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An instance theory of attention and memory (ITAM) is presented that integrates formal theories of
attention and memory phenomena by exploiting commonalities in their formal structure. The core idea
in each theory is that performance depends on a choice process that can be modeled as a race between
competing alternatives. Attention and categorization are viewed as different perspectives on the same
race. Attention selects objects by categorizing them; objects are categorized by attending to them. ITAM
incorporates each of its ancestors as a special case, so it inherits their successes.

Imagine yourself on your way home from work. You walk into
the parking lot and look for your car. It takes you a second,
perhaps. Now imagine your colleagues analyzing the simple act of
cognition underlying that look. A student of attention would be
interested in how your gaze went to the cars rather than other
structural features. A student of categorization would be interested
in how you knew those were cars in the parking lot. And a student
of memory would be interested in how you did (or did not) pick
your own car out of the group. These differences in perspective
reflect the divide-and-conquer approach to understanding cogni-
tion that has been prevalent among researchers for the last 20 or 30
years. Different researchers focus on the details of different parts
of cognition, hoping that their work will interface with the rest.
Attention may begin with perception and end when a target is
found. Categorization may begin when a target is found and end
with a concept. Memory may begin with a concept and end with a
recollection or a feeling of familiarity.

This article takes a different approach, trying to integrate theo-
ries developed under the divide-and-conquer strategy. It views the
simple act of cognition as a single phenomenon and interprets
attention, categorization, and memory as different perspectives on
the same simple act. To attend is to categorize; to categorize is to
remember; to remember is to attend. This idea is expressed in a
formal theory that combines existing theories of attention, catego-
rization, and memory that have similar formal structures. I show
how the theory derives from its ancestors and I show how the
ancestors can be viewed as special cases of the theory.

The Family Tree

The divide-and-conquer strategy separates empirical phenom-
ena as well as theories. Empirical studies of attention focus on the
problem of selecting one of several objects—finding your car
among the other cars in the parking lot. Empirical studies of
categorization and memory focus on the problem of classifying a

single object—knowing that cars are cars and your car is yours.
The empirical phenomena are different and seem to require dif-
ferent explanations. Theories of attention focus on similarities and
differences between objects, whereas theories of categorization
and memory focus on features or dimensions of single objects. The
new theory provides a conceptual bridge that connects the empir-
ical phenomena and explicates relations between them. It provides
a unified account of three different kinds of attention that are
required to explain the phenomena: attention to objects, attention
to categories, and attention to dimensions.

The new theory is the child of two families of theory, an
attention family and a memory family, depicted in Figure 1. In
view of this heritage, I call the new theory the instance theory of
attention and memory (ITAM). Its ancestors on each branch are
members of a family in the sense that they share formal mathe-
matical and computational structures, like members of a family
share genes. The ancestors are also like a family in that they
represent several generations of cumulative theoretical develop-
ments. The two families have common roots that go back al-
most 50 years to ideas about similarity and choice by Shepard
(1957) and Luce (1959). Each theory in the family tree was created
from its immediate ancestor by generalizing existing assumptions
or adding new assumptions to increase the theory’s power. The
new theory culminates these developments by combining theories
of attention with theories of memory. It integrates the ancestors by
expressing them in a common mathematical structure that includes
the ancestors as special cases. The theories that can be viewed as
special cases of the new theory are connected by bidirectional
arrows in Figure 1. Because of this common formal structure, the
new theory inherits the successes of its special cases, which are
numerous and impressive.

The attention branch begins with the fixed-capacity independent
race model (FIRM; Bundesen, 1987; Bundesen, Pedersen, &
Larsen, 1984; Bundesen, Shibuya, & Larsen, 1985; Shibuya &
Bundesen, 1988), which accounts for performance on partial and
whole report tasks. Bundesen (1990, 1998a, 1998b; Bundesen &
Harms, 1999) generalized FIRM to create the theory of visual
attention (TVA), which accounts for performance on a broad range
of attention tasks, including feature search, cuing, single-item
identification, and priority learning. I combined TVA with Van
Oeffelen and Vos’s (1982, 1983) COntour DEtector (CODE)
theory of perceptual grouping by proximity to create the CODE
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theory of visual attention (CTVA; Logan, 1996; Logan &
Bundesen, 1996), which accounts for a variety of distance and
grouping effects in flanker tasks and feature- and conjunction-
search tasks. Recently, R. D. Gordon and I proposed a theory of
executive control of TVA to account for crosstalk and set-
switching effects in dual-task situations. We called this theory
executive control of TVA (ECTVA; Logan & Gordon, 2001). TVA,
CTVA, and ECTVA are special cases of ITAM, so ITAM inherits
these predictions. ITAM can be configured in a form that is exactly
like each of these ancestors and so generates the same predictions.

The attention branch provides ITAM with a formal theory of
attention to objects and attention to categories, but it does not
explain attention to dimensions. Its formal arguments rely heavily
on the idea of similarity between targets and distractors, but it does
not provide a theory of similarity that explains how similarity is
represented or computed. The attention branch also assumes that
categories are learned and past experiences are remembered, but it
has no explanation of learning and memory. The memory branch
solves these problems.

The memory branch begins with Medin and Schaffer’s (1978)
context model of classification, which formalized the instance or
exemplar approach to classification and accounted for several
effects previously attributed to prototypes. Nosofsky (1984, 1986,
1988) extended the context model’s assumptions about similarity
to create the generalized context model (GCM), which accounts
for an impressive array of classification data, including the relation

between classification and identification and the relation between
classification and episodic recognition. Nosofsky and Palmeri
(1997; also see Palmeri, 1997) combined GCM with my instance
theory of automaticity (Logan, 1988, 1990, 1992) to create the
exemplar-based random-walk model (EBRW), which accounts for
classification speed as well as accuracy and a variety of learning
effects, including automatization. GCM, instance theory, and
EBRW are all special cases of the new theory, so it inherits their
successes as well.

The memory branch also contains Lamberts’s (2000) extended
generalized context model (EGCM), Kruschke’s (1992) attention
learning covering theory (ALCOVE), and Kruschke and Johan-
sen’s (1999) rapid attention shifts ‘n’ learning theory (RASHNL),
which change the representational assumptions of GCM and so are
not related as directly to the new theory. They represent promising
directions for extension and development of the new theory, which
I leave for future research.

The memory branch provides ITAM with a formal theory of
attention to categories and attention to dimensions, but it does not
explain attention to objects. It provides a formal theory of simi-
larity and mechanisms that determine the effects of similarity on
classification performance. It also provides a formal theory of
learning (i.e., instance theory and EBRW) and interfaces readily
with theories of other kinds of learning (e.g., ALCOVE and
RASHNL). The theories in the memory branch complement the
theories in the attention branch. Together, they provide ITAM with
the necessary tools to account for empirical phenomena in both
literatures.

The goal of this article is to present the new theory, explain how
it works, and explain how it relates to its ancestors. In a nutshell,
ITAM assumes that attention and categorization are both choice
processes and that both are instantiated as races between compet-
ing alternatives. Attention involves choice between competing
objects in the display, whereas categorization involves choice
between competing classifications of display objects. ITAM as-
sumes that the races underlying these choices run simultaneously
and in fact are one and the same. An object is selected and a
classification of that object is selected in the same act of cognition.
The choice processes are driven by similarities between display
objects and memory representations of the alternative categories.
Categories are represented as collections of instances, and learning
occurs through the accumulation of instances over practice. The
output of object selection and category selection is input to a
random-walk response selection process. In the remainder of this
article, I crack the nutshell and unpack its contents, explaining how
the parts of the theory fit together and how the theory works as a
whole. I proceed by considering fundamental similarities and
incidental differences between the theories, building the theory one
issue at a time and ending with the theory as a whole.

Attention and Categorization as Choice

The most fundamental relationship among all the theories in the
family tree is that each one is a choice process. Memory theories
look inward, choosing among the categorizations available in
memory. Attention theories look outward, choosing among per-
ceptual objects available in the environment. Both choices are
massively parallel. Memory theories assume that a probe accesses
all traces in memory simultaneously, and attention theories assume

Figure 1. A family tree expressing the relations between ancestors on the
attention branch and the memory branch. Theories connected by bidirec-
tional arrows can be made equivalent to each other, through ITAM. See the
text for a description of the theories. FIRM � fixed-capacity independent
race model; TVA � theory of visual attention; CTVA � COntour DEtector
(CODE) theory of visual attention; ECTVA � executive control of TVA;
GCM � generalized context model; EBRW � exemplar-based random
walk model; EGCM � extended generalized context model; ALCOVE �
attention learning COVEring theory; RASHNL � rapid attention SHifts
‘N’ Learning theory; ITAM � instance theory of attention and memory.
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that each object in the display is processed at the same time. In the
new theory, these two choices are one and the same. Objects are
selected and categorized in a single step.

The importance of choice in attention and memory goes beyond
the formal models in Figure 1. Attention has been treated as a
choice process from the beginning of experimental psychology
(e.g., James, 1890). To attend is to choose between alternative
stimuli or alternative courses of action. Categorization also in-
volves choice. The same object can be categorized in many ways
(Brown, 1958). Categorizing an object involves choice among
alternative categories. Moreover, attention and categorization are
studied experimentally in procedures that require choice: Is a
target present or absent? Is this stimulus a member of Category A
or Category B? Understanding subjects’ behavior in those exper-
iments means understanding their choices and the processes that
underlie them.

Each theory in the family tree assumes that the choice of a
categorization for object x is a function of the strength of the
evidence that x is a member of one of the categories j in the
response set R. The probability of choosing category i for object x
increases with evidence that x is i and decreases with evidence that
x is a member of some other category in the response set. This core
idea is expressed in each theory in a choice rule based on an
equation developed by Shepard (1957) and Luce (1959, 1963), the
Shepard-Luce choice rule:

P(“x is i”) �
v(x, i)

�
j�R

v(x, j)
. (1)

The probability of choosing category i for object x is given by the
ratio of the strength of evidence that x is i to the sum of the
strengths of evidence that x belongs to each category in the
response set.

Choice Models as Race Models

The theories differ in their interpretation of the mechanism of
choice in a way that turns out to be superficial. Some theories, such
as GCM, interpret the choice process as an instance of the
Shepard-Luce choice rule. The v parameter is broken down into a
product of an evidence parameter (� for evidence) and a bias
parameter (� for bias) according to the following equation:

v(x, i) � �(x, i)�i. (2)

The � parameter represents the quality of the sensory evidence
that object x is a member of category i, or alternatively, the
similarity between object x and members of category i. The stron-
ger the evidence or the greater the similarity, the larger the �. The
� value is determined by the environment and the person’s history
with members of category i. Its interpretation will be discussed in
depth later in the article (see Similarity and Choice; Instance
Representation; Learning). The � parameter represents the impor-
tance of choosing objects in category i. It is determined by the
person’s homunculus (Bundesen, 1990; Logan & Gordon, 2001)
and represents the bias for members of category i. Its interpretation
will be discussed in more detail shortly.

Other theories, such as TVA, interpret the choice process in
terms of the outcome of a race between independent processes. In

these theories, the v values in Equation 1 are interpreted as pro-
cessing rates (v for velocity), so the categorization with the fastest
processing rate is most likely to win the race. If the v parameters
are interpreted as processing rates for exponential distributions of
categorization times, then Equation 1 describes the probability that
“x is i” wins the race exactly. When there is only one stimulus in
the display, TVA represents the v parameters just as GCM does, as
products of evidence parameters (�s) and bias parameters (�s; i.e.,
Equation 2). The race model has the same structure as the choice
model.

Marley and Colonius (1992) and Bundesen (1993) showed that
a large class of independent race models is equivalent to the class
of Luce choice models in that a race model can be constructed that
mimics exactly the choice probabilities of a given Luce model. The
equivalence of independent race models and Luce choice models is
essential to the theoretical integration in ITAM. It means that each
theory in Figure 1 can be construed both as a race model and as a
choice model. That adds considerably to the predictive power of
the models. Models based on the Shepard-Luce choice rule can
predict reaction time (RT) as well as choice probability. If the v
values in Equation 1 are interpreted as rate parameters for expo-
nential distributions of finishing times, then the winner of the race
will also be distributed exponentially with a rate parameter that is
the sum of the rate parameters of all the runners in the race (i.e.,
the denominator of Equation 1). The mean finishing time (FT)
is 1.0 over the denominator of Equation 1 (Bundesen, 1990;
Logan, 1996; Townsend & Ashby, 1983):

FT �
1

�
j�R

v(x, j)
. (3)

Attention to Categories

The multiplication of � and � in Equation 2 represents ITAM’s
mechanism for attention to categories. ITAM assumes that � is set
obligatorily in a brief encoding stage that precedes TVA (see
Bundesen & Harms, 1999; Logan & Gordon, 2001), but � is set by
the person’s homunculus (i.e., ECTVA; see Logan & Gordon,
2001). The �s can be thought of as strengths of resonance between
structures in the environment and structures in memory, and the �s
can be thought of as gain controls. Increasing � turns up the gain
on desired categorizations, amplifying their resonance with the
environment (increasing the v values) and increasing the probabil-
ity they will be selected. Decreasing � turns down the gain on
undesired categorizations, attenuating their resonance and decreas-
ing the probability they will be selected. The �s may be high for
many categorizations of many display objects, but only those
objects with high � and high � have a chance of being selected.
Thus, ITAM assumes that selection of a classification or a category
is a voluntary process that is mediated by attention.

