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The cognitive concept of response inhibition can be measured with the stop-signal paradigm. In this
paradigm, participants perform a 2-choice response time (RT) task where, on some of the trials, the
primary task is interrupted by a stop signal that prompts participants to withhold their response. The
dependent variable of interest is the latency of the unobservable stop response (stop-signal reaction time,
or SSRT). Based on the horse race model (Logan & Cowan, 1984), several methods have been developed
to estimate SSRTs. None of these approaches allow for the accurate estimation of the entire distribution
of SSRTs. Here we introduce a Bayesian parametric approach that addresses this limitation. Our method
is based on the assumptions of the horse race model and rests on the concept of censored distributions.
We treat response inhibition as a censoring mechanism, where the distribution of RTs on the primary task
(go RTs) is censored by the distribution of SSRTs. The method assumes that go RTs and SSRTs are
ex-Gaussian distributed and uses Markov chain Monte Carlo sampling to obtain posterior distributions
for the model parameters. The method can be applied to individual as well as hierarchical data structures.
We present the results of a number of parameter recovery and robustness studies and apply our approach

to published data from a stop-signal experiment.
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The stop-signal task (Lappin & Eriksen, 1966; Logan & Cowan,
1984) is frequently used to investigate response inhibition. Re-
sponse inhibition refers to the ability to stop an ongoing action that
is no longer appropriate: for example, driving your car and rapidly
hitting the break when you notice that the traffic light turned red.
The stop-signal paradigm can be used to investigate the operation
of such simple type of inhibitory control in a carefully controlled
laboratory setting.

In the standard stop-signal paradigm, participants perform a
two-choice response time (RT) task, such as responding to the
orientation of the visually presented stimuli. On some of the trials,
this primary task is interrupted by an auditory stop signal that
prompts participants to withhold their response on that trial. One of
the primary dependent variables is the time required to inhibit the
ongoing response (stop-signal RT [SSRT]). However, unlike the
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latency of the overt primary response, SSRTs cannot be observed
directly.

To formally account for performance in the stop-signal para-
digm, Logan (1981) and Logan and Cowan (1984) proposed that
response inhibition can be viewed as a horse race between two
competing processes: a go process that is set into motion by the
primary task and a stop process that is initiated by the stop signal.
If the go process wins the race, the primary response is executed;
if the stop process wins the race, the primary response is success-
fully inhibited.

Since its development, the horse race model (Logan, 1981;
Logan & Cowan, 1984) has successfully accounted for stop-signal
data in various settings and has facilitated the interpretation of
numerous stopping experiments. For instance, the stop-signal task
has been used extensively to investigate response inhibition in
different age groups (e.g., Kramer, Humphrey, Larish, Logan, &
Strayer, 1994; Ridderinkhof, Band, & Logan, 1999; Schachar &
Logan, 1990; Williams, Ponesse, Schachar, Logan, & Tannock,
1999) and clinical populations, such as children with attention-
deficit/hyperactivity disorder (ADHD; Oosterlaan, Logan, & Ser-
geant, 1998; Schachar & Logan, 1990; Schachar, Mota, Logan,
Tannock, & Klim, 2000).

The horse race model owes its popularity to the ability to
quantify the otherwise unobservable latency of stopping. Various
methods are available to estimate SSRTs. The standard analysis
methods for the horse race model only yield a summary measure
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of the latency of inhibition, such as the mean SSRT; they do not
reveal the shape of the entire SSRT distribution. It is well known
that important features of the data may be missed in focusing only
on the mean (e.g., Heathcote, Popiel, & Mewhort, 1991). A grow-
ing number of researchers therefore rely on distributional models,
like the ex-Gaussian distribution (e.g., Balota & Yap, 2011;
Matzke & Wagenmakers, 2009) to estimate the shape of entire RT
distributions. For instance, Leth-Steensen, King Elbaz, and Doug-
las (2000) reported that children with ADHD differed from age-
matched controls only in the ex-Gaussian parameter that quantifies
the tail (i.e., very long RTs) of the RT distribution. Similarly, the
RT distribution of schizophrenia patients is more variable and
follows a markedly different shape than the RT distribution of
controls, without necessarily differing in the mean (Belin & Rubin,
1995).

In the context of the stop-signal paradigm, focusing only on
mean SSRT may likewise mask crucial features of the data and
result in erroneous conclusions about the nature of response inhi-
bition. Consider, for instance, the two SSRT distributions shown in
Figure 1. The distributions have the same mean, but have clearly
different shapes. The distribution drawn in solid line is more
peaked, whereas the distribution drawn in dashed line is more
spread out, with a faster leading edge and a longer tail. Ignoring
such differences in the shapes of SSRT distributions may lead to
the incorrect conclusion that two clinical groups or experimental
conditions do not differ in SSRT. Unfortunately, the existing
methods for obtaining SSRT estimates do not enable researchers to
accurately estimate and evaluate differences in the shape of SSRT
distributions.

The goal of this article therefore is to introduce a method that
allows for the estimation of the entire distribution of SSRTSs, such
as those shown in Figure 1. Our approach is based on the assump-
tions of the horse race model. The new method rests on the concept
of censored distributions, where response inhibition is treated as a
mechanism for censoring observed RTs. In order to quantify the
shape of the distributions, the method assumes that the go RTs and
SSRTs follow a parametric form, namely an ex-Gaussian distri-

4 Mean of the SSRT distribution

fssrr(t)
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Figure 1. Examples of stop-signal reaction time (SSRT) distributions
with synthetic data. The solid line shows an SSRT distribution with a slow
leading edge and a short tail. The dashed line shows an SSRT distribution
with a fast leading edge and a long tail. Despite the differences in their
shapes, the means (i.e., black triangle) of the two distributions are equal.

bution. Note, however, that our method does not hinge on this
choice of parametric form; almost any other choice of distribution
would do just as well. The ex-Gaussian distribution is purely used
as a convenient choice to summarize the go RTs and the SSRTs.
The ex-Gaussian is a commonly used distributional model, and it
typically produces excellent fit to empirical RT distributions
(Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978, 1993;
Ratcliff & Murdock, 1976). Our approach relies on Markov chain
Monte Carlo (MCMC) sampling (Gamerman & Lopes, 2006;
Gilks, Richardson, & Spiegelhalter, 1996) and calculates posterior
distributions for the model parameters.

An important advance of our Bayesian parametric method is that
it makes it relatively easy to conduct both individual and hierar-
chical analyses. In individual analysis, the parameters of the SSRT
distribution are estimated separately for each participant. In con-
trast, the hierarchical analysis (e.g., Gelman & Hill, 2007) recog-
nizes that participants share some similarities and uses information
available from the entire group to improve parameter estimation
for the individual participants. The hierarchical approach has the
potential to provide accurate parameter estimates with relatively
few observations. Hierarchical modeling is therefore especially
valuable in developmental and clinical stop-signal studies that
typically use a very small number of trials per participant.

The outline of the article is as follows. In the first section, we
describe the stop-signal paradigm in more detail and discuss ex-
isting methods for estimating SSRTs. In the second section, we
introduce the individual and the hierarchical Bayesian parametric
approach (BPA) to the estimation of SSRT distributions. In the
third section, we report the results of various parameter recovery
studies and show that our method accurately recovered the param-
eters of the generating SSRT distributions. In the fourth section,
we apply the BPA to an existing stop-signal data set. The fifth
section concludes our investigation.

The Stop-Signal Paradigm

In the standard stop-signal paradigm (Lappin & Eriksen, 1966;
Logan & Cowan, 1984), participants perform a two-choice RT task
(i.e., the go task), such as responding to the orientation of the
visually presented stimuli (e.g., press the right button for a right-
pointing arrow and press the left button for a left-pointing arrow).
Occasionally, the go stimulus is followed by an auditory stop
signal (e.g., a high-pitched tone) that prompts participants to
withhold their response on that trial. Typically, the stop signal is
presented on a random 25%-30% of the trials. The probability of
successful inhibition can be experimentally manipulated by vary-
ing the time interval between the onset of the go stimulus and the
onset of the stop signal (i.e., stop-signal delay [SSD]). The shorter
the SSD, the more likely participants are to inhibit their response
to the go stimulus.

To facilitate the interpretation of stop-signal data, Logan (1981)
and Logan and Cowan (1984) introduced the horse race model.
The horse race model conceptualizes response inhibition as a horse
race between a go and a stop process. If the go process finishes
before the stop process, the response is an error of commission. If
the stop process finishes before the go process, the response is
successfully inhibited. According to the horse race model, re-
sponse inhibition is thus determined by the relative finishing times
of the go and the stop process. Figure 2 illustrates how the
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P(respond | stop signal) P(inhibit | stop signal)
D — go RT distribution
L 1
—
T SSD T SSRT time
onset go stimulus onset stop signal internal response to stop signal
Figure 2. Graphical representation of the horse race model. RT = response time; SSD = stop-signal delay;
SSRT = stop-signal reaction time.
Var(I) = Var(goRT) + Var(SSRT). 2)

the probability of inhibiting the response to the go stimulus (i.e.,
white area) are determined by the SSD, the SSRT, and the go RT
distribution. Go RTs that are longer than SSD + SSRT are
successfully inhibited. In contrast, go RTs that are shorter than
SSD + SSRT cannot be inhibited and result in signal-respond RTs.

The standard horse race model depicted in Figure 2 assumes
that, conditional on SSD, SSRT is constant (Logan & Cowan,
1984). This assumption is implausible, as SSRTs are certainly
variable. Also, estimated SSRTs tend to decrease as SSD in-
creases, a common finding that is explained in terms of the
variability in SSRT. At short SSDs, almost all SSRTs are fast
enough to win the race against the go RTs. The estimated mean
SSRT therefore closely approximates the mean of the entire SSRT
distribution. At long SSDs, only very fast SSRTs can win the race
against the go RTs. The estimated mean SSRT is therefore lower
than the mean of the entire SSRT distribution. As a result, SSRT
estimates are longer at short SSDs than at long SSDs (de Jong,
Coles, Logan, & Gratton, 1990; Logan & Burkell, 1986; Logan &
Cowan, 1984).

To account for variability in SSRT, Logan and Cowan (1984)
introduced the complete version of the horse race model. The
complete race model treats both go RTs and SSRTs as independent
random variables. To formalize the model, Logan and Cowan
made the following simplifying assumptions about the indepen-
dence of the go and the stop process. According to the context
independence assumption, the distribution of go RTs is the same
for go trials and for stop-signal trials. According to the stochastic
independence assumption, the finishing times of the go and the
stop process are uncorrelated. These two independence assump-
tions allow one to treat the go RT distribution on go trials as the
underlying distribution of go RTs on stop-signal trials.

The formulation of the complete race model is closely con-
nected to the concept of inhibition functions: functions that de-
scribe the relationship between the P(respond | stop-signal) and
SSD. As shown in Figure 3, the P(respond | stop-signal) typically
increases with increasing SSD. Logan and Cowan (1984) treated
the inhibition function as a cumulative distribution and showed
that its mean equals the difference between the mean go RT and
the mean SSRT:

E(I) = E(g0RT) — E(SSRT). (1)

Further, they showed that the variance of the inhibition function
equals the sum of the variances of the go RTs and the SSRTs:

Note that the derivation of the complete horse race model is not
based on any specific distribution shapes for the go RT and SSRT
distributions.

Estimating SSRTs

One of the major advantages of the horse race model is that it
allows for the estimation of the otherwise unobservable SSRT.
Various methods are available for estimating SSRTs. The choice
of method depends on the way SSDs are set in a particular
experiment.

