted earlier, the
same evidence parameters (� values) are used to capture differ-
ences in priming of cue encoding and select responses via com-
pound cue retrieval. The ability of the priming model to fit tran-
sition data is constrained by its ability to fit cue–target congruency
data, and vice versa. Evidence parameters cannot be changed

arbitrarily to fit differences among transitions without affecting the
fit to differences in cue–target congruency. This constraint is
important because it links priming of cue encoding and compound
cue retrieval to the same representations of bottom-up input within
a common framework.

The equations and assumptions in the preceding sections form
the basis of the priming model. One modification is made below to
account for an interaction between transition and cue–target con-
gruency observed in our experiments. None of the equations,
assumptions, subsequent modifications, or proposed extensions to
the priming model include executive control processes such as
task-set reconfiguration. If the priming model can account for our
experimental data, then the idea that task sets have to be recon-
figured when task switching occurs is questionable.

General Method

All experiments were based on the method described below. Modifica-
tions of the method for Experiments 2 and 3 are noted in subsequent
sections.

Subjects

A total of 84 undergraduate psychology students from Vanderbilt Uni-
versity participated in exchange for partial course credit. Each experiment
involved a different group of 28 subjects.

Apparatus and Stimuli

The experiments were conducted using E-Prime software (Version 1.1;
Psychology Software Tools, 2002) operating on Dell Dimension comput-
ers. Stimuli were displayed on Sony Trinitron monitors, and responses
were recorded from standard QWERTY keyboards. All experiments in-
cluded the cue words ODD, EVEN, HIGH, and LOW. Experiments 2 and
3 also included dual cues, which were unions of the single-word task-
specific cues (e.g., ODD–EVEN and HIGH–LOW). The targets were the
digits 1, 2, 3, 4, 6, 7, 8, and 9. Cues and targets were presented in a white,
18-point Verdana font on a black background and were 1-cm tall. Stimulus
widths were 3.3 cm (ODD and LOW cues), 3.8 cm (EVEN and HIGH cues),
and 0.7 cm (targets). Viewing distance was approximately 60 cm, a
distance at which 1 cm of the display subtended about 1° of visual angle.
The same set of SOAs (0, 100, 200, 400, and 800 ms) was used in each
experiment.

Procedure

Subjects were seated individually in private testing rooms after provid-
ing informed consent. Instructions were presented on screen and read by
subjects at their own pace. The instructions described the format of each
trial, the nature of the tasks, and the response-key mappings. Subjects were
instructed to make their responses as quickly and accurately as possible,
basing their responses on the target in the context of the cued task. Subjects
were not instructed to treat the cue and the target as a compound cue. To
clarify the relationship between the cues and the targets, the instructions
included the following sentence: “Please note that the cue word only
indicates the task to be performed and will not necessarily match the
correct response.” This sentence was included to dissuade subjects from
responding solely to the cue and ignoring the target, particularly on
incongruent trials. To emphasize this point, the experimenter gave instruc-
tions for how to respond to the incongruent cue–target combinations
ODD–4 and HIGH–2. Following the instructions, subjects had the oppor-
tunity to ask the experimenter any questions about the procedure.
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Each experiment was divided into blocks of 160 trials (Experiment 1) or
120 trials (Experiments 2 and 3). There were 960 trials in total in each
experiment. A full replication of all combinations of cues, targets, and
SOAs occurred every block, two blocks, or four blocks for Experiments 1,
2, and 3, respectively. Blocks were separated by self-paced rest periods.
Cues, targets, and SOAs appeared in a random order within each block for
each individual subject.

Each trial began with a fixation display consisting of a plus sign in the
center of the screen for 1,000 ms. The screen was then cleared, and a cue
was displayed, centered one line above the position previously occupied by
the plus sign. After a variable SOA, a target was displayed, centered two
lines below the cue. The cue and the target remained on screen until the
subject made a response, then the next trial commenced immediately.
Responses were assigned to the C and M keys for each task, and all
possible response-key mappings were counterbalanced across subjects
within each experiment.

Data Trimming and Classification

A few subjects in each experiment with mean accuracy below 90% or
mean RT exceeding 2.5 standard deviations of the group mean were
replaced. An accuracy criterion was implemented to ensure a high level of
performance and that a sufficient number of trials would contribute to each
subject’s mean RTs, especially in Experiment 3.

The first trial of each block and trials with RT exceeding 3,000 ms (M �
4.3% of all trials across experiments) were excluded from the analyses.
Trials with incorrect responses were excluded from all RT analyses. The
transition for each trial was classified post hoc based on its relationship to
the preceding trial as a cue repetition, task repetition, or task alternation.
Cue–target congruency was classified post hoc based on whether the cue
and target for each trial were directly associated with the same response
category (congruent) or different response categories (incongruent).

Data Analysis

The RT and accuracy data for each experiment were submitted to
separate repeated-measures analyses of variance (ANOVAs), with the
results summarized in tables. Planned comparisons were conducted using
relevant error terms from the omnibus ANOVAs and are reported in the
text. For all statistical analyses, the reported �2 represents the partial �2

effect size statistic and is unrelated to � in the priming model.

Experiment 1

The goal of the first experiment was to evaluate the sufficiency
of our priming account. We expected a difference between cue
repetitions and task repetitions, reflecting faster cue encoding for
cue repetitions (i.e., greater repetition priming than associative
priming). We expected a difference between task repetitions and
task alternations, reflecting faster cue encoding for task repetitions
(i.e., greater associative priming than no priming). The contribu-
tion of these differences in cue encoding to RT were predicted to
decrease with SOA, leading to a reduction in the differences
among transitions with increased preparation time (characterized
by a Transition 	 SOA interaction). We also expected a cue–target
congruency effect, whereby incongruent trials would be slower
and less accurate than congruent trials.

Method

Experiment 1 was conducted according to the description given in the
General Method section, with the words ODD and EVEN cuing odd–even

judgments and the words HIGH and LOW cuing high–low judgments of
single-digit targets, with five SOAs.

Results and Discussion

Mean RT and accuracy (as percentage of correct responses)
were calculated for each subject for each combination of transition,
cue–target congruency, and SOA; these data are presented in
Appendix A. Accuracy was high and within-subject correlations
between RT and accuracy did not indicate any speed–accuracy
trade-offs; therefore, the analyses focused on RT.

RT analysis. Mean RTs across subjects for each transition as a
function of SOA are presented in the top panel of Figure 1. Mean
RT for cue repetitions (914 ms) was faster than task repetitions
(1,036 ms), which in turn was faster than task alternations (1,104
ms). The large repeated cue encoding benefit replicates previous
research using multiple cues per task (Arrington & Logan, 2004;
Brass & von Cramon, 2004; Logan & Bundesen, 2003, 2004; Mayr
& Kliegl, 2003). The sizable switch cost is consistent with some
results (e.g., Mayr & Kliegl, 2003) but not others (e.g., Logan &
Bundesen, 2003), although we demonstrate in a later section that
the magnitude of the “switch cost” depends on the amount of
priming of cue encoding. Mean RT and the differences among
transitions decreased as SOA increased (see Figure 1), replicating
the reduction in switch cost with preparation time (e.g., Meiran,
1996).

Mean RTs partitioned by transition and cue–target congruency
are presented in the top row of Figure 2. There was the predicted
cue–target congruency effect—mean RT for incongruent trials
(1,074 ms) was slower than for congruent trials (962 ms)—but
cue–target congruency interacted with transition (see Figure 2):
The cue–target congruency effect was smaller for cue repetitions
(53 ms) than task repetitions (147 ms) and task alternations (136
ms), which did not differ.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 2 (cue–target con-
gruency: congruent or incongruent) 	 5 (SOA: 0, 100, 200, 400,
or 800 ms) repeated-measures ANOVA, with the results summa-
rized in Table 1. Nonorthogonal comparisons indicated that mean
RT for cue repetitions was faster than for task repetitions, F(1,
54) � 77.59, p 
 .01, which in turn was faster than for task
alternations, F(1, 54) � 23.42, p 
 .01. Orthogonal comparisons
revealed that the cue–target congruency effect was smaller for cue
repetitions than for the mean of task repetitions and task alterna-
tions, F(1, 54) � 38.98, p 
 .01, which did not differ, F(1, 54) 
 1.

Further analysis of the RT data suggested that the interaction
between transition and cue–target congruency was related to the
cue–target congruency from the preceding trial. Mean RTs were
calculated for each subject based on the transition and cue–target
congruency on trial n with respect to the cue–target congruency on
trial n – 1; these data are depicted as cue–target congruency effects
for trial n in the top panel of Figure 3. The critical effect in these
data was a three-way interaction: The cue–target congruency effect
on trial n differed for cue repetitions (compared with task repeti-
tions and task alternations) based on the cue–target congruency of
trial n – 1. As is evident in Figure 3, the cue–target congruency
effect was essentially eliminated when the preceding trial was
incongruent for cue repetitions.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 2 (cue–target con-
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gruency on trial n: incongruent or congruent) 	 2 (cue–target
congruency on trial n – 1: incongruent or congruent) repeated-
measures ANOVA, collapsing across SOA and excluding the first
two trials of each block. To avoid redundancy, we report only
statistics associated with cue–target congruency on trial n – 1.
There was a main effect of cue–target congruency on trial n – 1,
F(1, 27) � 18.59, MSE � 3,714.03, p 
 .01, �2 � .41, and it

interacted with transition, F(2, 54) � 12.74, MSE � 4,273.13, p 

.01, �2 � .32, and cue–target congruency on trial n, F(1, 27) �
5.42, MSE � 6,028.01, p 
 .05, �2 � .17. The three-way inter-
action was also significant, F(2, 54) � 7.83, MSE � 3,689.82, p 

.01, �2 � .23. A three-way interaction contrast comparing the
differences in cue–target congruency on trial n by the cue–target
congruency on trial n – 1 for cue repetitions to the mean of those
differences for task repetitions and task alternations was signifi-
cant, F(1, 54) � 13.15, p 
 .01.

