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Position-specific intrusions of items from prior lists are rare but important phenomena that
distinguish broad classes of theory in serial memory. They are uniquely predicted by position
coding theories, which assume items on all lists are associated with the same set of codes rep-
resenting their positions. Activating a position code activates items associated with it in current
and prior lists in proportion to their distance from the activated position. Thus, prior list in-
trusions are most likely to come from the coded position. Alternative “item dependent” theories
based on associations between items and contexts built from items have difficulty accounting for
the position specificity of prior list intrusions. We tested the position coding account with a
position-cued recognition task designed to produce prior list interference. Cuing a position should
activate a position code, which should activate items in nearby positions in the current and prior
lists. We presented lures from the prior list to test for position-specific activation in response time
and error rate; lures from nearby positions should interfere more. We found no evidence for such
interference in 10 experiments, falsifying the position coding prediction. We ran two serial recall
experiments with the same materials and found position-specific prior list intrusions. These re-
sults challenge all theories of serial memory: Position coding theories can explain the prior list
intrusions in serial recall and but not the absence of prior list interference in cued recognition.
Item dependent theories can explain the absence of prior list interference in cued recognition but
cannot explain the occurrence of prior list intrusions in serial recall.

1. Introduction

The problem of serial order has been a central topic in psychology and neuroscience for nearly 150 years (Ebbinghaus, 1885; Ladd
& Woodworth, 1911; Lashley, 1951). It is important practically because it is ubiquitous in daily life, addressing how we perceive
structure in the world, how we structure our actions in time and space, and how we structure our memories of those percepts and
actions. It is challenging theoretically. The 150 years were filled with controversy, pitting item-dependent theories that explain serial

order in terms of associations between the el

ements of the structure (Ebbinghaus, 1885; Ebenholtz, 1963; Hull, 1932, 1934) against

item-independent theories that explain order in terms of associations between the elements and a separate set of codes that represent

* Corresponding author.
E-mail address: gordon.logan@vanderbilt.edu

https://doi.org/10.1016/j.cogpsych.2024.101641

(G.D. Logan).

Received 13 September 2023; Received in revised form 2 February 2024; Accepted 5 February 2024

Available online 19 February 2024

0010-0285/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


mailto:gordon.logan@vanderbilt.edu
www.sciencedirect.com/science/journal/00100285
https://www.elsevier.com/locate/cogpsych
https://doi.org/10.1016/j.cogpsych.2024.101641
https://doi.org/10.1016/j.cogpsych.2024.101641
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogpsych.2024.101641&domain=pdf
https://doi.org/10.1016/j.cogpsych.2024.101641
http://creativecommons.org/licenses/by/4.0/

G.D. Logan et al. Cognitive Psychology 149 (2024) 101641

Representation Activation

Cue Position 2

1

Position Codes: <;:r:> = 08
. 0.6

Current List: ii\é:g Z;Nla% E F g™
% 0.2

Prior List: %Ei? % % j k I 1 ’ ;ositi;n S :

Recall Decision Process
Drift = Activation

uAu u ” uC ” u “ Eu an uG ” u “ Iu “ {l ” “ Kn “ Lu

g 8§ 40 ™ 530

" BII

-o-Current List

Prior List

Activation

Evidence

Cued Recognition Decision Process

Yes drift = Activation/(1+«||! ||) No drift = ||! ||/(1 +  -Activation) No drift = |! |I/(1 +  -Activation)
1.0 1.0 1.0
0.8 0.8 0.8
0.6 —e—Current List 0.6 —e—Current List 0.6 Prior List
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
A B c D 3 F A 8 c D E F E F G H J
Lettersinm Lettersinm Lettersinm

RT No Yes No RT
I 13 [
o 5] 5]
f=4 c [=4
Q Q Q
p=] = p=]
Time Time
” ” ” ”
Yes No

