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The contingent encoding assumption is the idea that response selection in task-switching situations
does not begin until the cue and the target have both been encoded. The authors tested the assumption
by manipulating response congruency, stimulus order, and stimulus onset asynchrony (SOA) in two
experiments. They found evidence of response selection prior to cue encoding for congruent targets
with target–cue order at a long SOA, indicating that the contingent encoding assumption is invalid.
The authors describe how contingent encoding can be removed from an existing task-switching
model by introducing baseline evidence—task-neutral evidence that serves as a baseline for response
selection prior to stimulus encoding. Simulations revealed that the modified model could reproduce
the full pattern of response time data and generate responses prior to cue encoding. The authors con-
clude by discussing directions for further model development.
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Task switching is a challenge for the human cognitive
system, but not an insurmountable one. It is a chal-
lenge because it is rife with ambiguity: Stimuli are
usually multivalent, affording multiple responses
that are appropriate for different tasks. However,
the challenge is not insurmountable because people
can deal with this ambiguity: Task-appropriate
responses can be selected for multivalent stimuli,
often with considerable speed and accuracy. How
this is accomplished is not entirely clear, but we
think much can be gained by developing and testing
computational models of response selection in task
switching. The purpose of the present study was to
test an important assumption about response selection
that can be found in various task-switching models.

THE CONTINGENT ENCODING
ASSUMPTION

In a typical task-switching experiment, a cue indi-
cates a task to perform on an ambiguous target.
For example, for tasks involving the referents of
target words (e.g., elephant and pebble), the cue
Origin might indicate a living-or-nonliving judge-
ment, and the cue Size might indicate a small-or-
large judgement (relative to a basketball). The
targets are ambiguous because each is associated
with two categories (e.g., elephant is living and
large) that may or may not be mapped to the
same response (e.g., living and small might be
mapped to a left response key, and nonliving and
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large might be mapped to a right response key).
Under these circumstances, cues can be necessary
to accurately select responses for targets
(Kantowitz & Sanders, 1972; Schneider &
Logan, 2009; Sudevan & Taylor, 1987), leading
to the issue of how cues and targets are used
together in response selection.

The contingent encoding assumption is the idea
that response selection in task-switching situations
does not begin until the cue and the target have
both been encoded. The assumption is often
made in verbal theorizing about task switching,
where it is argued that the cue is used to prepare
the cognitive system for the task that is sub-
sequently performed on the target (for reviews,
see Kiesel et al., 2010; Vandierendonck,
Liefooghe, & Verbruggen, 2010). Without the
cue, the cognitive system might not be in a suitable
state for task performance. Without the target,
there would be nothing on which to perform the
task. Thus, both stimuli have to be encoded to
select a task-appropriate response. The contingency
is more clearly evident in certain computational
models of task switching that specify how responses
are selected, as in the following examples:

In Altmann and Gray’s (2008) model, a target is
not categorized and response selection does not
begin until a task representation is available in the
model’s focus of attention. Task representations
are based on task codes retrieved from episodic
memory that were created earlier as products of
cue encoding. If a target has been encoded percep-
tually but the model is unable to bring a task rep-
resentation into its focus of attention because it
cannot retrieve a task code, then nothing happens
—the processing cycle is wasted (Altmann &
Gray, 2008, p. 610). The model attempts to
retrieve a task code on the next cycle and continues
to do so until it succeeds. On most (but not all)
trials, the task representation used by the model is
based on the task code created from the current
cue. If the cue has not been encoded, then the
associated task code and task representation will
be unavailable, forcing the model to either wait
for cue encoding to finish or retrieve an alternative
task code from a previous trial. In any case, response
selection does not begin until a task representation

is available, even if the target has been available for
some time. Thus, the model includes the contin-
gent encoding assumption.

In Sohn and Anderson’s (2001) model, a target
is not encoded and response selection does not
begin until the relevant task is known. The task is
identified by encoding the cue and retrieving its
meaning from memory. If a target is available but
the task is unknown, then nothing happens—the
model must wait for task identification. Once the
task is known, the target is encoded and categorized
with respect to the relevant task, then a response is
selected based on that categorization. Given that
response selection does not begin until the cue
and the target have been encoded (in that order),
the model includes the contingent encoding
assumption.

In Schneider and Logan’s (2005, 2009) model,
response selection does not begin until the cue
and the target have both been encoded. Cue and
target encoding involve forming task-relevant cat-
egorical representations of the stimuli (Arrington,
Logan, & Schneider, 2007; Schneider & Logan,
2010). Each stimulus representation then retrieves
evidence for its associated task categories from
memory. The evidence is combined multiplicatively
and is used to drive a random-walk decision process
that favours selection of the response to which the
category with the most evidence is mapped.
Given the multiplicative combination of evidence,
the joint evidence from the cue and the target is
zero if either the cue or the target (or both) have
not been encoded, making response selection inac-
tive. Thus, the model includes the contingent
encoding assumption.

The fact that the contingent encoding assump-
tion is present in verbal theorizing and is shared
by at least three different computational models
suggests that it is an important explicit or implicit
consideration in theoretical work on task switching.
It is also important because a critical aspect of task
switching is response selection for ambiguous
targets, an understanding of which may provide
insight about flexibility in cognitive control more
generally. Despite its importance, the assumption
has never been tested, raising the question of
whether it is valid.
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THE PRESENT STUDY

We report data from two experiments designed to
test the contingent encoding assumption. A key
feature of the experiments was a manipulation of
response congruency: whether a target required
the same response (congruent) or different
responses (incongruent) for the two tasks. For
example, for the origin and size tasks described
earlier, if living and small are mapped to a left
response key, and nonliving and large are mapped
to a right response key, then congruent targets are
either living and small (e.g., spider) or nonliving
and large (e.g., tuba), and incongruent targets are
either living and large (e.g., elephant) or nonliving
and small (e.g., pebble). A robust finding in the
task-switching literature is a response congruency
effect: Performance is slower and more error
prone for incongruent targets than for congruent
targets (e.g., Brown, Reynolds, & Braver, 2007;
Kiesel, Wendt, & Peters, 2007; Meiran, 2005;
Meiran, Chorev, & Sapir, 2000; Meiran &
Kessler, 2008; Monsell, Sumner, & Waters,
2003; Schneider & Logan, 2009; Sudevan &
Taylor, 1987).

Response congruency is of interest for testing
the contingent encoding assumption because
incongruent and congruent targets differ regarding
whether response selection is contingent on encod-
ing the cue. For an incongruent target, response
selection is not possible without encoding the cue
because the target categories for both tasks are
mapped to different responses. For a congruent
target, response selection is possible without encod-
ing the cue because the target categories for both
tasks are mapped to the same response. If the possi-
bility of response selection prior to cue encoding
were realized, then the contingent encoding
assumption would be proven invalid, and task-
switching models that include the assumption
would have to be revised.

We introduced the opportunity for response
selection prior to cue encoding by manipulating
response congruency in conjunction with stimulus
order, presenting the cue before the target (cue–
target order) or the target before the cue (target–cue

order). Stimulus order has been manipulated in
previous task-switching studies (Bernstein &
Segal, 1968; Biederman, 1973; Davis & Taylor,
1967; LeMay & Simon, 1969; Ruge, Braver, &
Meiran, 2009; Shaffer, 1965, 1966; Sohn &
Carlson, 1998) and yielded evidence of advance
target processing with target–cue order. The
nature of this processing has been hypothesized to
range from perceptual encoding (Shaffer, 1965) to
stimulus categorization and response selection
(Bernstein & Segal, 1968; Biederman, 1973;
Davis & Taylor, 1967). However, previous
studies made unambiguous response selection
dependent on knowing the cue, which may have
limited the extent of advance target processing. In
the present study, we removed this dependency by
making response selection logically possible for
congruent targets and allowing subjects to
respond before cue presentation.