To understand the interaction between transition and cue–target
congruency, we considered how cues might retrieve response
categories not only from long-term memory but also from STM.
After response selection, a temporary association between the cue
and the selected response category might be stored in STM. These
cue–response associations could be viewed as instances (Logan,
1988) that are available for only a limited time in STM because of
the dynamic relationship between cues and responses based on
cue–target congruency. The transient nature of these cue–response
associations differentiates them from the long-term stimulus–
response associations in task-set priming accounts, although we
believe both types of associations could coexist as discussed later.
For simplicity, we assume these cue–response associations hold
only from one trial to the next before they rapidly decay, unless the
cue involved in the association reappears to maintain the tempo-
rary association. If the association is maintained, then there would
be strong residual evidence for that response category and re-
sponse selection would be affected. The situation in which these
temporary associations could affect performance is on cue repeti-
tion trials, where the cue can retrieve the response category it
helped select on the preceding trial.

The interaction between transition and cue–target congruency
would occur as follows: If trial n is a cue repetition, strong
evidence for the response category selected on trial n – 1 would be
used to select a response based on the temporary cue–response
association. If trials n – 1 and n were both congruent (e.g., ODD–3
and ODD–7), there would be strong evidence for only the correct
response category (odd). If trial n – 1 was congruent (ODD–3) and
trial n was incongruent (ODD–4), there would be strong evidence
from the cue for only the incorrect response category (odd, because
trial n requires an even response). Consequently, if trial n – 1 was
congruent, a cue–target congruency effect would be expected on
trial n because of the discrepancy in evidence for the correct
response category (i.e., strong evidence for the correct response
category when trials n – 1 and n are both congruent; strong
evidence for the incorrect response category when trial n – 1 is
congruent and trial n is incongruent). If trials n – 1 and n were both
incongruent (ODD–4 and ODD–6), there would be strong evi-
dence for the correct and incorrect response categories; the correct
response category (even) would have strong evidence from the
temporary cue–response association, whereas the incorrect re-
sponse category (odd) would have strong evidence from the pre-
sented cue accessing long-term memory. If trial n – 1 was incon-
gruent (ODD–4) and trial n was congruent (ODD–3), there would
also be strong evidence for the correct and incorrect response
categories; the incorrect response category (even) would have
strong evidence from the temporary cue–response association,
whereas the correct response category (odd) would have strong
evidence from the presented cue. Consequently, if trial n – 1 was
incongruent, a cue–target congruency effect would not be expected

Figure 1. Mean response times for task alternations, task repetitions, and
cue repetitions as a function of stimulus onset asynchrony for Experiments
1, 2, and 3. Points represent observed data, and lines represent model
predictions.
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because there is equal evidence for the correct and incorrect
response categories, regardless of the cue–target congruency of
trial n. This hypothesis about the interaction is simple in principle
and accounts qualitatively for the interaction in Figure 3.

Accuracy analysis. Overall accuracy across subjects was high
(M � 96.4%; see Appendix A). Mean accuracy decreased from
cue repetitions (97.3%) to task repetitions (96.7%) to task alter-
nations (95.9%). Mean accuracy was lower for incongruent trials
(95.5%) than congruent trials (97.8%) as predicted by our priming
account. Cue–target congruency and transition interacted such that

the decrement in mean accuracy due to cue–target congruency was
larger for task repetitions (3.9%) than for task alternations (2.1%)
and cue repetitions (0.9%).

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 2 (cue–target con-
gruency: congruent or incongruent) 	 5 (SOA: 0, 100, 200, 400,
or 800 ms) repeated-measures ANOVA, with the results summa-
rized in Table 1. Nonorthogonal comparisons indicated that mean
accuracy decreased from cue repetitions to task repetitions, F(1,
54) � 4.07, p 
 .05, to task alternations, F(1, 54) � 5.59, p 
 .05.

Figure 2. Mean response times for incongruent, dual, and congruent trials for cue repetitions (CR), task
repetitions (TR), and task alternations (TA) as a function of stimulus onset asynchrony for Experiments 1, 2, and
3. Points represent observed data, and lines represent model predictions. The ordinal pattern of model predictions
corresponds to the observed data for all conditions, except for a reversal of incongruent and dual trials for CRs
in Experiments 2 and 3.
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Nonorthogonal comparisons indicated that the decrement in mean
accuracy due to cue–target congruency was larger for task repeti-
tions than for task alternations, F(1, 54) � 7.03, p 
 .05, which in
turn was marginally larger than for cue repetitions, F(1, 54) �
3.35, p � .07.

Priming model fit. We fit the priming model to the data from
Experiment 1 based on the assumptions and equations presented
earlier. To produce the transition by cue–target congruency inter-
action, cue repetitions had separate random walks from task rep-
etitions and task alternations. The random walks for cue repetitions
involved setting the evidence for the response category selected on
trial n – 1 for cue x to �P, reflecting the temporary cue–response
association.

The model fit involved six free parameters: �U, �A, �P, d, vLTM,
and RTBase. The values of the parameters were subject to the
following constraints: �U 
 �A 
 �P and 0 
 d 
 1. No
parameter was allowed to be negative. The response criterion K for
compound cue retrieval was fixed at 4.00 based on computer
simulations indicating that this value of K resulted in an acceptable
level of accuracy. Mean compound cue retrieval time for each type
of cue–target congruency was calculated from a set of random
walks that represented all possible mappings of response catego-
ries onto response keys. Averaging over a set of random walks
circumvents the differential bias from targets associated with re-
sponse categories assigned to the same response key or different
response keys.

The priming model was fit to all RT and accuracy data points
simultaneously, using the Solver routine in Microsoft Excel to
minimize the root-mean-square deviation (RMSD) between the
model predictions and the observed data. We report three measures
of goodness of fit: RMSD (RT and accuracy), RMSD (RT), and
the Pearson product–moment correlation, r (RT). To fit the prim-
ing model to RT and accuracy data simultaneously, we multiplied
percentage accuracy by 10 to place it on a similar scale to RT (e.g.,
98.1% became 981).2 The value of RMSD (RT and accuracy) is in
milliseconds for RT and in percentages multiplied by 10 for
accuracy. For example, RMSD � 20 would correspond to 20 ms
for RT and 2.0% for accuracy, although RMSD should be inter-
preted as a composite measure.

The priming model was fit to the 60 data points (30 for RT and
30 for accuracy) given in Appendix A. The values of the best

fitting parameters and the RT components from Equation 15 are
presented in Table 2. The six-parameter priming model fit the data
very well (see Table 2), with RMSD (RT and accuracy) � 20,
RMSD (RT) � 22 ms, and r (RT) � .989. The priming model
predictions are plotted as lines in the top panel of Figure 1 for the
transition data and the top row of Figure 2 for the cue–target
congruency data separated by transition.

Consistent with the observed data, the priming model produced
differences among transitions based on differential priming of cue
encoding. Repetition priming resulted in faster cue encoding for
cue repetitions (256 ms) than task repetitions (372 ms), whereas
associative priming resulted in faster cue encoding for task repe-
titions (372 ms) than task alternations (453 ms). The differences
among transitions decreased with SOA, reflecting the reduction in
the contribution of cue encoding to RT. The priming model pro-
duced the cue–target congruency effect in both RT and accuracy
based on different probabilities of selecting the correct response
category from compound cue retrieval (see the sample calculations
available in the online supplement at http://dx.doi.org/10.1037/
0096-3445.134.3.343.supp). The interaction between transition
and cue–target congruency was produced from the temporary
cue–response associations, with no cue–target congruency effect
for cue repetitions preceded by incongruent trials. Note that the
same evidence parameters (� values) were capable of modeling the
differences in priming of cue encoding and the differences in
cue–target congruency. The only noticeable discrepancy was that
the priming model predicted the same accuracy for task alterna-
tions and task repetitions, but it did predict higher accuracy for cue
repetitions. Similar fits to accuracy were obtained in the remaining
experiments. The priming model captured all of the critical RT

2 Scaling accuracy by a greater value (e.g., 100) increases RMSD and
obscures the fit to RT by exaggerating small differences in accuracy.
Scaling accuracy by a lesser value (e.g., 0.1) decreases RMSD and is
almost equivalent to not fitting accuracy at all. There is no universally
accepted method of scaling accuracy for a model fit to RT and accuracy,
but our method has precedent in the literature (e.g., Nosofsky & Palmeri,
1997). The small range in accuracy across conditions imposes only a weak
constraint on the quality of the model fit regardless of the scaling method
(which is why we focus on the model fit to the RT data), but it does
constrain some of the parameter values in the priming model.

Table 1
Summary of Analyses of Variance Conducted on Mean Response Time and Accuracy (as
Percentage of Correct Responses) in Experiment 1

Effect df

Response time Accuracy

F MSE �2 F MSE �2

Transition (T) 2, 54 95.76** 26,943.08 .78 9.62** 15.74 .26
Cue–target congruency (C) 1, 27 102.43** 25,617.98 .79 18.83** 59.19 .41
Stimulus onset asynchrony (S) 4, 108 293.74** 9,315.31 .92 1.09 14.56 .04
T 	 C 2, 54 19.69** 9,233.98 .42 10.15** 14.77 .27
T 	 S 8, 216 3.06** 8,868.50 .10 1.39 12.43 .05
C 	 S 4, 108 1.96 8,700.71 .07 2.24 12.35 .08
T 	 C 	 S 8, 216 1.35 10,064.94 .05 1.86 14.61 .06

Note. �2 represents the partial �2 effect size statistic and is unrelated to � in the priming model.
** p 
 .01.
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effects and had a good quantitative fit to the data, suggesting that
the assumptions and mechanisms composing our priming account
are sufficient to explain task-switching performance in the explicit
task-cuing procedure.