The SSD can be set according to the fixed-SSDs procedure or
according to the staircase tracking procedure (e.g., Logan, 1994).
The fixed-SSDs procedure requires a number of a priori chosen
delays to be presented to the participants (e.g., SSDs of 80, 160,
240, 320, 400, and 480 ms; Logan & Burkell, 1986). Stop signals
at the different SSDs are presented with equal frequencies at a
random order. The challenge is to find a set of SSDs that span the
entire range of the inhibition function. For the fixed-SSDs proce-
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Figure 3. Example of an inhibition function based on synthetic data from
the recovery study for the individual Bayesian parametric approach. The
figure shows how the probability of responding on a stop-signal trial
increases with increasing stop-signal delay (SSD).
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dure, the integration method (Logan, 1981; Logan & Cowan,
1984) is the most popular approach to estimate SSRTs. The inte-
gration method assumes that SSRT is constant. SSRTs are esti-
mated from the observed go RT distribution and the P(respond |
stop-signal) by finding the point (i.e., SSRT + SSD) at which the
integral of the go RT distribution equals the P(respond | stop-
signal):

P(respond | stop — signal) = f SSRT+SSD

—o

feo(t)dt. 3)

In terms of Figure 2, the integration method involves deriving
the time point at which the internal response to the stop signal
occurs and subtracting SSD to obtain the SSRT. In practice, the
following procedure is used: Go RTs are collapsed into a single
distribution and are rank ordered. Subsequently, the nth go RT is
selected, where 7 is obtained by multiplying the number of go RTs
by the P(respond | stop-signal) at a given SSD. Lastly, the SSD is
subtracted to arrive at the SSRT. The integration method yields
SSRT estimates for each SSD. As estimated SSRTs tend to de-
crease with increasing SSD (Logan & Burkell, 1986; Logan &
Cowan, 1984), SSRTs at different SSDs are often averaged to
yield a summary score for each participant.

The integration method has several drawbacks. It assumes that
SSRT is constant, an assumption that is certainly incorrect. More-
over, the integration method requires a relatively large number of
observations to produce accurate estimates of average SSRT. Re-
searchers are advised to present participants with at least 900 go
trials and 60 stop-signal trials on each of five SSDs (Band, van der
Molen, & Logan, 2003).

The second method for presenting SSDs, the staircase tracking
procedure, sets SSDs dynamically, contingent on participants’
performance. A typical staircase procedure will increase SSD by,
say, 50 ms after successful inhibition and decrease SSD by 50 ms
after unsuccessful inhibition (see, e.g., Bissett & Logan, 2011;
Logan, Schachar, & Tannock, 1997; Osman, Kornblum, & Meyer,
1986; Verbruggen, Logan, & Stevens, 2008). This tracking proce-
dure results in an overall P(respond | stop-signal) of .50 for each
participant.

For the staircase tracking procedure, the mean method is the
easiest approach to estimate SSRTs. The mean method originates
from Logan and Cowan’s (1984) treatment of SSRT as a random
variable and is based on the following relationship:

E(SSRT)= E(goRT) — E(I). “)

Mean SSRT is thus given by the difference between the mean go
RT and the mean of the inhibition function. Several approaches are
available to compute the mean of the inhibition function (see, e.g.,
Logan, 1994; Logan & Cowan, 1984). The simplest way is to
exploit the fact that when the staircase tracking procedure yields an
overall P(respond | stop-signal) of .50, the mean of the inhibition
function equals the mean of the SSDs. As shown in Equation 4, the
mean SSRT can be obtained by subtracting the mean SSD from the
mean of the go RTs (Logan & Cowan, 1984; Logan et al., 1997).

The mean method can be used with a relatively small amount of
data. Stop-signal experiments with healthy young adults typically
include a total of 500-1,000 trials. Developmental and clinical
studies generally include 250500 trials, but investigations with as
few as 100-250 trials are also common. Note, however, that
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contrary to the integration method, the mean method cannot be
used to calculate SSRTs for each SSD separately.

Several variants of the integration and the mean method are
available for the fixed SSDs as well as the staircase tracking
procedure (for a summary, see Verbruggen & Logan, 2009). Band
et al. (2003) used simulations to show that SSRT estimates for
which the P(respond | stop-signal) equals .50, such as the mean
method, are the most reliable. The mean method therefore has
become the dominant method for estimating SSRTs.

Estimating Variability in SSRT

Logan and Cowan’s (1984) treatment of SSRT as a random
variable provides a method for estimating the variability in SSRT.
Logan and Cowan showed that the variance of the inhibition
function can be calculated from its slope at the median. Once the
variance of the inhibition function is known, the variance of
SSRTs can be obtained from Equation 2. Logan and Cowan’s
method is based on the observation that in a symmetrical distri-
bution, the variance is proportional to the slope of the cumulative
distribution at the median. If we treat the inhibition function as a
cumulative distribution and assume a particular parametric form,
say, normal, the slope of the inhibition function at the median is
given by

1

Bys= ————.
7 /27 x sD(1)

It then follows from Equation 2 that the variance of SSRTs can be
obtained by

(&)

Var(SSRT) = — Var(goRT). (6)

1 2
(Bo.s\/g)
In contrast to the generality of the horse race model, the Logan
and Cowan method for estimating SSRT variability assumes a
particular parametric form of the inhibition function. Most impor-
tantly, Band et al. (2003) showed with simulations that the Logan
and Cowan method overestimates the true variability in SSRT.

An Existing Method for Estimating SSRT
Distributions

Up to now, the only existing approach for estimating the entire
distribution of SSRTs was developed by Colonius (1990; see also
de Jong et al., 1990, p. 181). Colonius showed that the survival
distribution of SSRTs can be recovered using the distribution of go
RTs, the distribution of signal-respond RTs, and the P(respond |
stop-signal) at a given SSD. Formally,

P(SSRT + SSD > | SSD)

fsr(t1SSD)

Jeo(1)
where f,

wo(t) and fsr(1ISSD) are the probability density functions of
the go RTs and the signal-respond RTs, respectively. Colonius’s
method does not depend on the specific parameterization of the go
RT and the signal-respond RT distributions. The densities f,(7)
and f4(7ISSD) can be estimated with various nonparametric den-

= P(respond | stop-signal, SSD) X



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

ESTIMATING STOP-SIGNAL RT DISTRIBUTIONS

sity estimation methods (e.g., Silverman, 1986). Once the survival
distribution of SSRTs is obtained, measures of location (e.g.,
median) and dispersion (e.g., interquartile distance) can be calcu-
lated easily.

Although Colonius’s (1990) method is straightforward and el-
egant, it requires a very large number of observations to perform
adequately (Logan, 1994). Band et al. (2003) used simulations to
show that the Colonius method underestimates SSRT and overes-
timates its variability. In our implementation, over 250,000 stop-
signal trials per SSD were required to obtain relatively accurate
estimates of SSRT distributions. Using a more realistic number of
stop-signal trials (e.g., 200 per SSD) resulted in inaccurate esti-
mates, especially in the tails of the SSRT distribution. These
problems are typical of nonparametric methods that estimate dis-
tribution tails from data (Luce, 1986).

In sum, the stop-signal paradigm offers various methods to
estimate the otherwise unobservable latency of stopping. Most
methods only provide a summary measure of SSRT and are unable
to accurately estimate the variability in SSRT. The only existing
method for estimating entire SSRT distributions requires an unre-
alistically large number of observations to produce accurate esti-
mates, particularly in the tail of the SSRT distribution. In what
follows, we present a novel approach that relies on a parametric
assumption to quantify the shape of the go RT and the SSRT
distributions. As a result, the new method can provide accurate
estimates of SSRT distributions even with relatively few ob-
servations.

Bayesian Parametric Approach for the Estimation of
SSRT Distributions

Here we introduce a novel approach that allows for the
estimation of the entire distribution of SSRTs. The method
assumes that the go RTs and SSRTs follow an ex-Gaussian
distribution. The ex-Gaussian distribution is purely used as a
convenient choice to describe the go RTs and SSRTs. The
ex-Gaussian is a frequently used distributional model that typ-
ically produces excellent fit to empirical RT distributions
(Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978,
1993; Ratcliff & Murdock, 1976). The new approach may be
applied to individual as well as hierarchical data structures and
relies on MCMC sampling to obtain estimates of the parameters
of the ex-Gaussian SSRT distribution.

We first introduce the rationale behind the BPA, with special
focus on the ex-Gaussian distribution and the assumptions of
the method. We then introduce the basic concepts of Bayesian
parameter estimation. Lastly, we present the individual and
hierarchical BPA models for estimating SSRT distributions.

Introducing the Bayesian Parametric Approach

Rationale. The BPA rests on the concept of right-censored
distributions. In right-censored distributions, observations to
the right of a cutoff point (i.e., the censoring point) are omitted,
but the number of censored observations is known. Censoring is
a type of missing data problem that is frequently encountered in
survival analysis (e.g., Elandt-Johnson & Johnson, 1980). In
most applications, the censoring point is known and the focus is
on estimating the parameters of the censored distribution. For
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instance, imposed censoring has been considered as a method to
accommodate outliers in estimating the parameters of RT dis-
tributions (Ulrich & Miller, 1994).

As shown is Figure 2, the estimation of SSRT with the
standard horse race model with constant SSRT can be viewed as
a censoring problem. Specifically, the signal-respond RT dis-
tribution (i.e., gray area) can be treated as a right-censored go
RT distribution with a constant censoring point that is given by
the finishing time of the stop process (i.e., SSD + SSRT). On
a given SSD, go RTs that are shorter than the finishing time of
the stop process are observed. In contrast, go RTs that are
longer than the finishing time of the stop process are success-
fully inhibited and therefore cannot be observed. Note that
contrary to typical censoring problems, the censoring point of
the go RT distribution is unknown. The estimation of SSRT
therefore involves estimating the censoring point of the go RT
distribution.

The same reasoning can be extended to the estimation of the
entire SSRT distribution with the complete horse race model.
The censoring problem is, however, complicated by the fact that
both go RTs and SSRTs are treated as random variables. As
shown in Figure 4, the censoring point on a given SSD takes on
different values on each stop-signal trial (i.e., SSD + SSRT,,
SDD + SSRT,, and SSD + SSRT;). The signal-respond RT
distribution (i.e., gray area) can be viewed as a censored go RT
distribution with censoring points drawn from the SSRT distri-
bution that is shifted with the SSD on the time axis to longer
RTs. The estimation of the SSRT distribution therefore involves
estimating the finishing time distribution of the stop process
that censors the go RT distribution.

The BPA is a parametric approach and as such involves choos-
ing a parametric form for the go RT and the SSRT distribution. In
what follows, we assume that go RTs and SSRTs—and therefore
the finishing times of the stop process—are ex-Gaussian distrib-
uted and focus on simultaneously estimating the parameters of the
two distributions.

Ex-Gaussian distribution. The BPA assumes that the go
RTs and the SSRTs are ex-Gaussian distributed. The ex-
Gaussian distribution is given by the convolution of a Gaussian
and an exponential distribution. The ex-Gaussian has three
parameters. The w and o parameters give the mean and the
standard deviation of the Gaussian component and reflect the
leading edge and mode of the distribution. The T parameter
gives the mean of the exponential component and reflects the
tail of the distribution.

The ex-Gaussian distribution has a positively skewed uni-
modal shape that typically fits empirical RT distributions well
(Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978,
1993; Ratcliff & Murdock, 1976). Figure 5 shows changes in
the ex-Gaussian distribution as a result of changes in the p, o,
and T parameters. Increasing the p parameter shifts the entire
distribution to longer RTs and increases only the mean. Increas-
ing o influences the shape of the distribution and increases only
the variance. Lastly, increasing T influences both the location
and the shape of the distribution and therefore increases both
the mean and the variance (see Equations 11 and 12).