Stimulus order was blocked in Experiment 1 but
not in Experiment 2. The stimulus-order manipu-
lation consisted of presenting the cue at a stimulus
onset asynchrony (SOA) of 0, 400, or 800 ms
before the target (cue–target order) or after the
target (target–cue order). With cue–target order,
target encoding would begin after the SOA and
probably finish after cue encoding. Given that
response congruency is defined by the target, we
predicted a typical response congruency effect at
all SOAs. With target–cue order, target encoding
might finish before cue encoding at the nonzero
SOAs, allowing response selection to begin early.
However, such advance response selection is feas-
ible only for congruent targets because they are
mapped to the same response regardless of the
cue. Response selection for incongruent targets
would be postponed until the cue has been
encoded.

If response selection begins prior to cue encod-
ing for congruent targets with target–cue order,
then two predictions follow for that condition.
Our first prediction is that there should be a
response congruency effect that increases with
SOA because a longer SOA affords more time
for response selection to finish for a congruent
target, whereas response selection for an
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incongruent target is contingent on the cue. A task-
switching study by Ruge, Braver, and Meiran
(2009) that involved a manipulation of stimulus
order provides some evidence in support of this pre-
diction: They observed a large response congruency
effect at a long SOA with target–cue order,
although they did not find significant response con-
gruency effects with cue–target order, which is
uncommon in the literature. Our second prediction
is that if the SOA is long enough (e.g., 800 ms),
response selection may finish and the response
might be executed for a congruent target before
the cue is even presented. To assess this prediction,
we allowed early responses (i.e., responses occurring
before the second stimulus was presented) in our
experiments, which is a novel advance over previous
studies involving stimulus-order manipulations.
Early responses for congruent targets with target–
cue order at a long SOA would indicate unequivo-
cally that response selection occurred before both
stimuli had been encoded and represent a fatal
blow to the contingent encoding assumption.

EXPERIMENTS 1 AND 2

Method

Subjects
Forty-eight students from Vanderbilt University
participated for course credit. There were 24 sub-
jects per experiment.

Apparatus, tasks, and stimuli
The experiments were conducted with E-Prime
software (Psychology Software Tools, Pittsburgh,
PA) running on computers that displayed stimuli
on monitors and registered responses from
QWERTY keyboards. The tasks were origin
(living or nonliving) and size (small or large, relative
to a basketball) judgements of the referents of target
words. The origin task was cued by the word
ORIGIN or the word LIFE, and the size task was
cued by the word SIZE or the word
MAGNITUDE. We used two cues per task to
maintain continuity with our previous task-switch-
ing work (e.g., Arrington et al., 2007; Logan &

Schneider, 2006; Schneider & Logan, 2005,
2006, 2011). There were 10 targets for each combi-
nation of the origin and size categories (see
Appendix A). Mean word length was 5.1 letters
and mean word frequency was 3.9 occurrences per
million; separate 2 (origin)× 2 (size) analyses of
variance (ANOVAs) on each variable revealed no
significant effects, all Fs, 1. Targets and cues
were displayed in white 12-point Courier New
font on a black background. Viewing distance was
approximately 50 cm.

Procedure
Instructions were presented on screen and were
explained by the experimenter. In Experiment 1,
half the blocks involved cue–target order and half
involved target–cue order. The relevant stimulus
order was indicated at the start of each half and
the order in which the stimulus orders were experi-
enced was counterbalanced across subjects. In
Experiment 2, all blocks involved both stimulus
orders, randomly intermixed. Subjects were
instructed to use the information provided by the
first stimulus on each trial to prepare and improve
their performance, regardless of the stimulus order.

Each experiment was divided into 14 blocks of
60 trials, with rest periods between blocks. Each
trial began with the presentation of two vertically
arranged fixation crosses for 500 ms, then both
crosses disappeared and the first stimulus was pre-
sented. After an SOA of 0, 400, or 800 ms, the
second stimulus was presented. The cue and the
target were always presented in place of the top
and bottom fixation crosses, respectively, to avoid
uncertainty about their locations. The cue, target,
and SOA were chosen randomly on each trial,
subject to the constraint that the SOAs were used
equally often. Each combination of cue and SOA
occurred five times per block, and each target
occurred three times within consecutive pairs of
blocks.

Subjects were informed that a response was
allowed any time after presentation of the first
stimulus and they did not have to wait until both
stimuli were displayed if they were able to make a
correct response during the SOA. Responses were
made with the Z and / keys on the keyboard,
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with same-task categories assigned to different
keys, and all possible category–response mappings
counterbalanced across subjects. Reminders of the
mappings appeared in the bottom corners of the
screen during the experiment.

The freedom to respond after presentation of
the first stimulus allowed for three possible out-
comes for the nonzero SOAs. First, a response
could occur before the SOA had elapsed. In this
situation, the response was recorded and the trial
continued for the remaining duration of the
SOA, after which time the second stimulus was
displayed for 250 ms, then the screen was cleared.
This was done so that both stimuli appeared on
every trial and a nominal task transition could be
coded for target–cue order. Second, a response
could occur after the SOA but before the second
stimulus had been displayed for 250 ms. In this
situation, to ensure a minimum display time for
the second stimulus, the trial continued until the
second stimulus had been displayed for 250 ms,
then the screen was cleared. Third, a response
could occur after the SOA and after the second
stimulus had been displayed for at least 250 ms.
In this situation, the screen was cleared immedi-
ately after the response. After the screen was
cleared in all three situations, it remained blank
for 500 ms, after which time the fixation display
for the next trial was presented.

Results

In Experiment 1, the first block of each half was
considered practice. In Experiment 2, the first
block of the whole experiment was considered prac-
tice. Practice blocks, the first trial of each block, and
trials with response times (RTs) exceeding 3000 ms
(2.0% and 1.5% of trials in Experiments 1 and 2,
respectively) were excluded from all analyses. Error
trials were excluded from the RT analyses. RT was
defined with respect to the onset of the second
stimulus regardless of stimulus order (following
Davis & Taylor, 1967; Shaffer, 1965, 1966).
Consequently, any responses occurring prior to the
onset of the second stimulus were coded as having
negative RTs. Note that whether RT is defined
with respect to the onset of the first or the second

stimulus affects overall RT, but not differences in
RT such as response congruency effects.

Our analyses focused on mean RT, mean error
rate (ER), and the mean percentage of early
responses (i.e., responses occurring prior to the
onset of the second stimulus), which we denote
p(early). Repeated measures ANOVAs were com-
puted for these measures with response congruency,
stimulus order, and SOA as factors. Given that
stimulus order was blocked in Experiment 1, the
0-ms SOA could be associated with a stimulus
order, resulting in three levels of SOA (0, 400,
and 800 ms) in the ANOVAs. In Experiment 2,
the 0-ms SOA could not be associated with a
stimulus order, so there were two levels of SOA
(400 and 800 ms) in the ANOVAs. When report-
ing ANOVA results, we focus on the highest order
effects that were significant (α= .05).