ITAM’s mechanism for attention to categories is inherited from
both branches of the family tree and represents a fundamental
compatibility between the families. The mechanism has deeper
roots in the classical attention literature. The choice of categories
to distinguish for a given input is an act of attention that was called
response set (Broadbent, 1971) and analyzer selection (Treisman,
1969) in classical analyses of attention. In ITAM, the choice
among categories is a choice among � values.
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Selecting Objects; Selecting Categorizations of Objects

The choice machinery in Equations 1–3 works in an ideal
universe in which there is just one object. The real world typically
presents us with several objects at once, and that creates new
computational problems. We are often required to act on one of the
objects—you choose your own car in the parking lot—and that
creates the problem of object selection: How do you choose the
object you categorize? Traditionally, researchers have adopted the
divide-and-conquer approach to this issue, assuming that object
selection and category selection were done in separate steps.
Attention researchers studied object selection and largely ignored
the issues surrounding category selection. Categorization research-
ers studied category selection and ignored issues of object
selection.

ITAM takes a different perspective. It assumes that object
selection and category selection are the same thing. An object is
selected by categorizing it, and a category is selected by finding an
object that instantiates it (Bundesen, 1990; Logan, 1996; Logan &
Gordon, 2001; also see Desimone & Duncan, 1995; Duncan,
1996). ITAM assumes that object selection occurs in parallel over
the set of objects z in the display set D, just as category selection
occurs in parallel over all categories j in the response set R.
Consequently, there is a processing rate v(z, j) for every categori-
zation of every display object. As in Equation 1, choice probabil-
ities depend on the ratio of the processing rate for categorizing a
particular object to the sum of the processing rates for all catego-
rizations of all objects in the display. Thus, the probability of
choosing object x and classifying it as a member of category i
depends on the processing rate for that categorization—v(x, i):

P(x � i) �
v(x, i)

�
z�D

�
j�R

v(z, j)
. (4)

The mean processing time for this choice of object and category is
the reciprocal of the sum of the processing rates for all categori-
zations of all display objects:

FT �
1

�
z�D

�
j�R

v(z, j)
. (5)

Equations 4 and 5 represent the probability and finishing time
for a single choice. Performance in many tasks, such as visual
search and partial report, requires several choices like these before
a response can be chosen (see Response Selection), so Equations 4
and 5 do not always predict performance directly. They are useful
because they provide insight into the advantages of ITAM’s as-
sumption that objects and categories are selected simultaneously.

Early, Late, and Simultaneous Selection

ITAM’s assumption of simultaneous selection opposes long-
standing tradition in the attention literature. Since the 1950s,
attention researchers have treated object selection and category
selection as separate, sequential stages. They have always agreed
there are two stages and that one follows the other, but they have
never agreed on the order of the stages or the boundary between
the stages, a controversy known as the locus of selection. Advo-

cates of early selection argue that objects are selected before they
are categorized (e.g., Broadbent, 1958, 1971; Treisman & Gelade,
1980). Advocates of late selection argue that objects are catego-
rized before they are selected (e.g., Deutsch & Deutsch, 1963;
Norman, 1968). The controversy remains unresolved, with evi-
dence supporting both positions (Kahneman & Treisman, 1984).
ITAM provides a new perspective on the issue, suggesting a third
alternative—simultaneous selection—that looks like early selec-
tion in some respects and late selection in other respects (Logan,
1996). The current evidence may be more consistent with simul-
taneous selection than with early or late selection (also see Logan,
1995a; Logan & Zbrodoff, 1999; Van der Heijden, 1992).

ITAM provides some insight into the controversy over the locus
of selection because it can implement a version of early selection
and a version of late selection that can be compared with each
other and with ITAM’s simultaneous selection. I show that simul-
taneous selection produces the same accuracy as these versions of
early and late selection, but it produces faster processing times.

Early selection. According to early selection theories, objects
are first selected and then categorized. The choice machinery in
Equations 1–4 can implement each of these steps. The probability
of choosing object x from a set of objects in the display D is the
sum of the probabilities that x will be classified in each of the
relevant categories. The processing rates for object x are summed
over all categories j in the response set R, and that sum is divided
by the sum of processing rates over all categories j in the response
set R over all objects z in the display D. That is,

P(x) �

�
j�R

v(x, j)

�
z�D

�
j�R

v(z, j)
. (6)

Once object x is chosen, the category it belongs to may be chosen
using what is essentially Equation 1:

P(i � x) �
v(x, i)

�
j�R

v(x, j)
. (7)

Assuming that i is the correct categorization and x is the correct
object, the probability of responding correctly in both steps is
given by the product of Equations 6 and 7:

P(x � i) � P(x)P(i � x)

�

�
j�R

v(x, j)

�
z�D

�
j�R

v(z, j)

v(x, i)

�
j�R

v(x, j)
�

v(x, i)

�
z�D

�
j�R

v(z, j)
. (8)

Note that the far right side of Equation 8 is the same as the
right-hand side of Equation 4. Early selection (Equation 8) and
simultaneous selection (Equation 4) predict the same choice prob-
abilities. They mimic each other’s accuracy predictions. Early
selection provides no advantage over simultaneous selection in
terms of accuracy.

Processing-time predictions show a disadvantage for early se-
lection. Early selection involves two stages: object selection and
category selection. If the stages are sequential and independent,
then processing time is the sum of the stages’ durations; that is,
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FTearly �
1

�
z�D

�
j�R

v(z, j)
�

1

�
j�R

v(x, j)
. (9)

The duration of the first stage in early selection—object selec-
tion—is the same as the duration of the only stage—object and
category selection—in simultaneous selection (compare the first
term on the right-hand side of Equation 9 with Equation 5), so
early selection is necessarily slower than simultaneous selection.
Thus, ITAM’s assumption of simultaneous selection is faster but
no less accurate than early selection. ITAM can configure itself to
perform early selection or simultaneous selection, but it would
prefer simultaneous selection because it is faster.

Late selection. According to late selection theories, objects are
first categorized, and then one of the categorized objects is se-
lected. This can be implemented in ITAM by calculating the
probability of categorizing objects in category i and then calculat-
ing the probability that object x will be selected from those in
category i. The probability of choosing a member of category i
from all objects z in the display D is

P(i) �

�
z�D

v(z, i)

�
z�D

�
j�R

v(z, j)
. (10)

The probability that object x is selected from among the objects in
category i is

P(x � i) �
v(x, i)

�
z�D

v(z, i)
. (11)

The probability that i and x are both chosen is the product of
Equations 10 and 11:

P(x � i) � P(i)P(x � i)

�

�
z�D

v(z, i)

�
z�D

�
j�R

v(z, j)

v(x, i)

�
z�D

v(z, i)
�

v(x, i)

�
z�D

�
j�R

v(z, j)
. (12)

Note that the far right-hand side of Equation 12 is identical to the
far right-hand side of Equation 8 and identical to the right-hand
side of Equation 4: Early, late, and simultaneous selection produce
the same choice probabilities.

The processing time for late selection is the sum of the durations
of the two sequential independent steps, category selection and
object selection:

FTlate �
1

�
z�D

�
j�R

v(z, j)
�

1

�
z�D

v(z, i)
. (13)

The first step in late selection takes as long as the only step in
simultaneous selection (compare Equations 4 and 13), so late
selection necessarily takes longer than simultaneous selection.
Simultaneous selection produces the same accuracy in less time
and so is preferable to late selection. A beast endowed with
ITAM’s choice machinery could choose strategically between

early, late, and simultaneous selection, but the advantage would
usually go to simultaneous selection because it is faster and no less
accurate than the alternatives.

Simultaneous selection of a display object and a categorization
of the object illustrates one sense in which attention and catego-
rization are the same thing. The act that results in apprehension of
a display object is the same act that results in a categorization of
the display object. We apprehend by categorizing. Classical early-
and late-selection views assumed that categorization and object
selection were separate steps, and that encouraged the divide-and-
conquer strategy of studying them separately. ITAM’s idea that
object selection and categorization are one and the same and occur
in one step discourages studying them separately and strongly
recommends understanding them together in a single integrated
theory.

Object Selection and Stimulus Set

Imagine yourself in a parking lot looking for a car you just
rented. The clerk gave you a key with the license number on it and
told you the car was red. You have to find the car with the
matching license number, but it may be helpful to know the car is
red. You can restrict your attention to red cars, examining the
license plate only if the car is red. If there is only one red car in the
lot, this strategy will lead you directly to it. More likely there will
be a few red cars among several non-red ones. Restricting your
attention to the red cars will reduce the number of license plates
you need to examine.

Your experience in the parking lot has been studied extensively
by attention researchers for decades. You chose your car on the
basis of one property (color) and responded to it on the basis of
another (license number). Many attention tasks similarly require
people to select objects on the basis of one property and to select
responses on the basis of another. Subjects might be shown a
display of letters and asked to report the identity of the red one
(e.g., C. W. Eriksen & Hoffman, 1972), or they might be shown a
row of three letters and asked to report the middle one (e.g., B. A.
Eriksen & Eriksen, 1974). Subjects might be shown a display of
items arranged in rows and asked to report the identities of the
items in the row cued by a tone or a bar marker (e.g., Sperling,
1960). Kahneman and Treisman (1984) called this broad class of
tasks filtering tasks. The property used to select objects serves as
a filter that screens out distractor objects that do not share the
property, reducing the number of objects that require attention and
allowing attention to focus on the target object. Examples of
filtering tasks are illustrated in Figure 2.

In classical analyses of attention, the process used to select the
object is called stimulus set (Broadbent, 1971) or input selection
(Treisman, 1969) and the process used to select the categorization
of the object that is to be reported is called response set (Broad-
bent, 1971) or analyzer selection (Treisman, 1969). In classical
theories, stimulus set and response set are separate, sequential
stages. The object is first selected by one process and then cate-
gorized by another process. The processes may change roles in
different contexts. You may find a red object and classify it as X
or O in one context and find an X and classify it as red or green in
another context. The processes play only one role in a single
context—stimulus set or response set—and they play their roles
sequentially—first stimulus set, then response set (Treisman,
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1969). First you find the red car, then you compare license
numbers.

ITAM also distinguishes between stimulus set and response set.
It agrees with classical theories in assuming that stimulus set
selects objects and response set selects categories, but it disagrees
with the classical theories in two respects. First, it assumes that
response set participates in object selection as well as category
selection. In other words, it assumes that two processes participate
in object selection—stimulus set and response set—whereas clas-
sical theories assumed that one process was involved. This as-
sumption makes ITAM similar to guided search theory (K. R.
Cave & Wolfe, 1990; Wolfe, 1994; Wolfe, Cave, & Franzel,
1989), which assumes that target categories have a top-down
influence on object selection. I show that ITAM’s combination of
stimulus set and response set produces better object selection than
response set alone. Second, ITAM assumes that stimulus set and
response set occur simultaneously, not sequentially. The object is
selected and categorized in a single step. The arguments developed
earlier about the advantages of simultaneous selection over early
or late selection (Equations 4–13) also apply to simultaneous
versus sequential stimulus set and response set. ITAM can be
configured to select objects and categories either serially or simul-
taneously, and the simultaneous configuration is faster but no less
accurate than the sequential configuration.