Fig. 1. The simple position coding model. the top row shows its representation (left) and activation (right) assumptions, illustrating a probe cuing
the second position. the probe activates position code 2 and its neighbors, and they activate items on the current and prior lists that were associated
with them. activation peaks at the cued position and decreases with distance for both the current list and the prior list, but prior list activation is
weaker because the associations are not as strong. the second row shows the decision process for recall. the activations produced by the probe
become drift rates in separate diffusion processes, each with a single boundary. the first to reach its boundary determines the response and its
response time. the third row and fourth rows show the decision process in cued recognition. the probe item is compared with the activated items by
taking the dot product of a vector representing activation of possible responses and a vector representing the activation of the probe letter in the
probe. there is only one letter in the probe, so the vector has activation = 1 in that position and 0 everywhere else. Consequently, the dot product is
simply 1 times the activation of the probe letter in the memory lists. This is illustrated by the red boxes on the activation functions in the third row.
The activation increases drift rate for “yes” responses and decreases drift rate for “no” responses. The graded activation of current and prior list lures
predicts distance effects for both lists and position-specific interference for prior list lures. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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temporal or spatial positions. (Ladd & Woodworth, 1911; Tolman, 1948; Young, 1961). For the last 25 years, item-independent position
coding theories have dominated research on serial memory, following an influential paper by Henson et al. (1996), who showed that
item-dependent theories based on simple chains of associations between adjacent elements could not explain how people recover from
errors, respond to manipulations of phonological similarity, produce transpositions to earlier list positions, or produce position-specific
intrusions from previous lists. Their findings inspired many researchers to develop theories that implement position coding in various
ways (Anderson & Matessa, 1997; Brown et al., 2000, 2007; Burgess & Hitch, 1999; Farrell, 2012; Hartley et al., 2016; Henson, 1998;
Lewandowsky & Farrell, 2008; Oberauer et al., 2012). Only a few developed item-dependent theories (Botvinick & Plaut, 2006;
Dennis, 2009; Logan, 2021; Solway et al., 2012; also see Lewandowsky & Murdock, 1989; Murdock, 1995).

Recent investigations have shown that item-dependent theories can account for three of the four phenomena that are incompatible
with simple chaining theories, by assuming compound retrieval cues and remote associations (Lewandowsky & Li, 1994; Murdock,
1995; Solway et al., 2012) or associations between items and contexts made of fading traces of past items (Logan, 2021). These more
elaborate theories can explain recovery from errors (Lewandowsky & Li, 1994; Logan, 2018, 2021), phonological confusability effects
(Osth & Hurlstone, 202.3; also see Logan, 2018), and transitions to earlier list positions (Logan, 2021; Logan & Cox, 2023; Solway et al.,
2012), but cannot explain position-specific intrusions from prior lists (Osth & Hurlstone, 2023; but see Caplan et al., 2022; Dennis,
2009). Thus, position coding theories uniquely explain position-specific prior list intrusions (Conrad, 1959; Henson, 1998; Melton &
Von Lackum, 1941; Osth & Dennis, 2015).

This article reports a critical test of the position coding explanation of position-specific prior list intrusions, using a cued recognition
task to elicit position-specific prior list interference. Subjects were given lists of six random letters to remember followed by a probe
display containing a letter and a position cue. They were asked to decide whether the probe letter occurred in the cued position in the
memory list (Logan et al., 2021), and lures (probe letters that required a “no” response) were sampled from the prior list and from
uncued positions within the current list. For example, given list ABCDEF and prior list QRSTUV, ##C### is a matching probe that
requires a “yes” response, ##S### is a prior-list lure that requires a “no” response, and ##B### is a within-list lure that requires a “no”
response. We show that position coding theories predict longer response time (RT) and higher error rates for prior list lures the closer
they are to the cued position—position-specific prior list interference.

This prediction follows directly from the fundamental assumptions of the position coding account of position-specific prior list
intrusions: Items in the current list and the prior list are associated with the same position codes. The associations with items in the
prior list are weaker. Items are retrieved by activating position codes and reporting what is associated with them. A position code
activates the items on both lists in proportion to their strength of association. Items from the current list are activated more than items
from the prior list. Under these conditions, retrieving and reporting an item from the prior list is a prior list intrusion. If it is in the right
position in the wrong list, it is position-specific (e.g., Henson, 1998).

The cued recognition task establishes the conditions necessary to produce position-specific prior list intrusions and tests their
ability to produce position-specific prior list interference. Cued recognition requires focusing on the cued position, which should
activate a position code. The position code should activate items associated with it on the current and prior lists in proportion to their
distance from the cued position. (in the example above, C and S would be activated more than B and Q). Under these conditions, prior-
list lures should match the activated memory items, providing evidence for a “yes” response instead of the required “no” response,
which should increase RT and error rate in proportion to the proximity of the lure to the cued position (Logan et al., 2021)—position-
specific prior-list interference.

The cued recognition task provides more information about prior list activation than recall tasks. In recall tasks, prior list activation
is apparent as prior-list intrusion errors, which occur only when a prior list item wins the competition with the correct item and the
within-list items. These errors are rare because prior list items have less activation, so they usually lose the competition. Recall tasks
provide no information about prior list activation when the correct item or a within-list item wins the competition. On those trials, the
prior list items could be activated less than current list items or not activated at all. Like recall tasks, the cued recognition task provides
information about prior list activation on error trials, when subjects respond “yes” to prior list lures, analogous to prior list intrusion
errors. The cued recognition task also provides information about prior list activation on correct trials, when subjects respond “no.”
The prior list lure will match the prior list item and activate the “yes” response on all trials, and this will increase RTs for correct “no”
responses, as we show below. Thus, cued recognition provides information about prior list activation in both false alarm rate and
correct-rejection RT.