The data are presented as a function of response
congruency, stimulus order, and SOA in Figure 1,
which shows similar patterns across experiments
(see Appendix B for information about task-
switching effects). The RT data pattern consisted
of two parts. First, there was a large response con-
gruency effect with target–cue order that increased
substantially with SOA: In Experiment 1, the
response congruency effect increased from 236 to
311 to 517 ms across SOA; in Experiment 2, the
effect increased from 207 to 322 to 455 ms across
SOA. Second, there was a smaller (but still size-
able) response congruency effect with cue–target
order that decreased with SOA: In Experiment 1,
the response congruency effect decreased from
129 to 111 to 92 ms across SOA; in Experiment
2, the effect decreased from 207 to 172 to 152 ms
across SOA. A net result of these divergent
changes in response congruency effects was that
overall RT was shorter with target–cue order than
with cue–target order (800 vs. 970 ms in
Experiment 1; 715 vs. 919 ms in Experiment 2,
excluding the 0-ms SOA). The pattern described
above is reflected in a three-way interaction
among response congruency, stimulus order, and
SOA that was significant in Experiment 1, F(2,
46)= 37.50, MSE= 12,804, p, .001, ηp

2= .62,
and in Experiment 2, F(1, 23)= 10.91, MSE=
19,252, p, .01, ηp

2= .32.
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The ER data pattern (see Figure 1) consisted of
a large response congruency effect with both
stimulus orders across all SOAs, averaging 5.5%
and 6.2% in Experiments 1 and 2, respectively.
The main effect of response congruency was sig-
nificant in Experiment 1, F(1, 23)= 41.00,
MSE= 157, p, .001, ηp

2= .64, and in
Experiment 2, F(1, 23)= 74.18, MSE= 79,
p, .001, ηp

2= .76. In Experiment 2, excluding

the 0-ms SOA, the response congruency effect
was reliably larger for target–cue order (7.3%)
than for cue–target order (5.5%), F(1, 23)=
4.32, MSE= 28, p, .05, ηp

2= .16, and overall
ER decreased slightly from 4.8% to 3.8% as
SOA increased from 400 to 800 ms, F(1, 23)=
6.57, MSE= 21, p, .05, ηp

2= .22. Similar
effects were numerically but not reliably present
in Experiment 1.

Figure 1. Data (means) from Experiments 1 and 2 (left and right panels, respectively). C-T= cue–target order, T-C= target–cue order,

SOA= stimulus onset asynchrony, p(early)= percentage of early responses.
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The p(early) data pattern (see Figure 1) con-
sisted of a large p(early) value for congruent trials
with target–cue order at an SOA of 800 ms
(40.2% and 35.3% in Experiments 1 and 2, respect-
ively); p(early) was less than 1.0% for all other con-
ditions except for incongruent trials with target–cue
order at an SOA of 800 ms (2.8% and 3.6% in
Experiments 1 and 2, respectively).1 This pattern
is reflected in a three-way interaction among
response congruency, stimulus order, and SOA
that was significant in Experiment 1, F(2, 46)=
58.03, MSE= 145, p, .001, ηp

2= .72, and in
Experiment 2, F(1, 23)= 51.79, MSE= 173,
p, .001, ηp

2= .69.

Discussion

The experiments revealed robust and distinct data
patterns for RT, ER, and p(early) arising from
manipulations of response congruency, stimulus
order, and SOA. For RT, there was a response con-
gruency effect that increased substantially across
SOA with target–cue order but decreased across
SOA with cue–target order, resulting in RT
being shorter for target–cue order than for cue–
target order. For ER, there was a response con-
gruency effect that varied little across SOA and
was slightly larger for target–cue order than for
cue–target order. For p(early), there was a large
p(early) value for congruent targets with target–
cue order at an SOA of 800 ms, but near-zero
values for all other conditions.

The p(early) data represent unequivocal evidence
of response selection prior to cue encoding. Despite
not knowing the relevant task, subjects engaged in
advance response selection when presented with
target–cue order, which uniquely benefited per-
formance with congruent targets. This advance
response selection accounts for the marked decrease
in RT with SOA for congruent targets with target–
cue order, which led to the shorter RT and larger

response congruency effect for target–cue order
than for cue–target order.

A direct implication of these findings is that the
contingent encoding assumption in verbal theoriz-
ing and computational models of task switching is
invalid. Response selection for congruent targets
is neither logically nor empirically contingent on
cue encoding, indicating that the assumption has
to be abandoned, and models have to be revised
to accommodate this change. These objectives are
realized in the next section, where we describe
modifications to one model and apply the model
to our data.

MODELLING

Compound cue retrieval

Although the contingent encoding assumption
applies to multiple models, we focus on its role in
a model of response selection in task-switching
situations called compound cue retrieval (Schneider
& Logan, 2005, 2009). The reason for this decision
is practical: We are most familiar with the model
and were able to see how it could be modified to
accommodate the findings from the present study
that invalidate the contingent encoding assump-
tion. Our decision should not be taken to imply
that other models might not also be suitably modi-
fied to account for our data. Instead, we offer this
modelling work as an example of one approach
for addressing the contingent encoding
assumption.

Compound cue retrieval involves using the cue
and the target in tandem to select a response
from memory (Schneider & Logan, 2005, 2009).
As mentioned earlier, the cue and the target are
encoded as task-relevant categorical representations
of the stimuli (Arrington et al., 2007; Schneider &
Logan, 2010). Each stimulus representation then
retrieves evidence (represented by numerical η
values) for its associated task categories from

1Three of the 24 subjects in Experiment 1 and two of the 24 subjects in Experiment 2 made no early responses on congruent trials

with target–cue order at an SOA of 800 ms. However, these subjects had mean RTs on congruent trials at an SOA of 0 ms that were

longer than their respective group means, raising the possibility that the absence of early responding at the longer SOAmight have been

due to slow responding in general.
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memory, which is combined multiplicatively:

h(category|cue, target)
= h(category|cue)× h(category|target). (1)

If a stimulus has not been encoded, then it pro-
vides no evidence for any category (i.e., η= 0). The
evidence for a category corresponds to the rate at
which that category is retrieved from memory
(Schneider & Logan, 2005). The probability of
retrieving category i is the ratio of its evidence
over the summed evidence for all categories j
belonging to the set of relevant categories R:

P(categoryi|cue, target)

= h(categoryi|cue, target)∑
j[R h(categoryj |cue, target)

. (2)

With two categories (associated with different
tasks) mapped to each response key, the probability
of retrieving evidence for response key k is the sum
of the probabilities of retrieving the categories i that
are mapped to it:

P(keyk|cue, target)=
∑

i[k

P(categoryi|cue, target).

(3)

The evidence retrieved for the alternative
responses drives a random-walk decision process
(for an overview, see Ratcliff, 2001), which is simu-
lated by computing Equations (1)–(3) for a specific
cue and target combination (with a modification
introduced below), then stochastically accumulat-
ing units of evidence for the responses according
to the probabilities from Equation (3). Following
Schneider and Logan (2005, 2009; see also
Logan & Gordon, 2001; Nosofsky & Palmeri,
1997), the time it takes to retrieve and accumulate
each unit of evidence (i.e., take a step of the random

walk) is:

T (step|cue, target)= 1∑
j[Rh(categoryj |cue, target)

.

(4)

Evidence accumulation continues at these dis-
crete time steps until the relative difference in evi-
dence between the responses meets or exceeds a
criterion C, at which point the response with the
most evidence has been selected. The time for
response selection is the product of the number of
steps to finish the random walk and the time per
step computed with Equation (4).