The probability density function of the ex-Gaussian is
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Signal-respond RT distribution —> go RT distribution

O —
SSD SSRT, : : time
SSRT, :

SSRT,

. . Stop-signal RT distribution
onset go stimulus onset stop signal

Figure 4. Graphical representation of the complete horse race model. RT = response time; SSD = stop-signal
delay; SSRT = stop-signal reaction time.
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T 7 T respectively. Equation 11 and Equation 12 illustrate how two
c>0, >0, (8) SSRT distributions with the same mean or variance may have very

different shapes, as illustrated in Figure 1.
We use the ex-Gaussian distribution purely as a descriptive

(_ 2) tool to summarize the go RT and the SSRT distributions (see
dy. )

where @ is the standard normal distribution function, given by

r— (o) — [
q;( b_o p_ o

1
) e

The distribution function of the ex-Gaussian is

also Band et al., 2003; Heathcote et al., 1991; Ratcliff, 1978;
Wagenmakers, Maas, Dolan, & Grasman, 2008). We do not
assume that changes in the ex-Gaussian parameters map onto
changes in specific cognitive processes (Matzke & Wagenmak-
<02 (= M) (,_ mn 0) ers, 2009). Nevertheless, the ex-Gaussian can excellently ac-

2

commodate the shape of RT distributions and is easy to fit to
data. Moreover, as will be discussed later, sensitivity analyses
(10) indicated that the ex-Gaussian-based BPA is robust to misspeci-
fication of the parametric form of the go RT and SSRT distri-
butions. Note that other distributional assumptions can easily be

272 T o T

and its mean and variance equal

E(t) —ptT (11) made within our method.
Assumptions of the BPA. Similar to the complete horse race
and model, the BPA assumes that go RTs and SSRTs are independent
A Default Parameter Set B Increasing p C Increasing o D Increasing t

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
t(s) t(s) t(s) t(s)

Figure 5. Changes in the shape of the ex-Gaussian distribution as a result of changes in the ex-Gaussian
parameters W, o, and 7. The parameter sets used to generate the distributions are p = .5, 0 = .05, 7 = .3 (A);
p=1L,0oc=.051=3B;pn=50c=2,7=3C);andpn=.5,0=.0571=.8(D).
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random variables. The independence of the go and the stop process
allows one to treat the go RT distribution on go trials as the
underlying distribution of go RTs on stop-signal trials. The BPA
assumes that the go RTs and the SSRTs follow ex-Gaussian
distributions, with parameters p,,, 0., and T,, for the go RT
distribution and o, Ogops and T, for the SSRT distribution.
The log-likelihood of the g = 1, ..., G go RTs is given by

G
In L(“’go’ Ggo’ Tgo)go = 21 In fgo(t ;“’go’ Ggu’ Tgo)’ (13)
2=

where f,o(f; Wgo» Tgor Teo) 1S the probability density of the ex-
Gaussian go RT distribution given in Equation 8.

The log-likelihood of the data on the s = 1, ..., S stop-signal
trials on a given SSD consists of the sum of the log-likelihoods of
the r = 1, ..., R signal-respond RTs and the i = 1, ..., [
successful inhibitions. According to the race model, signal-
respond RTs are obtained on stop-signal trials where the finishing
time of the go process is shorter than the finishing time of the stop
process (i.e., go RT < SSD + SSRT). The log-likelihood of a
given signal-respond RT, 7, can therefore be computed by (a)
evaluating the probability density function of the go RT distribu-
tion at 7, and (b) evaluating the probability of obtaining an SSD +
SSRT that is longer than ¢, with the distribution function of the
finishing time distribution of the stop process, that is, the distri-
bution function of the SSRTs shifted with the SSD.

Similar reasoning can be extended to the log-likelihood of the
successful inhibitions on signal-inhibit trials. According to the race
model, successful inhibitions are obtained on stop-signal trials
where the finishing time of the go process is longer than the
finishing time of the stop process (i.e., go RT > SSRT + SSD).
The log-likelihood of a given SSD + SSRT, ¢, can be computed
by (a) evaluating the probability of obtaining a signal-respond RT
that is longer than ¢, with the distribution function of the go RT
distribution and (b) evaluating the probability density function of
the finishing time distribution of the stop process (i.e., SSRT
distribution shifted with SSD) at #,. Note, however, that SSRTs are
by definition unobservable. Obtaining the log-likelihood on signal-
inhibit trials therefore involves integrating out #; from the go RT
and the stop process finishing time distributions. Formally,

In L (Hgor Tgor Teor Mstopr Tstops TStOP)slop:
= ;Rl {In foo(1:: Mgor Tg0n Tyo)
+1n[1 = Foiop(t13Pstops Fops Taops SSD) I}
+z (1= Foollibgo 00 Te0)]

X fstop(ti; P‘stopv o-stop’ Tstop’ SSD)dt’ (14)

where foo(f; oo Tgos Tao) AN Fyo (£ Moo Tgos Tyo) are the prob-
ability density and the distribution function of the ex-Gaussian go
RT distribution given in Equations 8 and 10, respectively. Simi-
larly, fslop(t; MKstop> Ostop> Tstops SSD) and Fstop(t; Mstop> Ostops Tstops
SSD) are the probability density and the distribution function of
the ex-Gaussian finishing time distribution of the stop process, that
is, the SSRT distribution shifted with the SSD.

The goal is to simultaneously estimate the p,,, o
parameters of the go RT distribution and the p,,, O

and Ty,

stop? and Tstop

go’
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parameters of the SSRT distribution. Parameter estimation may
proceed by means of standard maximum likelihood estimation
(Dolan, van der Maas, & Molenaar, 2002; Myung, 2003). How-
ever, the BPA is intended to handle individual as well as hierar-
chical data structures. Maximum likelihood estimation can become
practically difficult for hierarchical problems, so we chose to use
Bayesian parameter estimation instead. This also confers the typ-
ical benefits of Bayesian estimation, such as a coherent inferential
framework.

Bayesian Parameter Estimation

In Bayesian parameter estimation, we start with a prior proba-
bility distribution for the parameter of interest. The prior distribu-
tion quantifies the existing knowledge about the parameter. The
prior distribution is then updated by the incoming data (i.e., like-
lihood) to yield a posterior probability distribution under Bayes’s
rule:

likelihood X prior

posterior = (15)

marginal likelihood”

The marginal likelihood is the probability of the observed data and
does not involve the parameters of interest. Equation 15 can hence
be expressed as

posterior = likelihood X prior. (16)

The top panel of Figure 6 illustrates the basic concepts of
Bayesian estimation for the parameters of the SSRT distribution
with simulated data from a synthetic participant. For each param-
eter, we start with a uniform prior distribution reflecting the
assumption that all values of the parameter within some wide
range are equally likely a priori. The prior distributions are then
updated by the data to yield the posterior distributions. The pos-
terior distributions quantify all the available information about the
parameters. The central tendency of the posterior distribution can
be expressed by its mean, median, or mode. The central tendency
of the posterior is often used as a point estimate of the parameter
(e.g., with a uniform prior, the mode corresponds to the maximum-
likelihood estimator). The dispersion of the posterior distribution
can be quantified by the standard deviation or the percentiles. The
dispersion of the posterior conveys important information about
the precision of the parameter estimates: The larger the posterior
standard deviation, the greater the uncertainty of the estimated
parameter.

In many applications, the posterior distribution cannot be de-
rived analytically. Fortunately, the posterior can be approximated
with numerical sampling techniques such as MCMC sampling
(Gamerman & Lopes, 2006; Gilks et al., 1996). The BPA currently
relies on WinBUGS (Bayesian inference Using Gibbs Sampling
for Windows; Lunn, Thomas, Best, & Spiegelhalter, 2000; see
Kruschke, 2010, for an introduction) to obtain the posterior distri-
butions of the model parameters. WinBUGS is a general-purpose
statistical software for Bayesian analysis that uses MCMC tech-
niques to sample from the posterior distribution of the model
parameters.

Figure 6 gives a simple illustration of Bayesian parameter
estimation with MCMC. The bottom panel of Figure 6 shows
sequences of values (i.e., MCMC chains) sampled from the pos-
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Tllustration of Markov chain Monte Carlo (MCMC)-based Bayesian estimation for the ex-Gaussian
parameters pyops Ogops aNd Ty, fOr a synthetic data set with the individual Bayesian parametric approach model.
The histograms in the top panel show the posterior distribution of the parameters. The corresponding thick gray
lines indicate the fit of a nonparametric density estimator to the posterior samples. The horizontal black lines at
the bottom show the prior distribution of the parameters. The horizontal black lines at the top show the 95%

Bayesian confidence interval. The solid, dashed, and dotted lines in the bottom panel represent the different

Figure 6.
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sequences of values (i.e., MCMC chains) sampled from the posterior distribution of the parameters.

terior distribution of the parameters of the SSRT distribution. More
accurate sampling from the posterior distribution can be obtained
by running multiple chains and discarding the beginning of each
chain as burn-in. For each parameter, we ran three chains, each
with different starting values (i.e., overdispersed starting values).
The starting values were randomly generated from uniform distri-
butions covering a wide range of possible parameter values. Per
chain, we collected 2,000 iterations, resulting in 6,000 samples
from the posterior distributions. The chains converged successfully
from the starting values to their stationary distributions; the indi-
vidual chains look like “hairy caterpillars,” and they seem identical
to one another. Formal diagnostic measures of convergence are

available. For instance, R (Gelman & Rubin, 1992) compares the
between-chain variability to the within-chain variability. As a rule

of thumb, R should be lower than 1.1 if the chains have properly

converged. For the present example, R was lower than 1.05 for all
of the parameters.

The top panel of Figure 6 shows histograms and density esti-
mates of the posterior samples of the stop parameters. The histo-
grams were plotted by collecting the sampled values across the
three chains and projecting them onto the x-axis. The median of the
posterior distribution equals 186.80 for p,, 32.76 for o and

stop?

57.43 for 7, The region extending from the 2.5th to the 97.5th
percentile of the posterior distribution gives the so-called 95%
Bayesian confidence interval. For example, the 95% Bayesian
confidence interval for p,,, ranges from 178.30 to 195.70, indi-
cating that we can be 95% confident that the true value of p, lies
within this range. The Bayesian confidence interval is the narrow-
est for the p,, parameter, indicating that p,, is estimated the
most precisely among the stop parameters.

The Bayesian approach can be applied to hierarchical as well
as individual data. In individual estimation, the parameters of
the SSRT distribution are estimated separately for each partic-
ipant. In the hierarchical approach (e.g., Gelman & Hill, 2007;
Lee, 2011; Lindley & Smith, 1972; Rouder, Lu, Speckman,
Sun, & Jiang, 2005; Rouder, Sun, Speckman, Lu, & Zhou,
2003), the estimation of the individual stop parameters is sup-
ported by information from the entire group. In the next section,
we introduce the individual and the hierarchical BPA models
for estimating SSRT distributions.

Individual BPA

Figure 7 shows the graphical model for the individual BPA.
Observed variables are represented by shaded nodes, and unob-
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Model parameters: Data:
ftgo ~ Uniform (1, 1000)
040 ~ Uniform (1, 300)

Tgo ~ Uniform(l7 300)

Hstop ~ Uniform(l, 600)
Ostop ~ Uniform(1,250)

(
Tstop ~ Uniform (1,250)
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goRTy ~ ExGaussian(igo, 0o, Tgo)
SR — RT, ~ CensoredExGaussian — SR(ugO, Tg0s Tgos Istop, Tstop, Tstop, 99 D)

NA; ~ CensoredExGaussian — I(ugo, Tgos Tgos hstop, Tstops Tstop, 99 D)

goRT,

g go trials)

| signal-respond trials

i signal-inhibit trials)

-

°

s stop—signal trials)

Figure 7. Graphical model for the individual Bayesian parametric approach. Observed variables are repre-
sented by shaded nodes, and unobserved variables are represented by unshaded nodes. The plates represent
independent replications of the different types of trials. The go response times (RTs) come from an ex-Gaussian
distribution, with parameters Wy, O, and T,,. The signal-respond RTs (i.e., SR-RT) and the successful

inhibitions (i.e., NA) come from censored ex-Gaussian distributions, with parameters p,,, o

Tstop»

served variables are represented by unshaded nodes. The graph
structure indicates dependencies between the nodes, and the plates
represent independent replications of the different types of trials
(e.g., Lee, 2008).

The individual BPA assumes that the g = 1, ..., G go RTs
come from an ex-Gaussian distribution, with parameters Mogos Tgor
and T, (see Equation 13). On the s = 1, ..., § stop-signal trials,
the »r = 1, ..., R signal-respond RTs (i.e., SR-RT) and the i = 1,
..., I successful inhibitions (i.e., NA) come from censored ex-
Gaussian distributions, with parameters ., o T gops
T and SSD, (see Equation 14). The priors for the model

g0 Tgo’ p‘stop’

stop?