ITAM’s mechanism for response set was inherited from TVA
and GCM. It was presented in Equations 1–4 (i.e., the response set
R and the �s that it comprises). The mechanism for stimulus set is
inherited from TVA. It is built from the same components as the
response set mechanism—a subject-independent evidence param-
eter (�) and a subject-controlled gain parameter (� for priority)—
and it involves the same sort of choice process as response set.
There is a set S of desired stimulus properties and there is a priority
parameter �k for each property k in the stimulus set S. The �
parameters act as gain controls much like the �s in response set.
They multiply � values that represent possible categorizations of
stimulus properties of objects in the display. The �s are controlled

completely by the subject and the �s are determined by the objects
in the display and the subjects’ history with categorizations of
stimulus properties.1

An object is chosen by the same mechanism used in response
set. The probability of choosing object x with the stimulus set S is
given by the ratio of the sum of products of � and � that support
x to the sum of products of � and � over the whole display:

P�(x) �

�
k�S

�(x, k)�k

�
z�D

�
k�S

�(z, k)�k

. (14)

Equation 14 represents the relative attention weight on object x
(Bundesen, 1990). ITAM uses these probabilities to prioritize the
objects in the display, multiplying each evidence parameter (�
value) in the response set by the probability of selecting the object
it refers to in the stimulus set. Thus, processing rate becomes

v(x, i) � �(x, i)�iP�(x), (15)

and the probability of choosing object x and category i becomes

P(x � i) �
�(x, i)�iP�(x)

�
z�D

�
j�R

�(z, j)�jP�(z)
. (16)

Thus, the greater the likelihood that object x is selected by stimulus
set, the greater the likelihood that object x and category i are
chosen together.2

ITAM assumes that all of these choices are simultaneous. Pro-
cessing rates defined by Equation 15 can be substituted directly
into Equations 4–13 to make exactly the same points about the
merits of early, late, and simultaneous selection. Nevertheless, it is
instructive to consider how � and � contribute to object selection
and to categorization of the selected object. The probability of
choosing object x is given by

P(x) �

�
j�R

�(x, j)�jP�(x)

�
z�D

�
j�R

�(z, j)�jP�(z)
, (17)

and the probability of choosing category i given object x is given
by

1 Bundesen (1990) interpreted priority learning in terms of changes in �,
so that � depends on the stimulus display as well as the subject’s homun-
culus. I prefer to localize learning in the � parameters, so that � depends
only on the homunculus.

2 TVA, CTVA, and ECTVA talk about stimulus set in a different
manner, following Bundesen’s (1990) original description. Bundesen
(1990) defined stimulus set in terms of attention weights, w, assigned
to different objects. The weight wx on object x is defined as
wx � �k�S�(x, k)�k. When the attention weight on object x enters the
TVA equations, it is divided by the sum of the attention weights over
all objects in the display, creating a relative attention weight that is
equivalent to P�(x). TVA’s expression for processing rate is
v(x, i) � �(x, i)�i(wx/�z � Dwz), which is equivalent to Equation 15. I
prefer to talk about stimulus set in terms of P�(x) because it seems to
make the contribution of stimulus set easier to understand.

Figure 2. Examples of filtering tasks.
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P(i � x) �
�(x, i)�iP�(x)

�
j�R

�(x, j)�iP�(x)
�

�(x, i)�i�
j�R

�(x, j)�j

. (18)

The stimulus set parameter, �, influences the choice of object x,
through P�(x), Equation 17, but it does not influence the proba-
bility of choosing category i given object x (the far right-hand
expression in Equation 18). In this sense, stimulus set is indepen-
dent of response set. Increasing the likelihood of choosing object
x by manipulating stimulus set increases the likelihood of all
possible response-set categorizations of object x (Equation 17; also
see Bundesen, 1990). Knowing your rental car is red makes it more
likely to be chosen (Equation 17), and that increases the likelihood
that you will find the matching license plate (Equation 18). How-
ever, knowing the car is red has no effect on the likelihood that you
will confuse the license number with similar numbers (Equation
18).

The response set parameter, �, influences both the likelihood of
choosing object x (Equation 17) and the likelihood of choosing
categorization i given object x (Equation 18). Contrary to classical
analyses, ITAM allows response set to participate in object selec-
tion as well as category selection. Stimulus set and response set
both contribute to object selection; response set alone contributes
to category selection.

The complementary roles of stimulus set and response set can be
seen more clearly by defining the probability P�(x) that object x is
selected by response set alone:

P�(x) �

�
j�R

�(x, j)�j

�
z�D

�
j�R

�(z, j)�j

. (19)

Note that Equation 19 is essentially the same as Equation 6. The
probability of selecting object x can be expressed in terms of P�

and P� by dividing the numerator and denominator of Equation 17
by the denominator of Equation 19:

P(x) �

�
j�R

�(x, j)�j

�
z�D

�
j�R

�(z, j)�j

P�(x)

�
z�D

�
j�R

�(z, j)�j

�
z�D

�
j�R

�(z, j)�j

P�(z)

�
P�(x)P�(x)

�
z�D

P�(z)P�(z)
. (20)

Equation 20 shows that object selection depends symmetrically
on stimulus set and response set. The probability of selecting
object x increases as P�(x) and P�(x) increase. The sums of
products in the denominator of Equation 20 represent the covaria-
tion between P�(z) and P�(z) over the display D (i.e., the tendency
for stimulus set and response set to select the same objects).
Equation 20 suggests that a correlation between stimulus set and
response set decreases the probability of object selection. Stimulus
set increases the probability of object selection only when it
provides new information that is not already available in response
set.

ITAM improves accuracy relative to selection by response set
alone because both stimulus set and response set contribute to

object selection. The machinery developed here so far allows
quantification of the improvement in the accuracy of object selec-
tion. The advantage can be construed as a simple multiplier, A,
applied to P�(x), so that

P(x) � A � P�(x). (21)

If there is no advantage of stimulus set in object selection, then
A � 1.0. If there is an advantage, A � 1.0. It is instructive to solve
Equation 21 for A:

A �
P(x)

P�(x)
�

P�(x)

�
z�D

P�(z)P�(z)
. (22)

Like Equation 20, Equation 22 suggests that the advantage of TVA
over object selection by response set increases as the efficiency of
selection by stimulus set increases, that is, as P�(x) increases, and
decreases as the correlation between stimulus set and response set
increases.

The contribution of stimulus set to overall performance (object
and category selection) can be calculated in a similar manner. To
do so, we need to introduce another probability, the probability
P�(x � i) that object x and category i are chosen by response set
alone.

P�(x � i) �
�(x, i)�j�

z�D

�
j�R

�(z, j)�j

. (23)

What advantage does ITAM provide over Equation 23? Starting
with Equation 16, which defines P(x � i), we see that

P(x � i) �
�(x, i)�iP�(x)

�
z�D

�
j�R

�(z, j)�jP�(z)

�

�(x, i)�i�
z�D

�
j�R

�(z, j)�j

P�(x)

�
z�D

�
j�R

�(z, j)�j

�
z�D

�
j�R

�(z, j)�j

P�(z)

�
�(x, i)�i�

z�D

�
j�R

�(z, j)�j

�
P�(x)

�
z�D

P�(z)P�(z)

� P�(x � i) � A. (24)

The advantage A of stimulus set in selecting objects and catego-
rizations is the same as the advantage of stimulus set in selecting
objects (Equation 22). Stimulus set improves overall performance
by improving object selection, not category selection. This is
another expression of the independence of stimulus set and re-
sponse set.

Cue Type and Cue Validity

ITAM’s distinction between stimulus set and response set pro-
vides some insight into two contrasting procedures that are com-
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monly used to study attentional cuing. Both procedures involve
presenting a display and a cue that indicates the location of the
target in the display. In one procedure, most closely associated
with Eriksen (e.g., C. W. Eriksen & Hoffman, 1972), each item in
the display is a member of the response set R, and the cue indicates
which item to report. The Eriksen procedure requires the subject to
process the cue; otherwise, performance would be at chance. In the
other procedure, most closely associated with Posner (e.g., Posner
& Cohen, 1984), only one item in the display is a member of the
response set R, so the subject can choose the correct response
without processing the cue. The cue provides additional informa-
tion about the target’s location, and that often benefits perfor-
mance, but the Posner procedure does not require the subject to
process the cue. Examples of Eriksen and Posner cues are pre-
sented in Figure 3.

ITAM’s analysis of object selection suggests that there is a
continuum between Eriksen-type and Posner-type cuing situations
that reflects the contribution of response set (see Equation 20).
Eriksen-type cues are at one end of the continuum, at which
response set contributes nothing to object selection. Each object is
an equally valid member of the response set, so the probability of
object selection by response set would be at chance (i.e., P�(z) �
1/ND for all z � D, where ND is the number of objects in the
display), so P�(x) would cancel out of Equation 20. Object selec-
tion would depend entirely on stimulus set, that is, P(x) � P�(x).
Posner-type cues form the middle of the continuum, in which
P�(x) is above chance, and object selection depends on both
stimulus set and response set. At the end of the continuum opposite
to Eriksen, P�(x) � P(x), and object selection depends entirely on

response set. Researchers wishing to separate stimulus set and
response set effects should prefer the Eriksen procedure. Research-
ers wishing to study their interaction in object selection should
prefer the Posner procedure.

Most studies of Posner-type cuing manipulate cue validity. On
some proportion of the trials, the cue is valid in that it indicates the
correct location of the target. On the remaining proportion of the
trials, the cue is invalid in that it indicates an incorrect location of
the target (see Figure 3). The main finding is that performance is
often faster and more accurate when the cue is valid than when it
is invalid. For example, Posner, Snyder, and Davidson (1980,
Experiment 1) presented a cue on the left or right side of fixation
indicating the target’s position. On 80% of the trials, the cue was
valid, and the target appeared on the same side as the cue. RT was
fast and accuracy was high. On 20% of the trials, the cue was
invalid, and the target appeared on the side opposite the cue. RT
was slower and accuracy was lower. Bundesen (1990) modeled
these data quite successfully with TVA.

ITAM interprets the cue validity effect in terms of the interac-
tion between stimulus set and response set in object selection. In
Posner-type cuing situations, the object can be selected by stimulus
set or response set, and cue validity pits one against the other. In
the stimulus set, � should be set high for the right and left
locations, so a cue in one location (e.g., left) should bias object
selection toward that object, that is, a cue on the left should
increase P(left). In the response set, � should be set high for the
identity of the target and low for the identity of the cue. Thus,
object selection by response set should be affected by the target
and not by the cue. When the cue is valid, stimulus set and
response set are biased toward selecting the same object, so P(x)
and P(x � i) should both increase. When the cue is invalid,
stimulus set and response set are biased toward selecting different
objects, so P(x) and P(x � i) should both decrease.

Similarity and Choice

Another fundamental commonality among the members of the
family tree in Figure 1 is that they all assume that the choice
process is driven by similarity. This commonality is shared with
many theories in cognitive psychology. Similarity appears in var-
ious guises in numerous contexts, both as an explanation and a
thing to be explained (see, e.g., Medin, Goldstone, & Gentner,
1993; Shepard, 1957, 1964; Tversky, 1977). Similarity pervades
cognitive theory as much as choice does, so it is no accident that
it pervades ITAM’s family tree.

The common approach to similarity in the different branches of
ITAM’s family tree lies in the basic machinery of the choice
process. The � values in Equations 2 and 15, which represent the
similarity between an object and a category, appear in choice
equations of each theory. Similarity is given a more thorough
treatment in the memory branch than in the attention branch. In
TVA and its relatives, similarity is often a free parameter that is
manipulated to optimize fit (e.g., Bundesen, 1987; Shibuya &
Bundesen, 1988). The � parameters are treated as “atoms” and not
decomposed further. By contrast, in GCM and its relatives, simi-
larity is often an experimental manipulation and the � parameters
are broken down into subatomic components that account for a
broad variety of data (e.g., Nosofsky, 1984, 1986, 1987, 1988,
1991b; Shin & Nosofsky, 1992).

Figure 3. The distinction between Eriksen-type cues and Posner-type
cues. With Eriksen cues, response set contributes nothing to object selec-
tion. With Posner cues, response set works together with stimulus set in
object selection.
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ITAM adopts GCM’s interpretation of similarity in terms of
distance in multidimensional similarity space (Shepard, 1957,
1964). Each object is a point in multidimensional similarity space,
and the similarity between one object and another (e.g., object x
and a member of category i) is an exponential function of the
distance between them (Shepard, 1958, 1987):

n(x, i) � exp[�s � dxi], (25)

where s is a sensitivity parameter and dxi is the distance between
x and i in similarity space. Distance is defined by

dxi � ��
h�1

H

wh�uxh � uih�r�
1
r. (26)

The parameter r is the Minkowski distance metric. If r � 2,
distance is Euclidean; if r � 1, distance is city-block (see Nosof-
sky, 1984). The parameter wh represents the attention weight on
dimension h. The attention weights are set by the homunculus (see
Logan & Gordon, 2001) but are constrained to sum to 1.0.

Nosofsky and colleagues tested GCM’s similarity assumptions
quite rigorously (see, e.g., Nosofsky, 1987, 1988, 1991a, 1991b;
Shin & Nosofsky, 1992). For example, Nosofsky (1986) generated
confusion matrices by requiring subjects to identify briefly pre-
sented masked stimuli and then derived multidimensional similar-
ity spaces from the confusion matrices. The distances in this space
were used to define similarities following Equations 25 and 26.
Subjects then learned to classify the stimuli in several ways, and
Nosofsky predicted their classification performance from their
similarity spaces. These spaces fixed the distances �uxh � uih� in
Equation 26 so that similarity was not a free parameter. Only the
attention weights w and the sensitivity parameter s were allowed to
vary. GCM fit the classification data very well.