The cued recognition task allows stronger conclusions than recall tasks. Position-specific prior list interference is elicited by an
experimental manipulation (the presentation of a prior-list lure) that allows us to assess prior list activation in RT and error rate on any
trial. Observing such interference would support position coding predictions and failing to observe it would falsify them. Position-
specific prior list intrusions are emitted occasionally by subjects. Observing such intrusions supports position coding predictions but
failing to observe them does not falsify them. The prior list item could be activated, as the theory predicts, but not strongly enough to
produce an error. The cued recognition task allows us to measure the activation of prior list items when the activation is not strong
enough to produce an error.

1.1. Position coding model

We used a simple generic position coding model, depicted in Fig. 1, to formalize predictions and test hypotheses. It embodies the
core assumptions of established position coding theories that predict position-specific prior list intrusions, so its predictions generalize
to all those theories. Like all position coding theories, the generic model assumes that items on each list are associated with an ordered
set of position codes (Anderson & Matessa, 1997; Brown et al., 2000, 2007; Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998;
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Lewandowsky & Farrell, 2008; Oberauer et al., 2012). Like all position coding theories of prior-list intrusions, the strength of asso-
ciations between position codes and items is weaker for the prior list than for the current list because of decay or reduced contextual
similarity (Brown et al., 2007; Burgess & Hitch, 1999; Henson, 1998). We assume association strength s equals 1 for the current list and
0 < sprior < 1 for the prior list. This is illustrated by the lighter dashed lines in the top left panel of Fig. 1. Like all position coding
theories, the generic model assumes that items are retrieved by activating position codes. Activation spreads from the position codes to
the associated items in proportion to their associative strength. Current list items have stronger associations than prior list items, and so
are more likely to be retrieved. Prior list intrusions occur when an item is retrieved from the prior list instead of the current one.

Like all position coding theories, the model assumes that cuing a list position activates position codes in proportion to their distance
from the cued position. The activation of the item in position i given a cue in position j is:

a(ilj) = sp\iff\ (€))

where 0 < p <1 is the rate at which activation decreases with distance. For the current list, s = 1; for the prior list, s = sprior. Eq. (1) isa
common expression for contextual drift (Estes, 1955; Murdock, 1997) that is used explicitly to model within-list distance effects in
models of serial recall (Farrell, 2012; Lewandowsky & Farrell, 2008; Logan, 2021; Logan & Cox, 2021). Eq.(1) is responsible for order
errors (transpositions) that dominate serial recall. It is also responsible for the position specificity of prior list intrusions (and inter-
ference). Activation is higher for the cued position than for its neighbors on both the current and prior lists, so items retrieved from
both lists are more likely to come from the cued position than its neighbors. The activation across positions in both lists is illustrated in
the top right panel of Fig. 1. In the generic model, the activation produced by a cue is represented as a vector m whose elements
correspond to the set of possible items, which is shown in the top row of Table 1. The values for items on the current and prior list are
given by Eq. (1). The values for items that were not on either list are set to 0. Importantly, we assume that the activation values in m —
the results of cuing a position — are the same whether the retrieval task is recall or cued recognition.

These assumptions are common to all position coding theories of serial recall (Anderson & Matessa, 1997; Brown et al., 2000, 2007;
Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998; Lewandowsky & Farrell, 2008; Oberauer et al., 2012) and all position coding
accounts of prior list intrusions (Brown et al., 2007; Burgess & Hitch, 1999; Henson, 1998). The theories share these assumptions but
differ in ancillary assumptions like response suppression, primacy gradients, etc. that are designed to address specific effects in serial
recall (Lewandowsky & Farrell, 2008). The core assumptions are at issue here. We believe that the predictions of the generic model
represent the predictions of the general class of position coding theories and the subclass of position coding theories that address
position specific prior list intrusions. Confirmation of the predictions would support position coding theories of position specific prior
list intrusions. Failure to confirm the predictions would falsify some of the assumptions (depending on the nature of the failure),
challenge position coding accounts of position specific prior list intrusions, and more generally, challenge the dominance of position
coding theories of serial memory.