20> Tgo> Mestops Tstops

and stop-signal delay (SSD). The priors for the model parameters are uniform distributions.

parameters are uniform distributions, spanning a plausible but
wide range of parameter values. The range of the uniform prior
distributions is loosely based on the results of a life-span study of
stop-signal performance reported in Williams et al. (1999) and the
corresponding ex-Gaussian parameter values used in the simula-
tion studies of Band et al. (2003).

The individual BPA makes no connections between partici-
pants; it assumes that they are completely independent. The
goal is to estimate the p,,, 04, T Ogop> AN Ty
parameters for each participant separately. To this end, we use
WinBUGS to sample from the posterior distribution of the

go? u‘slopv
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model parameters. The WinBUGS script for the individual BPA
is available in the Appendix. The median of the posterior
distributions can be used as a point estimate of the model
parameters. SSRT distributions, such as those shown in Figure
1, can be obtained by evaluating the ex-Gaussian probability
density function (Equation 8) with the posterior median of the
parameters. The mean and the variance of the SSRT distribution
can be computed from Equations 11 and 12 with the posterior
median of the parameters. Alternatively, we can quantify the
uncertainty of the estimated SSRT distribution by drawing
random parameter vectors from the joint posterior of the stop
parameters and evaluating the ex-Gaussian probability density
function with the chosen parameter vectors.

Hierarchical BPA

A particularly useful application of the Bayesian hierarchical
approach (Farrell & Ludwig, 2008; Gelman & Hill, 2007; Lee,
2011; Nilsson, Rieskamp, & Wagenmakers, 2011; Rouder & Lu,
2005; Rouder et al., 2005, 2003; Shiffrin, Lee, Kim, & Wagen-
makers, 2008; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010) explicitly models individual differences in the parameter
values, but at the same time recognizes that participants share
some similarities. Hierarchical modeling is a compromise between
the assumption that participants are completely independent (i.e.,
individual BPA) and the assumption that all participants are iden-
tical (Gelman & Hill, 2007). Rather than estimate the parameters
separately for each individual, hierarchical modeling assumes that
the individual parameters are drawn from group-level distribu-
tions. The group-level distributions specify how the individual
parameters are distributed in the population and thus define the
between-subject variability in the model parameters. The goal is to
obtain individual parameter estimates as well as estimates for the
parameters of the group-level distributions.

Hierarchical methods have the potential to provide more
accurate and less variable parameter estimates than individual
Bayesian and maximum likelihood estimation (Farrell & Lud-
wig, 2008; Rouder et al., 2005). The advantages of hierarchical
modeling are the most pronounced in situations with only
moderate between-subject variability and a small number of
observations per participant (Gelman & Hill, 2007). The ben-
efits of hierarchical modeling arise from using information
available from the whole group to improve parameter estima-
tion for the individual participants. Hierarchical modeling uses
the group-level distributions as priors to adjust poorly estimated
extreme parameter values to more moderate ones. As a result,
outlying individual estimates—especially the ones that are es-
timated with a great degree of uncertainty—are “shrunk” to
ward the group mean. The hierarchical approach is especially
valuable in situations with relatively few observations per par-
ticipant, as is often the case in stop-signal experiments.

Figure 8 shows the graphical model for the hierarchical BPA.
The hierarchical BPA assumes that the g = 1, , G go RTs
of each participant, j = 1, ..., J, come from ex-Gaussian
distributions, but with different values of ., 04, and 7,,. On
the s = 1, ..., S, stop-signal trials, the r = 1, ... , R
signal-respond RTs (i.e., SR-RT) and the i = 1, , I success-
ful inhibitions (i.e., NA) of each participant come from cen-
sored ex-Gaussian distributions, but again with different values

MATZKE, DOLAN, LOGAN, BROWN, AND WAGENMAKERS

Of Pgor Taor Taor Pstops and SSD.. The individual
Pogos Ogos Tgop Pesiopp Tsiop and Ty, parameters are in turn
assumed to come from truncated normal group-level distribu-
tions that are characterized by group-level parameters. For
example, the ., parameters codetermine the location of the
individual SSRT distributions. As SSRTs are by definition
positive, the p,, parameters must be positive as well. The
Msop Parameters are therefore assumed to come from a normal
group-level distribution truncated at O ms, with mean p,, o and
standard deviation Tt . Similarly, the o, parameters are the
standard deviations of the Gaussian component of the individ-
ual SSRT distributions and are by definition positive (see
Equation 8). The o, parameters are assumed to come from a
normal group-level distribution truncated at one ms, with mean
Fo, and standard deviation o, T son !

The use of normal group- level distributions is a common
choice in Bayesian hierarchical modeling (e.g., Gelman & Hill,
2007; Lee & Wagenmakers, in press). In real data, however, the
distribution of individual parameters may deviate from normal-
ity, especially in clinical populations. As will be described later,
sensitivity analyses indicated that the hierarchical BPA is ro-
bust to misspecification of the group-level distribution of the
individual go parameters. In contrast, the BPA with misspeci-
fied group-level distributions results in biased stop parameter
estimates. Fortunately, the bias decreases substantially as the
number of participants and especially as the number of trials
increase. The reader is referred to the Discussion for some
suggestions on examining the validity of the hierarchical as-
sumptions of the BPA.

The priors for the mean and standard deviation of the group-
level distributions are normal and uniform distributions, respec-
tively. For example, the oo parameter is the mean of the
group-level distribution of the individual o, parameters and
as such it must be positive. The group mean Ko, parameter is
assumed to come from a normal distribution censored to be

positive, with mean 40 and standard deviation 1/\/0.001. The
group standard deviation Os,,,, PATAMELET is assumed to be
uniformly distributed between 0 and 100. The parameters of
the priors for the group-level means and standard deviations are
loosely based on the results reported in Williams et al. (1999)
and the corresponding ex-Gaussian parameter values used in
Band et al. (2003).

In the hierarchical BPA, the goal is to estimate the group-
level means and standard deviations as well as the individual go
and stop parameters. The WinBUGS script for the hierarchical
BPA is available in the Appendix. The median of the posterior
distributions can be used as a point estimate for the parameters.
The SSRT distribution of each participant can be obtained by
evaluating the ex-Gaussian probability density function with
the posterior median of the individual parameters. The mean
and the variance of the individual SSRT distributions can be
computed from Equations 11 and 12 with the posterior median
of the individual parameters. Also, we can quantify the uncer-
tainty of the individual SSRT distributions by drawing random

g T

stop? stop?

! For computational reasons, the truncated normal group-level distribu-
tions of the o Oiops aNd Ty, parameters are truncated at 1 ms instead
of 0.

g0’ Tgo»



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

ESTIMATING STOP-SIGNAL RT DISTRIBUTIONS

parameter vectors from the joint posterior of the individual stop
parameters and evaluating the ex-Gaussian probability density
function with the chosen parameter vectors.

Parameter Recovery Studies

Individual BPA

We conducted two simulation studies to investigate the ability
of the individual BPA to recover underlying true parameter values.
The first recovery study examined the asymptotic properties of the
parameter estimates. The second recovery study investigated the
number of stop-signal trials necessary to obtain accurate parameter
estimates.

Methods. We generated stop-signal data from the horse race
model, where the go RTs and the SSRTs were drawn from ex-
Gaussian distributions, with parameters Moo = 440, Ogo = 80,
Teo = 60, Wyop = 190, 0y, = 40, and T, = 50.> These
parameters made the mean and the standard deviation of the go RT
distribution 500 and 100 ms, respectively, and the mean and the
standard deviation of the SSRT distribution 240 and 64 ms, re-
spectively. The SSDs were set to 150, 200, 250, 300, and 350 ms.
The above parameter vales and SSDs resulted in P(respond |
stop-signal, SSD = 150) = .17, P(respond | stop-signal, SSD =
200) = .30, P(respond | stop-signal, SSD = 250) = .47, P(respond |
stop-signal, SSD = 300) = .65, and P(respond | stop-signal, SSD =
350) = .79. The resulting inhibition function for a randomly chosen
data set is shown in Figure 3.

In the first recovery study, we generated a single data set
containing 200,000 go trials and 5 (SSD) X 100,000 stop-signal
trials. The estimated pops Ogops aNd Ty, parameters were free to
vary across the five SSDs. In the second recovery study, we
conducted four sets of simulations that varied the number of trials,
with 100 data sets for each set. For the first set, each data set
contained 4,500 go trials and 5 (SSD) X 300 stop-signal trials. For
the second set, each data set contained 2,250 go trials and 5 X 150
stop-signal trials. For the third set, each data set contained 750 go
trials and 5 X 50 stop-signal trials. For the fourth set, each data set
contained 375 go trials and 5 X 25 stop-signal trials. In contrast to
the first recovery study, the estimated pgops Ogop» aNd Ty, P2-
rameters were constrained to be equal across the five SSDs.

We fit the data sets with the individual BPA using WinBUGS.
We ran three MCMC chains and used overdispersed starting
values to confirm that the chains had converged to the stationary

distribution (ﬁ =~ 1). The first 500 samples of each MCMC chain
were discarded. The reported parameter estimates are based on 3 X
4,000 recorded samples.

Results. The parameters of the go RT distribution were ex-
cellently recovered in both recovery studies. As the go RT distri-
bution is of little theoretical interest, the remainder of this section
focuses exclusively on results related to the SSRT distribution.

The results of the first recovery study are shown in Figure 9. For
all SSDs, the posterior median recovered the generating parameter
values, and the mean and the standard deviation of the true SSRT
distributions very well. Across the five SSDs, the posterior stan-
dard deviations ranged from 0.92 to 1.84 for ., from 1.50 to 2.2
for o, and from 0.91 to 2.09 for 7, The posterior standard
deviations were small, indicating that the parameters were esti-
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mated precisely. In contrast to the integration method, the mean
SSRT estimated with the BPA did not decrease with increasing
SSD. Theoretically, one may obtain accurate estimates for the stop
parameters using stop-signal data on a single SSD.

The results of the second recovery study are shown in Figures
10 and 11. Figure 10 shows the mean of the posterior medians of
the stop parameters across the 100 replications and the mean and
standard deviation of the estimated SSRT distribution. Figure 11
shows the estimated SSRT distributions based on the posterior
medians for the 100 replications. As shown in the figures, the BPA
recovered the generating parameter values and the shape of the
true SSRT distribution with little bias even with relatively few
(i.e., 25) stop-signal trials per SSD. Naturally, as the number of
trials increased, the bias, the standard error, and the posterior
standard deviation of the estimates decreased. The mean posterior
standard deviation of ., across the 100 replications decreased
from 27.40 for the simulation set with 25 stop-signal trials per SSD
to 9.51 for the set with 300 stop-signal trials per SSD. The mean
posterior standard deviation of o, decreased from 26.05 to
12.51. The mean posterior standard deviation of 7, decreased
from 26.64 to 9.98. Note also that the BPA parameter estimates as
well as the average of the integration method estimates across the
SSDs recovered the mean of the generating SSRT distribution very
accurately even with only 25 stop-signal trials per SSD.

In sum, the results of the two simulation studies indicated that
the individual BPA accurately recovered the parameters of the
generating SSRT distribution. Also, similar to the integration
method, the BPA recovered the mean of the generating SSRT
distribution very accurately. As the number of stop-signal trials
increased, the stop parameters and the mean SSRT were estimated
more precisely. Nevertheless, the individual BPA was able to
provide reasonable estimates even with relatively scarce data (i.e.,
5 X 25 stop-signal trials) often encountered in stop-signal studies.

Hierarchical BPA

Methods. We generated 100 data sets from the horse race
model, each containing the stop-signal data of j = 1, ..., 25
participants. The individual parameters o, Ogo s Too s Pstop.s Tstop s
and Ty, were drawn from truncated normal distributions. The
individual parameters were then used to generate 300 go trials and
100 stop-signal trials for each participant, using the ex-Gaussian
distribution. The generating parameter values are shown in Figure
12. For computational efficiency, we used a single SSD per par-
ticipant that produced a P(respond | stop-signal) equal to .50.

We fit the 100 data sets with the hierarchical BPA using Win-
BUGS. We ran three MCMC chains and used overdispersed start-
ing values. The first 3,000 samples of each MCMC chain were
discarded. The reported parameter estimates are based on 3 X
7,750 recorded samples.