Experiment 2

Experiment 1 demonstrated the sufficiency of the priming
model. Experiments 2 and 3 replicated and extended the results of

Experiment 1 by contrasting our priming account with the idea that
part of task-set reconfiguration involves retrieving task-specific
mapping rules (Mayr & Kliegl, 2000, 2003; also see Rubinstein et
al., 2001).

The cues from Experiment 1 are associated with response
categories but do not specify the mapping of response catego-
ries onto physical response keys. For example, ODD does not

Table 2
Best Fitting Parameter Values (RTBase and RTSpatial in
Milliseconds), Calculated Response Time (RT) Components (in
Milliseconds), and Measures of the Goodness of Fit of the
Priming Model to the RT and Accuracy Data From Experiments
1, 2, and 3

Variable

Experiment

1 2 3

Free parameters
�U (evidence for response categories

unassociated with the presented
cue and target)

.0123 .0172 .0179

�A (evidence for response categories
partially associated with the
presented cue)

.1021 .1185 .1222

�P (evidence for response categories
strongly associated with the
presented cue and target)

.3282 .2209 .2294

d (short-term memory decay) .0054 .0072 .0050
�LTM (rate of comparison of the

presented cue to its representation
in long-term memory)

.0021 .0020 .0019

RTBase (residual processing time) 723 590 516
RTSpatial

a (time needed to overcome
priming from spatially
incompatible cues)

— — 24

Fixed parameter
K (response criterion for the random

walk)
4.00 4.00 4.00

Mean cue encoding times
� (for cue repetitions) 256 283 332
� (for task repetitions) 372 357 404
� (for task alternations) 453 481 513

Mean compound cue retrieval (random
walk) times

RTCCR (for congruent cue
repetitions)

37 83 76

RTCCR (for congruent task
repetitions and task alternations)

35 77 71

RTCCR (for incongruent cue
repetitions)

106 146 137

RTCCR (for incongruent task
repetitions and task alternations)

173 205 191

RTCCR (for dual trials)b — 165 154
Measures of goodness of fit

RMSD (RT and accuracy) 20 28 30
RMSD (RT)c 22 30 38
r (RT)c .989 .978 .969

Note. CCR � compound cue retrieval; RMSD � root-mean-square de-
viation between observed data and model predictions; r � product–
moment correlation between observed data and model predictions.
a This parameter is relevant only for modeling Experiment 3. b This
parameter is relevant only for modeling Experiments 2 and 3. c These
measures are for RT only but come from the model fit to both RT and
accuracy.

Figure 3. Magnitude of the cue–target congruency effect (the difference
in mean response time between incongruent and congruent trials) on trial
n as a function of cue–target congruency on trial n – 1 and transition for
Experiments 1, 2, and 3. CR � cue repetition; TR � task repetition; TA �
task alternation.
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indicate whether the left or right response key should be pressed
if the correct response category is odd. Mayr and Kliegl (2003)
argued that task switching involves retrieving task rules from
long-term memory and applying them to the target. Rubinstein
et al. (2001) argued that a critical component of task switching
involves an executive control process of disabling irrelevant
task rules and enabling relevant task rules. Our priming account
does not rely on retrieving or enabling task rules to produce
switch costs. We acknowledge that the selected response cate-
gory has to be mapped onto a physical response key, but this
process affects the response execution component of RTBase,
which is constant across transitions.

If the retrieval of mapping rules is an integral part of switch
cost, then embedding the mapping rules within the cue should
dramatically alter performance. In Experiment 2, we retained
the cues from Experiment 1 (ODD, EVEN, HIGH, and LOW),
but added a new type of cue: the union of the two single-word
cues for each task (i.e., ODD–EVEN and HIGH–LOW; see
Logan & Bundesen, 2003, 2004). These dual cues were always
spatially compatible with the assigned response-key mappings
(i.e., a subject with ODD–EVEN and HIGH–LOW as dual cues
would press the left key for odd and high and the right key for
even and low). Dual cues represent both of the relevant response
categories on each trial, so they are both congruent and incon-
gruent with the target, resulting in dual cue–target congruency.
The single-word cues are strongly associated with only one of
the response categories, making them congruent or incongruent
with the target.

If task-switching performance is linked to the retrieval of
mapping rules, then RT should be much faster for dual cues
than congruent or incongruent single-word cues because the
mapping rules are explicitly indicated. If switch costs are as-
sociated with the retrieval of mapping rules, then one would
also expect switch costs to be smaller with dual cues. In
contrast, our priming account predicts an intermediate RT for
dual cues with respect to congruent and incongruent single-
word cues because they would provide equal evidence for each
response category in compound cue retrieval. Switch costs for
dual cues should be similar to those for single-word cues
because cue encoding does not involve the retrieval of mapping
rules. The only change that might be expected in the priming
model fit is a smaller RTBase, reflecting facilitation on some
trials in mapping the selected response category onto a physical
response key.

Method

Experiment 2 was conducted according to the procedure described in
the General Method section, but with the following modifications. Two
dual cues representing unions of the single-word task-specific cues
were added, with the restriction that the order of the constituent words
be spatially compatible with the subject’s response-key mappings. For
example, the dual cues for a subject with the responses odd and
high mapped onto the C key and the responses even and low
mapped onto the M key would be ODD–EVEN and HIGH–LOW.
A subject with the reversed response-key mappings for both tasks
would have EVEN–ODD and LOW–HIGH as dual cues. Two minor
changes were made to the procedure: The examples of incongruent
cue–target combinations were included in the on screen instructions,

and subjects were reminded of the response-key mappings during the
rest periods.

Results and Discussion

The data were classified according to the procedure described
in the General Method section, with dual cues classified as
having dual cue–target congruency. Mean RT and accuracy (as
percentage of correct responses) were calculated for each sub-
ject for all combinations of transition, cue–target congruency,
and SOA; these data are presented in Appendix B. Accuracy
was high and within-subject correlations between RT and ac-
curacy did not indicate any speed–accuracy trade-offs; there-
fore, the analyses focused on RT.

RT analysis. Mean RTs across subjects for each transition as
a function of SOA are presented in the middle panel of Figure 1,
and the partitioning of this data by cue–target congruency is
presented in the middle row of Figure 2. The pattern of results
replicates Experiment 1: Mean RT for cue repetitions (853 ms)
was faster than for task repetitions (943 ms), which in turn was
faster than for task alternations (1,037 ms). The difference
between task alternations and task repetitions did not differ
among incongruent, congruent, and dual trials (95, 102, and 87
ms, respectively), consistent with our priming account but
inconsistent with mapping rule retrieval accounts (e.g., Mayr &
Kliegl, 2003; Rubinstein et al., 2001). Mean RT and the differ-
ences among transitions generally decreased as SOA increased,
although there was some instability in the time-course functions
(see Figure 1). There was a cue–target congruency effect—
mean RT for incongruent trials (996 ms) was slower than for
congruent trials (882 ms)— but cue–target congruency inter-
acted with transition (see Figure 2): The cue–target congruency
effect was smaller for cue repetitions (73 ms) than task repeti-
tions (139 ms) and task alternations (132 ms), which did not
differ. Dual trials had an intermediate mean RT (955 ms) as
predicted by our priming account.

These observations were supported by a 3 (transition: cue
repetition, task repetition, or task alternation) 	 3 (cue–target
congruency: congruent, incongruent, or dual) 	 5 (SOA: 0,
100, 200, 400, or 800 ms) repeated-measures ANOVA, with the
results summarized in Table 3. Nonorthogonal comparisons
indicated that mean RT for cue repetitions was faster than for
task repetitions, F(1, 54) � 74.32, p 
 .01, which in turn was
faster than for task alternations, F(1, 54) � 83.45, p 
 .01.
Nonorthogonal comparisons indicated that mean RT for incon-
gruent trials was slower than for dual trials, F(1, 54) � 12.01,
p 
 .01, which in turn was slower than for congruent trials, F(1,
54) � 37.20, p 
 .01. Orthogonal comparisons revealed that the
cue–target congruency effect was smaller for cue repetitions
than for the mean of task repetitions and task alternations, F(1,
108) � 16.15, p 
 .01, which did not differ, F(1, 108) 
 1.
Additional comparisons indicated that the difference between
task alternations and task repetitions did not differ by cue–
target congruency, Fs(1, 108) 
 1.

As in Experiment 1, mean RTs were calculated for each subject
based on the transition and cue–target congruency on trial n with
respect to the cue–target congruency on trial n – 1; these data are
depicted as cue–target congruency effects for trial n in the middle
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panel of Figure 3.3 There was a three-way interaction by which the
cue–target congruency effect was eliminated (if not slightly re-
versed) when the preceding trial was incongruent for cue
repetitions.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 2 (cue–target con-
gruency on trial n: incongruent or congruent) 	 2 (cue–target
congruency on trial n – 1: incongruent or congruent) repeated-
measures ANOVA, collapsing across SOA and excluding the first
two trials of each block. To avoid redundancy, we report only
statistics associated with cue–target congruency on trial n – 1.
There was a main effect of cue–target congruency on trial n – 1,
F(1, 27) � 24.39, MSE � 4,539.81, p 
 .01, �2 � .48, and it
interacted with transition, F(2, 54) � 7.54, MSE � 6,556.95, p 

.01, �2 � .22, and cue–target congruency on trial n, F(1, 27) �
19.77, MSE � 5,556.71, p 
 .01, �2 � .42. The three-way
interaction was almost significant, F(2, 54) � 3.12, MSE �
9,163.75, p � .052, �2 � .10. A three-way interaction contrast
comparing the differences in cue–target congruency on trial n by
the cue–target congruency on trial n – 1 for cue repetitions to the
mean of those differences for task repetitions and task alternations
was significant, F(1, 54) � 15.25, p 
 .01.