We apply the generic model to recall and cued recognition tasks by assuming that they access the same memory representations in
different ways (i.e., m is the same but the decision process applied to it is different). This assumption has a long history in compu-
tational models of memory. Models that relate recognition and recall generally assume that the representations are the same in the two
tasks but the decision processes are different (Anderson et al., 1998; Gillund & Shiffrin, 1984; Hintzman, 1984, 1988; Humphreys et al.,
1989; Murdock, 1982, 1983; Raaijmakers & Shiffrin, 1981). We view memory retrieval as attention turned inward (Logan et al., 2021)
and decision processes as mechanisms of attention (Logan et al., 2023a), so we think of recognition and recall as requiring attention to
different aspects of memory representations. It is possible that recognition and recall rely on different representations as well as de-
cision processes. Our assumption of a common representation is simpler and consistent with existing computational models.

Serial Recall

In serial recall, m represents the strengths with which the items on the current and prior lists compete with each other for retrieval.
We model the competition as a limited-capacity racing diffusion decision process, which accounts for response time (RT) and response
probability (accuracy; Logan et al., 2021; Tillman et al., 2020). There is one runner for each possible response, and the first runner to
finish is retrieved. The finishing time for each runner depends on its drift rate (v) and its threshold (). The drift rate is Eq. (1)

Table 1

The response from the position coding model to a probe at position 2. The first row contains the possible responses. The second row contains the
activation of responses given the probe, which is represented as the vector m in the model. The last three rows contain the vector q, which represents
the activation of the possible responses to the probe item. These vectors have 1 in the position of the probe letter and 0 elsewhere, so the dot product of
m and q is simply 1 times the value of the probe letter in m. Thus, m-gyes = 1.000, m-@yithin = 0.500, and m-gprior = 0.500.

Position Probe in Position 2

Responses “pA” «g» e «p» «p» wpr e i “p wpr “g” “pr

M 0.500 1.000 0.500 0.250 0.125 0.063 0.250 0.500 0.250 0.125 0.063 0.031

Cued Recognition Item Probes

Qyes 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Qwithin 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Qprior 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
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normalized by 1 plus the length of m, which represents the activity produced by the retrieval cue (Carandini & Heeger, 2012; Lo &
Wang, 2006), multiplied by a constant k, which represents capacity limitations:
a(ilj)

1+ «|jm|| @

Virecall =

If k = 0, capacity is unlimited; if x > 0, capacity is limited.
The finishing time distribution for each runner is Wald (Inverse Gaussian) with a drift given by Eq. (1) and a common threshold.
The density and distribution functions are:

_ 2
Ftv,0) = \/;T_t}exp { W 2[9) } @)
and
F(ilv,0) = @(Vtx;ia) +exp(20v)<1>(— ”\;0) @)

where ®(.) is the standard normal cumulative distribution function. The finishing time distribution for item i in a race between N items
is:
N

1) =0 [0 -F0) ®)

J#i
The probability that i finishes first is given by the integral of Eq. 5. The decision process is illustrated in the second row of Fig. 1.

Cued Recognition

Our model of the cued recognition task makes the same assumptions about representation and activation (Fig. 1, top) and uses the
same vector m to represent the activation from the position cue, but it makes different assumptions about the decision process applied
to m. In serial recall, the decision is based on the activation of individual items, each of which requires a separate response. In cued
recognition, we adopted the decision model Logan et al. (2021) applied to the task. In this model, the decision is based only on the
activation of the item in the probed position. High activation is evidence for a “yes” response; low activation is evidence for a “no”
response. Lures from nearby positions in either list will have greater activation than lures from more distant positions, and so provide
evidence for a “yes” response, which increases RT and error rate for the required “no” response. This is illustrated in the bottom panels
of Fig. 1.

We assume that the activated items on both lists are represented in vector m with one element for each possible item, whose value is
specified by Eq. (1), as in serial recall. The probe item is represented as a vector g with the same dimensionality as m, with 1 in the
element representing the probe item and 0 in all other elements. Table 1 presents q vectors for matching probes, within-list probes, and
prior-list probes. The probe is matched to the activated items by taking the dot product of the vectors (m- q). As illustrated in Table 1,
this amounts to multiplying the memory list item corresponding to the probe by 1 and multiplying all other items by 0, so the match
value depends only on the activation of the probe item in the probed position whether the activation comes from the current or prior
memory list. Consequently, the dot product m- q is given by Eq. (1) times 1. The process is illustrated in the bottom panel of Fig. 1. The
lines represent the activation of m and the red box represents the nonzero element in q and the contribution of m to the dot product.
Table 1 contains numerical examples.