Representing Stimulus Dimensions

ITAM adopts GCM’s assumption that objects can be repre-
sented meaningfully as points in multidimensional space, or equiv-
alently, as sets of values of orthogonal dimensions. The assump-
tion gives ITAM a rich representation with considerable power.
Part of the flexibility results from the exponent r in the Minkowski
distance metric. When r � 2, the metric describes similarity
between objects that vary on integral dimensions (Garner, 1974),
like hue and saturation in color or height and width in form, that
cannot be perceived independently. When r � 1, the metric de-
scribes similarity between objects that vary on separable dimen-
sions (Garner, 1974), like form and color or shape and texture, that
can be perceived independently.

Part of the flexibility results from the variety of dimensional
differences that can be represented in Equation 26. It can represent
differences in dimensions with continuous values, like tilt or hue
(e.g., Nosofsky, 1987), and it can represent differences in discrete
dimensions, like closure or type of line junction (T or Y) or
presence or absence of features, like curvature in lines or voicing
in speech. Typically, stimuli are represented in five dimensions or
fewer, but there is no principled constraint on the number of
dimensions. The formalism will allow spaces with high dimen-
sionality that are typical of distributed representations in connec-

tionist models and global memory models (e.g., McClelland,
Rumelhart, & the PDP research group, 1986; Murdock, 1993).

Attention to Dimensions

TVA and its relatives model attention to categories and attention
to objects, but they do not model attention to dimensions, ignoring
a whole set of phenomena investigated by Garner and his col-
leagues (e.g., Garner, 1974; but see Nosofsky & Palmeri, 1997).
GCM models attention to dimensions through the attention
weights, wh in Equation 26, and ITAM adopts GCM’s model of
attention to dimensions. The attention weights are assumed to be
controlled by the subject (i.e., the homunculus; see Logan &
Gordon, 2001) and adjusted to optimize performance (cf.
Kruschke, 1992). Adjusting the attention weights affects perfor-
mance by “stretching” and “shrinking” multidimensional similar-
ity space. Increasing the weight on a dimension stretches it, in-
creasing the distance between objects on that dimension in
multidimensional space. The weights are constrained to add to 1.0,
so increasing the weight on one dimension necessarily decreases
the weight on the other dimensions; stretching one dimension
necessarily shrinks the other ones. The effect, illustrated in Fig-
ure 4, is to increase discriminability on the attended dimension and
reduce discriminability on the unattended dimensions.

The idea that attention weights are adjusted to optimize perfor-
mance implies that different weights may be required for different
tasks. This insight allowed Nosofsky (1984) to resolve a long-
standing paradox in the categorization literature. Shepard, Hov-

Figure 4. A hypothetical two-dimensional similarity space with four
points in it. In the top panel, equal weight is given to each dimension; in
the middle panel, more weight is given to the horizontal dimension; in the
bottom panel, more weight is given to the vertical dimension.
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land, and Jenkins (1961) estimated similarities between stimuli in
an identification task in which subjects learned a unique response
to each stimulus and used those similarities to predict choice
probabilities in six classification tasks. The predictions failed
dramatically, and the failure replicated several times (e.g., Nosof-
sky, 1987; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,
1994). Nosofsky (1984) argued that the optimal division of atten-
tion between dimensions is different for identification tasks than
for classification tasks and showed that attention weights opti-
mized for identification made the same errors of prediction of
classification probabilities that Shepard et al. (1961) observed
(also see Nosofsky, 1986, 1987). Nosofsky (1984) showed that
GCM can predict classification performance from identification
performance if it holds distance constant and lets the attention
weights vary between tasks. Furthermore, Nosofsky (1988, 1991b)
showed that the relation between episodic recognition (“did this
stimulus appear on the training list?”) and classification could be
accounted for similarly in terms of differences between tasks in the
distribution of attention weights to dimensions.

Similarity Is an Exponential Function of Distance

Exponential generalization gradient. The assumption that
similarity is an exponential function of distance in multidimen-
sional space (i.e., Equation 25) has several important implications.
First, it implies that generalization or discrimination is an expo-
nential function of distance. This implication is consistent with
Shepard’s (1987) claim that an exponential distance function is a
universal law of generalization supported by a wide variety of
empirical generalization gradients (e.g., Shepard, 1958, 1987).
Shepard (1987) showed mathematically that exponential general-
ization gradients result from very broad and general assumptions,
so they should be ubiquitous in nature.

It may be helpful to think of the exponential generalization
gradient as a receptive field that is “tuned” to a target object in
multidimensional space like a cortical neuron is tuned to a partic-
ular value of some dimension (e.g., orientation; see Shepard,
1987). ITAM interprets distance as similarity and similarity as
processing rate (Equation 15), so the analogy is direct. Objects
close to the target activate it strongly; objects farther from the
target activate it less strongly. The sharpness of the tuning depends
on the sensitivity parameter, s (see Equation 25). Large values of
s produce steep generalization gradients and narrow receptive
fields; small values produce shallow generalization gradients and
broad receptive fields.

Interactive similarity. The exponential distance function al-
lows a kind of interactive similarity that was a central concept in
the mother of all models in the memory branch, Medin and
Schaffer’s (1978) context model of classification. Interactive sim-
ilarity allows the context model to represent the particular combi-
nations of features that subjects experienced in classification tasks
and it allows combinations of features to influence performance.
The alternative to interactive similarity was additive similarity
(Franks & Bransford, 1971; Hayes-Roth & Hayes-Roth, 1977;
Reed, 1972), in which different features contribute independently
to similarity between objects. Medin and Schaffer showed that
interactive similarity provided a better account of classification
learning and transfer than additive similarity because it explained

the effects of similar exemplars (i.e., objects sharing combinations
of features) on performance.

Medin and Schaffer (1978) adopted a multiplicative version of
interactive similarity, arguing that the similarity between objects
was the product of the similarities between their features. That is,

��i, j) � �
h�1

H

�h(i, j), (27)

where �(i, j) is the overall similarity between objects i and j and
�h(i, j) is the dimensional similarity between objects i and j on
dimension h, which varies from 0 to 1, with 1 representing identity.
This multiplicative similarity emphasizes combinations of features
because objects have to match on all features in order to have a
high degree of similarity. A single mismatching feature with a
dimensional similarity near zero will reduce the overall similarity
to near zero. Partial matches do not contribute very much to overall
similarity.

Nosofsky (1984) generalized the context model by assuming
that the dimensional similarities were exponential functions of
distance (i.e., �h(i, j) � exp[�s � dhij], where dhij is the distance
between objects i and j on dimension h) in a multidimensional
similarity space with a city-block distance metric (i.e., r � 1 in
Equation 26). Thus,

��i, j) � �
h�1

H

exp[�s � dhij] � exp[�s � �
h�1

H

dhij] � �(i, j).

(28)

Under these assumptions, the overall similarities in the context
model become the �s in GCM and ITAM. The exponential dis-
tance function transforms additive distances in similarity space
into multiplicative similarities. It allows ITAM the benefits of
interactive similarity that were pointed out by Medin and Schaffer
(1978).

Why stimulus set and response set multiply. The exponential
distance function explains a puzzling aspect of TVA: why stimulus
set and response set multiply (see Equations 15 and 16). Bundesen
(personal communication, January 2000) chose multiplication for
mathematical reasons: It was the only way to combine stimulus set
and response set independently (see Equations 17 and 18). How-
ever, if GCM’s assumption is adopted that similarity is an expo-
nential function of distance in multidimensional space, then stim-
ulus set and response set have to multiply. With the exponential
distance function, TVA’s combination of stimulus set and response
set becomes another example of multiplicative similarity. Stimulus
set adds another dimension on which the target differs from the
distractors. The added dimension adds to the distance between
them in multidimensional similarity space and decreases the sim-
ilarity between them, multiplying it by a value less than 1 (see
Equation 25). The effect can be seen in Figure 5, in which two
identical stimuli are presented in different display locations. When
these stimuli are projected onto similarity space, they overlap
almost entirely. There is no way to choose between them. Adding
a difference between the two objects on a dimension other than
identity (i.e., color) separates the two objects in similarity space
and provides a basis for choosing between them beyond their
identities (see Figure 5).
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In terms of the model, adding a dimension of difference in-
creases the dimensionality of the similarity space and changes the
definition of the target. The similarity space becomes at least
two-dimensional, with one dimension for stimulus set and at least
one dimension for response set, and the target becomes a multi-
dimensional object in that space. The discriminability of the target
from the distractors depends on �(x, M), which is the similarity
between the object x and a multidimensional representation of the
target M that reflects the point it occupies in multidimensional
similarity space. Stimulus set and response set address separable
dimensions (Garner, 1974), so �(x, M) is an exponential function
of city-block distance (r � 1 in Equation 26).

Consider the case in which there is only one category k in the
stimulus set and one category i in the response set so the target M
is the point i, k in similarity space. The distance dxM from object
x to the representation of M is the sum of the distance dxi between
x and the target value i on the response set dimension and the
distance dxk between x and the target value k for the stimulus set
dimension (see Equation 26). Thus, from Equation 25,

��x, M) � exp[�s � dxM]

� exp[�s � (dxi � dxk)]

� exp[�s � dxi] � exp[�s � dxk]

� �(x, i)�(x, k). (29)

Equation 29 suggests that TVA’s combination stimulus set and
response set results in a new representation defined by the product
of � values. This product is a central part of the basic TVA
equation for processing rate (Equation 15). If �i � �k � 1, then
from Equation 15, the expression for processing rate,

v(x, i) � �(x, i)�iP�(x)

� �(x, i)�i�(x, k)�k

1

�
z�D

�(z, k)�k

� �(x, i)�(x, k)
1

�
z�D

�(z, k)
,

contains the product of � values in Equation 29. Thus, the multi-
plication of stimulus set and response set in TVA is no mystery in
ITAM; it is a natural consequence of the exponential distance
function inherited from the memory branch.

Spatial Representation of Similarity

The assumption that similarities can be represented as distances
in multidimensional space is powerful but controversial. Some
researchers point out the limitations of the representation, arguing
that it does not capture hierarchical or relational information very
well (Medin et al., 1993). Other researchers challenge the metric
assumptions underlying the spatial representation (e.g., Tversky,
1977; Tversky & Gati, 1982; Tversky & Hutchinson, 1986). The
problems seem more severe with complex, abstract concepts than
with the simple perceptual classifications that the attention litera-
ture and GCM address, so the challenges may be less critical than
they seem.

The assumption that has been challenged most strenuously is the
assumption of symmetry: The distance between i and j should be
the same as the distance between j and i and so should the
similarity. However, similarity judgments are often asymmetrical;
subjects say Korea is more similar to China than China is to Korea
(Tversky, 1977). Confusions in identification tasks are often asym-
metrical; subjects will confuse E for F more often than they
confuse F for E (Garner & Haun, 1978). Important asymmetries
appear in visual search tasks; subjects find E among Fs more easily
than they find F among Es (Treisman & Gormican, 1988; Treis-
man & Souther, 1985). These effects seem to challenge the as-
sumption that similarity and distance are symmetrical.

Nosofsky (1991a) showed that many of the challenges to sym-
metrical similarity in identification and classification tasks could
be accommodated within GCM’s assumption of symmetric simi-
larity by allowing differential bias. If the bias for F were greater
than the bias for E, for example, subjects would be more likely to
confuse E for F than F for E. Nosofsky (1991a) investigated a
generalization of GCM in which there were stimulus biases as well
as response biases. He showed that this model was equivalent to an
additive version of Tversky’s (1977) contrast model that accounts
for a variety of asymmetries. Nosofsky (1991a) suggested that
stimulus bias could reflect things like salience or familiarity that
are independent of the response given to the stimulus. Indeed,
TVA’s relative attention weight, P�(x), can be viewed as a stim-
ulus bias parameter. An important challenge for future research
will be to see whether the asymmetries in visual search reported by
Treisman and Souther (1985) and Treisman and Gormican (1988)
can also be accounted for by symmetrical similarity and asymmet-
rical stimulus or response biases (Nosofsky, 1991a). It would be
especially challenging to predict asymmetries in search tasks from

Figure 5. Interpretation of filtering in terms of similarity. The top panel
shows two letters in a display (display space) on the left and the same two
letters projected onto similarity space on the right. The letters are identical,
so there is no basis for distinguishing them in similarity space. The bottom
panel shows two letters in a display when one has been colored differently
from the other (left side). The bottom right panel shows the same two
letters projected onto similarity space. The difference in color separates
them in similarity space and provides a basis for distinguishing them.
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asymmetries in identification tasks (see Nosofsky, 1984, 1986,
1987).

Similarity and Visual Search

The problem of finding your car in a crowded parking lot has
been studied extensively by attention researchers in the guise of
visual search tasks. Subjects are shown displays that contain a
target and several distractors or just several distractors and their
task is to say whether or not the display contains a target. Displays
are often exposed until subjects respond, so the main dependent
variable is RT rather than accuracy. RT increases linearly with the
number of objects in the display (display size) for both target-
present and target-absent responses, and researchers interpret the
slope of the linear function relating RT to display size as a measure
of search efficiency. Efficient searches produce shallow slopes that
range from 0 to 10 ms per object, whereas inefficient searches
produce steep slopes that are often larger than 25 ms per object.