Accuracy analysis. Overall accuracy across subjects was high
(M � 95.5%; see Appendix B). Mean accuracy decreased from cue
repetitions (97.5%) to task repetitions (96.7%) to task alternations
(94.0%). Mean accuracy was lower for incongruent trials (94.3%)
than congruent and dual trials (both 97.0%). Cue–target congru-
ency and transition interacted such that the decrement in mean
accuracy due to cue–target congruency was smaller for cue repe-
titions (1.1%) than task repetitions (3.3%) and task alternations
(3.6%), which did not differ.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 3 (cue–target con-
gruency: congruent, incongruent, or dual) 	 5 (SOA: 0, 100, 200,
400, or 800 ms) repeated-measures ANOVA, with the results
summarized in Table 3. Nonorthogonal comparisons indicated that
mean accuracy decreased from cue repetitions to task repetitions,
F(1, 54) � 5.57, p 
 .05, to task alternations, F(1, 54) � 56.67,
p 
 .01. Orthogonal comparisons indicated lower mean accuracy
for incongruent trials compared with the mean of congruent and
dual trials, F(1, 54) � 41.59, p 
 .01, which did not differ, F(1,
54) 
 1. Orthogonal comparisons indicated that the decrement in

mean accuracy due to cue–target congruency was smaller for cue
repetitions than for the mean of task repetitions and task alterna-
tions, F(1, 108) � 13.68, p 
 .01, which did not differ, F(1,
108) 
 1.

Priming model fit. We fit the priming model to the data from
Experiment 2 using the same method as in Experiment 1. To
calculate the time of the random walk for dual cues, we assumed
that dual cues do not provide the strongest evidence (�P) to each
response category linked to their constituent cues but function as
cues that are associated with their constituent cues, such that an
intermediate amount of evidence (�A) is given to each associated
response category. The rationale for this implementation was that
a dual cue (assumed to be a unitary percept) represents only a
partial perceptual match to its constituent cues but is associated
conceptually with both of the relevant response categories. Con-
sequently, both response categories associated with a dual cue
were given evidence of equal strength in the random walk. Dual
cues were also assumed to function as associated cues for task
repetitions.

The priming model was fit to the 90 data points (45 for RT and
45 for accuracy) given in Appendix B. The values of the best
fitting parameters and the RT components from Equation 15 are
presented in Table 2. Although there were 30 more data points than
in Experiment 1, the six-parameter priming model fit the data well
(see Table 2), with RMSD (RT and accuracy) � 28, RMSD
(RT) � 30 ms, and r (RT) � .978. The priming model predictions
are plotted as lines in the middle panel of Figure 1 for the transition
data and the middle row of Figure 2 for the cue–target congruency
data separated by transition.

3 In this analysis, dual cues were omitted because their relationship to
the preceding trial differs from single-word cues depending on the transi-
tion. For cue repetitions, single-word cues on trial n can be preceded by
incongruent or congruent cues on trial n – 1; dual cues can only be
preceded by dual cues. For task repetitions, single-word cues on trial n can
be preceded by incongruent, congruent, or dual cues on trial n – 1; dual
cues can only be preceded by incongruent or congruent single-word cues.
Our primary interest in conducting this analysis was to assess how the
cue–target congruency effect (the difference between incongruent and
congruent trials) differs based on the cue–target congruency of trial n – 1,
so dual cues were not considered to be very informative.

Table 3
Summary of Analyses of Variance Conducted on Mean Response Time and Accuracy (as
Percentage of Correct Responses) in Experiment 2

Effect df

Response time Accuracy

F MSE �2 F MSE �2

Transition (T) 2, 54 157.68** 22,587.63 .85 53.32** 27.13 .66
Cue–target congruency (C) 2, 54 46.90** 29,990.30 .64 20.79** 48.38 .44
Stimulus onset asynchrony (S) 4, 108 290.11** 13,888.72 .92 1.32 21.33 .05
T 	 C 4, 108 5.10** 11,323.44 .16 3.96** 20.34 .13
T 	 S 8, 216 4.22** 10,274.57 .14 1.03 20.55 .04
C 	 S 8, 216 2.32* 11,870.25 .08 4.01** 20.03 .13
T 	 C 	 S 16, 432 1.47 10,872.65 .05 0.80 17.77 .03

Note. �2 represents the partial �2 effect size statistic and is unrelated to � in the priming model.
* p 
 .05. ** p 
 .01.
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As in Experiment 1, the priming model produced the differences
among transitions, the reduction in these differences with SOA, the
cue–target congruency effect, and the interaction between transi-
tion and cue–target congruency. Aside from the priming models
predicting the same accuracy for task alternations and task repe-
titions, the only noticeable discrepancy was that RTs for incon-
gruent and dual trials for cue repetitions were slightly reversed in
the model fit with respect to the experimental data. This discrep-
ancy could be due to the insensitivity of the priming model to
fluctuations in dual cue–target congruency across SOA (see Figure
2) or the need to modify our assumption about the amount of
evidence provided by dual cues (i.e., �A may be too low). The
priming model captured most of the RT effects and had a good
quantitative fit to the data, suggesting that retrieval of mapping
rules is not an integral part of “switch cost.” Priming of cue
encoding and compound cue retrieval appear to be sufficient to
explain task-switching performance in the explicit task-cuing
procedure.

Experiment 3

Experiment 2 provided converging evidence for our priming
account through the modeling of dual cues. Experiment 3 repli-
cates and extends the results of Experiments 1 and 2 by examining
a stronger manipulation concerning the availability of mapping
rules.

The constituent words of the dual cues in Experiment 2 were
always spatially compatible with the subject’s response-key map-
pings. Our priming account predicts that dual cues could provide
evidence for their associated response categories regardless of the
order of their constituent words but that order might affect the
mapping of the selected response category onto a physical re-
sponse key. In Experiment 3, we allowed single-word cues and
dual cues to be either spatially compatible or incompatible on each
trial. If switch costs are associated with the retrieval of mapping
rules, then spatially incompatible cues should substantially impair
task-switching performance, producing large switch costs and low
accuracy. In contrast, our priming account predicts little effect of
spatial compatibility, except for slower response execution with
spatially incompatible cues, consistent with extant research on
stimulus–response compatibility (e.g., Hommel & Prinz, 1997).
We expect a small spatial compatibility effect, with slower RTs for
spatially incompatible cues due to the need to overcome priming of
the spatial location of the incorrect physical response key. The
differences among transitions and the cue–target congruency ef-
fects should remain similar to Experiment 2 according to our
priming account. Any interaction between cue–target congruency
and spatial compatibility would likely involve modulation of the
spatial compatibility effect, not cue–target congruency.

Method

Experiment 3 was conducted according to the procedure described in the
General Method section, with the following modifications. The cues from
Experiment 2 were retained, but their spatial compatibility was manipu-
lated. All cues included a hyphen that served as a central point of spatial
reference. Single-word cues could appear to the left or right of the hyphen
(e.g., ODD- and -ODD). The constituents of dual cues could also appear on
either side of the hyphen (e.g., ODD-EVEN and EVEN-ODD). Single-word
and dual cues could be spatially compatible or incompatible with the

response-key mapping assigned to the subject. For example, a subject with
the responses odd and high mapped onto the C key and the responses even
and low mapped onto the M key would have ODD-, HIGH-, -EVEN, -LOW,
ODD-EVEN, and HIGH-LOW as spatially compatible cues, with a corre-
sponding reversed set of spatially incompatible cues. The target on each
trial was centered with respect to the hyphen, making it spatially neutral.

Results and Discussion

Mean RT and accuracy (as percentage of correct responses)
were calculated for each subject for all combinations of transition,
cue–target congruency, spatial compatibility, and SOA; these data
are presented in Appendix C.4 Accuracy was high and within-
subject correlations between RT and accuracy did not indicate any
speed–accuracy trade-offs; therefore, the analyses focused on RT.

RT analysis. Mean RTs across subjects for each transition as a
function of SOA are presented in the bottom panel of Figure 1, and
the partitioning of these data by cue–target congruency is pre-
sented in the bottom row of Figure 2. The pattern of results
replicates Experiments 1 and 2: Mean RT for cue repetitions (821
ms) was faster than for task repetitions (910 ms), which in turn was
faster than for task alternations (991 ms). The difference between
task alternations and task repetitions did not differ among incon-
gruent, congruent, and dual trials (87, 68, and 87 ms, respectively).
Mean RT and the differences among transitions generally de-
creased as SOA increased, although there was some instability in
the time-course functions (see Figure 1). There was a cue–target
congruency effect—mean RT for incongruent trials (961 ms) was
slower than for congruent trials (852 ms), with dual trials at an
intermediate mean RT (909 ms)—but cue–target congruency in-
teracted with transition: The cue–target congruency effect was
smaller for cue repetitions (46 ms) than task repetitions (130 ms)
and task alternations (149 ms), which did not differ.