The decision process uses the limited-capacity racing diffusion model as serial recall but configures it differently. There are only
two runners, one for a “yes” response and one for a “no” response. Eq. (1) provides positive evidence for a “yes” response. The larger the
value of a(i,j), the more likely the response should be “yes.” The drift rate for the “yes” response is simply Eq. (1) normalized by 1 plus
the length of m multiplied by a constant « to implement capacity limitations and an additional scaling constant 4 to balance “yes” and
“no” evidence:

a(ilj)

—_— 6
1+ &A||m|| ®

Vyes =

Eq. (1) provides negative evidence for a “no” response. The higher the value of a(i,j), the less likely the response should be “no.” The
racing diffusion model (and neurons) require positive evidence (because the diffusion has a single upper bound and neurons can only
have positive firing rates). We create positive evidence by defining the drift rate for the “no” response is the length of the vector m,
which represents the largest possible dot product of the probe and the activated memory items (Logan et al., 2021), multiplied by 1 to
balance “yes” and “no” evidence, and divided by 1 plus the evidence for a “yes” response multiplied by « to implement capacity
limitations:

Allm|

= 1+ xalily) @

Vno
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In Eq. (7), “no” drift rate decreases as the evidence for a “yes” response increases. “No” drift rate is highest when there is no evidence
for a “yes” response (i.e., a(i,j) = 0) and lowest on match trials when the evidence for a “yes” response is strongest ((i.e., a(i,j) = 1).

The denominators that normalize the drift rates are different in recall (Eq. (2) and cued recognition (Equations 6-7). In recall, each
response is normalized by the total activity produced by the retrieval cue (i.e., the length of m), while in cued recognition, each
response is normalized by the activity supporting the other response. Normalization can be viewed as inhibition (Carandini & Heeger,
2012; Lo & Wang, 2006). In recall, each possible response inhibits every other possible response. In recognition, the two responses
inhibit each other, as in lateral inhibition.

The finishing time distributions for “yes” and “no” runners are Wald with drift rates Vy.s, Vno, and thresholds 6y; and 6,0. The
finishing time distributions for “yes” and “no” responses are

F(2,"Yes" Vyes, Vao, Ores, Ono) = F (tVyes Oyes ) [1 = F (Vo O] (8)
and
f(t7 "non ‘v_vem vnm 0)'@57 gnn) :.f([‘vnm Hm)) [1 - F(tlv_ven 0ye:] (9)

The accuracy of “yes” and “no” responses is given by the integrals of Equations (8) and (9), respectively.

Again, it is important to emphasize that that the cued recognition model makes the same assumptions about representation and
activation as the serial and recall model. It differs only in the configuration of the decision process, as if subjects are attending to the
same information in different ways (Logan et al., 2021, 2023a).

1.2. Four core predictions

The generic position coding model assumes that memory performance is the result of the activation of position codes, which de-
pends on the distance from the cued position (pli'j ), and the strength of association (s) between the position codes and the items (Eq.
(1). We derived four core predictions from the model about performance in memory tasks that require serial retrieval (serial recall,
cued recognition).

Prediction 1

Within-list transposition errors should decrease with distance from the intended (cued) position (distances —2 —1 1 2).
Performance should be worse for positions + 1 away from the cued position than for positions + 2 away. This follows from the distance
component of Eq. (1). This is a core prediction of position coding theories but it is not unique to them. Alternatives to position coding
make the same prediction (Logan, 2021; Solway et al., 2012). Nevertheless, it is important to test. Failing to confirm it would challenge
position-coding and non-position-coding theories alike.

Prediction 2

Prior-list intrusion errors should show the same distance effect (—2 —1 1 2). This follows from the distance component of Eq.
(1) and from the assumption that prior-list and current-list items are associated with the same position codes. This is a core prediction
that is unique to the position coding account of position-specific prior list intrusions in recall and interference in cued recognition. It is
not predicted by alternatives to position coding theories.

Prediction 3

The prior-list distance effect should be smaller than the within-list distance effect at corresponding distances (—2 —1 1 2).
This follows from the multiplication of s and pli'j lin Eq. (1). For the current list, s = 1, so the distance effect is simply pli'j |. For the prior
list, s = sprior < 1 so the distance effect is sprior x pli'j || which is smaller. This is a core prediction of the position coding account of
position-specific prior list intrusions and interference but it is not unique. Theories that assume no such intrusions or interference also
predict a smaller (i.e., null) effect of prior list distance.

Prediction 4

Prior list errors should peak at distance = 0 (distances —1 0 1). This follows from the distance component of Eq. (1). This is the
strongest prediction of the position coding model. It predicts position-specific prior list intrusions in serial recall, and it predicts
position-specific prior list interference in cued recognition. It is unique to the position coding account. Failure to confirm this pre-
diction would seriously challenge the position coding account of position-specific prior list intrusions.