A major empirical goal of attention research has been to char-
acterize the conditions under which search is efficient and ineffi-
cient (but see Wolfe, 1997). Two main trends have emerged in the
last 20 years. One focuses on the role of similarity between targets
and distractors and between the distractors themselves. Search is
more efficient when targets and distractors are dissimilar and when
distractors are similar to each other (Duncan & Humphreys, 1989).
The other trend focuses on the nature of the decision required to
find a target. Treisman and colleagues contrasted feature search
with conjunction search, finding that search was more efficient
when the target differed from the distractors by a single feature
than when the target differed by a conjunction of features (Treis-
man & Gelade, 1980; Treisman & Schmidt, 1982). A major
theoretical goal in attention research is to explain why similarity
and decision type determine the efficiency of search.

ITAM is concerned with the role of similarity in the interaction
between top-down and bottom-up processes, when a cognitive
representation of the target meets a perceptual representation of the
items in the display. Several researchers have investigated
bottom-up similarity effects based on local differences between
items that produce texture segregation and efficient search (e.g.,
Beck, 1982; Julesz & Bergen, 1983; Nothdurft, 1992). Effects like
these are interesting and important, but they are dissociable from
the kinds of search effects ITAM addresses (Wolfe, 1992; also see
Bacon & Egeth, 1991; Duncan, 1989). They are beyond the scope
of the current version of ITAM.

ITAM and target–distractor similarity. Search is more effi-
cient the less similar the targets are to the distractors. This gener-
alization holds for several kinds of search tasks, including feature
search (Duncan, 1989), conjunction search (Wolfe et al., 1989),
and tasks in which the targets are and are not linearly separable
from the distractors (Bauer, Jolicoeur, & Cowan, 1996). ITAM
accounts for these effects in terms of the exponential relation
between similarity and distance in multidimensional similarity
space. Distractors that are close to the target’s location in similarity
space are likely to be confused with the target and chosen instead
of it (see Equations 4 and 16). Distractors that are farther from the
target are less likely to be confused or chosen. Confusions make
search inefficient.

ITAM and distractor–distractor similarity. Search efficiency
depends on the similarity of the distractors to each other. Several

investigators have found more efficient search with displays like
the one in the top left panel of Figure 6, in which the distractors are
homogeneous distractors, than with displays like the one in the
bottom left panel of Figure 6, in which the distractors are hetero-
geneous (Estes, 1974; Farmer & Taylor, 1980; Humphreys &
Müller, 1993). Duncan and Humphreys (1989) interpreted these
results in terms of grouping by similarity, arguing that similar
distractors are grouped together and rejected as a group. The more
homogeneous the display, the fewer groups there are to be re-
jected, so search ends sooner (also see Humphreys & Müller,
1993).

ITAM accounts for the distractor heterogeneity in terms of the
attention weights, w, inherited from GCM (see Equation 26),
without invoking similarity-based perceptual grouping processes.
Homogeneous distractors cluster together in similarity space and
so can be separated from the target by assigning a large attention
weight to one of the dimensions. The large attention weight
stretches the dimension and increases the distance between the
target and the distractors, and that improves performance. This
effect is illustrated in the top panels of Figure 6. The top left panel
shows a display from a homogeneous distractor condition in which
the task is to find an A among Bs. The top middle panel shows the
display projected onto similarity space with equal attention
weights to the horizontal and vertical dimensions. The top right
panel shows the effect of stretching the horizontal dimension,
which is to increase the separation between the A and the cluster
of Bs.

Heterogeneous distractors may not allow such an advantageous
distribution of attention. Heterogeneous distractors are spread out
further in similarity space and may overlap with the target on
different dimensions. Stretching one dimension may move some of

Figure 6. Search for a target (A) among homogeneous (top panels) and
heterogeneous (bottom panels) displays. The left side shows the displays in
display space. The right side shows the displays in similarity space.
Homogeneous distractors cluster together in similarity space. Heteroge-
neous distractors do not.
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the distractors away from the target, but it will shrink the other
dimensions, and that may bring other distractors closer to the
target. Target–distractor distance would remain the same, resulting
in no net gain in discriminability. This is illustrated in the bottom
panel of Figure 6. The bottom left panel shows a display from a
heterogeneous distractor condition in which the task is to find an
A among Bs, Cs, and Ds. The bottom middle panel shows the
display projected onto similarity space with equal attention
weights, and the bottom right panel shows the effects of stretching
the horizontal dimension and, consequently, shrinking the vertical
dimension.

Researchers have found distractor similarity effects when ho-
mogeneous and heterogeneous displays are mixed randomly in a
block of trials (Humphreys & Müller, 1993; Treisman, 1988,
1991). Subjects are faster at finding an A among Bs or an A among
Cs than at finding an A among Bs and Cs, even when the
A-among-B displays are mixed randomly with the A-among-C
displays. This finding presents a problem for ITAM’s attention
weight account of distractor similarity effects because ITAM has
to know which distractor is present in order to allocate attention
weight to the optimal dimension(s).

One solution to this problem is to allocate attention weights
equally to all dimensions until the first distractor is categorized and
then to reallocate attention weight to those dimensions that distin-
guish the target from that distractor. The initial categorization with
equal attention weights would increase RT relative to conditions in
which the distractor was known in advance, but that is consistent
with the data. Subjects can be as much as 100 ms slower if the
target dimension is not specified in advance (Treisman, 1988,
1991).

The first solution uses machinery that is part of the current
version of ITAM. A second solution would be to adopt a method
developed by Kruschke and Johansen (1999) that changes atten-
tion weights during the course of a single trial. Their RASHNL
model uses a gradient descent mechanism to change attention
weights on a time scale that may be short enough to be useful in
search tasks. Predictions of RT cannot be derived directly from
their model, but it offers a promising solution to the problem of
finding the dimensions that distinguish the target from the
distractors.

Feature search and conjunction search. Many investigations
of the determinants of search efficiency have contrasted feature
search and conjunction search (e.g., Duncan & Humphreys, 1989;
Treisman & Gelade, 1980; Wolfe, 1994; Wolfe et al., 1989). In
feature search, subjects look for a target that has a unique feature
that is not shared by any distractor. For example, subjects might
look for a G among Cs or a red object among green ones. In
conjunction search, subjects look for targets among distractors that
share features, and no feature specifies the target uniquely. Targets
are defined by a combination of features from two or more sepa-
rable dimensions, and different distractors will share each of these
features with the target. For example, subjects might search for a
red G in a display of red Cs and green Gs. Detecting a single
feature is not sufficient to indicate a target is present. Instead, a
combination of features must be detected. Feature search is often
easy, with slopes ranging from 0 to 10 ms per item, whereas
conjunction search is often hard, with slopes of 40 ms per item or
more. Feature search is not always easy (Treisman & Gormican,

1988), and conjunction search is not always hard (Wolfe et al.,
1989).

The major theories of visual search offer alternative explana-
tions of the difference between feature search and conjunction
search. Treisman’s feature integration theory assumes that single
features can be detected preattentively but that attention is required
to conjoin separate features. Thus, feature search is parallel and
efficient, whereas conjunction search is serial and inefficient (e.g.,
Treisman & Gelade, 1980). At the other extreme, Duncan and
Humphreys (1989) argued that there is no fundamental difference
between feature search and conjunction search. Search depends
only on target–distractor and distractor–distractor similarity, and
these are different in feature and conjunction search. Feature
search tends to involve low target–distractor similarity and high
distractor– distractor similarity, both of which foster efficient
search, whereas conjunction search tends to involve high target–
distractor similarity and low distractor–distractor similarity, both
of which foster inefficient search (also see Humphreys & Müller,
1993). Wolfe and colleagues proposed an intermediate position,
called guided search, in which a memorial representation of the
target has a top-down influence on preattentive processes that can
direct attention to the target when the target is sufficiently different
from the distractors (Cave & Wolfe, 1990; Wolfe, 1994; Wolfe et
al., 1989).

ITAM can do conjunction search in three different ways. Con-
sider the example of searching for a red G in a display of red Cs
and green Gs. The most natural way to do this search from the
perspective of TVA and GCM is to represent the conjunction
target as a single multidimensional object, using one � value to
represent the target itself (i.e., “red G”) and different attention
weights to represent the relevant dimensions (i.e., wG and wred

would be set high). Feature targets would be represented similarly,
with a single � value to represent the target and an attention weight
to represent the relevant dimension (e.g., �red and wred would be
set high). Conjunction search and feature search would be per-
formed in the same way, both driven by target–distractor and
distractor– distractor similarities, as Duncan and Humphreys
(1989) suggested. According to the analyses in the section on
filtering, the � that represents the target would participate in object
selection—directing attention to the target—as well as target de-
tection, so this version would resemble guided search as well (see
Wolfe, 1994).

Feature search is still different from conjunction search in this
version of ITAM. In feature searches in which the target differs
from all the distractors in a single feature, all of the attention
weight can be assigned to the dimensions that distinguish the target
from the distractors, stretching the dimension and improving dis-
criminability. In conjunction searches, stretching one dimension
shrinks the others, so the improvement in discriminability in one
dimension is bought at the cost of reduced discriminability in
another. This difference in the effects of attention weights on
feature and conjunction search is illustrated in Figure 7.

Alternatively, conjunction targets could be represented as logi-
cal conjunctions of elementary categorizations with one � for each
feature. Thus, searching for a red G would involve setting �red and
�G high and responding “target present” if both categorizations “x
is red” and “x is G” came out of the choice process. This method
of searching would require the system to discriminate cases in
which red and G came from the same object from cases in which
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red and G came from different objects. This discrimination is
known as the binding problem (Hummel & Biederman, 1992;
Pylyshyn, 1989; Ullman, 1984), and feature integration theory was
originally proposed as a solution to it (Treisman & Gelade, 1980).
ITAM could solve the binding problem by searching through the
display serially, just as feature integration theory did, using the �
parameter to select different objects in the display (Logan &
Gordon, 2001). Again, �red and �G would participate in object
selection, so ITAM would resemble guided search as well as
feature integration theory. In this version, feature search would be
different from conjunction search. It would require a simpler
description of the target (only one � for a single feature target), and
it would allow parallel processing.

The third alternative is to distribute the target representation
across stimulus set and response set, searching for a G among the
red items, for example. Thus, �red would be set high to select the
red items and �G would be set high to select G. Several studies
suggest that human subjects can restrict their attention to one of the
features of a conjunction target and search for the other feature(s)
in the attended subset (Bacon & Egeth, 1997; Egeth, Virzi, &
Garbart, 1984; Kaptein, Theeuwes, & Van der Heijden, 1995;
Zohary & Hochstein, 1989). This kind of search represents con-
junctions as logical conjunctions, like the previous method, but it
is riskier than the previous method because it only requires explicit
categorization of one feature (G in the example). In ITAM, only
categorizations addressed by response set (�) are represented ex-
plicitly in working memory. Categorizations addressed by stimulus
set (�) are not represented explicitly. Thus, the subject would
know that a G was present but would have to infer that it was red.

Further research will be required to evaluate the ITAM ap-
proaches to conjunction search. The elementary processes must be
combined in some way to reach a decision about target presence
and target absence, and several combinations are possible. The
advantage of framing theoretical alternatives in a common formal
language—ITAM—lies in the ability to isolate crucial processes
and keep other, less interesting processes the same.

Instance Representation

A fundamental similarity among the members of the memory
branch of ITAM’s family tree is that they all assume instance
representation. Each encounter with an object is represented sep-
arately as an individual example, or instance. It is encoded into
memory separately, stored separately, and retrieved separately.
Instance representation applies to episodic memory as well as
semantic memory. The idea of separate traces for different events
accounts naturally for many episodic memory phenomena (Gillund
& Shiffrin, 1984; Hintzman, 1988; Jacoby & Brooks, 1984; Raaij-
makers & Shiffrin, 1981). The idea of separate traces for different
members of the same category seems less intuitive to the uniniti-
ated; nevertheless, it accounts for many phenomena in classifica-
tion and categorization (Hintzman, 1986; Jacoby & Brooks, 1984;
Medin & Schaffer, 1978; Nosofsky, 1988). ITAM adopts the
instance representation assumption and inherits the theoretical
victories won by its ancestors in the memory branch.

The ancestors in the attention branch contrast with those in the
memory branch in that they assume prototype representation.
Categories are represented as single entities, or prototypes, that
represent the average or most typical values of the objects’ fea-
tures. Individual experiences with the objects are not represented
in the prototype, nor are features that distinguish one instance from
another. In my view, prototype representation is an unfortunate
assumption because prototype theories have not done well when
they were pitted against instance theories (e.g., Medin & Schaffer,
1978). However, prototype representation does not seem to be
fundamental to the attention branch in the same way instance
representation is fundamental to the memory branch. The proto-
type representation assumption could be replaced by the instance
representation assumption without losing any predictive power.
Consequently, ITAM adopts instance representation and eschews
prototype representation.