Results. In this section, we focus exclusively on results re-
lated to the group-level parameters of the go RT and the SSRT
distribution. The individual parameter estimates from the hierar-
chical BPA is discussed in the next section with experimental data.

Figure 12 shows the posterior median of the group-level param-
eters averaged over the 100 replications. The hierarchical BPA

2 We conducted several recovery studies using alternative true parameter
values. The results were essentially the same as the ones reported here.
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Group—level parameters:
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[y, ~ Normal(500,0.0001)1[0, <]

Ougo ~ Uniform (07 300)

Pogo ™~ Normad(lOO7 0.001)I[0, o]

0g,, ~ Uniform (0, 200)

fir,, ~ Normal(80,0.001)70, oc]

o+,, ~ Uniform(0, 200)

fis10, ~ Normal(200,0.0001)7[0, o]

O 1410, ~ Uniform (0, 200)

lio..,, ~ Normal(40,0.001)I0, oo]

Ooraray ~ Uniform (0, 100)

Horrop ™ Nomnal(307 0.001) 110, o0]

Ore0p ~ Uniform(0,100)

Individual parameters:

fgo, ~ TruncatedNormal(p,,, . ?190 ,0)

g0, ~ TruncatedNormal (pio,,, 73—, 1)
E

Tgo; ~ TruncautedNormal(u,go7 U% ,1)
Tgo

[stop, ~ TruncatedNormal(p,,,, , ,0)

2
(o8
Hstop

1
Ostop, ~ TruncatedNormal(pio,,,, , T 1)
stop

1
Tstop, ~ TruncatedNormal(yir,,,, , T ,1)
stop

Data:
goRT,; ~ ExGaussian(figo, , 0go, , Tgo, )
SR — RT,; ~ CensoredExGaussian — SR(/Lng 2 0go;s Tgojs Mstop; » Tstop; » Tstopy s SS D)

NA;; ~ CensoredExGaussian — I(,ugoj 1 0g0;> Tgos s Mstop; » Tstop; » Tstop; » SSDy;)

i

goRTy;

g go trials

r signal respond trials i signal inhibit trials

\s stop-signal trials Y,
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Figure 9. Posterior medians of the stop parameters and the mean and standard deviation of the stop-signal
reaction time (SSRT) distribution from the first recovery study for the individual Bayesian parametric approach
(BPA). The results are based on one data set containing 200,000 go trials and 100,000 stop-signal trials per
stop-signal delay (SSD). The estimated pops Tgiops and Ty, parameters were free to vary across the five SSDs.
The dashed lines give the true value of the stop parameters and the true mean and standard deviation of the SSRT
distribution. In the top panel, the black bullets show the posterior median of the estimated stop parameters. In
the bottom panel, the black bullets show the estimated mean and standard deviation of the SSRT distribution
computed with the posterior median of the stop parameters. The gray bullets show SSRT estimates computed
with the traditional integration method.
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recovered the group-level parameters quite accurately. The poste-
rior standard deviations and the standard errors are typically larger
for the stop parameters than for the go parameters. This result is
not surprising because the go parameters are estimated based on
the go RTs as well as the signal-respond RTs. The go parameters

are therefore better constrained by the data than the stop parame-
ters.

In sum, the results of the simulation studies indicate that the
individual and the hierarchical BPA accurately recovered the true
individual stop parameters and the generating group-level param-

Figure 8 (opposite). Graphical model for the hierarchical Bayesian parametric approach. The go response
times (RTs) of each participant come from ex-Gaussian distributions, with different values of W, 0,0, and 7,,.
The signal-respond RTs (i.e., SR-RT) and the successful inhibitions (i.e., NA) of each participant come from
censored ex-Gaussian distributions, with different values of Wy, G0, Taos Fsiops Tstops Tstops aNd stop-signal delay
(SSD). The individual go and stop parameters come from truncated normal group-level distributions that are
characterized by group-level parameters. In order to maintain consistency with the WinBUGS syntax, the
group-level normal and truncated normal distributions are parameterized in terms of their precision (i.e., inverse
variance) rather than their variance. The /[0, %] construct denotes distributional censoring with lower bound
equal to 0 and upper bound equal to infinity.
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Figure 10. Posterior medians of the stop parameters and the mean and standard deviation of the stop-signal
reaction time (SSRT) distribution from the second recovery study for the individual Bayesian parametric
approach (BPA). We conducted four sets of simulations that varied the number of go and stop-signal trials, with
100 data sets for each set. The estimated iy op Tgops and Ty, parameters were constrained to be equal across
the five stop-signal delays (SSDs). The dashed lines give the true value of the stop parameters and the true mean
and standard deviation of the SSRT distribution. In the top panel, the black bullets show the mean of the posterior
medians of the estimated stop parameters across the 100 replications. In the bottom panel, the black bullets show
the mean of the estimated mean and standard deviation of the SSRT distribution computed with the posterior
median of the stop parameters across the 100 replications. The gray bullets show SSRT estimates computed by
averaging the integration method SSRT estimates over the five SSDs. The vertical lines indicate the size of the

standard error across the 100 replications.

eters, respectively. In contrast to Colonius’s (1990) method, the
BPA resulted in accurate estimates with a reasonable amount of
data. The individual BPA provided accurate estimates for the stop
parameters with only 125 stop-signal trials per participant. The
hierarchical BPA yielded precise group-level stop parameters with
a modest sample size of only 25 participants, each performing as
few as 100 stop-signal trials.

Fitting Experimental Data

The aim of this section is to illustrate the application of the BPA
with the stop-signal data set reported by Bissett and Logan (2011).
Bissett and Logan presented participants with two sessions of the
stop-signal task in order to investigate the adjustment of speed and
caution in a dual-task environment. Here we focus on the first
experiment of the Bissett and Logan study that manipulated the
percentage of stop-signal trials across two sessions. The authors
concluded that the two experimental sessions did not differ signif-
icantly in mean SSRT.

The Data Set

The go task required the 24 participants to respond to the shape of
the presented stimuli. For instance, participants responded by pressing
the / key on the computer keyboard when presented with a triangle or
a circle, and by pressing the 0 key when presented with a square or a
diamond. Each participant performed two sessions of the task. The
first session featured 960 go trials and 240 stop-signal trials, resulting
in 20% stop-signal trials. The second session featured 720 go trials
and 480 stop-signal trials, resulting in 40% stop-signal trials. The SSD
was set with the staircase tracking procedure; SSD was lengthened by
50 ms after successful inhibitions and shortened by 50 ms after
incorrect responses, yielding 50% inhibition for each participant.

Incorrect RTs and RTs shorter than 200 ms and longer than 1,850
ms were excluded from all subsequent analyses (see Bissett & Logan,
2011). As the ex-Gaussian distribution is sensitive to outliers, we also
removed RTs that were slower or faster than a given participant’s
mean RT plus or minus 2 times the standard deviation. For compar-
ison, we report the results of fitting the raw data with the individual
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Figure 11. Estimated stop-signal reaction time (SSRT) distributions from

the second recovery study for the individual Bayesian parametric approach
(BPA). We conducted four sets of simulations that varied the number of go
and stop-signal trials, with 100 data sets for each set. The estimated pu
Ogops aNd Ty, parameters were constrained to be equal across the five
stop-signal delays (SSDs). The solid black line shows the true SSRT
distribution. The gray lines show the SSRT distributions based on the
posterior medians of the 100 replications. The dashed white line shows a
SSRT distribution based on the mean of the posterior medians of the stop
parameters across the 100 replications. pdf = probability density function.

BPA and the results of fitting the data without the outliers. Moreover,
we excluded four participants with erratic stop-signal performance,
such as extremely long and variable go RTs and a very large number
of SSDs.

Individual BPA

The individual BPA was fit to the Bissett and Logan (2011) data
set with WinBUGS. The estimated p ., Oyops and Ty, parame-
ters of each participant were constrained to be equal across the
different SSDs. We ran three MCMC chains and used overdis-
persed starting values. The analyses were based on 3 X 5,000
recorded samples.

The parameters of the go RT distribution were estimated pre-
cisely for all 20 participants. The remainder of this section focuses
exclusively on the parameters of the SSRT distribution. With the
exception of four participants in the first session, the posterior
distributions of the stop parameters were estimated well. For the
four exceptions, we obtained unrealistically large posterior medi-
ans for 7 ., and/or very large posterior standard deviations for
g 3 In these cases, the stop parameters were thus

stop

and T

stop stop*
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Figure 12. Posterior medians of the group-level parameters from the
hierarchical parameter recovery study. We generated 100 data sets from the
horse race model, each containing the stop-signal data of 25 participants
responding to 300 go trials and 100 stop-signal trials. The dashed lines give
the true value of the parameters. The black bullets indicate the mean of the
posterior medians across the 100 replications. The black vertical lines show
the size of the posterior standard deviations averaged across the 100
replications. The gray vertical lines indicate the size of the standard error.
BPA = Bayesian parametric approach.

3 For these four participants, we used a uniform prior distribution rang-
ing from 1 to 450 for 7, to accommodate the extreme parameter esti-
mates. Note also that these participants are not the same as the four
participants who were previously excluded from the analyses.
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Figure 13. Comparison of mean stop-signal reaction times (SSRTs) computed with the mean method and the
individual Bayesian parametric approach (BPA) posterior medians in the Bissett and Logan (2011) data set. The
data points marked with circles represent mean SSRTs that are based on the imprecise and therefore uninter-
pretable posterior distributions. The data point marked with A represents a mean SSRT estimate for which the
individual BPA resulted in a more reasonable estimate than the mean method.

estimated with great uncertainty, resulting in uninformative SSRT
distributions and uninterpretable mean SSRT estimates.

The results from fitting the Bissett and Logan (2011) data set
with the individual BPA are shown in Figures 13 and 14. Figure 13
compares the mean SSRT of each participant computed with the
mean method to the mean SSRT computed with the BPA posterior
medians of the stop parameters. The BPA produced mean SSRT
estimates very similar to those obtained by the mean method. The
correspondence between the two methods further improved after
the outliers were removed; this is not surprising because the two
methods are affected to different degrees by the presence of
outliers. Also, the agreement between the two sets of estimates is
better for the second session than for the first session. Again, this
is to be expected because the second session featured twice as
many stop-signal trials than the first session, resulting in more
accurate estimates for both methods.

The circles in the left panel of Figure 13 mark the three data
points with the largest discrepancy between the two methods. The
three estimates are clustered together at very high values of BPA
mean SSRT. Note that these mean SSRTs belonged to three of the
participants with uninformative posterior distributions with high
medians and very large standard deviations for T,. The high
posterior median for 7, resulted in unusually high BPA mean
SSRTs (see Equation 11). However, due to the large posterior

uncertainty of 7, the resulting mean SSRT estimates are unin-

terpretable. Lastly, consider the data point marked with A in the
bottom right panel of Figure 13. For this mean SSRT, the mean
method resulted in an unrealistic estimate of 118 ms. The BPA,
however, yielded a more reasonable estimate of 209 ms.

The first published estimates of entire SSRT distributions are
shown in Figure 14. The gray SSRT distributions are based on the
posterior medians of the individual stop parameters. There is
considerable between-participant variability in the shape of the
SSRT distributions. Some distributions are very peaked, whereas
others are more spread out, indicating substantial within-
participant variability in SSRT. Note the few extremely flat dis-
tributions with very large variance and long tail in the left panel of
Figure 14. These flat distributions belonged to the four participants
with the uninformative posterior distributions. The resulting SSRT
distributions are therefore also uninformative.

The solid black line in Figure 14 show the average SSRT
distribution created with the mean of the posterior medians of the
individual pgop, Ogops and Ty, parameters across participants.
There are substantial differences between the shape of the average
SSRT distributions in the two sessions of the experiment. The
average SSRT distribution for the first session is spread out and
has a fast leading edge and a long tail. In contrast, the average
SSRT distribution for the second session is more peaked, with a
slower leading edge and a shorter tail. Despite these differences,
consistent with the results of Bissett and Logan (2011), the means
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Figure 14. Estimated stop-signal reaction time (SSRT) distributions for
the Bissett and Logan (2011) data set. The gray lines show the SSRT
distributions based on the posterior medians of the stop parameters of each
individual participant. The black line shows the SSRT distribution based on
the mean of the posterior medians of the stop parameters across the 20
participants.

of the two distributions are roughly equal. Similar to the example
shown in Figure 1, ignoring the differences in the shape of these
SSRT distributions would lead to the incorrect conclusion that the
two experimental sessions do not differ with respect to SSRT.