Simulations

We ran simulations of the position coding model to illustrate the four predictions in recall and cued recognition and to assess the
effects of varying prior list strength (sprior) on the predictions. We assumed five-item lists that were cued in the third (middle) position
and used Eq. (1) to specify activation for distances of —2, —1, 1, and 2 for within list errors and distances of —2, —1, 0, 1, and 2 for prior
list errors. We used Eq. (2) to simulate recall and Equations 6-7 to simulate cued recognition. In all simulations, p = 0.5 and x = 0.2 for
both tasks, 6 recq = 10.0 for recall, and 6 ye; = 2.8, 6 o = 3.0, and 1 = 0.8 for cued recognition. Further details of the simulations are
presented in Appendix A. MATLAB code for the simulations is posted on OSF.
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Fig. 2 shows the effect of prior list strength (sprior = 0.1, 0.2, 0.3, 0.5, 0.7) on predicted distance effects. The top panel shows
predicted within-list transposition errors and prior list intrusions in recall. There are strong within-list distance effects (—2 —1 1 2) at
all values of sprior, confirming Prediction 1. There are prior-list distance effects (—2 —1 1 2), confirming Prediction 2. Within-list
distance effects were stronger than prior-list distance effects at all values of sprior, confirming Prediction 3. Prior-list distance ef-
fects peaked at the cued position (—101), confirming Prediction 4 for values of sprior > 0.2. Thus, the position coding model predicts
prior list intrusions in recall. The middle panel shows predicted error rates for within-list and prior-list lures in cued recognition, which
also confirm the four predictions. There are strong within-list distance effects and weaker position-specific prior list interference effects
with a peak at the cued position at all values or sprior. The bottom panel shows predicted RTs for correct responses to matching probes,
within-list lures, and prior-list lures in cued recognition (i.e., the additional information that cued recognition provides about prior list
activation). The RTs show within-list distance effects and weaker position-specific prior list interference that peaks at the cued position
at all values of sprior, confirming the four predictions. Prior list interference is greater the stronger the associations of position codes
prior list items. Thus, the position coding model predicts position-specific prior list interference in cued recognition over a broad range
of prior list association strengths.

The effects of the prior list appear stronger in cued recognition than in recall. This follows from the model. Prior list items may be
activated to the same extent in recall and cued recognition, but prior list intrusions only occur if the prior-list item happens to finish
first in the decision process, before the correct item or another item from the current list. Cued recognition probes the activation of
prior list items directly on every trial, showing prior list interference in both accuracy and RT.

Recall Errors
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Fig. 2. Simulated predictions of within- and prior-list distance effects inresponse time (RT) and response probability from the position coding model
in Fig. 1. The same representations of position are used in each panel. The columns represent different values of prior list strength (0.1-0.7) relative
to current list strength (1.0). The top row presents serial and cued recall error rates, the middle row presents cued recognition task error rates, and
the bottom row presents cued recognition response times (RT) in arbitrary units. Prior list distance effects are observed in recall error rates for list
strengths > 0.2. They are observed in cued recognition error rates and RTs for all prior list strengths.
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1.3. The experiments

We conducted 12 experiments to test for the prior list intrusions and interference predicted by the position coding model. Ex-
periments 1 and 2 tested serial recall to ensure that position-specific prior list intrusions would occur with our materials (consonants),
list length (6 items), exposure duration (1000 ms), and retention interval (1000 ms). The remaining experiments tested cued recog-
nition to determine whether the same study conditions would produce the predicted position-specific prior list interference. Experi-
ments 3-10 manipulated factors intended to increase the likelihood that position codes would be activated. We presented the position
component of the probe 500 ms before the probe letter appeared so subjects could begin to focus on the cued position in the list. We
cued position with a number or a spatial display depicting its position. Experiments 11-12 tested cued recognition with sequential
presentation of the lists instead of simultaneous presentation. Most studies of serial recall, including those that address position-
specific prior list intrusions, use sequential presentation. The goal was to generalize our results and strengthen connections to that
literature.

2. Experiments 1-2: Serial recall

The first two experiments used serial recall to determine whether it is possible to get position-specific prior list intrusions with the
simultaneously presented six-item lists used later in the cued recognition experiments. The purpose was to establish that items on the
current list and prior list could be associated with position codes under these conditions. Subjects were given lists of six consonants to
remember, presented in a row on the computer screen for 1000 ms. The screen went blank for 1000 ms and then a screen containing
“RECALL” appeared, cuing subjects to type the list into their computer keyboards in correct order. Their recall errors were scored as
within-list transpositions or prior-list intrusions, which were analyzed as a function of their distance in the list from the correct letter. In
theory, these errors reflect the same activation measured by within-list lures and prior-list lures, respectively, in cued recognition.