ITAM changes the interpretation of � from the similarity of an
object to a prototype, as in TVA, to the similarity of an object to
an instance in memory, as in GCM. In many cases, there will be
several similar instances in memory. Each of these instances leads
to the same categorization, so the instances are interchangeable.
The probability of categorizing x as a member of category i is the
sum of the probabilities of categorizing x as each of Ni instances of
category i. Thus, Equation 4 becomes

P(x � i) �
v(x, i1)�
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�
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�
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Figure 7. Similarity spaces for feature (left side) and conjunction (right
side) search. In the top panels, equal attention weight is given to vertical
and horizontal dimensions. In the bottom panels, more attention weight is
given to the horizontal dimension. This separates distractors from noise in
feature search (bottom left) but brings one distractor closer as it moves the
other farther away in conjunction search (bottom right).
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which is the ratio of the sum of processing rates for the instances
of category i, designated with subscripts, to the sum of the pro-
cessing rates for all categorizations of all objects in the display.
The sum of processing rates can be reduced further:
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The rightmost term suggests that ITAM equations can be con-
structed directly from TVA equations by replacing TVA’s �
values for prototypes with ITAM’s sums of � values for instances.
That is,

��x, i)TVAf �
m�1

Ni

�(x, im)ITAM. (31)

Thus, Equation 19, which defines the processing rate, becomes

v(x, i) � ��
m�1

Ni

�(x, im)	�iP�(x). (32)

These equations can be used to generate choice probabilities, with
Equation 16, and categorization times, with Equation 5. The sub-
stitution in Equation 31 applies to �s for stimulus set as well as to
�s for response set. In ITAM, all knowledge is represented as
collections of instances.

A major legacy from GCM is the ability to use a single set of
instances to support performance in identification, classification,
and recognition memory tasks (Nosofsky, 1984, 1986, 1987,
1988). The tasks differ primarily in terms of the biases involved,
the objects whose similarities are summed together in generating
choice probabilities, and the attention weights given to the dimen-
sions of the objects in similarity space. Consider the situation
depicted in Figure 8, in which a subject has seen six members of
Category A and six members of Category B and is then presented
with a probe, P. If the task is item identification—to identify P as

one of the 12 items seen in training—there is a bias for each item
(e.g., �A1, �A2, �A3, etc.), and the numerator of the choice equa-
tion contains a single processing rate, the product of the bias and
the similarity between P and the item (i.e., �(P, A1)�A1; see
Equation 4). The subject would be advised to give more weight to
the vertical dimension, to increase the separation between P and
the incorrect alternatives (e.g., A1, A2, A4, and A5; B1, B2, and B3).

If the task is categorization—deciding whether P is a member of
Category A or Category B—there is one bias for each category
(i.e., �A and �B) and the numerator of the choice equation is the
sum of similarities over all of the objects in one of the categories
(e.g., A1–A6 for Category A; see Equation 30). The subject would
be advised to give more weight to the horizontal dimension to
increase the separation between the categories.

If the task is recognition memory—deciding whether or not P
was one of the training exemplars—then all items would receive
the same bias and similarity would be summed over all the items
in both categories (Nosofsky, 1988). Attention weight should be
divided equally between dimensions. Summed similarity would be
greater for items that were presented before (and so are part of the
representation) than for items that were not presented. The recog-
nition judgment would be made by applying a signal-detection–
type criterion to the summed similarity (Gillund & Shiffrin, 1984;
Raaijmakers & Shiffrin, 1981).

The instance representation assumption is powerful and simple.
Different tasks can be performed on instance representations by
varying pieces of machinery—biases and attention weights—that
are already part of GCM. Every theory of categorization and
memory requires the ability to represent individual items. Instance
theories require nothing more; they take a “minimalist” approach
to modeling cognition. By contrast, prototype theories require
some additional mechanisms to extract the prototype and update it
from trial to trial. An attention theorist shopping for a theory of
categorization may prefer instance theories because they do not
require these extra processes. ITAM accounts for categorization
and memory phenomena using little more than the mechanisms
that are already part of TVA.

Learning

The theories in the attention branch of the family tree live in a
universe of eternal “now.” They address immediate performance in
a stable environment with a constant history. Nothing changes
from trial to trial and each trial is the same as the last. You are
always in the same parking lot looking for the same car. The
theories in the memory branch add a past and a future to this
eternal present, accounting for changes over time in a variety of
learning and memory paradigms. Together, they provide three
ways to model learning that can be used separately or in combi-
nation: accumulation of instances, optimizing attention weights,
and increasing sensitivity.

Learning as the Accumulation of Instances

The first method of learning is a direct consequence of the
instance representation assumption. Each encounter with an object
creates an instance representation that is stored in memory. As
time passes and more encounters occur, more instances are added
to memory, building up a knowledge base. The instance represen-

Figure 8. A similarity space containing instances of two categories (A
and B) and a probe, P. If the task is to identify P, attention weight should
be allocated to the vertical dimension rather than the horizontal dimension.
If the task is to categorize P, attention weight should be allocated to the
horizontal dimension rather than the vertical dimension. If the task is
episodic recognition, attention weight should be allocated to both
dimensions.
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tation assumption applies to cases in which the same object is
encountered again as well as to cases in which different objects are
encountered. Different encounters with the same object result in
different instances. Equations 30 and 32 apply to repetitions of
single items as well as to presentations of different category
members. Accumulation of instances affects RT and choice
probability.

Power law of practice. Much of the research on automatiza-
tion and skill learning in the last 20 years has focused on the nature
of the ubiquitous speedup in RT with practice. Throughout that
time, the most popular description of the learning curve was in
terms of a power function,

RT � a � b � N�c, (33)

where a is the asymptotic RT, b is the maximum amount by which
RT can be reduced by practice, N is the number of practice trials,
and c is the learning rate. The greater the absolute value of c, the
sharper the inflection in the learning curve.

In 1981, Newell and Rosenbloom declared the power function to
be the fundamental law of learning, and since then, many research-
ers have promulgated their law (e.g., Anderson, 1982, 1992; Co-
hen, Dunbar, & McClelland, 1990; MacKay, 1982; Schneider,
1985). A major contribution of the instance theory of automaticity
was to predict power-function learning from a race between in-
stances. The more practice, the more instances there are stored in
memory. A familiar stimulus retrieves all the traces associated
with it throughout practice, and the first trace to be retrieved
determines performance. Mathematically, it can be shown that,
under general conditions, the finishing time for a race between N
runners decreases as a power function of N (Logan, 1988, 1992;
also see Colonius, 1995; Cousineau, Goodman, & Shiffrin, in
press; Logan, 1995b).3 Moreover, instance theory predicted a
power function reduction in the entire RT distribution, whereas
previous theories addressed only mean RT. The power law for
distributions has been tested and confirmed in some cases (e.g.,
Anderson, 1992; Cohen et al., 1990; Logan, 1988, 1992; Logan &
Etherton, 1994) and disconfirmed in others (e.g., Delaney, Reder,
Straszewski, & Ritter, 1998; Rickard, 1997). The power law itself
has been challenged. Heathcote, Brown, and Mewhort (2000)
argued that it is an artifact of averaging item-level exponential-
function learning curves (but see Myung, Kim, & Pitt, 2000).

ITAM places less emphasis on the power law than instance
theory did. ITAM assumes a random-walk response selection
process, which cumulates the results of several individual races.
RT is the sum of the durations of those races plus some “book-
keeping” time required for the random walk, and the combination
of effects makes it difficult to predict the effect of practice on RT
mathematically. Simulations show good power function fits, how-
ever (Nosofsky & Palmeri, 1997; Palmeri, 1997).

ITAM does predict that the mean finishing time for a single run
of the race will decrease with the number of instances. This effect
can be seen clearly in ITAM’s expression for finishing time:
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If the processing rates for all categorizations are the same, and
there are N instances in memory for each category, then RT
decreases as a power function of N with an exponent c � 1.

Accuracy and number of instances. Choice probability also
depends on the number of instances in memory, but the effects are
less dramatic than the effects on RT. Consider the choice between
two categories, A and B, after NA trials with identical instances of
Category A and NB trials with identical instances of Category B.
The probability of choosing Category A for object x is given by

P(“x is A”) �
NAv(x, A)

NAv(x, A) � NBv(x, B)
.

If the number of instances in the two categories is the same (so
NA � NB), choice probability is not affected by the number of
instances in memory. The probability of choosing Category A for
object x would remain the same throughout practice.

To account for changes in choice probability with practice,
Nosofsky and Alphonso-Reese (1999) introduced the idea of back-
ground elements that reflect preexperimental associations. The
background elements tend to be retrieved along with instances
from the experiment and add a chance component to choice
probabilities. From this perspective, the expression for choice
probabilities becomes

P(“x is A”) �
[NA�(x, A) � b]�A

[NA�(x, A) � b]�A � [NB�(x, B) � b]�B
,

where b is a constant representing the number of background
elements associated with x. In this expression, the probability of
choosing Category A for object x increases with practice because
NA increases with practice and b does not.

Optimizing Attention Weights

Nosofsky (1984, 1986, 1987) assumed that attention weights
were assigned to dimensions to optimize classification accuracy.
This assumption allows GCM to adopt different attention weights
for different tasks (e.g., identification and classification; recogni-
tion and classification), and that allows GCM to account for
performance in one task in terms of similarities derived from
another. Krushke (1992) extended GCM by assuming that optimal
attention weights are learned over the course of training. Nosofsky,

3 The distribution function F1(x) for the minimum of N samples from the
same distribution, F(x), is F1(x) � 1 � [1 � F(x)]N. The distribution
function for the Weibull is F(x) � 1 � exp[�a � xc ]. Note that the
Weibull distribution is a generalization of the exponential distribution
with the variable x raised to a power c. Put differently, the exponen-
tial distribution is a special case of the Weibull distribution with c � 1.
Substituting the distribution function for the Weibull into the distri-
bution function for minima yields F1(x) � 1 � (exp[�a � xc ])N � 1
� exp�N � (�a � xc )] � 1 � exp[�a � (N1/cx)c ] � N�1/cF(x). Thus, the dis-
tribution of minima sampled from a Weibull distribution is itself a Weibull
distribution with its scale reduced by a factor of N1/c. The distribution of
minima decreases as a power function of N with an exponent 1/c that is the
reciprocal of the exponent c of the parent Weibull distribution. This
relation leads to the prediction that the shape of the retrieval time distri-
bution (i.e., c) determines the shape of the learning curve (i.e., the exponent
1/c of the power-function speedup). I tested this prediction in several data
sets and confirmed it in most of them (Logan, 1992).

391INSTANCE THEORY OF ATTENTION AND MEMORY



Palmeri, and colleagues adopted Krushke’s assumption in recent
applications of GCM to classification learning (Nosofsky et al.,
1994; Nosofsky & Palmeri, 1996). ITAM could profit by adopting
similar assumptions.

Increasing Sensitivity

Nosofsky (1988) allowed the sensitivity parameter (s in Equa-
tion 25) to increase over practice and found that increasing sensi-
tivity provided a better fit to learning data than constant sensitivity.
The effect of increasing the sensitivity parameter is to increase
psychological distance between nonmatching objects and, conse-
quently, to reduce the probability of confusion between them.
Many theories of perceptual learning have assumed something like
increasing sensitivity over practice (e.g., Gibson & Gibson, 1955),
so it is a promising avenue for future research. However, Nosofsky
(1988) did not explain how or why sensitivity might increase with
practice, so the idea needs further development.

Attention and Learning

The idea that attention determines what is learned has been
important throughout the history of the memory branch of the
family tree. Medin and Schaffer (1978) argued that subjects
learned the dimensions they attended to in proportion to the
amount of attention they paid to them during training. My instance
theory of automaticity assumed that attention is essential for learn-
ing. Attention at encoding determines what is put into an instance,
and attention at retrieval determines which instances are retrieved
(Logan, 1988, 1990). However, the memory branch provided no
theory of attention that would allow investigators to predict what
was learned and what was retrieved. ITAM’s combination of TVA
and instance theory is intended to provide such a theory.