Schneider and Logan (2009) demonstrated that
compound cue retrieval not only achieves accurate
response selection, but also produces the response
congruency effect. The model produces the effect
because it assumes that the evidence for each
response is the sum of the evidence for the cat-
egories associated with it [Equation (3)].
Congruent targets provide evidence for categories
associated with the same response, whereas incon-
gruent targets provide evidence for categories
associated with different responses. The summed
evidence for the correct response is greater for con-
gruent targets than for incongruent targets, leading
to faster and more accurate response selection for
the former than for the latter.

Before discussing how we modified the model, a
final point worth mentioning is that compound cue
retrieval should not be confused with direct, non-
mediated retrieval of a response using a configural
representation of the cue and the target, without
reference to task-related representations. The cue
and the target are represented separately in the
model, and each retrieves evidence for associated
task categories, which then determines which
response is selected via the random walk. We
explained compound cue retrieval in this way in
previous articles (Logan & Schneider, 2010;
Schneider & Logan, 2005, 2009). Thus, the
model is compatible with research showing that
typical task-switching performance is mediated by
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task-relevant categorical knowledge (e.g.,
Dreisbach, Goschke, & Haider, 2006, 2007).

Introducing baseline evidence

The preceding text described the basic model of
compound cue retrieval used in previous work
(Logan & Schneider, 2010; Schneider & Logan,
2005, 2009). The critical modification to the
model in the present study involves abandoning
the contingent encoding assumption. More specifi-
cally, the assumption is that if a stimulus has not
been encoded, it provides no evidence for any cat-
egory (i.e., η= 0 for that stimulus), meaning that
the combined evidence computed with Equation
(1) equals zero, and response selection is inactive.
Here, we allow for the possibility of response selec-
tion before both stimuli have been encoded by
introducing baseline evidence (similar to back-
ground-noise elements; Nosofsky & Alfonso-
Reese, 1999). Themodel is initialized with evidence
that is neutral with respect to all task categories (i.e.,
a common, nonzero η value), and this evidence
serves as a baseline for response selection prior to
stimulus encoding. In other words, η. 0 instead
of η= 0 for an unencoded stimulus. Baseline evi-
dence is used from the start of a trial until a stimulus
is encoded, at which point the evidence for a cat-
egory changes to reflect the strength of association
between the encoded stimulus and that category.
Once both stimuli are encoded, baseline evidence
no longer plays a role in response selection because
evidence comes exclusively from the stimuli.

From a theoretical perspective, baseline evidence
can be thought of as representing a “resting level”
for the response selection process in the absence
of stimuli. Due to noise in the cognitive system,
response selection might never be completely inac-
tive. Instead, it could proceed in a stochastic
manner at a low rate, remaining undetected
unless premature responses are made by chance
before any stimuli have been presented. Such cog-
nitive activity is consistent with the general knowl-
edge that neural activity in the brain does not cease
when a task is not being performed. There con-
tinues to be a modest level of activity reflecting
either task-unrelated processing or simply

background noise, and our conception of baseline
evidence is an abstract representation of such
activity at a cognitive level. From this point of
view, one could argue that baseline evidence
makes the model more physiologically plausible.

The introduction of baseline evidence leads to two
modes of response selection in the model: a guessing
mode and a progress mode.When themodel is in gues-
sing mode, it retrieves evidence for the alternative
responses with equal probabilities; therefore, the
model is effectively “guessing” which response to
select. When the model is in progress mode, it
retrieves evidence for the alternative responses with
unequal probabilities; therefore, the model makes
progress toward selecting the response with the
higher retrieval probability. As stimuli are encoded
during a trial, themodel transitions from the guessing
mode to the progress mode. Note that this transition
reflects a quantitative change in the model’s behav-
iour—its structure remains unchanged—and does
not reflect a mixture of separate, independent pro-
cesses (for other models with similar transitions, see
Ratcliff, 1980; White, Ratcliff, & Starns, 2011).

To understand when and why the model is in
the guessing and progress modes, we consider
how the model operates in each of the six possible
stimulus encoding scenarios that could occur
during a trial. To facilitate this effort, we provide
numerical examples in Appendix C. We also indi-
cate when each scenario occurs during a trial in
Figure 2, which illustrates how response selection
changes as the cue and the target are encoded for
both stimulus orders.

Scenario 1: Cue unencoded, target unencoded
This scenario exists at the start of every trial (see
Figure 2). Given that both stimuli are unencoded,
response selection is driven by baseline evidence.
Consequently, evidence is accumulated for the
alternative responses with equal probabilities, and
the model is in guessing mode.

Scenario 2: Cue encoded, target unencoded
Once the cue is encoded, the evidence it provides
for a category reflects the strength of association
between the cue and that category.However, the cat-
egories that are strongly associated with the cue are
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mapped to different response keys. Consequently,
evidence is accumulated for the alternative responses
with equal probabilities, and the model remains in
guessing mode (see Figure 2A).

Scenario 3: Cue unencoded, incongruent target
encoded
This scenario is the complement to Scenario
2. Once the target is encoded, the evidence it

provides for a category reflects the strength of
association between the target and that cat-
egory. However, the categories that are strongly
associated with the target are mapped to differ-
ent response keys because the target is incon-
gruent. Consequently, evidence is accumulated
for the alternative responses with equal prob-
abilities, and the model remains in guessing
mode (see Figure 2B).

Figure 2. Schematic illustration of response selection in the model with baseline evidence. Block arrows are associated with scenarios that reflect

modes of response selection; horizontal block arrows reflect the guessing mode, and inclined block arrows reflect the progress mode. See text for

further details. SOA= stimulus onset asynchrony, C= criterion for response selection.
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Scenario 4: Cue unencoded, congruent target encoded
This scenario differs from Scenario 3 in that the
categories that are strongly associated with the
target are mapped to the same response key
because the target is congruent. This fact makes
advance response selection possible in principle;
baseline evidence makes it possible in practice.
Evidence is accumulated for the correct response
with a higher probability than for the incorrect
response, transitioning the model from guessing
mode (Scenario 1) to progress mode (see Figure
2B).

Scenario 5: Cue encoded, incongruent target encoded
The cue alone (Scenario 2) or the incongruent
target alone (Scenario 3) provides insufficient evi-
dence for discriminating between the alternative
responses. However, multiplication of the evidence
from both stimuli provides sufficient evidence for
response selection—this is the essence of com-
pound cue retrieval. Consequently, evidence is
accumulated for the correct response with a
higher probability than for the incorrect response,
transitioning the model from guessing mode
(Scenario 2 or 3) to progress mode (see Figure 2).
Baseline evidence is no longer involved in response
selection at this point.

Scenario 6: Cue encoded, congruent target encoded
This scenario differs from Scenario 5 in that the
congruent target alone (Scenario 4) does provide
sufficient evidence for discriminating between the
alternative responses. However, the cue provides
additional evidence that can facilitate response
selection in conjunction with the target evidence.
Consequently, evidence is accumulated for the
correct response with a higher probability than for
the incorrect response, transitioning the model
from guessing mode (Scenario 2) to progress
mode in the case of cue encoding finishing before
target encoding (see Figure 2A), or keeping the
model in progress mode in the case of target encod-
ing finishing before cue encoding (see Figure 2B).

Baseline evidence is no longer involved in response
selection at this point.2

The key to accounting for our data is Scenario
4, where baseline evidence allows progress in
response selection for congruent targets prior to
cue encoding (see Figure 2B). Such progress
would occur with target–cue order, which provides
the opportunity for advance response selection,
and it would be more pronounced at longer
SOAs, which provide the opportunity for response
selection to finish and the response to be executed
before the cue has been encoded or even pre-
sented. In principle, this means that advance
response selection should result in a nonzero
p(early) value for congruent targets with target–
cue order at a long SOA, a decrease in RT with
SOA for congruent targets with target–cue order,
and the net effects of a shorter RT and a larger
response congruency effect for target–cue order
than for cue–target order. To determine whether
this can be accomplished in practice, we simulated
our modified model and fitted it to our data.