The critical factor in Experiment 3 was spatial compatibility, for
which there was only a main effect: Mean RT for incompatible
trials (919 ms) was slower than for compatible trials (895 ms). The
magnitude of the effect and the lack of any interactions with
transition or cue–target congruency provide strong evidence that
retrieval of mapping rules is not a critical determinant of switch
costs. The spatial compatibility effect is consistent with our prim-
ing account and the idea that response execution is slowed by
spatially incompatible cues.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 3 (cue–target con-

4 The addition of the spatial compatibility factor and no constraints on
the random selection of cues and targets resulted in very rare circumstances
in which some subjects did not have any trials contributing to specific cell
means. The missing data affected only 20 of the 2,520 cell means and was
evenly distributed across subjects. To permit an ANOVA of the full
experimental design, we estimated the missing cell means with single
imputation based on a subject’s marginal mean for the transition, the
condition cell mean computed across subjects with data, and the grand
mean. Given that less than 1% of the data had to be estimated, we do not
believe our results or the conclusions drawn from them are compromised.
To assess the influence of the estimated data, we computed separate
ANOVAs for complete data sets collapsed across either SOA or spatial
compatibility and compared them to the ANOVA for the full design using
the estimated data. The patterns of statistical significance for the common
effects were very similar, suggesting that our estimation method did not
generate any serious anomalies in the data.
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gruency: congruent, incongruent, or dual) 	 2 (spatial compati-
bility: incompatible or compatible) 	 5 (SOA: 0, 100, 200, 400, or
800 ms) repeated-measures ANOVA, with the results summarized
in Table 4. Nonorthogonal comparisons indicated that mean RT for
cue repetitions was faster than for task repetitions, F(1, 54) �
45.38, p 
 .01, which in turn was faster than for task alternations,
F(1, 54) � 36.70, p 
 .01. Nonorthogonal comparisons indicated
that mean RT for incongruent trials was slower than for dual trials,
F(1, 54) � 37.95, p 
 .01, which in turn was slower than for
congruent trials, F(1, 54) � 46.45, p 
 .01. Orthogonal compar-
isons revealed that the cue–target congruency effect was smaller
for cue repetitions than for the mean of task repetitions and task
alternations, F(1, 108) � 40.01, p 
 .01, which did not differ, F(1,
108) � 1.21, p � .27. Additional comparisons indicated that the
difference between task alternations and task repetitions did not
differ by cue–target congruency, Fs(1, 108) 
 1.66, ps � .20.

As in Experiments 1 and 2, mean RTs were calculated for each
subject based on the transition and cue–target congruency on trial
n with respect to the cue–target congruency on trial n – 1; these
data are depicted as cue–target congruency effects for trial n in the
bottom panel of Figure 3 (see Footnote 3). There was a three-way
interaction by which the cue–target congruency effect was mark-
edly reduced when the preceding trial was incongruent for cue
repetitions, replicating previous results.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 2 (cue–target con-
gruency on trial n: incongruent or congruent) 	 2 (cue–target
congruency on trial n – 1: incongruent or congruent) repeated-
measures ANOVA, collapsing across spatial compatibility and
SOA and excluding the first two trials of each block. To avoid
redundancy, we report only statistics associated with cue–target
congruency on trial n – 1. There was a main effect of cue–target
congruency on trial n – 1, F(1, 27) � 27.16, MSE � 7,120.80, p 

.01, �2 � .50, but in contrast to Experiments 1 and 2, it did not
participate in significant two-way interactions with transition, F(2,

54) � 2.12, MSE � 9,283.71, p � .13, �2 � .07, or cue–target
congruency on trial n, F(1, 27) 
 1. The three-way interaction was
significant, F(2, 54) � 3.74, MSE � 7,577.13, p 
 .05, �2 � .12.
A three-way interaction contrast comparing the differences in
cue–target congruency on trial n by the cue–target congruency on
trial n – 1 for cue repetitions to the mean of those differences for
task repetitions and task alternations was significant, F(1, 54) �
15.37, p 
 .01.

Accuracy analysis. Overall accuracy across subjects was high
(M � 96.1%; see Appendix C). Mean accuracy decreased from cue
repetitions (97.2%) to task repetitions (96.5%) to task alternations
(95.3%). Mean accuracy was lower for incongruent trials (94.0%)
than congruent trials (97.9%) and dual trials (97.1%), which did
not differ. Cue–target congruency and transition interacted such
that the decrement in mean accuracy due to cue–target congruency
was smaller for cue repetitions (2.0%) than for task repetitions
(5.0%) and task alternations (4.6%), which did not differ. Mean
accuracy was the same for spatially incompatible and compatible
trials (96.2% and 96.5%, respectively), consistent with our priming
account because the probability of selecting the correct response
by compound cue retrieval is unrelated to spatial compatibility.

These observations were supported by a 3 (transition: cue rep-
etition, task repetition, or task alternation) 	 3 (cue–target con-
gruency: congruent, incongruent, or dual) 	 2 (spatial compati-
bility: incompatible or compatible) 	 5 (SOA: 0, 100, 200, 400, or
800 ms) repeated-measures ANOVA, with the results summarized
in Table 4. Nonorthogonal comparisons indicated that mean accu-
racy decreased from cue repetitions to task repetitions, F(1, 54) �
5.08, p 
 .05, to task alternations, F(1, 54) � 11.35, p 
 .01.
Orthogonal comparisons indicated lower mean accuracy for incon-
gruent trials compared with the mean of congruent and dual trials,
F(1, 54) � 68.32, p 
 .01, which did not differ, F(1, 54) � 3.25,
p � .08. Orthogonal comparisons indicated that the decrement in
mean accuracy due to cue–target congruency was smaller for cue
repetitions than for the mean of task repetitions and task alterna-

Table 4
Summary of Analyses of Variance Conducted on Mean Response Time and Accuracy (as
Percentage of Correct Responses) in Experiment 3

Effect df

Response time Accuracy

F MSE �2 F MSE �2

Transition (T) 2, 54 81.94** 74,718.57 .75 16.01** 46.18 .37
Cue–target congruency (C) 2, 54 84.25** 29,272.87 .76 35.79** 98.81 .57
Spatial compatibility (P) 1, 27 12.70** 28,708.47 .32 1.08 54.69 .04
Stimulus onset asynchrony (S) 4, 108 372.00** 25,752.16 .93 1.89 44.59 .07
T 	 C 4, 108 11.57** 20,416.47 .30 5.01** 53.24 .16
T 	 P 2, 54 0.84 23,815.07 .03 0.32 41.12 .01
T 	 S 8, 216 3.67** 27,014.31 .12 0.60 62.94 .02
C 	 P 2, 54 2.28 24,636.06 .08 0.15 42.30 .01
C 	 S 8, 216 3.67** 22,904.33 .12 2.18* 44.36 .08
P 	 S 4, 108 0.27 21,092.96 .01 1.51 52.11 .05
T 	 C 	 P 4, 108 0.09 23,568.92 .00 0.91 39.97 .03
T 	 C 	 S 16, 432 0.46 23,593.74 .02 0.49 52.15 .02
T 	 P 	 S 8, 216 1.11 20,471.34 .04 1.85 52.05 .06
C 	 P 	 S 8, 216 0.17 25,231.89 .01 0.96 53.75 .03
T 	 C 	 P 	 S 16, 432 1.21 26,210.60 .04 0.74 52.20 .03

Note. �2 represents the partial �2 effect size statistic and is unrelated to � in the priming model.
* p 
 .05. ** p 
 .01.
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tions, F(1, 108) � 13.93, p 
 .01, which did not differ, F(1,
108) 
 1.

Priming model fit. We fit the priming model to the data from
Experiment 3 using the same method as in Experiments 1 and 2.
We assumed that spatially incompatible cues prime the spatial
location of the incorrect response key. Such priming would slow
the mapping of the selected response category onto a physical
response key, increasing RTBase. We modeled spatial compatibility
by adding a small RT component, RTSpatial, to all spatially incom-
patible trials.

The priming model was fit to the 180 data points (90 for RT and
90 for accuracy) given in Appendix C. The values of the best
fitting parameters and the RT components from Equation 15 are
presented in Table 2. Although there were 90 more data points than
in Experiment 2 and 120 more data points than in Experiment 1,
the seven-parameter priming model fit the data well (see Table 2),
with RMSD (RT and accuracy) � 30, RMSD (RT) � 38 ms, and
r (RT) � .969. The priming model predictions are plotted as lines
in the bottom panel of Figure 1 for the transition data and the
bottom row of Figure 2 for the cue–target congruency data sepa-
rated by transition, collapsed across spatial compatibility to high-
light the similarity to Experiment 2.

As in Experiments 1 and 2, the priming model produced the
differences among transitions, the reduction in these differences
with SOA, the cue–target congruency effect, and the interaction
between transition and cue–target congruency. Consistent with the
model fit in Experiment 2, RTs for incongruent and dual trials for
cue repetitions were slightly reversed with respect to the experi-
mental data. The relative values of the best fitting parameters for
Experiment 3 were very similar to those for Experiment 2. For
example, the ratios of �U to �P and �A to �P were .078 and .536
for Experiment 2 and .078 and .533 for Experiment 3. The priming
model captured the RT effects observed in the previous experi-
ments and also produced a spatial compatibility effect of 24 ms
with the RTSpatial parameter, which is identical in magnitude to the
observed spatial compatibility effect. These results are inconsistent
with the idea that “switch cost” depends on the retrieval of map-
ping rules, but they are consistent with our priming account, in
which spatial compatibility does not affect cue encoding or com-
pound cue retrieval.

General Discussion

A short-term priming account of explicitly cued performance in
task-switching situations was developed and assessed in three
experiments. The data were highly consistent across experiments,
with repeated cue encoding benefits, switch costs, and cue–target
congruency effects. All of these results—including the “switch
costs” and their reduction with preparation time—could be repro-
duced by a set of basic psychological processes that were instan-
tiated in a mathematical model.5 These processes include priming
of cue encoding from residual activation in STM and compound
cue retrieval of response categories from long-term memory, but
no executive control process such as task-set reconfiguration.