The experiments were the same except for the way the lists were constructed. Experiment 1 used lists that were constrained so that
no letters repeated from one list to the next. Experiment 2 used lists that were unconstrained, so letters could repeat from one list to the
next. The difference in the lists addresses an alternative interpretation of the cued recognition results and will be addressed in the
General Discussion.

Each experiment tested the four predictions for error rate derived from the position coding model: (1) Within-list transposition
errors should show a distance effect, with more errors from +1 position away from the correct position than from +2 positions away.
(2) Prior-list intrusion errors should show the same distance effect for positions +1 and +2 away from the correct position. (3) The
prior list distance effect should be smaller than the within-list distance effect at corresponding positions, reflecting the reduced
strength of prior-list associations (sprior). (4) Prior list intrusion errors should show position-specific interference, manifest as more
errors from the correct position in the prior list (distance = 0) than for lures from adjacent positions (distance = +1).

2.1. Method

2.1.1. Subjects

Each experiment tested 32 subjects recruited online through Prolific (https://www.prolific.co/). We included only subjects 18-40
years of age, located in the USA, with English as first language, with an approval rating of at least 95 %, who typed at least 40 words per
minute (WPM) on the typing test. Subjects who participated in one experiment were excluded from the others. Experiments 1-2
involved a single 1.5-hour session. Subjects were paid USD $12 per hour. The study was approved by the Vanderbilt University
Institutional Review Board.

Subjects reported their age and gender. The mean age (standard deviation in brackets) of the subjects was 30.97 (6.01) and 31.94
(5.60). for Experiments 1-2 respectively. The gender distribution (male:female:prefer-not-to-say) was 15:17:0 and 26:6:0 for Exper-
iments 1-2 respectively. Mean speed on the typing test was 60.80 (17.70) and 64.73 (15.10) for Experiments 1-2, respectively. Mean
accuracy was 0.9173 (0.0430) and 0.9272 (0.0427) for Experiments 1-2, respectively.

2.1.2. Apparatus and stimuli

The experiments were conducted online on subjects’ personal computers. Subjects were instructed to use Google Chrome or Mozilla
Firefox to complete the experiment. Phone and tablet users were excluded in the Prolific intake, and the experiment would not run on
their browsers. The trials for each session were generated individually and sent to subjects’ computers using a custom Python backend.
The experiment was controlled by Javascript in the web browser using a custom function written to operate in jsPsych (de Leeuw,
2015). When the experiment started, subjects’ web browsers were instructed to enter fullscreen mode to reduce distraction.

The memory lists consisted of six uppercase letters selected at random from the set of 20 consonants (excluding vowels and Y),
displayed in a row. Experiment 1 used constrained lists, in which no letters were repeated from one trial to the next. Experiment 2 used
unconstrained lists, in which letters were allowed to repeat from one trial to the next. Characters were presented in a monospaced
typeface (Courier New or Courier, displayed in white, 45 pixels high. The background of the display was set to mid-gray ([127, 127,
127] in 24-bit RGB values).

2.1.3. Procedure
In both experiments, each trial began with a fixation cross presented in the center of the screen for 1000 ms. Then the memory list
was presented for 1000 ms, followed by a blank screen for 1000 ms, and then a probe display containing the word RECALL appeared.
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Subjects were required to type the letters in the list in response to the probe, and the letters they typed were echoed on the screen in left
to right order, as in typing text. They were told to type six letters on each trial and hit “return” when they were finished. Then the
screen went blank for a 1000 ms intertrial interval. Space and backspace keys were disabled. There were 480 trials in each experiment.
Breaks were given every 80 trials.

The instructions were written and presented using a self-paced series of manually controlled slides. Subjects were allowed to review
the instructions if they wished. Each subject completed a typing test to ensure they had enough skill to execute keystrokes auto-
matically, without hunting and pecking on the keyboard, which might limit performance. The typing test involved typing a paragraph
about the many merits of border collies (Logan & Zbrodoff, 1998). The paragraph was presented on the top of the screen and subjects’
keystrokes were echoed in a panel below the paragraph.

At the end of each block, a screen was presented indicating the overall accuracy for the preceding block, and subjects were allowed
to take a self-timed break. Every 5 min, the experiment checked whether accuracy was greater than 60 %. If subjects fell below this
criterion, they were warned to improve performance and given an opportunity to review the instructions. On the third warning,
subjects were excluded from the experiment but paid nevertheless.