In conclusion, the individual BPA provided well-behaved pos-
terior distributions for most participants. Moreover, the mean
SSRTs computed with the BPA posterior medians accurately ap-
proximated the mean SSRTs obtained by the traditional mean
method. In the next section, we formally investigate whether the
individual BPA adequately described the observed data.

Assessing model fit with posterior predictive model checks.
We used posterior predictive model checks to determine whether
the individual BPA produced parameter estimates that adequately
describe the Bissett and Logan (2011) data. Posterior predictive
model checks are frequently used procedures in Bayesian infer-
ence to assess the absolute goodness of fit of a proposed model
(e.g., Gelman & Hill, 2007; Gelman, Meng, & Stern, 1996). In
posterior predictive checks, we assess the adequacy of the model
by generating new data (i.e., predictions) using the posterior dis-
tributions of the parameters obtained from fitting the model. If the
model adequately describes the data, the predictions based on the
model parameters should closely approximate the observed data.

We formalized the model checks by computing posterior pre-
dictive p values (e.g., Gelman & Hill, 2007; Gelman et al., 1996).
We first defined a test statistic 7 and computed its value for the
observed data: 7T(data). For each of the i = 1, ..., N draws from
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the posterior distribution of the parameters, we sampled new
stop-signal data, data* = (datai data;, RN data;,), using the
ex-Gaussian assumption. Lastly, we calculated the test statistic T
for each dataf: T(data?). The posterior predictive p value is given
by the fraction of times that 7(data*) is greater than 7(data). The
posterior predictive p value compares thus the observed value of
the test statistic to its sampling distribution under the assumptions
of the BPA. Extreme p values close to 0 or 1 (e.g., lower than .05
or higher than .95) indicate that the BPA does not describe the
observed data adequately. For each participant we conducted two
posterior predictive analyses using different test statistics.

In the first posterior predictive analysis, we compared the observed
signal-respond distribution to the signal-respond RTs predicted by the
posterior distribution of the model parameters. The model check was
performed only for the SSD with the highest number of observed
signal-respond RTs in order to obtain stable observed and predicted
signal-respond RT distributions. For each participant, we randomly
selected N = 1,000 parameter vectors from the joint posterior of p,
T a0 Taor Posiops Tstopr AN T . Then we generated 1,000 stop-signal
data sets using the 1,000 parameter vectors, the chosen SSD and the
corresponding number of stop-signal trials. We used the median of the
signal-respond RTs of the observed and the predicted distributions as
test statistic. For each participant, the 1,000 predicted signal-
respond RT distributions were compared to the observed signal-
respond RT distribution, with posterior predictive p values and
visual inspection of the distributions.

Figure 15 shows the observed go RT and signal-respond RT
distributions, and 100 randomly chosen predicted signal-respond
RT distributions for six participants with satisfactory model fit.
The predicted signal-respond RT distributions (i.e., gray lines)
adequately followed the shape of the observed signal-respond RT
distribution. Also, the predicted signal-respond RTs were gener-
ally faster than the observed go RTs (i.e., dashed line), a common
finding that follows from the architecture of the horse race model
(Logan & Cowan, 1984). Lastly, the average of the medians of the
predicted signal-respond distributions closely matched the ob-
served median. This result is also evident from the posterior
predictive p values listed in the second column of Table 1. The
posterior predictive p values for these six participants are well
within the .05-.95 range, indicating that the BPA adequately
accounted for the median of the observed signal-respond RTs.

Figure 16 shows the observed go RT and signal-respond RT
distributions, and 100 randomly chosen predicted signal-respond
RT distributions for three participants with unsatisfactory model
fit. Note that Participant 16 and Participant 20 were among the few
cases that produced uninformative posterior distributions. The
location and shape of the observed signal-respond RT distribution
were not well approximated by the predicted signal-respond RT
distributions. For Participant 8 and Participant 16, the predicted
signal-respond RTs are shifted to the right. For Participant 20, the
predicted signal-respond RT distribution fails to capture the bimo-
dality of the observed signal-respond RTs. For Participant 16 and
Participant 20, the predicted signal-respond RTs are less variable
than the observed signal-respond RTs. Moreover, the predicted
signal-respond RTs are not substantially faster than the observed
go RTs. For Participant 8 and Participant 16, the median of
the predicted signal-respond RTs overestimated the median of the
observed signal-respond RTs. In contrast, for Participant 20, the
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Figure 15. Examples of satisfactory model fit with the individual Bayesian parametric approach: Predicted and
observed signal-respond response time (RT) distributions for the first session of the Bissett and Logan (2011)
experiment. The histogram shows the observed signal-respond RT distribution. The gray lines show 100
randomly chosen predicted signal-respond RT distributions. The solid black line gives a predicted signal-respond
RT distributions based on the mean of the posterior predictions. The circle indicates the median of the observed
signal-respond RTs. The triangle indicates the median of the predicted signal-respond RTs. The median of the
predicted signal-respond RTs is computed as the mean of the medians of the predicted signal-respond RT
distributions. The dashed line shows the observed go RT distribution.

median of the predicted signal-respond RTs underestimated
the observed median. These latter results are also shown in Table
1. The posterior predictive p values for these three participants are
very close to or are equal to O or 1, indicating that the BPA failed
to account for the median of the observed signal-respond RTs.

In the second posterior predictive analysis, we compared the ob-
served response rates to the response rates predicted by the posterior
distribution of the model parameters. The model check was performed
for the SSDs that featured at least 10% of the total number of
stop-signal trials. For each participant, we generated 1,000 stop-signal
data sets using the 1,000 parameter vectors selected for the first
posterior predictive analysis, the chosen SSDs and the corresponding
number of stop-signal trials. We computed posterior predictive p
values for each participant on each SSD separately, where we used the
observed and predicted response rates as test statistic.

Table 1 shows the minimum and the maximum of the posterior
predictive p values for the response rates across the various SSDs
of nine participants. For Participants 1, 3, 7, 10, 13, and 18, the
minimum and maximum of the p values all lie between .05 and .95,
corroborating our previous conclusion of satisfactory model fit
with the median of the signal-respond RTs. In contrast, for Par-
ticipants 8, 16, and 20, the minimum or maximum of the p values
are very close to 0 or 1, supporting our previous finding that the
BPA failed to account for the data of these participants.

In sum, the results of the posterior predictive model checks indi-
cated that for most participants the BPA provided plausible parameter
estimates that adequately describe the observed data. Additionally, the
posterior predictions supported our earlier conclusion that the BPA
resulted in uninterpretable parameter estimates for participants with
imprecise posterior distributions. The results of the posterior predic-
tive model checks for the remaining participants in the first as well as
the second session of the Bissett and Logan (2011) experiment are
available in the online supplemental material.

Hierarchical BPA

The hierarchical approach has the potential to provide accurate
parameter estimates with relatively few observations per participant.
We therefore did not analyze the complete Bissett and Logan (2011)
data set, but used only a subsample of the available go RTs and
signal-respond RTs from the second experimental session. Per par-
ticipant, we fit a randomly selected 90 go RTs, 30 signal-respond RTs,
and 30 successful inhibitions after removing the outliers.

The hierarchical BPA was fit to the data with WinBUGS. The
estimated individual p,, Op> and Ty, parameters were con-
strained to be equal across the different SSDs. We ran three
MCMC chains and used overdispersed starting values. The hier-
archical analysis was based on 3 X 23,750 samples.
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Table 1

Posterior Predictive p Values for the Median of the
Signal-Respond Response Time Distribution and the Response
Rate for the First Session of the Bissett and Logan (2011)
Experiment Computed From the Parameter Estimates From the
Individual Bayesian Parametric Approach

p value response rate

Participant p value median Minimum Maximum

1 .64 11 91

3 44 .10 79

7 77 13 70

8 98 .03 95

10 41 .28 86

13 .69 .08 92

16 1.00 .30 96

18 11 25 61

20 .00 33 96
Note. Posterior predictive p values that indicate unsatisfactory model fit

are shown in bold. p value median = posterior predictive p value for the
median of the signal-respond response time distribution on the stop-signal
delay (SSD) with the highest number of observed signal-respond trials;
minimum p value response rate = the lowest posterior predictive p value
for the response rate computed for the SSDs that contained at least 10% of
the trials; maximum p value response rate = the highest posterior predic-
tive p value for the response rate computed for the SSDs that contained at
least 10% of the trials.

The hierarchical BPA resulted in informative posterior distributions
for the group-level parameters of the go RT as well as the SSRT
distribution. As before, this section focuses exclusively on the param-
eters of the SSRT distribution. Figure 17 shows the prior and the
posterior distributions of the group-level stop parameters. As for the
hierarchical recovery study, the L. and 0, parameters were
estimated the most precisely as indicated by the small posterior
standard deviations. Also in line with the simulations, the %o op
parameter was estimated with the largest posterior uncertainty. Nev-
ertheless, the group-level stop parameters were estimated relatively
well given the scarce data and the small sample size.

For most participants, the individual pp, Ogopy aNd Ty, Pa-
rameters were estimated adequately as evidenced by the well-
behaved posterior distributions. For the same subsample of the

Participant 8
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Figure 17. Posterior distributions for the group-level stop parameters from a
subsample of the Bissett and Logan (2011) data set. The black lines show the
posterior distributions and the gray lines show the prior distributions of the
group-level parameters. The dashed lines give the posterior medians.

data, the posterior distributions estimated with the hierarchical
BPA were less variable than the posteriors estimated with the
individual BPA. In fact, the 60 stop-signal trials were occasionally
insufficient to obtain informative posterior distributions with the

Participant 20

O Median observed signal-respond RT
A Median posterior predictions
— = —
£ = 3
0 750 1000 0 250 RTE‘?gs) 750 1000 0 250 500 750 1000
RT (ms) RT (ms)

Figure 16. Examples of unsatisfactory model fit with the individual Bayesian parametric approach: Predicted
and observed signal-respond response time (RT) distributions for the first session of the Bissett and Logan (2011)

experiment. See Figure 15 for details.
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Figure 18. Posterior distribution of the stop parameters for Participant 1 from the Bissett and Logan (2011)
data set estimated with the individual and the hierarchical Bayesian parametric approach (BPA). The solid black
and gray lines show the posterior distribution of the stop parameters and the corresponding 95% Bayesian
confidence intervals obtained with the individual and the hierarchical BPA, respectively. The dashed black and
gray lines show the median of the posterior distributions obtained with the individual and the hierarchical BPA,

respectively.

individual BPA. Figure 18 illustrates the benefits of hierarchical
modeling for a representative participant. For the same subsample
of the data, the 95% Bayesian confidence intervals are smaller for
the posterior distributions estimated with the hierarchical BPA
(i.e., gray line) than for the posteriors estimated with the individual
BPA (i.e., black line). Also, the posterior medians from the hier-
archical analysis are slightly pulled toward their corresponding
group mean, a typical consequence of hierarchical modeling.

As pointed out above, hierarchical Bayesian estimation has the
potential to reduce the variability in the estimated parameters
compared to individual-level estimation. Figure 19 compares the
mean SSRTs computed with the traditional mean method, the
posterior medians from the individual BPA, and the posterior
medians from the hierarchical BPA with the same subsample of
the data. As shown in Figure 19A, the individual BPA provided
mean SSRTs that are slightly less variable than the mean SSRTs
obtained using the mean method. More importantly, Figures 19B
and Figure 19C show that the hierarchical BPA resulted in mean

Mean method vs. hierarchical BPA

SSRTs that are substantially less variable than the mean SSRTs
obtained with either the mean method or the individual BPA.