Simulation details

Individual trials representing our experimental con-
ditions were simulated as follows. Cue and target
encoding times were sampled from exponential dis-
tributions with means μc and μt, respectively. We
used exponential distributions based on work
showing that cue encoding time tends to be distrib-
uted exponentially (Logan & Bundesen, 2003). For
simplicity, we assumed that target encoding time
was also distributed exponentially. Cue encoding
and target encoding commenced at times depen-
dent on the stimulus order and SOA. Both encod-
ing processes could occur in parallel with each other
and with response selection, which commenced at
the start of each trial using baseline evidence, rep-
resented by ηb. Once the cue was encoded, the evi-
dence for a category changed to reflect the
association between the cue and that category,
which was either strong (ηc−a) or weak (ηc−u).

2Appendix C shows that the retrieval probability for the correct response in Scenario 6 is higher than that in Scenario 5. Higher

retrieval probabilities lead to shorter RTs and lower ERs. The difference in retrieval probability between congruent and incongruent

targets is what allowed our previous model of compound cue retrieval to produce the response congruency effect.
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Once the target was encoded, the evidence for a
category changed to reflect the association
between the target and that category, which was
either strong (ηt−a) or weak (ηt−u). Weak associ-
ations were represented by the same evidence
value for the cue and the target, ηct−u (i.e.,
ηc−u= ηt−u= ηct−u).

3

Evidence was used in Equations (1)–(4) (see
Appendix C) to simulate the random-walk
process for response selection. The time for
response selection was added to a constant
(RTbase, the time for response execution) to
produce the model’s RT relative to the onset of
the first stimulus. With response selection com-
mencing at the start of each trial and occurring
in parallel with stimulus encoding, any stimulus
encoding time that elapsed prior to the com-
pletion of response selection was subsumed in
response selection time. Given that experimental
RT was defined relative to the onset of the
second stimulus, we subtracted the SOA from
the model’s RT.

We simulated the experimental conditions
representing the factorial combination of stimulus
order (cue–target order or target–cue order),
response congruency (congruent or incongruent),
and SOA (0, 400, or 800 ms). However, because
the 0-ms SOA could not be associated with a
stimulus order in Experiment 2, and the model
does not predict a difference between stimulus
orders at that SOA, only 10 distinct experimental
conditions were simulated. We fitted the model
simultaneously to the RT, ER, and p(early) group
data from both experiments (a total of 66 data
points; 36 from Experiment 1 and 30 from
Experiment 2) because of their similar data pat-
terns. There were eight free parameters (μc, μt,
RTbase, C, ηc−a, ηt−a, ηct−u, and ηb), and the
same parameter values were used for all conditions
and for all dependent measures, which strongly
constrains the model. Parameter optimization was
done using a simplex algorithm that minimized
the following composite root mean squared devi-
ation (RMSD) between data and model predic-

tions:

RMSD=RMSDRT−Exp1+RMSDRT−Exp2

+3×RMSDER−Exp1+3×RMSDER−Exp2

+5×RMSDp(early)−Exp1

+5×RMSDp(early)−Exp2, (5)

where Exp1 and Exp2 refer to Experiments 1 and
2, respectively. Model-fitting exercises indicated
that Equation (5) gave relatively equal emphasis
to the RMSDs for RT, ER, and p(early). Besides
RMSD, we also computed the correlation (r)
between data and model predictions separately for
each dependent measure. After parameter optimiz-
ation, we obtained a final set of model predictions
by simulating the model for 1,000,000 trials
[1000 (virtual subjects)× 10 (conditions)× 100
(trials per condition)] and computing means
across virtual subjects.

Results and discussion

Model with baseline evidence
Model RT, ER, and p(early) are presented as a
function of response congruency, stimulus order,
and SOA in the left panels of Figure 3. The
fitted parameter values and fit indices are provided
in Table 1. The model reproduced all the critical
effects in the RT data (compare the top-left panel
of Figure 3 with the top panels of Figure 1).
There was a response congruency effect that
increased substantially across SOA with target–
cue order (from 158 to 326 to 566 ms) but
decreased to a lesser degree across SOA with cue–
target order (from 158 to 76 to 44 ms), resulting
in RT being shorter for target–cue order than for
cue–target order (679 vs. 934 ms, excluding the
0-ms SOA). This pattern replicates the three-way
interaction among response congruency, stimulus
order, and SOA that was significant in both exper-
iments. The model produces this pattern primarily

3The subscripts c, t, a, and u stand for cue, target, associated, and unassociated, respectively.
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because advance response selection occurs for con-
gruent targets with target–cue order (Scenario 4).

The model also reproduced all the critical effects
in the p(early) data (compare the bottom-left panel
of Figure 3 with the bottom panels of Figure 1).
There was a large p(early) value of 32.3% for con-
gruent targets with target–cue order at an SOA of
800 ms, which compares favourably with the data

(40.2% and 35.3% in Experiments 1 and 2, respect-
ively). The p(early) values were near zero for all
other conditions, although the model did reproduce
a small p(early) value of 2.3% for incongruent
targets with target–cue order at an SOA of 800
ms that was also present in the data (2.8% and
3.6% in Experiments 1 and 2, respectively). This
pattern replicates the three-way interaction

Figure 3. Predictions (means) of the model with and without baseline evidence (left and right panels, respectively). C-T= cue–target order, T-

C= target–cue order, SOA= stimulus onset asynchrony, p(early)= percentage of early responses.
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among response congruency, stimulus order, and
SOA that was significant in both experiments.
The model produces this pattern because advance
response selection occurs for congruent targets
with target–cue order at an SOA of 800 ms
(Scenario 4), sometimes culminating in response
execution prior to cue onset. Advance response
selection also occurs for incongruent targets with
target–cue order at an SOA of 800 ms, but more
rarely because the model is in guessing mode
(Scenario 3); hence, p(early) is only slightly above
zero.

The main weakness in the model fit is with
respect to the ER data (compare the middle-left
panel of Figure 3 with the middle panels of
Figure 1). Although the model produced a response
congruency effect (5.9%) that compares favourably
with the data (5.5% and 6.2% in Experiments 1 and
2, respectively), it predicted increases in ER across
SOA for congruent targets with cue–target order
and incongruent targets with target–cue order.
The increase for congruent targets with cue–
target order is better understood as a decrease as
SOA goes to 0 ms because at a long-enough
SOA, the prediction for congruent targets would
converge with the prediction for incongruent
targets. This is a consequence of the model being
in guessing mode for a long time—given enough
time, guessing can lead to response selection, but
at the expense of more errors. However, as SOA
goes to 0 ms, target encoding will finish sooner
for congruent targets, which will facilitate response
selection and reduce errors because the model will
transition from guessing mode to progress mode
(Scenario 4 or 6). The increase for incongruent
targets with target–cue order reflects the model
being in guessing mode for a long time. The
increase is larger than for incongruent targets
with cue–target order because although the model
is in guessing mode for approximately the same
time, the time per step is shorter in the case of
target–cue order because the summed evidence in
Equation (4) is greater (a result of ηt−a. ηc−a;
see Table 1). It may be possible to limit the errors
produced by the model during prolonged guessing
by introducing leakage that constrains evidence
accumulation (e.g., Usher & McClelland, 2001),

although it is unclear how leakage would affect
how the model accounts for other aspects of the
data.