Our priming account advances our understanding of the pro-
cesses involved in the explicit task-cuing procedure. The priming
model formalizes the compound stimulus strategy suggested by
Logan and Bundesen (2003, 2004) and represents an instantiation
of the compound cue retrieval theory proposed by Ratcliff and

McKoon (1988). Previous accounts of performance involving a
compound stimulus strategy (Arrington & Logan, 2004; Logan &
Bundesen, 2003, 2004) were based only on abstract descriptions of
how such a strategy might be enacted (e.g., “the cue and the target
act as a compound stimulus that uniquely determines the correct
response,” Logan & Bundesen, 2003, pp. 577–578). By formaliz-
ing compound cue retrieval, we illustrated how responses could be
selected based on combined evidence from cues and targets par-
ticipating in a random walk process (Dosher & Rosedale, 1989;
Ratcliff & McKoon, 1988).

Previous accounts of the differences among transitions did not
provide mechanisms for generating such differences. For example,
although Logan and Bundesen (2003) presented Equation 4 in their
account of explicitly cued performance, mean cue encoding times
were free parameters constrained by data. The priming model
involves calculation of mean cue encoding times based on rates of
comparison of the cue to representations in short- and long-term
memory, with differential residual activation influencing the rate
of comparison to STM to produce the differences among transi-
tions. Past attempts to model switch costs were restricted to adding
a small amount of task-switching time (as in Model 2�1 of Logan
& Bundesen, 2003) or changing RTBase to reflect proposed differ-
ences in target processing time (as in Model 3 of Logan &
Bundesen, 2004; also see Arrington & Logan, 2004). “Switch
costs” can arise naturally in the priming model from differences in
priming of cue encoding. In this regard, the priming model offers
an advantage over models that never predict differences between
task repetitions and task alternations (e.g., Model 2 of Logan &
Bundesen, 2003).

Considering its success in explaining task-switching perfor-
mance, we believe our priming account represents another step
toward removing the enigma surrounding the role of executive
control in task switching (cf. Monsell & Driver, 2000). The prim-
ing model clearly demonstrates how a set of basic psychological
processes can produce performance that appears to reflect the
action of executive control processes.

Applications

Our priming account is not restricted to the experiments pre-
sented in this article. The priming model should be capable of
explaining differences among transitions observed in past studies
involving the explicit task-cuing procedure, at least with meaning-
ful word cues. The present experiments involved strongly associ-
ated cues, but we demonstrate the flexibility of the priming model
by fitting it to experiments involving weakly associated cues.

Logan and Bundesen (2003) investigated differences among
transitions using two cues per task. In their Experiment 3, they
observed a large repeated cue encoding benefit of 168 ms and a
small switch cost of 35 ms. Model 2�1 (which includes a repeated
cue encoding benefit and task-switching time) fit well, with
RMSD � 34 ms and r � .972, which was slightly but not
significantly better than Model 2 (which includes only a repeated

5 The mathematical model results were corroborated by computer sim-
ulations programmed in C that implemented the assumptions and mecha-
nisms in our priming account. The correlation between the model and
simulation predictions exceeded .999 for all experiments.
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cue encoding benefit), with RMSD � 35 ms and r � .971. The
cues used for each task in this experiment could be considered only
weakly associated for at least two reasons. First, ODD–EVEN and
HIGH–LOW specify response categories, whereas PARITY and
MAGNITUDE are more abstract task labels. Second, there is little
evidence from free association norms that the cues are strongly
associated: The highest production proportion was for MAG-
NITUDE–HIGH (.049) and PARITY was never produced in re-
sponse to ODD or EVEN (Nelson et al., 1999). On the basis of
these weak associations, our priming account would predict little
or no switch cost, consistent with the data.

The priming model was fit to the 30 RT data points in this
experiment (see Logan & Bundesen, 2003), with the constraint that
compound cue retrieval obtains overall accuracy of 95%, as ob-
served in the data. Residual processing time was subsumed in the
random walk (removing RTBase as a parameter), whereas the
reverse was done by Logan and Bundesen (2003). The five-
parameter priming model fit well, with RMSD � 32 ms and r �
.975, producing a small “switch cost” of 32 ms.

In their Experiment 4, which involved different tasks and cues,
Logan and Bundesen (2003) observed a repeated cue encoding
benefit of 95 ms and a switch cost of 14 ms. Models 2 and 2�1 fit
equally well, with RMSD � 11 ms and r � .995 for Model 2, and
RMSD � 10 ms and r � .996 for Model 2�1. The priming model
was fit to the 30 RT data points in this experiment, with the
constraint that compound cue retrieval obtains overall accuracy of
96%, as observed in the data. The five-parameter priming model fit
as well as Model 2�1, with RMSD � 10 ms and r � .996, plus
a small “switch cost” of 14 ms.

These fits of the priming model to Experiments 3 and 4 of
Logan and Bundesen (2003) demonstrate its flexibility in account-
ing for other data, especially considering the fact that it did as well
as (if not slightly better than) a model that included time for task
switching. The goodness of fit of the priming model could be
attributed partly to one or two extra parameters (Model 2�1 had
four parameters and Models 1 and 2 each had three parameters),
but the priming model is specified in greater detail and is the only
model that can be fit to both RT and accuracy. Note that the small
“switch costs” in the fits to Logan and Bundesen (2003) are
consistent with our priming account: Weak associations between
cues would produce weak associative priming for task repetitions.
Larger “switch costs” were observed in the present experiments
because of stronger associative priming based on stronger associ-
ations between cues.

Limitations and Extensions

Our main objective in developing the priming model was not to
account for all task-switching phenomena in all task-switching
procedures. We focused on “switch costs” and their reduction with
SOA in the explicit task-cuing procedure because those effects
have been interpreted as strong evidence for executive control
processes such as task-set reconfiguration. Although the priming
model can account for such effects without task-set reconfigura-
tion, we do not argue that it provides a complete account of
explicitly cued performance nor performance in task-switching
situations in which explicit cues are absent. In this section, we
consider some limitations of the present formulation of the priming

model and possible extensions that might allow it to account for a
wider range of phenomena.

Long-term priming effects. Priming of cue encoding in the
priming model is based solely on the immediately preceding trial,
which is why we refer to it as a short-term priming account. Many
researchers have found evidence for long-term priming of perfor-
mance in task-switching situations (e.g., Allport & Wylie, 1999,
2000; Koch & Allport, in press; Waszak et al., 2003, 2004; Wylie
& Allport, 2000). We believe the priming model can be extended
to include both short- and long-term priming to provide a more
comprehensive account of task-switching data.

Graded residual activation of cues from multiple preceding trials
could prime cue encoding on each trial, with the immediately
preceding trial contributing the greatest amount of residual acti-
vation (cf. Altmann, 2002). If cues are stored as individual traces
in long-term memory, the evidence for the presented cue could be
expressed as the sum of power-function decayed traces of the cue
(e.g., Anderson & Matessa, 1997):

��i�x� � �
m�1

M

���im�x� � tm
�d, (16)

where ��(im � x) is the evidence for the mth instance of a cue that
occurred tm ms ago and d is the decay constant.

Combinations of cues, targets, and responses could also be
included in extensions to the priming model. Whether they are
interpreted as instances (Logan, 1988) or other types of stimulus–
response bindings (Allport & Wylie, 2000; Koch & Allport, in
press; Koch, Prinz, & Allport, 2005), these combinations could
accumulate in long-term memory and be retrieved on a given trial
to positively or negatively prime cue encoding, target encoding,
response selection, or residual processes. For example, by manip-
ulating transition frequency, we obtained evidence for faster cue
encoding when a transition is frequent (Schneider & Logan, in
press). One interpretation of this finding is that cue encoding might
be primed by retrieval of accumulated instances of past transitions.
Priming of processes that follow cue encoding could alter com-
pound cue retrieval or shift RTBase (as spatial compatibility did in
Experiment 3) and produce so-called residual switch costs. Iden-
tifying these priming effects and instantiating them in the priming
model are worthy objectives for future research.

Target- and response-related effects. Our present formulation
of the priming model focuses on cue-related effects, but it could be
extended to account for target- and response-related effects. Target
repetition effects could be modeled by assuming that target encod-
ing is subject to priming in the same way as cue encoding.
Residual activation of the target from the preceding trial could
facilitate target encoding on the present trial if the target repeats.
In the priming model, such priming of target encoding could be
represented by changes in RTBase, consistent with the modeling of
hypothesized differences in target processing time in Model 3 of
Logan and Bundesen (2004; also see Arrington & Logan, 2004).

Response-related effects are more likely to affect compound cue
retrieval or response execution than cue or target encoding pro-
cesses. Many studies involving a 2:1 mapping of response cate-
gories onto response keys have generated response congruency
effects: RT is faster when the correct response categorizations of a
target for each task are mapped onto the same response key
compared with different response keys (Meiran, 1996; Monsell et
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al., 2003). For example, there was a response congruency effect of
41 ms in our first experiment. We did not model the response
congruency data because we averaged over a set of random walks
for compound cue retrieval, but when RTs are calculated from
separate random walks involving differential mappings of re-
sponse categories onto response keys (resulting in different drift
rates in Equation 5), the priming model fit to the first experiment
produces a response congruency effect of about 20 ms—without
changing any parameter values. The effect arises from a higher
drift rate for compound cue retrieval on response congruent trials
compared with response incongruent trials.