Assessing model fit with posterior predictive model checks.
We used posterior predictive model checks to determine whether
the individual parameter estimates from the hierarchical BPA
adequately describe the Bissett and Logan (2011) data. As the data
of most participants featured fewer than 10 observed signal-
respond RTs even on the SSD with the highest number of obser-
vations, posterior predictive model checks with the signal-respond
RT distributions are not sensible for the present data set. For each
participant, we compared the observed response rates to the re-
sponse rates predicted by the posterior distribution of the model
parameters. The posterior predictive analyses followed the proce-
dure described for the individual BPA, with N = 1,000 parameter
vectors from the joint posterior of the individual p,,, 0y T
Mstops Tstops AN Ty, parameters.

Table 2 shows the minimum and the maximum of the posterior
predictive p values for the response rates across the various SSDs.
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Figure 19. Comparison of mean stop-signal reaction times (SSRTs) obtained with the mean method, with the
posterior medians of the stop parameters from the individual Bayesian parametric approach (BPA), and with the
posterior medians of the individual stop parameters from the hierarchical BPA in the Bissett and Logan (2011)
data set. The arrows indicate the range of the estimates. Note that the range is smallest for the hierarchical BPA.
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Table 2

Posterior Predictive p Values for the Response Rate for the
Second Session of the Bissett and Logan (2011) Experiment
Computed From the Individual Parameter Estimates From the
Hierarchical Bayesian Parametric Approach

p value response rate

Participant Minimum Maximum
1 31 51
2 40 .61
3 14 .56
4 36 .64
5 17 .54
6 16 40
7 14 .69
8 15 .35
9 34 65

10 27 60
12 .01 30
13 .38 59
15 .16 52
16 .33 72
18 .10 32
19 .04 64
20 28 55
21 23 67
22 .19 30
23 26 36

Note. Posterior predictive p values that indicate unsatisfactory model fit
are shown in bold. Minimum p value response rate = the lowest posterior
predictive p value for the response rate computed for the stop-signal delays
(SSDs) that contained at least 10% of the trials; maximum p value response
rate = the highest posterior predictive p value for the response rate
computed for the SSDs that contained at least 10% of the trials.

With the exception of Participants 12 and 19, the minimum and
maximum values of the posterior predictive p values all lie well
within the .05-.95 range, indicating that the BPA adequately
accounted for the response rates of most participants.

The above section illustrated that the hierarchical BPA provided
sensible group-level parameters with relatively well-calibrated
posterior distributions even with a small sample size and only 60
stop-signal trials per participant. Posterior predictive model checks
indicated that for most participants the hierarchical BPA provided
plausible individual parameter estimates that adequately describe
the observed data. Moreover, the individual parameter estimates
yielded sound mean SSRTs and demonstrated the characteristic
benefits of hierarchical modeling.

Discussion

The stop-signal task is a frequently used experimental mea-
sure of response inhibition. Over the past 30 years, the horse
race model (Logan, 1981; Logan & Cowan, 1984) has success-
fully accounted for stop-signal data in different settings and has
facilitated the interpretation of stopping experiments with var-
ious age groups and clinical populations (e.g., Kramer et al.,
1994; Oosterlaan et al., 1998; Ridderinkhof et al., 1999;
Schachar & Logan, 1990; Schachar et al., 2000; Williams et al.,
1999). The horse race model offers numerous methods to esti-
mate the otherwise unobservable latency of stopping.

The existing methods to estimate SSRT are unable to ade-
quately estimate the shape of entire SSRT distributions. Ignor-
ing the shape of SSRT distributions, and focusing only on the
mean SSRT, may mask crucial features of the data and result in
erroneous conclusions about the nature of response inhibition.
The goal of this article was therefore to introduce a novel
method—a BPA—that enables researchers to estimate the entire
distribution of SSRTs. The BPA is based on the assumptions of
the horse race model and treats response inhibition as a cen-
soring mechanism. The method assumes that go RTs and SSRTs
are ex-Gaussian distributed and relies on MCMC sampling to
obtain posterior distributions for the model parameters. Note
that we could have carried out parameter estimation by means
of standard maximum likelihood estimation (Dolan et al., 2002;
Myung, 2003). However, our goal was to develop a method for
estimating SSRT distributions that may be applied to individual
as well as hierarchical data structures. As maximum likelihood
estimation can become practically difficult for hierarchical
models, we chose to use Bayesian parameter estimation instead.
This also brings along the typical benefits of Bayesian estima-
tion, such as easy-to-use estimation software (e.g., WinBUGS)
and a coherent inferential framework.

We demonstrated using simulations that the BPA adequately
recovers the parameters of the generating SSRT distributions in
individual and hierarchical data structures. We showed that the
individual BPA can provide accurate estimates of SSRT distri-
butions in experimental stop-signal data featuring a realistic
number of trials. Similarly, we demonstrated using real data
that the hierarchical BPA resulted in interpretable individual
and group-level stop parameters with a small sample size and as
few as 60 stop-signal trials per participant.

The BPA enables researchers to evaluate differences in the
shape of SSRT distributions between clinical or experimental
groups. SSRT distributions obtained from the individual BPA can
be compared visually, as illustrated in the introduction and with the
Bissett and Logan (2011) data set. Similarly, the group-level go
and stop parameters obtained from the hierarchical BPA may be
compared visually by inspecting the overlap—or the lack of over-
lap—between the posterior distribution of the parameters in the
different groups. Alternatively, differences in the ex-Gaussian
individual go and stop parameters between clinical groups or
experimental conditions may be evaluated formally with Bayesian
hypothesis testing. Various user-friendly options are now available
to perform, for instance, Bayesian 7 tests (Rouder, Speckman, Sun,
Morey, & Iverson, 2009; Wetzels, Raaijmakers, Jakab, & Wagen-
makers, 2009) and analyses of variance (Masson, 2011; Wetzels,
Grasman, & Wagenmakers, 2012) with Bayes factors (e.g., Berger
& Pericchi, 1996; Dickey, 1971; Gamerman & Lopes, 2006; Kass
& Raftery, 1995; Klugkist, Laudy, & Hoijtink, 2005; O’Hagan &
Forster, 2004). Moreover, easy-to-use Bayesian hypothesis tests
for correlations (Wetzels & Wagenmakers, 2012) and regression
analyses (Liang, Paulo, Molina, Clyde, & Berger, 2008)* are also
available.

Although the BPA offers the advantages of estimating entire
SSRT distributions, it also comes with a number costs. One draw-
back is related to the amount of data that is required to obtain

* For software implementation, see http://pcl.missouri.edu/bf-reg
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precise stop parameter estimates. The individual BPA may fail to
provide precise estimates with the very small amount of data that
is sometimes collected in developmental and clinical stop-signal
studies. For a number of participants, the sampled 150 trials (i.e.,
90 go and 60 stop-signal trials) of the Bissett and Logan (2011)
data set were in fact insufficient to obtain informative posterior
distributions for the stop parameters using the individual BPA.
Nevertheless, we illustrated that the hierarchical BPA may provide
a solution in such situations.

Another drawback of the BPA is related to the present imple-
mentation in WinBUGS. First, the BPA requires some basic pro-
gramming skills to obtain the necessary data format for the Win-
BUGS script. Second, the fitting algorithm is time-consuming.
Running on a fast personal computer, WinBUGS required an
average of about 5 hr to reach convergence per participant in the
Bissett and Logan (2011) experiment. Likewise, it took several
days to fit the hierarchical BPA to the subsample of the Bissett and
Logan data set. We are currently working on a user-friendly
implementation of the BPA that will increase the speed of the
fitting routine.

Parametric Assumptions

In contrast to the Colonius method (1990; see also de Jong et al.,
1990) for estimating SSRT distributions, the BPA requires a para-
metric form to describe the go RTs and the SSRTs. In the abstract
sense, as the Colonius method does not require any assumptions
about the distribution of the go RTs and the SSRTs, it may be
preferable to the BPA. In the practical sense, however, the appli-
cability of the Colonius method is limited by the amount of data
that is available per participant. In contrast to the BPA, the Colo-
nius method requires an unrealistically large amount of data to
perform adequately. For the analysis of experimental stop-signal
data, the BPA is therefore preferable to the Colonius method. Of
course, the practical advantage of the BPA comes at a price: We
need parametric assumptions to quantify the shape of the go RT
and the SSRT distributions.

Here we assumed that the go RTs and the SSRTs are ex-
Gaussian distributed. Note, however, that the BPA does not hinge
on the particular parametric form used to summarize the distribu-
tions. The ex-Gaussian distribution is used as a convenient choice
to quantify the go RTs and the SSRTs. The ex-Gaussian is a
frequently used distributional model that can excellently accom-
modate the shape of RT distributions and is easy to fit to data
(Heathcote et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978, 1993;
Ratcliff & Murdock, 1976). Moreover, sensitivity analyses indi-
cated that the BPA is robust to misspecification of the parametric
form of the go RT and SSRT distributions. Even when the go RTs
and the SSRTs were drawn from shifted log-normal distributions,
the ex-Gaussian-based BPA excellently approximated the shape of
their distribution.

The above result is not surprising because the ex-Gaussian
distribution is flexible enough to accommodate a wide range of
distributions observed in RT data. Unless the go RTs and SSRTs
are left skewed or bimodal—an unlikely scenario for RT distribu-
tions—the ex-Gaussian is likely to provide adequate description of
their distributions. The interested reader is referred to the online
supplemental materials for the detailed results of the sensitivity
analyses for the individual BPA. Note also that the posterior
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predictive model checks indicated that the ex-Gaussian distribu-
tion provided an excellent description of the go RTs and SSRTs in
experimental stop-signal data.

Nevertheless, the ex-Gaussian distribution also comes with
some disadvantages. Specifically, the ex-Gaussian has a num-
ber of characteristics that are atypical of empirical RT data.
First, the ex-Gaussian has a monotonically increasing hazard
function, while empirical hazard functions are typically peaked
(e.g., Schwarz, 2001; Van Zandt, 2002). Second, the ex-
Gaussian distribution assigns probability to unrealistically short
and negative RTs. As an alternative, one may use “shifted” RT
distributions with a parameter-dependent lower bound. For ex-
ample, the ex-Gaussian distribution may be replaced by the
shifted Wald, the shifted Weibull, or the shifted log-normal
distribution (e.g., Heathcote, 2004; Heathcote, Brown, & Cous-
ineau, 2004). However, shifted distributions are notoriously
difficult to fit. Moreover, in our implementation the shifted
log-normal distribution resulted in somewhat less accurate es-
timates than the ex-Gaussian. Another alternative is to use the
ex-Wald distribution (Schwarz, 2001) to describe the go RTs
and the SSRTs. Heathcote (2004) showed, however, that the
ex-Wald requires at least 400 observations to produce adequate
parameter estimates, a requirement that is often not satisfied in
stop-signal experiments.

Process Models

Process models of response inhibition provide further possi-
bilities to model performance in the stop-signal paradigm. A
prominent alternative to the BPA is the interactive race model
(Boucher, Palmeri, Logan, & Schall, 2007), a neurally plausible
instantiation of the horse race model. The interactive race
model conceptualizes the go and the stop process as two noisy
accumulators that race toward a fixed response threshold and
may interact via inhibitory links. The interactive race model
assumes constant rates of rise to the threshold and noise terms
with standard deviations o, and o, that reflect the amount of
noise added in each step of the rise. Boucher et al. (2007)
showed that the go and the stop process are for the most part
independent. The inhibitory effect of the stop process on the go
process is very brief and is much stronger than the inhibitory
effect of the go process on the stop process. Note that the
interactive race model applies specifically to saccadic inhibition
(Verbruggen et al., 2008).

Another alternative is the Hanes—Carpenter model (Hanes &
Carpenter, 1999; Hanes & Schall, 1995; Hanes, Patterson, &
Schall, 1998) for saccade inhibition. The Hanes—Carpenter model
is based on the linear approach to threshold with ergodic rate
(LATER; Carpenter, 1981; Carpenter & Williams, 1995). The
model assumes that the competing go and the stop process rise in
a linear fashion to a fixed response threshold. If the stop process
reaches the threshold before the go process, the response is inhib-
ited. If the go process reaches the threshold before the stop
process, the response is executed.