In summary, the model with baseline evidence
fully reproduced the RT and p(early) data patterns,
but it only partially reproduced the ER data
pattern. There are three important considerations
to keep in mind when interpreting the fit to the
ER data. First, the predicted interactions were
null effects in the data, and it is customary to
treat null effects with caution. Second, the overall
ER was quite low, which may have limited our

Table 1. Fitted parameter values and fit indices for two model

variants

Model

Variable

With baseline

evidence

Without baseline

evidence

Parameters

μc 563 173

μt 513 515

RTbase 260 265

C 9 6

ηc−a .194 .183

ηt−a .439 .281

ηct−u .010 .081

ηb .047 0

Fit indices

Experiment 1

RMSDRT 53 132

rRT .976 .913

RMSDER 2.7 0.9

rER .757 .980

RMSDp(early) 2.3 11.6

rp(early) 1.000 undefineda

Experiment 2

RMSDRT 58 107

rRT .972 .919

RMSDER 2.7 1.1

rER .770 .968

RMSDp(early) 1.0 11.2

rp(early) .999 undefineda

Note: RMSD = root-mean-squared deviation between data and

model predictions; r = correlation between data and model

predictions; RT = response time; ER = error rate; p(early) =
percentage of early responses. See text for description of

model parameters.
aFor the model without baseline evidence, the variance of

predicted p(early) equals zero; therefore, r is undefined.
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ability to observe interactions that span the range
predicted by the model. Third, the model was
fitted simultaneously to all three dependent
measures with the same parameter values, raising
the possibility that the quality of the fit to the ER
data was sacrificed a bit to enable high-quality fits
to the RT and p(early) data. These considerations
notwithstanding, we think the simulation results
are encouraging. They suggest that the introduc-
tion of baseline evidence is a useful modification
to the model, allowing it to capture the RT and
p(early) data patterns in a way that would not
have been possible if the contingent encoding
assumption had been retained. To confirm this is
the case, we also simulated the model without base-
line evidence.

Model without baseline evidence
According to the contingent encoding assump-
tion, if a stimulus has not been encoded, it pro-
vides no evidence for any category (i.e., η= 0
for that stimulus). The assumption can be
implemented in the model by setting ηb= 0,
such that response selection is inactive until
both stimuli are encoded (Scenarios 5 and 6).
Consequently, response selection commences in
progress mode and is never in guessing mode.
This nested, seven-parameter model was fitted
to the data, and its RT, ER, and p(early) are pre-
sented as a function of response congruency,
stimulus order, and SOA in the right panels of
Figure 3. The fitted parameter values and fit
indices are provided in Table 1.

It is evident that the model could not reproduce
the critical effects in the RT data (compare the
top-right panel of Figure 3 with the top panels of
Figure 1). There was a response congruency
effect, but it did not vary across SOA with
target–cue order (ranging from 135 to 138 to
137 ms) or with cue–target order (ranging from
135 to 130 to 133 ms). RT was shorter for
target–cue order than for cue–target order (743
vs. 946 ms, excluding the 0-ms SOA), but this
was due to estimation of a much longer target
encoding time than cue encoding time (515 vs.
173 ms; see Table 1). Such a difference in stimulus
encoding times prolongs RT more for cue–target

order than for target–cue order because a longer
encoding time for the second stimulus further
delays the onset of response selection (recall that
response selection is contingent on having both
stimuli encoded in this case). This model yielded
much larger RMSDs (132 and 107 ms for
Experiments 1 and 2, respectively) than the
model with baseline evidence (53 and 58 ms for
Experiments 1 and 2, respectively). Regarding the
correlation between data and model predictions, it
fitted worse than the model with baseline evidence,
significantly for Experiment 1, F(1, 4)= 10.04,
p, .05, but not for Experiment 2, F(1, 2)=
3.63, p= .20.

The model also failed to reproduce the critical
effects in the p(early) data (compare the bottom-
right panel of Figure 3 with the bottom panels of
Figure 1). Not surprisingly, the model predicted a
p(early) value of zero in every condition because
response selection did not begin until both
stimuli were encoded.

The only highlight of the model fit was that it
generally reproduced the ER data pattern
(compare the middle-right panel of Figure 3 with
the middle panels of Figure 1). The model pro-
duced a response congruency effect (6.9%) that
compares favourably with the data (5.5% and
6.2% in Experiments 1 and 2, respectively),
although it is larger because the predicted ER for
congruent targets was almost zero (0.1%) instead
of slightly above zero (1.0% and 1.1% in
Experiments 1 and 2, respectively). The model
did not predict any interactions with stimulus
order or SOA, allowing it to achieve smaller
RMSDs and higher correlations than the model
with baseline evidence (see Table 1).

In summary, the model without baseline evi-
dence was unable to reproduce the RT and
p(early) data patterns, although this inability
resulted in the fitting algorithm finding parameter
values that allowed the model to reproduce the
ER data pattern. The model’s failures regarding
RT and p(early) indicate that the contingent
encoding assumption simply does not give the
model the necessary flexibility in response selection
to accommodate the data from our experiments. It
seems clear that baseline evidence, in one form or
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another, is required for the model to engage in
advance response selection when the opportunity
arises.

GENERAL DISCUSSION

The purpose of the present study was to evaluate
the contingent encoding assumption, which is the
idea that response selection in task-switching situ-
ations does not begin until the cue and the target
have both been encoded. We tested the assumption
by manipulating response congruency, stimulus
order, and SOA in two experiments. Advance
response selection is possible in principle for con-
gruent targets with target–cue order at a long
SOA, but the contingent encoding assumption
does not allow it in practice. Thus, finding evidence
of advance response selection would be a fatal blow
to the assumption.

Both experiments revealed data patterns consist-
ent with advance response selection. There was a
response congruency effect on RT that increased
substantially across SOA with target–cue order,
resulting in RT being shorter for target–cue order
than for cue–target order. There was also a large
percentage of early responses for congruent targets
with target–cue order at an SOA of 800 ms, indi-
cating that some responses were not only selected
but also executed prior to cue onset.

These findings indicate that task-switching
models that include the contingent encoding
assumption need to be modified. To demonstrate
how this can be done, we modified Schneider and
Logan’s (2005, 2009) model of compound cue
retrieval by introducing baseline evidence. The
model is initialized with evidence that is neutral
with respect to all task categories, and this evidence
serves as a baseline for response selection prior to
stimulus encoding. As stimuli are encoded, the evi-
dence for a category moves away from baseline to
reflect the strength of association between the
stimuli and that category. Simulation of the
model with baseline evidence revealed that it
could reproduce the RT and p(early) data patterns,
although it achieved only partial success with the
ER data pattern. In contrast, simulation of a

model without baseline evidence revealed that it
could not reproduce the RT and p(early) data pat-
terns, although it achieved better success with the
ER data pattern. Collectively, the simulation
results support abandoning the contingent encod-
ing assumption and suggest that introducing base-
line evidence is a useful way of extending
compound cue retrieval.