ITAM assumes that response-set categorizations (driven by �)
are represented explicitly in working memory, but stimulus-set
categorizations (driven by �) are not (see Equation 16; also see
Bundesen, 1990; Logan, 1996; Logan & Bundesen, 1996). A
natural consequence of this assumption is that explicit learning
depends only on what is contained in working memory, and thus
the instances that are learned reflect the contents of working
memory (Boronat & Logan, 1997; Logan & Etherton, 1994). Thus,
ITAM would seem to predict that subjects learn response-set
categorizations of the stimuli they encounter, but they do not learn
(much) about stimulus-set categorizations. This prediction is sup-
ported by several data sets. Logan (1990) found that subjects
learned particular response-set categorizations of display items.
When the response set changed so that different categorizations of
the same items were now relevant, there were no savings from
previous presentations (also see Gorfein & Bubka, 1997; Logan,
1988). By contrast, Logan, Taylor, and Etherton (1996, 1999)
found complete savings when subjects were transferred from one
stimulus-set categorization to another, as if the stimulus-set cate-
gories were not associated with the items at all (also see C. B.
Cave, Bost, & Cobb, 1996; Logan, 1998).

Learning in multi-item displays presents an important challenge
to ITAM. Subjects appear to learn associations between objects
they attend to and learn little about objects they ignore, even
though they are presented in central vision and influence immedi-
ate performance to some degree (Boronat & Logan, 1997; Logan

& Etherton, 1994). Subjects are able to learn where to attend in
multi-item displays, screening out distracting stimuli (Hillstrom
& Logan, 1998), focusing attention on likely display positions
(Chun & Jiang, 1998), and ignoring irrelevant positions (Haider &
Frensch, 1996, 1999). Modeling these kinds of learning is an
important direction for future research.

Response Selection

ITAM assumes that the categorizations that TVA and GCM
produce are accumulated in response counters, and there is one
counter for each response. The values in the counters are compared
with a decision rule, and the response associated with the first
counter that satisfies the decision rule is selected and passed on to
the motor system to be executed. There are three distinct decision
rules in ITAM, a race model, a counter model, and a random-walk
model. Response selection and the categorization processes that
precede it are cascaded rather than discrete stages (McClelland,
1979).

Race Model

The race model has been discussed throughout this article. The
decision rule is to stop when the first categorization arrives in a
counter, choosing the response associated with the counter in
which the categorization appears. Race models are fast but are
prone to error, particularly in situations in which there is conflict
(e.g., categorizing bat as mammal vs. bird). In conflict situations,
RT usually increases, and accuracy remains relatively stable (see
e.g., Logan & Etherton, 1994; Palmeri, 1997). The race model
predicts difficulty in conflict situations, but it places the effect in
the wrong dependent variable. It predicts no difference in RT
between conflict and nonconflict situations (e.g., congruent and
incongruent Stroop stimuli) as long as the number of runners in the
race is the same and they race at the same speed. This is not in
accord with the data (e.g., Logan & Etherton, 1994; Palmeri,
1997). The race model predicts a large effect of conflict in the
accuracy data. Accuracy depends on the probability that the first
categorization is correct and that probability can be quite low in
conflict situations (e.g., 0.7). Error rate is 1.0 minus the probability
that the first categorization is correct, so in the example just given,
the error rate would be 0.3 (i.e., 1.0 � 0.7 � 0.3). This, too, is not
in accord with the data (e.g., Logan & Etherton, 1994; Palmeri,
1997).

Counter Model

The counter model is a generalization of the race model. The
counter model’s decision rule is to respond with the first counter to
accumulate K traces (see Logan, 1996; Townsend & Ashby, 1983).
If K is 1.0, then the counter model is equivalent to a race model.
It stops with the first categorization and produces the same RT and
accuracy. If K is greater than 1.0, the counter model is slower and
more accurate than a race model. If the probability that the winning
categorization was correct were 0.7, the race model would produce
an accuracy of 0.7. The counter model would produce an accuracy
of 0.784 if K were 2.0 and 0.837 if K were 3.0. These increases in
accuracy are bought at the cost of an increase in RT. The counter
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model requires at least K categorizations to finish before it
responds.

The counter model maintains accuracy in the face of conflict. In
some conditions, RT will increase with conflict, which is consis-
tent with the data. For example, categorizations may occur at the
same rate in conflict and nonconflict situations, so the amount of
time to accumulate a count would remain the same. However, the
probability of accumulating the correct count would decrease, and
more counts would be required overall to accumulate K counts in
the correct counter. Logan (1996) found that CTVA and a counter
model provided a reasonable account of RT and accuracy in B. A.
Eriksen and Eriksen’s (1974) flanker task.

Random-Walk Model

The random-walk model is the third decision rule that can be
implemented on ITAM’s counters, inherited from EBRW (Nosof-
sky & Palmeri, 1997; Palmeri, 1997). The random-walk model
waits until there are K more categorizations in the correct counter
than in any other counter. The random-walk decision criterion is
relative, whereas the counter decision criterion is absolute. Like
the counter model, the random walk reduces to the race model if
K equals 1.0, responding when the first categorization finishes.

The random-walk model accounts for accuracy and RT data in
conflict situations (Nosofsky & Palmeri, 1997; Palmeri, 1997;
Ratcliff, 1978, 1988). Accuracy is higher with a random-walk than
with a race model because several categorizations must accumu-
late before a response is chosen. RT is longer in conflict situations
because more categorizations accumulate in the other, incorrect
counters, and the correct counter cannot be chosen until it has K
more categorizations than any other. Given the same processing
rates, the random-walk model will take more steps to terminate
than the counter model. At most, the counter model will stop after
K � (NR � 1)(K � 1) steps, where NR is the number of alternatives
in the response set R. By contrast, the number of steps a random
walk may take is not limited so sharply (Feller, 1968).

Nosofsky and Palmeri (1997) adopted the random-walk decision
rule for EBRW because of its ability to account for conflict RT and
accuracy and because its duration was not limited as sharply as the
counter model’s. Consequently, the random-walk model is the
preferred decision rule in ITAM. The simple race and the counter
model remain strategies in the arsenal of ITAM’s homunculus
(Logan & Gordon, 2001). A beast equipped with EBRW could
instantiate a simple race by setting K to 1.0.

The mathematics of the process of object selection and classi-
fication (i.e., TVA and GCM) do not have to be changed at all to
generalize ITAM from a simple race to a counter or random-walk
model. This follows from ITAM’s interpretation of the processing
rates, v, as rate parameters for exponential distributions. As long as
the rate parameters stay constant, choice probabilities will stay the
same and the expected interval between one runner finishing and
the next one finishing (i.e., mean finishing time) will stay constant
over time (Townsend & Ashby, 1983). Formally, object selection
and classification constitute a Poisson process that continues to
feed categorizations to the response selection process at the same
rate as long as the parameters remain constant. The object selection
and classification processes are the same whether the response
selection process chooses to respond when the first categorization
becomes available (a simple race), when K categorizations accu-

mulate for one alternative (a counter model), or when K more
categorizations accumulate for one alternative than for any other (a
random walk).

Following EBRW, the time for the random walk to finish is the
sum of the durations of each step it takes. The duration of a step
in the random walk, ST, is determined by two factors: the time
required to select an object and a categorization, given in Equa-
tion 5, and a parameter � that represents the time required to
increment the random-walk counters and test the threshold (Nosof-
sky & Palmeri, 1997). That is,

ST � � �
1

�
z�D

�
j�R

v(z, j)
. (34)

RT is computed by multiplying step time by the expected number
of steps in the random walk, E(T):

RT � E(T) � ST � E(T)�� �
1

�
z�D

�
j�R

v(z, j)�. (35)

If there are only two responses, the expected number of steps
and the accuracy of the random walk overall can be calculated
from analytic equations provided by Busemeyer (1982) and Nosof-
sky and Palmeri (1997). If there are more than two responses, the
number of steps and accuracy have to be simulated (see Logan &
Gordon, 2001; Palmeri, 1997). Logan (1996) and Townsend and
Ashby (1983) provide analytic equations for RT and accuracy for
a counter model with two response alternatives. Models with more
than two alternatives remain be worked out mathematically or
must be simulated.

Remaining Issues

Constraints From Perception

ITAM begins with an “encoded” stimulus and ends with a
symbolic description of the response to be executed. In this con-
text, the process of encoding a stimulus involves computing a set
of � values that represent the similarity between each stimulus and
each instance in memory. In theory, there will be many such �
values; in practice, only those for which � and � are high need to
be computed to generate ITAM’s predictions. Recent theorists
have suggested two ways in which the effective � values are
constrained further by perception. One, CTVA, is consistent with
ITAM, but the other, EGCM, may not be.

CTVA. Logan (1996) and Logan and Bundesen (1996) pro-
posed a theory that combined Bundesen’s (1990) TVA and van
Oeffelen and Vos’s (1982, 1983) COntour DEtector (CODE) the-
ory of perceptual grouping by proximity. The CODE theory as-
sumes that information about objects is not represented as a point
in (cortical) space, but rather as a distribution over space (Figure 9,
Panel A; also see Ashby, Prinzmetal, Ivry, & Maddox, 1996;
Maddox, Prinzmetal, Ivry, & Ashby, 1994). The distributions for
the various objects in the display are used to generate a surface that
can be operated on to produce regions that represent perceptual
groups (Figure 9, Panel B; also see Compton & Logan, 1993,
1999). In CTVA, TVA samples information from one or more of
the regions defined by CODE (Figure 9, Panel C). Object repre-

393INSTANCE THEORY OF ATTENTION AND MEMORY



sentations are distributed over space, so it is unlikely that all of the
features of object x are available when TVA samples from the
region containing object x. Instead, CTVA proposes that some
proportion of the features, cx�x, are available to drive TVA (Fig-
ure 9, Panel C). The c parameter is called the feature catch because
it represents the proportion of features of object x that are “caught”
in the current perceptual organization. This limiting of object
features is represented in the model by multiplying � parameters
by the c parameters from CODE. Thus,

��x, i)TVAf cx�x�(x, i)CTVAf cx�x �
m�1

Ni

�(x, im)ITAM. (36)

This substitution applies to �s for stimulus set as well as to �s for
response set.

The idea that object representations are distributed over space
implies that features of another object, for example, y, may be
sampled from the region containing x. This, too, is represented in
CTVA as a feature catch parameter, cy�x, which multiplies all the
� values representing object y. The closer object y is to object x (in
display space), the greater the overlap in their distributions (in
cortical space) and so the greater the likelihood that features from
object y will be sampled from the region containing object x. That
is, the greater the feature catch cy�x from object y. Also, the closer
object x is to object y, the smaller the region around object x that
is sampled, so the smaller the feature catch cx�x. These ideas are
responsible for CTVA’s account of various distance and grouping
effects in the attention literature (Logan, 1996; Logan &
Bundesen, 1996).

The idea that perceptual processes constrain the � values in the
way proposed in CTVA is quite consistent with ITAM. The
substitution in Equation 36 could be performed in all of the ITAM
equations and still preserve the flavor of the theory. This is one
reason why CTVA is on the path from TVA to ITAM in the family
tree.

CTVA is on the path from TVA to ITAM for another reason: It
fixes a problem in TVA. A large amount of research shows that
location is special in visual attention. People seem to select objects
by location rather than by other properties, like color and identity
(e.g., Nissen, 1985; Van der Heijden, 1992). However, location is
not special in TVA. Location is just another stimulus property or
just another categorization; � and � work in the same way for
location as they do for any other property. CTVA makes location
special by parsing the display into regions that correspond to
perceptual groups and by having TVA sample information from
those regions. The representation of location is more complex, but
the complexity of the representation allows more sophisticated
processing (see Logan, 1996).

EGCM. In GCM and in ITAM, the � values are set once at the
beginning of the trial (as a result of the encoding stage) and remain
the same throughout the trial. Lamberts (1998) challenged this idea
in experiments that used separable-dimension stimuli in which one
dimension was much easier to discriminate than the other. Subjects
were required to respond quickly, before a deadline expired. When
the deadline was short and the easy-to-discriminate dimension
favored the wrong categorization, subjects often made errors.
However, when the deadline was extended so they could process
both dimensions before responding, subjects responded accurately
to these same stimuli. Lamberts (1998) argued that the similarity
representation evolves throughout the trial (also see Lamberts,
1995). Early on, only one dimension contributes to the represen-
tation. As time passes and more dimensions become available, the
similarity representation becomes more complex, including more
dimensions. Lamberts (2000) proposed an extended generalized
context model (EGCM) to account for these results. It resembles
GCM but it changes the assumption that the � values are set once
and for all at the beginning of the trial. Instead, the � values
develop over time as different dimensions become available.