Many studies have also produced response repetition effects
that interact with transition: There is a response repetition benefit
for task repetitions and sometimes a response repetition cost for
task alternations, although primarily in accuracy (e.g., Rogers &
Monsell, 1995). Across our three experiments, there was a re-
sponse repetition benefit of 57 ms for cue repetitions, but response
repetition costs of �6 ms for task repetitions and �26 ms for task
alternations. These data suggest that response repetition effects are
linked to whether the cue repeats or changes across trials, at least
in the explicit task-cuing procedure. The assumption about tem-
porary cue–response associations introduced in the priming model
to account for the interaction between cue–target congruency and
transition could possibly be extended to account for the interaction
between response repetition and transition. We believe that these
extensions for capturing target- and response-related effects are
reasonable for future development of the priming model.

Residual switch costs. As noted earlier, our priming account
predicts no differences between transitions at an infinite SOA
because cue encoding will no longer contribute to RT. Such a
prediction is not unique to our model (see Sohn & Anderson, 2001,
pp. 774–775), but the mere presence of a “residual switch cost” at
a long SOA does not necessarily falsify the model. Stochastic
fluctuations in cue encoding time from trial to trial could result in
a small proportion of trials with long cue encoding times (i.e., the
upper tail of the cumulative distribution of cue encoding times).
Differences between transitions due to priming of cue encoding
would be attenuated at long SOAs compared with short SOAs, but
they need not be zero. In the present experiments, the mean
difference between task alternations and task repetitions at the
800-ms SOA was 58 ms; the priming model predicted a mean
difference of 46 ms. Residual switch costs at long SOAs could also
reflect other factors that are not instantiated in the present formu-
lation of the priming model. For example, any factor that affects
target encoding, response selection, or response execution would
alter RTBase and could produce residual switch costs. Changes in
RTBase might be justified by modeling those processes in greater
detail.

Internally cued performance. It could be argued that our prim-
ing account is limited to task-switching situations involving the
explicit task-cuing procedure. We believe that a version of it has
the potential to be applied to procedures that do not involve
explicit cues. The critical factor to be considered is how subjects
can produce a cue to be used with the target for compound cue
retrieval. We argue that procedures without explicit cues require
the formation of internal (and possibly implicit) cues in STM,
which may be verbal codes or related representations.

For example, consider the alternating runs procedure, in which
subjects perform different tasks in a predictable cycle based on the

spatial position of the target (Rogers & Monsell, 1995). It is likely
that subjects map the spatial positions onto internal cues in STM
linked to the different tasks (e.g., stimuli appearing at the top
require Task A, whereas stimuli at the bottom require Task B). On
each trial, the spatial position of the target activates the internal cue
in STM, which serves as a mediator to retrieve responses from
long-term memory.

This idea is based on Logan and Bundesen’s (2004) hypothesis
concerning the differences between arbitrary and meaningful ex-
plicit cues in their study. They argued that performance with
arbitrary cues might require access to a mediator such as a task
name to determine an appropriate response. Mediators would
represent internal cues that are directly linked to arbitrary explicit
cues, which could function much like spatial position cues in the
alternating runs procedure. Differences among transitions could
arise from differential priming of internal cues rather than an
executive control process. Task repetitions would involve access to
the same internal cue, whereas task alternations would involve
access to a different internal cue that may have partially decayed
in STM. Residual switch costs might emerge from less priming of
the internal cue for the alternate task than the repeated task.

An extended version of our priming account could potentially
explain internally cued performance, but this would depend on
being able to identify the internal cues hypothesized to reside in
STM. Evidence for internal cues may be difficult to obtain because
their existence can only be inferred and not observed (unlike
explicit cues), but there are experimental manipulations that may
prove useful in identifying internal cues. For example, if internal
cues are verbal representations of task names, then articulatory
suppression could impair retrieval of internal cues when switching
tasks. This idea is consistent with the finding that switch cost is
increased under articulatory suppression, particularly when ex-
plicit cues are arbitrary or absent (Baddeley, Chincotta, & Adlam,
2001; Emerson & Miyake, 2003; Miyake et al., 2004; Saeki &
Saito, 2004). We are optimistic that future research will be able to
shed light on the nature of internal cues in task switching.

Executive Control and Task Sets

The results from the present study indicate that task-switching
performance can be interpreted and modeled with a set of basic
psychological processes, but we are not arguing that executive
control is absent from performance. Such an argument would
require an explanation of how subjects are able to set themselves
to do experiments similar to those we have reported. Subjects must
be able to interpret the experimental instructions, identify the set of
cues and targets, and learn the associations between response
categories and response keys. Part of this process may involve
raising the activation of relevant retrieval pathways or suppressing
irrelevant pathways. Subjects will also need to block out cer-
tain aspects of their environment (e.g., unused response keys,
extraneous visual stimuli in the testing room, etc.) and the multi-
tude of experiment-irrelevant thoughts that could impair their
performance.

Although we argue that an executive control process such as
task-set reconfiguration is not necessary to explain differences
among transitions, executive control may be necessary to form a
general or multipurpose task set at the beginning of an experiment
that prepares the cognitive system in a way that permits lower-
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level processes such as cue encoding to function in a more or less
reflexive manner (cf. Monsell, 2003). This general task set could
be construed as the set of control parameters (e.g., biases and
priorities) determined by the “homunculus” in theories of execu-
tive control (Logan & Gordon, 2001). The general task set may be
flexible enough to handle simple tasks that are similar in structure.
For example, although odd–even and high–low judgments are
considered to be different tasks on the surface, they can be inter-
preted as the same task at a deeper level and can be performed with
the same task set. They both involve encoding a cue and a target,
retrieving a response category from long-term memory, and exe-
cuting the selected response. Our priming model exploits this
commonality with a general task set that is sufficient for perform-
ing both tasks. Regardless of whether the cues or tasks repeat or
alternate across trials, the same task set can be used. It is reason-
able to assume that executive control is required to adopt this
general task set, but executive control is not required on a trial-by-trial
basis to reconfigure task sets because there is only one task set.6

We began this article by noting the flexibility of the cognitive
system, but flexibility is not synonymous with control. A well-
designed system can be flexible if it can handle variations in the
environment without needing to be adjusted frequently. We sug-
gest that the “clever homunculus” that is responsible for executive
control (Logan & Bundesen, 2003, 2004) may be clever enough to
set the cognitive system in a way that allows subordinate processes
to carry out the stimulus-driven operations that enable perfor-
mance without frequent intervention from top-down control
processes.

Strategies for Theory Development

Our demonstration that differences among transitions in task-
switching performance can be modeled without relying on exec-
utive control processes does not rule out such processes. Our
priming account does not falsify task-set reconfiguration or task-
set priming; in principle, many aspects of it are compatible with
such accounts (e.g., compound cue retrieval could be integrated
into any theory of task switching). What we offer with our priming
account is an example of a strategy for theory development based
on parsimony, sufficiency, and testability. Such a strategy has its
advantages and disadvantages, but it can be fruitful in facilitating
scientific progress.

Our priming account is parsimonious in that it invokes simple
processes of encoding and retrieval to explain task-switching per-
formance. Such processes have been investigated by psychologists
for decades and are fundamental to many theories of cognition.
These processes are clearly defined in our priming account, en-
abling us to instantiate them in a mathematical model. Executive
control processes such as task-set reconfiguration are less trans-
parent, despite their intuitive appeal as explanations of switch cost
(Monsell, 2003). Task-set reconfiguration has been argued by at
least one author to include

shifting attention between stimulus attributes or elements, or between
conceptual criteria, retrieving goal states (what to do) and condition-
action rules (how to do it) into procedural working memory (or
deleting them), enabling a different response set and adjusting re-
sponse criteria. [Task-set reconfiguration] may well involve inhibition
of elements of the prior task-set as well as activation of the required
task-set. (Monsell, 2003, p. 135)

If some or all of these processes compose task-set reconfiguration,
then how they interact to produce switch cost has to be specified
in greater detail for us to have a comprehensive theory of task
switching. Formal modeling is not a requirement for developing
such a theory, but it helps to determine precisely how switch cost
might be produced. An advantage of the present formulation of our
priming account is that the source of switch cost is clear: differ-
ential priming of cue encoding. A disadvantage is that switch cost
is influenced by many factors and is unlikely to arise from a single
source; in this sense, our priming account is incomplete.

We believe there are elements of truth to the priming account
that enabled us to model some aspects of explicitly cued perfor-
mance, but it is clear that we have not captured all facets of
task-switching performance. This incompleteness is not surprising
because it was not our intention to develop a general theory of task
switching. Our goal in this study was to provide an alternative
account of a few critical effects (e.g., “switch costs” and their
reduction with preparation time) to help stimulate a critical debate
regarding the mechanisms involved in task switching. It seems that
in many studies, there is an implicit, default assumption that any
difference between task alternations and task repetitions reflects
task-set reconfiguration; we challenge this assumption.

Even if our priming account is incorrect, what we have shown
in the present study is that it provides a sufficient account of
task-switching performance. Researchers will need to refine their
theories to distinguish between sufficient accounts of data that
differ in their underlying mechanisms. Hypotheses can be devel-
oped that lead to different predictions, and experiments can be
conducted to test those predictions. An advantage of our priming
account is that it is testable: Its assumptions and mechanisms are
explicitly defined and can be evaluated. The priming model can be
fit to data to determine whether it adequately captures various
task-switching phenomena. A goal of our research approach is to
see how far our priming model can be extended before it fails to
account for critical aspects of task-switching performance.