The Hanes—Carpenter model is equivalent to the horse race
model with specific distributional assumptions about the rate of
information accumulation of the go and the stop process (Colo-
nius, Ozyurt, & Arndt, 2001). Specifically, the Hanes—
Carpenter model assumes that the rates of rise are normally
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distributed, resulting in the following parameters: the means
and the standard deviations of the rates of rise of the go and the
StOP ProCess, Wyos Tgos Fegiops AN O, TESpectively. The model
parameters can be estimated with Monte Carlo simulations
(e.g., Asrress & Carpenter, 2001; Colonius et al., 2001; Hanes
& Carpenter, 1999) or maximum likelihood estimation (e.g.,
Corneil & Elsley, 2005; Kornylo, Dill, Saenz, & Krauzlis,
2003). Using the properties of the stop process accumulator,
one can obtain the distribution of the finishing times of the stop
process (SSRT distribution). Note, however, that in typical
applications of LATER, the goal is to use the estimated rate
parameters to test and compare the predictions of competing
models of response inhibition and not to explicitly estimate
SSRT distributions. For yet another alternative to model inhib-
itory control in the stop-signal task, see Shenoy, Rao, and Yu
(2010) and Shenoy and Yu (2011).

LATER and the BPA constitute different perspectives on mod-
eling response inhibition. LATER is focused on the nature of the
(neural) processes underlying response inhibition and thereby
makes particular assumptions of the shape for the finishing time
distribution of the stop processes. In contrast, the BPA constitutes
a more statistical approach. The BPA is not concerned with the
nature of the underlying go and stop process; it rather focuses on
how the SSRT distribution can be estimated irrespective of the
particular parametric choice— be it ex-Gaussian or shifted Wald—
used to quantify its shape.

Prior Distributions

The BPA uses Bayesian parameter estimation and therefore
involves choosing prior distributions for the ex-Gaussian go
and stop parameters. With respect to the individual BPA, the
priors for the go and stop parameters are informative in the
sense that they cover a wide but realistic range of values
informed by results from the stop-signal literature (Band et al.,
2003; Williams et al., 1999). We feel that using informative
priors is justified, since there is a large body of past research
that provides valuable information about the plausible range of
parameter values. Also, with increasing opportunity to apply
the BPA to empirical data sets, we will be able to make even
better informed choices about the prior distribution of the
parameters. Note also that as long as sufficiently informative
data are available, the data readily overwhelm the prior (e.g.,
Lee & Wagenmakers, in press). Whereas Bayesian parameter
estimation can be robust to changes in priors, Bayesian hypoth-
esis testing using Bayes factors (e.g., Berger & Pericchi, 1996;
Dickey, 1971; Gamerman & Lopes, 2006; Kass & Raftery,
1995; Klugkist et al., 2005; O’Hagan & Forster, 2004) can be
relatively sensitive to prior inputs. The shape of the prior
distribution can greatly influence the Bayes factor and the
resulting inferences (e.g., Bartlett, 1957; Liu & Aitkin, 2008;
but see Vanpaemel, 2010). Fortunately, various user-friendly
approaches to Bayesian hypothesis testing are now available
that rely on principled choices of prior distributions (e.g.,
Rouder et al., 2009; Wetzels et al., 2009).

With respect to the hierarchical approach, the BPA assumes that
the individual go and stop parameters come from truncated normal
group-level distributions. The use of normal group-level distribu-
tions is a common choice in Bayesian hierarchical modeling (e.g.,

Gelman & Hill, 2007; Lee & Wagenmakers, in press). Also,
sensitivity analyses indicated that the hierarchical BPA is rela-
tively robust to misspecification of the group-level distribution of
the individual go parameters. Even when the true go parameters
were drawn from uniform or bimodal group-level distributions, the
hierarchical BPA with truncated normal group-level distributions
provided accurate individual go parameter estimates. Unfortu-
nately, the hierarchical BPA is less robust to misspecification of
the group-level distribution of the individual stop parameters.
When the true stop parameters were drawn from uniform or
bimodal group-level distributions, the hierarchical BPA with trun-
cated normal group-level distributions resulted in biased parameter
estimates, particularly for the o, and 7, parameters. Fortu-
nately, the bias decreased as the number of participants and espe-
cially as the number of trials increased. The finding that the go
parameters are more robust to misspecification of the group-level
distributions is not surprising. The go parameters are estimated
based on the go RTs as well as the signal-respond RTs. Also, the
sensitivity analyses—similar to typical stop-signal studies—fea-
tured 3 times as many go trials as stop-signal trials. As a result, the
go parameters are more strongly constrained by the data and are
less strongly influenced by their group-level distribution than the
stop parameters.

Moreover, the sensitivity analyses indicated that misspecification
of the group-level distributions often results in convergence problems.
We therefore recommend researchers to carefully monitor the con-
vergence of the individual parameter estimates. If there are reasons to
suspect that the hierarchical assumptions are violated, we advise users
to inspect the distribution of the individual go and stop parameters
obtained either from the individual BPA or from the hierarchical BPA
with very weak priors for the group-level parameters. If these prelim-
inary analyses indicate that the distribution of the individual param-
eters substantially deviates from normality, one may use the uncon-
strained individual go and stop parameters. Alternatively, if
substantive knowledge of the form of the group-level distributions is
available, the hierarchical BPA may be adapted to accommodate the
desired (mixture) distribution. The reader is referred to the online
supplemental materials for the detailed results of the sensitivity anal-
yses for the hierarchical BPA.

Conclusion

Here we introduced a novel Bayesian parametric method that
provides for the estimation of entire distribution of SSRTs. The
new method enables researchers to evaluate differences in the
shapes of SSRT distributions between various clinical populations
or experimental groups. In doing so, our BPA aids the interpreta-
tion of stop-signal data and may reveal some hitherto unknown
aspects of response inhibition.
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Appendix

WinBUGS script

Individual Bayesian Parametric Approach (BPA)
Model

The WinBUGS script for the individual BPA is as follows:

model

{

## Priors for parameters

mu_go ~ dunif(1,1000)

sigma_go ~ dunif(1,300)

tau_go ~ dunif(1,300)

mu_stop ~ dunif(1,600)

sigma_stop ~ dunif(1,250)

tau_stop ~ dunif(1,250)

## Go RTs come from an ex-Gaussian

#f distribution

for (g in l:n.gort) {

go_rt[g] ~ ExGaussian(mu_go, sigma_go,
tau_go)

}

## Signal respond trials; signal-respond RTs

# (srrt) at each SSD come from

#f a censored ex-Gaussian distribution

# (see first part of Equation 14.)

for (d in l:end SR){

for (r in l:n.srrt[d]){

srrt[d,r] ~ CensoredExGaussian_SR(mu_go,
sigma go, tau_go, mu_stop, sigma_stop,
tau_stop, ssd_SR[d])

1

1

# Signal inhibit trials; Succesful

# inhibitions come from a censored

# ex-Gaussian

J#f distribution (gee second part of Equation

#14.)

for (h in l:end I){

for (i in l:n.inhibitions[h]){

zeros [h,i] <- 0

zeros|[h,i] ~ dpois(philh,i])

phifh,i] <- - intgl[h]

1

## Compute integral in Equation 14 using

# Simpson’s rule of numerical integration

## The first and the second arguments define

# the limits of integration,

# and the third argument defines the number

# of subintervals used for

# computing the integral.

intg[h] <- CensoredExGaussian I(1l, 6000,
2000, mu_go, sigma_go, tau_go, mu_stop,
sigma_stop, tau_stop, ssd_I[h])

}

}

The ExGaussian and CensoredExGaussian_ SR distri-
butions and the CensoredExGaussian_I function are implemented
with the WinBUGS Development Interface (WBDev; Lunn,
2003). For a WBDev tutorial for social scientists, see Wetzels,
Lee, and Wagenmakers (2010). The WinBUGS and WBDev
scripts are available as online supplemental material. For compu-
tational reasons, the indefinite integral in Equation 14 is replaced
by a definite integral (i.e., CensoredExGaussian_TI) with
limits of integration well beyond the range of stop-signal reaction

times that may be encountered in the stop-signal paradigm.

Hierarchical BPA Model

The WinBUGS script for the hierarchical BPA is as follows:
model
{

# Priors for the group-level parameters

# The 1(0,) construct denotes distributional

# censoring, with a lower bound of 0,
# and an upper bound of infinity
mu_mu_go ~ dnorm(500,0.0001)I(0,)
lambda_mu_go <- 1/pow(sigma_mu_go,?2)
sigma_mu_go ~ dunif(0,300)

mu_sigma_go ~ dnorm(100,0.001)I(0,)
lambda_sigma_go <- 1/pow(sigma_sigma_go,2)
sigma_sigma_go ~ dunif(0,200)

mu_tau_go ~ dnorm(80,0.001)I(0,)
lambda_tau_go <- 1/pow(sigma_tau_go,2)
sigma_tau go ~ dunif(0,200)

(Appendix continues)
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mu_mu_stop ~ dnorm(200,0.0001)I(0,)
lambda_mu_stop <- 1/pow(sigma_mu_stop,2)
sigma_mu_stop ~ dunif(0,200)

mu_sigma stop ~ dnorm(40,0.001)I(0,)
lambda_sigma_stop <- 1/pow(sigma_sigma_stop,
2)

sigma_sigma stop ~ dunif(0,100)

mu_tau_stop ~ dnorm(30,0.001)I(0,)
lambda_tau_stop <- 1/pow(sigma_tau_stop,2)
sigma tau stop ~ dunif(0,100)

# C has to be large enough so that all phi
# [s.k,n] are positive
## ¢ <- 10000

## Participant loop
for (j in l:n.subjects) {

# Go RTs come from an ex-Gaussian

Jf distribution

for (g in l:n.gort){

go_rtlg,j] ~ ExGaussian(mu_go[j], sigma_ go
[§]., tau_golj])

1

## Signal respond trials; signal-respond RTs
# (srrt) at each SSD come from

J# a censored ex-Gaussian distribution

# (see first part of Equation 14.)

for (d in 1l:end_SR[]j]){

for (r in l:n.srrt[d,j])(

srrt[d,r,j] ~ CensoredExGaussian_SR(mu_gol[]j],

sigma_gol[j], tau_golj], mu_stoplj],
sigma_stop[j], tau_stop[j], ssd_SRI[d,]j])
}

)

# Signal inhibit trials; Succesful

J# inhibitions come from a censored ex-
Gaussian

Jf distribution (gee second part of Equation
#14.)

## The following code implements the zeros

# trick (see WinBUGS manual)

## Because phils,k,n] is a Poisson mean, it
## should always be positive.

f As a result, we may need to add constant C
# to ensure that all phils,k,n]

# are positive

for (h in l:end_T[j]){

for (i in l:n.inhibitions[h,j]){
zeros|h,i,j] <- 0

zeroslh,i,j] ~ dpois(philh,i,j])
philh,i,j] <- - intglh,qj] #+C }

}

## Compute integral in Equation 14 using

# Simpson’s rule of numerical

## integration. The first and the second

## arguments define the limits

# of integration, and the third argument

## defines the number of

## subintervals used for computing the

# integral.

intglh,j] <- CensoredExGaussian_ I(1, 3000,
1000, mu_gol[j], sigma gol[j], tau golj],
mu_stop[j], sigma_stop[jl], tau_stopljl,
ssd_TI[h,j])

}

# Individual parameters come from truncated

{#f normal distributions

# The third argument specifies the truncation

i point

mu_go[j] ~ TruncatedNormal (mu mu go,
lambda_mu_go,0)

sigma_go[j] ~ TruncatedNormal (mu_sigma_go,
lambda sigma go,1)

tau_go[j] ~ TruncatedNormal (mu_tau go,
lambda_tau go,1)

mu_stop[j]~ TruncatedNormal (mu_mu_stop,
lambda_mu_stop,0)
sigma stop[j] ~
TruncatedNormal (mu_sigma_stop,
lambda_sigma stop,1)
tau_stop[j] ~ TruncatedNormal (mu_tau_ stop,
lambda_tau_stop,1)
}
}
The TruncatedNormal distribution is implemented with
WBDev and is available as supplemental material.
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