Figure 9. Illustration of the COntour DEtection (CODE) theory of visual
attention (CTVA). There are three objects, y, x, and z, distributed along one
dimension in space. Panel A represents the distribution of features of each
object over representational space (dotted lines). The solid line in Panel A
is a CODE surface formed by summing the feature distributions at each
point. Panel B represents alternative groupings of the display (by proxim-
ity). The horizontal lines drawn across the CODE surface are thresholds,
and each threshold represents a different perceptual organization. Accord-
ing to CODE, a perceptual group is an above-threshold region of the CODE
surface. The top threshold produces three above-threshold regions, so each
object is grouped separately. There are three groups, {y}, {x}, and {z}. The
middle threshold produces two above-threshold regions and thus two
groups, {y} and {x, z}. The bottom threshold produces one large above-
threshold region, and thus one group {y, x, z}. Panel C shows how TVA
samples from an above-threshold region. The solid horizontal line repre-
sents the threshold, and the two solid vertical lines dropping down from it
to the ordinate represent the limits of the region in which sampling takes
place. The probability of sampling features from an object depends on the
area of its feature distribution that falls within the sampled region. This
probability is higher for object x than for objects y and z, and it is higher
for object z than for object y (i.e., cx�x � cz�x � cy�x).
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The constancy of � values over time is an important assumption
in GCM because it simplifies the mathematics considerably. It is a
key assumption in ITAM, because the � values represent hazard
functions of exponential distributions, and the proofs of equiva-
lence between choice models and race models (Bundesen, 1993;
Marley & Colonius, 1992) require that the hazard functions remain
mutually proportional over time. Thus, EGCM may be viewed as
a serious challenge to GCM and ITAM. On the other hand,
EGCM’s assumption that different dimensions become available at
different times seems more realistic than GCM’s simultaneity
assumption, and it does appear to be in accord with empirical facts
(e.g., Lamberts, 1998).

Executive Control

Recently, researchers have become interested in the executive
processes that control cognition and allow a person to switch
between tasks and between strategies within tasks (Logan, 1985;
Meyer & Keiras, 1997; Norman & Shallice, 1986). One approach
has been empirical, trying to discover the regularities underlying
experiments on task switching (Allport, Styles, & Hsieh, 1994;
Meiran, 1996; Rogers & Monsell, 1995). Another approach has
been theoretical, trying to characterize executive operations in
terms of a cognitive architecture (Meyer & Keiras, 1997; Norman
& Shallice, 1986). ITAM allows a different approach, inherited
from ECTVA, specifying executive processing in terms of control
over TVA. In ITAM, a task set is a set of TVA parameters
necessary to configure it to perform a particular task. Switching set
involves changing TVA’s parameters (Logan & Gordon, 2001).

ITAM has eight types of parameters, �, �, �, w, s, K, �, and c.
Of the eight, four are controlled entirely by the homunculus (i.e.,
�, �, w, and K); another, c, is controlled partly by the homunculus
(which chooses among alternative perceptual groupings) and
partly by the spatial layout of the display (which determines
proximities between objects). The rest (�, s, and �) are beyond the
homunculus’ control; � depends on the perceptual qualities of the
display and the person’s history with the categories in the stimulus
set and the response set, and s and � reflect system limitations
within the person. A task set, then, is a set of �, �, w, and K values
that are sufficient to perform a particular task.

Logan and Gordon (2001) modeled executive control over TVA
in a dual-task procedure, in which subjects made separate re-
sponses to two stimuli that were presented simultaneously or in
rapid succession. In order to get TVA to perform both tasks, Logan
and Gordon had to run it twice, once for each stimulus. To make
it run twice, they had to specify the executive control processes
that caused parameter values to change. For example, to respond to
the first of the two stimuli, � had to be set to select properties that
distinguished the first stimulus from the second, and � had to be
set to select the appropriate classification for the first stimulus.
These parameters remained in effect until the first response oc-
curred, whereupon the executive process switched set for the
second task. At minimum, � had to change to select the second
stimulus rather than the first. If the task set was the same for the
two stimuli (which is rare in dual-task studies but a common
feature of Logan and Gordon’s experiments), then the � values
remained the same. If the task set was different, the � values had
to be changed. With these assumptions, Logan and Gordon were
able to account for set-switching effects in their dual-task exper-

iments. They argued that their account could be generalized to
other paradigms, such as that of Allport et al. (1994).

Discussion

ITAM assumes that attention and categorization are choice
processes instantiated as a race between competing alternatives.
There is only one race. Attention and categorization are the same
thing. An object and a categorization for that object are selected in
a single step. The choice processes are driven by similarities
between display objects and memory representations of category
exemplars. Categories are represented as collections of instances,
and learning occurs through the accumulation of instances with
practice. The output of object and category selection is input to a
random-walk response selection process.

Formally, choice probabilities can be computed from the
Shepard-Luce choice rule:

P(x � i) �
v(x, i)

�
z�D

�
j�R

v(z, j)
. (37)

The time required for the choice (i.e., to run the race) is

FT �
1

�
z�D

�
j�R

v(z, j)
. (38)

The expression for processing rate is

v(x, i) � cx�x �
m�1

Ni

�(x, im)�iP�(x), (39)

where

P�(x) �

cx�x �
k�S

�
m�1

Nk

�(x, km)�k

�
z�D

cz�z �
k�S

�
m�1

Nk

�(z, km)�k

. (40)

The � values are defined in terms of distance in multidimensional
similarity space:

��x, i) � exp[�s � dxi], (41)

and distance is defined by

dxi � ��
h�1

H

ah�uxh � uih�r�
1
r. (42)

The expressions for the time taken in each step of the random walk
and the total duration of the random walk are given in Equa-
tions 34 and 35.

Equations 37–42 express the formal structure of ITAM. They
can be substituted for the equations of its ancestors to extend the
ancestors to deal with phenomena that currently elude them (i.e.,
TVA, CTVA, ECTVA on the attention branch and the context
model, GCM, instance theory, and EBRW on the memory branch;
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these theories are connected with bidirectional arrows in Figure 1).
The general theory can apply in each case.

From another perspective, each of ITAM’s ancestors can be
construed as a special case. In the attention branch, if there is only
one instance in memory or if prototype theory happens to be true,
then ITAM becomes CTVA and ECTVA. In terms of processing
rates, Equation 39 becomes

v(x, i) � cx�x�(x, i)�iP�(x),

which is the expression for processing rate in CTVA and ECTVA
(Logan, 1996; Logan & Gordon, 2001). If there is complete
parallel processing over the display, then cx�x � 1.0 and CTVA
becomes TVA:

v(x, i) � �(x, i)�iP�(x),

which is the processing rate for TVA (Bundesen, 1990).
In the memory branch, if there is only one object in the display,

cx�x � 1.0 and P�(x) � 1.0, so ITAM becomes EBRW and GCM:

v(x, i) � �
m�1

Ni

�(x, im)�i.

If all instances are equally similar to the target, then EBRW
becomes a special (exponentially distributed) case of instance
theory:

v(x, i) � Ni�(x, i)�i.

Thus, ITAM can be configured to replicate each of its ancestors
exactly. When it takes the form of the ancestor, it mimics the
predictions of the ancestor exactly. In this sense, ITAM inherits the
successes of its ancestors, and those successes have been consid-
erable. ITAM is built from proven components.

Implications

The elementary psychological event is a conjunction. ITAM
has two fundamental implications for research in both branches of
the family tree: that the elementary psychological event is a
conjunction, and that everything is conditional on attention. First,
the elementary psychological event is as follows: The stochastic
processes in ITAM are built around joint choices of objects and
categorizations. An object and a categorization are chosen simul-
taneously in each run of the race. Probabilities of nonconjunctive
choices, such as the choice of an object, are built by summing
probabilities of conjunctive choices (see, e.g., Equation 40). Thus,
ITAM assumes binding of objects and categorizations as an axiom.
It does not explain how binding occurs. The idea that the elemen-
tary psychological event is a conjunction is a prediction that can be
tested at various levels, from behavior to event-related brain po-
tentials to single-cell firing rates. If it turns out to be false, the
mathematical basis for ITAM will be undermined.

ITAM’s idea that the elementary psychological event is a con-
junction is consistent with Duncan and colleagues’ biased compe-
tition theory of attention (Chelazzi, Duncan, Miller, & Desimone,
1998; Desimone & Duncan, 1995; Duncan, 1996; Duncan, Hum-
phreys, & Ward, 1997). Duncan and colleagues assumed that each
display object activates a number of modules in the brain that
represent different properties of the objects. One module might

process color. Another might process orientation. The objects fight
it out within modules until one object dominates. There is com-
munication among the modules, so that when an object gains an
advantage in one module, that advantage propagates to other
modules and gives the object an extra edge in the other competi-
tions. Ultimately, one object dominates all modules, and at that
moment, the person has attended to the object. That moment may
be the elementary conjunction event defined in ITAM: the simul-
taneous choice of an object and a categorization. Thus, the evi-
dence that supports the biased competition theory may also support
ITAM. Indeed, Duncan and colleagues often cite Bundesen’s
(1990) TVA theory as similar to their view.

Everything is conditional on attention. The second fundamen-
tal implication of ITAM is that object selection, categorization,
memory retrieval, and automatic processing are all conditional on
attention (see Bargh, 1992; De Jong, Liang, & Lauber, 1994;
Logan, 1988). In ITAM, � and � determine which objects get
selected, and � determines which categorizations are made of the
selected object. They turn up the gain on desired objects and
categorizations, and they turn down the gain on the undesired ones.
This dependence on attention is also a prediction that can be tested
in many ways. It has been tested extensively in the literature, and
it has been supported many times.

The Stroop effect is conditional on stimulus set. It can be
reduced or eliminated by placing the conflicting color word out-
side the focus of attention (Kahneman & Henik, 1981) or by
narrowing the focus of attention to a single letter in the color word
(Besner & Stolz, 1999; Besner, Stolz, & Boutilier, 1997). ITAM
would model these effects in terms of �. The Stroop effect is also
conditional on response set. Color words outside the response set
produce smaller Stroop effects. Tasks other than naming the color
often produce smaller Stroop effects (Bauer & Besner, 1997).
ITAM would interpret these effects in terms of �.

Semantic priming also appears to be conditional on response set.
It is reduced substantially if the prime is not treated as a word. For
example, if subjects search the prime word butter for the letter t,
butter will not prime bread (e.g., Chiappe, Smith, & Besner, 1996;
Henik, Friedrich, & Kellogg, 1983; McKoon & Ratcliff, 1995;
Smith, 1979; Smith, Theodor, & Franklin, 1983; Stolz & Besner,
1996). ITAM interprets this conditionality of priming in terms of
�. Only those categorizations for which � is high have a chance to
be selected. If the � required to process the prime does not address
the word as a whole, then categorizations of the word will not be
selected.

Episodic memory is also conditional on stimulus and response
set. People learn about the things they attend to, and what they
learn depends on how they paid attention. This idea is expressed in
the literature on levels of processing (Craik & Lockhart, 1972),
transfer-appropriate processing (Morris, Bransford, & Franks,
1977; also see Roediger, 1990), and encoding specificity (Tulving
& Thompson, 1973). ITAM interprets these effects in terms of the
task set in the study phase and the task set in the test phase.
Memory performance will be good to the extent that � and �
values match at study and test.

Falsifiability

Theories as broad as ITAM are notoriously difficult to falsify.
ITAM has several components that are conceptually separate from
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each other. It may be possible to falsify each of the components
separately. The CODE assumptions about early perceptual pro-
cessing are likely to be false, for example, but that need not
compromise the rest of the theory. Any theory of perceptual
processing that provides a value of c between 0.0 and 1.0 could
take the place of CODE relatively transparently. This modularity
makes the theory hard to falsify as a whole. I view that as a virtue,
however. It allows me to improve faulty parts of the theory without
harming the other parts. Following Newell (1990), I think it is
more important to build theories than to tear them down.

From one perspective, ITAM is simply an assertion that certain
theories of categorization and attention are formally related. That
assertion can be falsified directly by finding errors in the mathe-
matics. If the mathematics are correct, then the theory can be tested
by seeing whether phenomena in the two branches of the family
tree can be accounted for by the same parameterization of ITAM.
If the range of parameters required to fit attentional phenomena
does not overlap much with the range of parameters required to fit
memory phenomena, then ITAM will be undermined. It would not
be reasonable (or fruitful) to regard attention and memory as
different perspectives on the same choice process. More generally,
the claim that attention and memory are essentially the same may
prompt researchers to look for more parallels between them. The
fruitfulness of that enterprise is another test of the theory.

It is important to remember that ITAM is built of components
that have been very successful in their own areas of research.
Several have passed falsifiability tests in their own domains.
ITAM inherits its ancestors’ predictions, so it also passes those
falsifiability tests as well.

Conclusions

ITAM suggests that attention, categorization, and memory are
different aspects of the same fundamental choice process, and it
shows how interactions between attention, categorization, and
memory can be accounted for by a single set of simple equations
(i.e., Equations 37–42). ITAM promises a unified account of
human cognition and suggests essential similarities between cog-
nitive phenomena that are traditionally viewed as separate and
different. The next time you find yourself driving home reflecting
on your colleagues’ interpretations of the simple act of cognition
by which you found your car, think about ITAM’s claim that they
all are studying the same phenomena and saying the same things.
As John Lennon said, “I am he as you are he as you are me and we
are all together” (Lennon & McCartney, 1967).
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