The preceding discussion raises a general issue concerning
theory development that goes beyond task switching. When, as
researchers, we are attempting to explain what we perceive to be
complex phenomena, it is tempting to posit complex processes that
guide behavior. But as we have demonstrated with our priming
account, complex phenomena need not arise from complex pro-
cesses; interactions of simpler processes may be sufficient. We
believe that a critical part of theory development involves deter-
mining whether behavior can be explained by simple processes
and positing complex processes only when necessary, an idea that
was central to the cognitive revolution in psychology in the middle

6 We are not suggesting that executive control is never involved on a
trial-by-trial basis in all situations. When modeling performance in the
psychological refractory period procedure, Logan and Gordon (2001)
shifted parameter settings (i.e., changed the task set) between the first and
the second stimulus to enforce serial processing. When modeling shifts of
spatial attention in an attention cuing procedure, Logan (in press) found
that a model with an attention switching process (Model 1 of Logan &
Bundesen, 2003) fit better than a model lacking such a process (Model 2).
Our priming model is formally related to these “reconfiguration” models in
that it is written in the language of Logan and Gordon’s theory of executive
control, but it does not require reconfiguration to account for “task-
switching” effects.
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of the 20th century. When it became clear that psychological
phenomena such as language, problem solving, and concept learn-
ing could not be explained solely by the conditioning principles
and stimulus–response associations of behaviorism, it was neces-
sary to introduce mental representations and processes as explan-
atory constructs. Now this idea seems to be reversed in some cases
(particularly in the task-switching domain), and the onus has been
placed on researchers who wish to explain phenomena with basic
psychological processes to demonstrate that more complex pro-
cesses may not be involved.

Conclusion

Our short-term priming account of explicitly cued performance
is able to explain task-switching data without invoking executive
control mechanisms, which stands in stark contrast to the prevalent
view that task switching involves task-set reconfiguration. Basic
psychological processes were sufficient to produce several effects,
including so-called switch costs and their reduction with prepara-
tion time. Executive control may play a role in setting the stage for
general performance, but we argue that it does not need to be
invoked as an explanatory construct on a trial-by-trial basis. The
strength of this argument is based partly on the fact that our
priming account can be formally modeled, providing a clear dem-
onstration of its relationship to experimental data. In accordance
with other authors (e.g., Anderson, Reder, & Lebiere, 1996), we
believe that an integrative research approach involving experimen-
tation and modeling can be powerful in shedding light on cognitive
phenomena. An integrative approach may even allow us to deter-
mine if and when task switching requires executive control.
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Appendix A

Mean Response Time (RT) and Accuracy (Percentage of Correct Responses) Across Subjects in Experiment 1

Transition
Cue–target
congruency Measure

Stimulus onset asynchrony (ms)

0 100 200 400 800

M SE M SE M SE M SE M SE

Cue repetition Incongruent RT (ms) 1,094 38 1,000 42 937 38 855 42 818 47
Accuracy 96.8 0.9 96.8 0.8 98.1 0.5 97.0 0.7 95.7 1.3

Congruent RT (ms) 1,030 42 939 43 898 42 781 36 791 40
Accuracy 98.0 0.7 97.7 0.7 97.9 0.6 97.6 0.8 97.9 0.6

Task repetition Incongruent RT (ms) 1,295 45 1,230 42 1,102 44 978 50 942 53
Accuracy 94.3 1.4 93.4 1.7 94.4 1.3 94.2 1.2 97.4 0.7

Congruent RT (ms) 1,132 39 1,027 45 932 42 893 49 833 44
Accuracy 98.8 0.7 99.0 0.4 98.5 0.6 98.4 0.5 98.2 0.6

Task alternation Incongruent RT (ms) 1,362 41 1,256 44 1,167 46 1,089 50 984 48
Accuracy 94.9 1.1 94.1 0.9 93.9 1.0 94.3 1.0 96.8 0.6

Congruent RT (ms) 1,216 42 1,118 43 1,042 42 925 44 877 42
Accuracy 97.4 0.7 96.8 0.7 96.9 0.8 97.0 0.7 96.5 0.7

Appendix B

Mean Response Time (RT) and Accuracy (Percentage of Correct Responses) Across Subjects in Experiment 2

Transition
Cue–target
congruency Measure

Stimulus onset asynchrony (ms)

0 100 200 400 800

M SE M SE M SE M SE M SE

Cue repetition Incongruent RT (ms) 1002 41 1013 48 893 47 791 47 751 38
Accuracy 95.3 1.3 97.1 1.2 96.1 1.1 96.8 1.2 98.4 0.7

Congruent RT (ms) 962 45 893 41 801 39 757 40 675 36
Accuracy 98.3 0.8 99.0 0.8 97.1 1.1 98.8 0.6 95.8 1.3

Dual RT (ms) 994 39 884 33 823 44 806 40 755 37
Accuracy 97.4 1.2 98.1 0.8 98.4 1.0 97.6 0.8 99.0 0.6

Task repetition Incongruent RT (ms) 1191 48 1101 37 1023 52 887 41 808 46
Accuracy 93.8 1.2 93.7 0.9 94.7 1.0 94.9 1.0 95.7 1.0

Congruent RT (ms) 1038 44 905 39 857 43 782 42 734 33
Accuracy 98.7 0.5 97.7 0.9 98.5 0.6 97.4 0.9 97.1 0.7

Dual RT (ms) 1147 40 1050 42 958 33 859 40 799 35
Accuracy 98.0 0.6 97.4 0.8 97.5 0.7 97.4 0.7 98.0 0.6

Task alternation Incongruent RT (ms) 1276 42 1216 48 1104 45 983 45 906 45
Accuracy 88.8 1.6 92.1 1.0 90.9 1.4 91.4 1.2 94.6 0.9

Congruent RT (ms) 1124 42 1054 45 968 44 860 41 820 41
Accuracy 95.7 0.6 96.1 0.6 94.3 1.1 95.0 0.8 95.2 0.8

Dual RT (ms) 1176 39 1175 46 1063 43 960 47 875 39
Accuracy 96.3 1.0 95.0 0.8 94.9 0.7 94.1 1.2 95.6 0.8
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Appendix C

Mean Response Time (RT) and Accuracy (Percentage of Correct Responses) Across Subjects in Experiment 3

Transition
Cue–target
congruency

Spatial
compatibility Measure

Stimulus onset asynchrony (ms)

0 100 200 400 800

M SE M SE M SE M SE M SE

Cue repetition Incongruent Incompatible RT (ms) 985 35 936 39 862 51 783 39 685 35
Accuracy 96.2 1.6 97.5 1.2 96.5 1.6 95.3 2.2 95.8 1.6

Compatible RT (ms) 1011 42 936 47 863 33 775 33 651 38
Accuracy 95.1 1.9 96.3 1.6 93.1 2.4 99.2 0.6 97.0 1.9

Congruent Incompatible RT (ms) 942 43 925 44 807 35 757 58 664 27
Accuracy 98.3 1.1 99.4 0.6 97.9 1.2 97.6 1.4 97.2 1.4

Compatible RT (ms) 872 35 846 34 839 51 730 34 646 33
Accuracy 99.5 0.5 97.6 1.7 97.8 1.4 96.9 1.6 100 0.0

Dual Incompatible RT (ms) 919 46 950 51 869 54 739 91 638 33
Accuracy 94.6 3.7 99.9 0.1 96.3 2.5 98.9 0.9 93.1 4.0

Compatible RT (ms) 974 52 849 36 763 50 771 37 629 40
Accuracy 99.0 0.9 95.6 3.6 96.6 1.7 98.2 1.8 100 0.0

Task repetition Incongruent Incompatible RT (ms) 1218 35 1091 33 968 40 819 31 779 33
Accuracy 91.8 1.7 93.0 1.7 91.0 2.0 93.4 1.7 94.8 1.7

Compatible RT (ms) 1159 36 1102 38 944 33 848 32 804 28
Accuracy 90.9 1.9 95.7 1.1 92.2 1.7 96.0 1.2 95.3 1.3

Congruent Incompatible RT (ms) 988 35 919 40 855 32 778 37 740 34
Accuracy 98.1 0.8 99.5 0.4 97.9 0.9 98.0 1.2 98.2 0.9

Compatible RT (ms) 1000 32 928 37 803 28 726 28 694 22
Accuracy 98.7 0.9 98.8 0.6 99.2 0.6 98.3 0.7 97.6 1.0

Dual Incompatible RT (ms) 1100 37 1005 30 937 32 821 36 763 33
Accuracy 97.6 0.7 97.9 0.9 98.1 0.8 96.9 1.0 97.7 1.0

Compatible RT (ms) 1055 27 992 35 936 34 813 34 729 30
Accuracy 97.7 0.9 97.6 1.1 97.9 0.9 96.3 1.1 97.7 0.8

Task alternation Incongruent Incompatible RT (ms) 1279 38 1201 40 1079 41 925 37 840 36
Accuracy 90.4 2.0 93.3 1.4 91.4 1.5 92.7 1.5 94.5 1.6

Compatible RT (ms) 1275 35 1185 46 1070 41 904 37 842 41
Accuracy 91.9 1.7 90.8 1.6 92.4 1.3 93.7 1.3 93.6 1.3

Congruent Incompatible RT (ms) 1131 36 1015 40 938 38 830 41 763 42
Accuracy 97.4 0.7 97.0 0.8 96.6 0.9 97.1 0.8 97.9 0.7

Compatible RT (ms) 1032 36 984 32 882 31 808 39 728 33
Accuracy 97.0 0.7 95.8 1.2 97.8 1.0 96.3 1.0 98.3 0.6

Dual Incompatible RT (ms) 1235 43 1132 47 1011 35 944 39 808 36
Accuracy 97.3 0.9 95.5 1.0 95.1 1.0 97.3 0.9 96.4 1.0

Compatible RT (ms) 1133 40 1100 38 993 39 874 32 795 36
Accuracy 96.3 0.9 95.7 1.1 97.0 1.0 97.3 0.8 96.4 0.8
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