As noted earlier, there are other models besides
compound cue retrieval that include the contingent
encoding assumption (e.g., Altmann & Gray,
2008; Sohn & Anderson, 2001). Whether the
introduction of baseline evidence or an alternative
change would enable those models to account for
our data is unclear, but we think the possibility of
successful modification exists. It also remains to
be seen whether task-switching models that do
not seem to include the contingent encoding
assumption can explain our findings. For
example, in Gilbert and Shallice’s (2002) model,
response selection is not (necessarily) contingent
on cue encoding. The model includes processing
units associated with target input, response
output, and task demand. Task demand units,
which bias the activation of the model toward the
relevant task, initially have residual, nonzero acti-
vation from the previous trial. Their activation is
subsequently modulated by top-down control
input once the cue has been encoded. Target
input and response output units, on the other
hand, initially have their activations set to zero.
Target input units do not become active until the
target has been encoded, at which point activation
can spread from the target input units and the
task demand units to the response output units.
Activation cycles through the model until the
response output units have selected a response. In
principle, the model could begin response selection
once the target has been encoded but before the cue
has been encoded because the task demand units
(which receive cue-related input) start with
residual, nonzero activation levels. The extent to
which advance response selection would occur is
difficult to ascertain because the residual activation
is weak and biased toward the previous task (which
is no longer relevant on task-switch trials).
Nevertheless, it seems possible for some progress
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to be made toward selecting the correct response for
a congruent target prior to cue encoding.

Even if our model and others can be modified to
accommodate the results of the present study,
much work remains to be done in developing a
more comprehensive model of response selection
in task switching. For example, the explanation of
the response congruency effect offered by com-
pound cue retrieval and other models is probably
incomplete because there is evidence that the
effect reflects two distinct routes for mapping
targets to responses: the mediated route and the
nonmediated route (Kiesel et al., 2007; Meiran &
Kessler, 2008; Schneider & Logan, 2009).

The mediated route involves mapping a target to
task-relevant categories (e.g., categorizing boulder
as nonliving and large), then mapping the cat-
egories to responses. Thus, the path from target
to response is mediated by a categorical represen-
tation of the target (Schneider & Logan, 2010).
The mediated route can produce a response con-
gruency effect because the two task-relevant cat-
egories will activate the same response for a
congruent target, facilitating response selection,
and different responses for an incongruent target,
interfering with response selection. The nonme-
diated route involves mapping a target directly to
a response via memory retrieval (e.g., retrieving
the knowledge that boulder requires a right keypress
response) without the intermediate step of categor-
ization. The nonmediated route can produce a
response congruency effect because a congruent
target will always retrieve the same response, facil-
itating response selection by bypassing time-con-
suming categorization, whereas an incongruent
target will retrieve different responses, interfering
with response selection. For both routes, a correct
response can still be selected for an incongruent
target (albeit more slowly than for a congruent
target) by using a task cue to isolate the task-rel-
evant category (mediated route) or response (non-
mediated route).

The task-switching literature provides some
support for the existence of each route. Meiran
and Kessler (2008) found that the response con-
gruency effect on RT was present for tasks that
readily afforded categorization of targets but

absent for tasks that did not, implicating the
mediated route. As demonstrated in the present
study and in previous work (Schneider & Logan,
2009), the response congruency effect can be mod-
elled with compound cue retrieval, which is a
formal implementation of the mediated route.
Wendt and Kiesel (2008) found that the response
congruency effect was reversed when the con-
gruency of targets was reversed by changing the
response mapping for one of the tasks, implicating
the nonmediated route (see also Kiesel et al., 2007).

The preceding text suggests that both routes
may be responsible for the response congruency
effect, although the way in which they are related
from a modelling perspective is an open question.
One possibility is that they are independent and
run in parallel, racing against each other to deter-
mine a response (Logan, 1988). Alternatively,
they could run in parallel, but the evidence that
each route provides for a response could be inte-
grated into a common evidence accumulator. Yet
another possibility is that the routes do not run in
parallel, with subjects either choosing to use one
route or the other (Rickard, 1997), or attempting
to use one route and switching to the other if the
first one fails (Anderson & Lebiere, 1998). These
candidate dual-route models could be implemented
and fitted to appropriate data sets to see whether
one approach is superior to the others. A modelling
endeavour of this sort is beyond the scope of the
present study, but it represents a worthwhile
avenue for future research.

An important take-home message from this dis-
cussion and the present study is that cognitive
modelling is an ongoing enterprise that is never fin-
ished. Every model is wrong in some respects and
accounts for only certain aspects of human per-
formance. Progress can be achieved in cognitive
psychology by continually working to identify and
resolve these limitations. In the present study, we
identified an assumption about response selection
in task switching that was evident in certain com-
putational models but lacked empirical verification.
We conducted experiments to test the assumption
and found it was invalid. Instead of simply rejecting
all models to which the assumption applied, we
showed how one particular model could be
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modified to account for the challenging data,
resulting in a version that is arguably better than
the original. We think this process of testing and
modification is a vital aspect of modelling even
though it rarely occurs in the domain of task
switching. It is important because it leads to cumu-
lative model development (e.g., Anderson, 2007;
Logan, 2002, 2004; Newell, 1990; Schneider &
Anderson, 2011), by which new models inherit
the successes of their predecessors while extending
them to explain more phenomena. Cumulative
model development is not an easy venture, but we
think the payoff in terms of attaining a better
understanding of human cognition makes it
worth the effort.

Original manuscript received 17 October 2012

Accepted revision received 4 September 2013

First published online 24 October 2013
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APPENDIX A

Target words used in the experiments

Target categories Targets

living and small ant bacteria beetle flea frog

mosquito mouse rat spider wasp

living and large camel dolphin donkey elephant elk

pony shark tiger wolf zebra

nonliving and

small

bead bracelet cigar dime eraser

pebble peg sock spoon wallet

nonliving and

large

asteroid bathtub boulder canoe dorm

gym patio pier sofa tuba

APPENDIX B

Task-switching effects

Our primary analyses focused on the effects of response con-

gruency, stimulus order, and SOA because they are most rel-

evant for testing the contingent encoding assumption. For

completeness, here we report the effects of task switching,

but with an important caveat. Given that our data show

clear evidence of advance response selection prior to cue

encoding with target–cue order (see Figure 1 and main

text), one can infer that subjects were sometimes performing

both tasks on the target during a trial. This implies that the

nominal task transition indicated by the cue did not always

reflect the mental task transition of the subjects (if one

occurred at all). Consequently, we recommend that any task-

switching effects be interpreted with caution.

With two cues per task, there were three possible task tran-

sitions across trials (Logan & Bundesen, 2003; Mayr & Kliegl,

2003; Schneider & Logan, 2005, 2011): task switches (task

and cue both switch; e.g., ORIGIN followed by SIZE), task rep-

etitions (task repeats but cue switches; e.g., MAGNITUDE

followed by SIZE), and cue repetitions (task and cue both

repeat; e.g., SIZE followed by SIZE). Task transition was

included as a factor in the reported ANOVAs, but it did not partici-

pate in any significant four-way interactions with the other factors,

so it does not alter the data patterns reported in the main text.

RT became shorter going from task switches to task rep-

etitions to cue repetitions in Experiment 1 (929 to 905 to 821

ms) and in Experiment 2 (835 to 819 to 797 ms). The main

effect of task transition was significant in Experiment 1, F(2,

46)= 33.63, MSE= 27,610, p, .001, ηp
2= .59, and in

Experiment 2, F(2, 46)= 4.10, MSE= 16,474, p, .05,

ηp
2= .15. In Experiment 1, the spread among task transitions

was greater with cue–target order (means of 1034, 1000, and

875 ms for task switches, task repetitions, and cue repetitions,

respectively) than with target–cue order (means of 824, 811,

and 766 ms for task switches, task repetitions, and cue rep-

etitions, respectively), reflected by a significant interaction

between task transition and stimulus order, F(2, 46)= 15.16,

MSE= 13,465, p, .001, ηp
2= .40. However, this interaction

was not significant in Experiment 2, F, 1. No other inter-

actions involving task transition were significant for RT.

ER was higher for task switches than for task repetitions and

cue repetitions, but this effect was restricted to incongruent

trials. In Experiment 1, incongruent ERs were 8.2%, 5.4%,

and 5.6% for task switches, task repetitions, and cue repetitions,

respectively, whereas the corresponding congruent ERs were

1.1%, 1.0%, and 0.8%, respectively. In Experiment 2, incongru-

ent ERs were 9.3%, 6.3%, and 6.8% for task switches, task rep-

etitions, and cue repetitions, respectively, whereas the

corresponding congruent ERs were 1.1%, 0.9%, and 1.3%,

respectively. The interaction between task transition and

response congruency was significant in Experiment 1, F(2,

46)= 6.88, MSE= 23, p, .01, ηp
2= .23, and in Experiment

2, F(2, 46)= 4.80, MSE= 24, p, .05, ηp
2= .17. The only

remaining significant effect involving task transition was a

three-way interaction between task transition, response con-

gruency, and SOA in Experiment 2, F(2, 46)= 4.93, MSE=
15, p, .05, ηp

2= .18. However, this interaction did not

conform to any interpretable pattern, and it was not significant

in Experiment 1, F, 1.

There were no significant effects involving task transition in

the p(early) data.

APPENDIX C

Numerical examples for modelling the
stimulus encoding scenarios

To understand when and why the model is in the guessing and

progress modes of response selection, we provide numerical

examples for the six possible stimulus encoding scenarios that

could occur during a trial in our experiments. For each scenario,

we calculate Equations (1)–(3) using the following evidence

values: ηb= 3, representing baseline evidence; ηc−a and ηt−a=
20, representing evidence for a category strongly associated

with an encoded cue or an encoded target, respectively; and

ηc−u and ηt−u= 1, representing evidence for a category weakly

associated with an encoded cue or an encoded target, respect-

ively. These evidence values were chosen for illustrative purposes

only. These calculations assume that living and small are mapped

to the left response key, nonliving and large are mapped to the

right response key, the cue is for the living/nonliving task, the

incongruent target is living and large, and the congruent target

is living and small. The left response key is the correct response

for all scenarios. See the main text for discussion.
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Scenario 1: Cue unencoded, target unencoded
(guessing mode)
Equation (1):

h(living) = hb × hb = 3× 3 = 9

h(nonliving) = hb × hb = 3× 3 = 9

h(small) = hb × hb = 3× 3 = 9

h(large) = hb × hb = 3× 3 = 9

Equation (2):

P(living) = h(living)∑
j[R h(categoryj )

= 9

36
= .25

P(nonliving) = h(nonliving)∑
j[R h(categoryj )

= 9

36
= .25

P(small) = h(small)∑
j[R h(categoryj )

= 9

36
= .25

P(large) = h(large)∑
j[R h(categoryj )

= 9

36
= .25

Equation (3):

P(left) =
∑

i[left

P(categoryi) = .25+ .25 = .50

P(right) =
∑

i[right

P(categoryi) = .25+ .25 = .50

Scenario 2: Cue encoded, target unencoded (guessing
mode)
Equation (1):

h(living) = hc−a × hb = 20× 3 = 60

h(nonliving) = hc−a × hb = 20× 3 = 60

h(small) = hc−u × hb = 1× 3 = 3

h(large) = hc−u × hb = 1× 3 = 3

Equation (2):

P(living) = h(living)∑
j[R h(categoryj )

= 60

126
= .48

P(nonliving) = h(nonliving)∑
j[R h(categoryj )

= 60

126
= .48

P(small) = h(small)∑
j[R h(categoryj )

= 3

126
= .02

P(large) = h(large)∑
j[R h(categoryj )

= 3

126
= .02

Equation (3):

P(left) =
∑

i[left

P(categoryi) = .48+ .02 = .50

P(right) =
∑

i[right

P(categoryi) = .48+ .02 = .50

Scenario 3: Cue unencoded, incongruent target
encoded (guessing mode)
Equation (1):

h(living) = hb × ht−a = 3× 20 = 60

h(nonliving) = hb × ht−u = 3× 1 = 3

h(small) = hb × ht−u = 3× 1 = 3

h(large) = hb × ht−a = 3× 20 = 60

Equation (2):

P(living) = h(living)∑
j[R h(categoryj )

= 60

126
= .48

P(nonliving) = h(nonliving)∑
j[R h(categoryj )

= 3

126
= .02

P(small) = h(small)∑
j[R h(categoryj )

= 3

126
= .02

P(large) = h(large)∑
j[R h(categoryj )

= 60

126
= .48

Equation (3):

P(left) =
∑

i[left

P(categoryi) = .48+ .02 = .50

P(right) =
∑

i[right

P(categoryi) = .02+ .48 = .50
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Scenario 4: Cue unencoded, congruent target encoded
(progress mode)
Equation (1):

h(living) = hb × ht−a = 3× 20 = 60

h(nonliving) = hb × ht−u = 3× 1 = 3

h(small) = hb × ht−a = 3× 20 = 60

h(large) = hb × ht−u = 3× 1 = 3

Equation (2):

P(living) = h(living)∑
j[R h(categoryj )

= 60

126
= .48

P(nonliving) = h(nonliving)∑
j[R h(categoryj )

= 3

126
= .02

P(small) = h(small)∑
j[R h(categoryj )

= 60

126
= .48

P(large) = h(large)∑
j[R h(categoryj )

= 3

126
= .02

Equation (3):

P(left) =
∑

i[left

P(categoryi) = .48+ .48 = .96

P(right) =
∑

i[right

P(categoryi) = .02+ .02 = .04

Scenario 5: Cue encoded, incongruent target
encoded (progress mode)

Equation (1):

h(living) = hc−a × ht−a = 20× 20 = 400

h(nonliving) = hc−a × ht−u = 20× 1 = 20

h(small) = hc−u × ht−u = 1× 1 = 1

h(large) = hc−u × ht−a = 1× 20 = 20

Equation (2):

P(living) = h(living)∑
j[R h(categoryj )

= 400

441
= .91

P(nonliving) = h(nonliving)∑
j[R h(categoryj )

= 20

441
= .045

P(small) = h(small)∑
j[R h(categoryj )

= 1

441
= .00

P(large) = h(large)∑
j[R h(categoryj )

= 20

441
= .045

Equation (3):

P(left) =
∑

i[left

P(categoryi) = .91+ .00 = .91

P(right) =
∑

i[right

P(categoryi) = .045+ .045 = .09

Scenario 6: Cue encoded, congruent target
encoded (progress mode)

Equation (1):

h(living) = hc−a × ht−a = 20× 20 = 400

h(nonliving) = hc−a × ht−u = 20× 1 = 20

h(small) = hc−u × ht−a = 1× 20 = 20

h(large) = hc−u × ht−u = 1× 1 = 1

Equation (2):

P(living) = h(living)∑
j[R h(categoryj )

= 400

441
= .91

P(nonliving) = h(nonliving)∑
j[R h(categoryj )

= 20

441
= .045

P(small) = h(small)∑
j[R h(categoryj )

= 20

441
= .045

P(large) = h(large)∑
j[R h(categoryj )

= 1

441
= .00

Equation (3):

P(left) =
∑

i[left

P(categoryi) = .91+ .045 = .955

P(right) =
∑

i[right

P(categoryi) = .045+ .00 = .045
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