2.1.4. Data analysis

Experiments 1 and 2 were designed to measure within-list transposition errors and position-specific prior list intrusions in serial
recall. We identified within-list errors as items from the list that were recalled in the wrong position. Distance was defined as the signed
difference between the position in the recall sequence and the position in the memory list. We included distances (-2 —1 1 2) to
parallel the distance manipulation in the cued recognition experiments. We identified prior-list errors as recalled items that were in the
prior list and not in the current list. We defined distance as the signed difference between the position in the prior list and the position
that was reported in the current list. For example, if the current list is ABCDEF and the prior list is GHIJKL, then recalling K (in error)
after recalling A and B is a prior list intrusion with distance = 2. We did not normalize within-list transpositions or prior-list intrusions
for availability.

We tested the four predictions with contrasts. We tested Predictions 1 and 2 (within- and prior-list distance effects) using contrast
weights (=1 11 —1) for distances (—2 —1 1 2) to compare distances 1 and +2. We tested Prediction 3 by comparing the (-2 —1 1 2)
distance contrast for the current list with the (—2 —1 1 2) distance contrast for the prior list, using weights (—1 1 1 —1) for the current
list and (1 —1—11) for the prior lists. We tested Prediction 4 (position specific prior list intrusions) using weights (—12—1) for dis-
tances (—101) in the prior list. This is the critical contrast that tests for position-specific prior list intrusions.

For each contrast, we divided the data for each subject into the relevant cells (4 distances for within-list lures; 5 distances for prior
list lures) and calculated the proportion of errors. Then we calculated the contrast values for each subject, multiplying the error rates
by the contrast weights and summing them. Then, we did a ¢ test asking whether the mean contrast was significantly greater than zero.
The error term was the standard error of the mean contrast value. We also counted the number of subjects who showed an effect in the
expected direction and reported JZS Bayes Factors (BF) to quantify support for null (BFp;) and alternative (BF() hypotheses.

Our contrasts provide inferential statistical tests of specific hypotheses derived from theory. They evaluate relations between
conditions, and the error variability depends on those relations, which cannot be expressed as error bars around individual means.
Because of this, we do not present error bars in any of our figures.

Data and programs for presenting the task and analyzing the data for all experiments in this article are available on the Open
Science Framework at https://osf.io/j4z7a/.
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Fig. 3. within-list (red) and prior-list (blue) intrusions as a function of distance from the correct position. the left and middle panels contain results
from experiments 1 and 2, respectively. the right panel shows results from cued recall experiments reported by Logan et al., (2023a), which used the
same list length, exposure duration, and retention interval as the present experiments. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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2.2. Results

Mean within-list and prior-list error rates for Experiments 1 and 2 are plotted as a function of distance in the left and middle panels
of Fig. 3, respectively. Table 2 contains contrasts evaluating distance effects. The right panel of Fig. 3 contains within-list and prior-list
error rates from position-cued recall experiments that used the same (unconstrained) lists and probed recall of a single item with a
spatial cue (e.g., ###?##, where the underline represents a caret"pointing at the cued position; Logan et al., 2023a).

The data from Experiments 1 and 2 confirmed the four core predictions of position coding theory. There were significant distance
effects (—2 —1 1 2) in each experiment for both within- and prior-list errors, confirming Predictions 1 and 2. Within-list distance effects
were significantly stronger than prior-list distance effects in each experiment, confirming Prediction 3. There were significant position-
specific prior list intrusions in each experiment. Intrusions were more frequent at lag 0 than at lags & 1 in 30 out of 32 subjects in
Experiment 1 and in 31 out of 32 subjects in Experiment 2. The contrast assessing position specific prior list intrusions (—101) was
significant in each experiment.

Experiment 2 replicated the results of Experiment 1 very closely. The patterns in Fig. 3 are very similar. Table 2 contains t tests
comparing prior list contrasts (—101) and (—2 —1 1 2), within list contrasts (—2 —1 1 2), and contrasts comparing (—2 —1 1 2) in prior
versus current lists between experiments. None of the t tests were significant.

The cued recall data in Fig. 3 build a bridge between serial recall and cued recognition. Cued recall requires subjects to recall items,
like serial recall, while focusing on a single item in the memory list in response to a cue, like cued recognition. The cued recall data
were obtained in dual task experiments in which subjects were given 6-item lists to remember and then were given two spatial cues in
succession indicating the two items to be reported (e.g., ###### followed by ###### cues the report of the second and the fifth
item in the list). The interval between the two cues varied to produce dual-task interference (100, 300, or 900 ms). The data in Fig. 3
collapse over four experiments, the interval between cues, and responses to the first and second cue to obtain sufficient observations.
The contrast testing position-specific prior list intrusions was significant in each of the four experiments. Fig. 3 also shows that within-
list distance effects (—2 —1 1 2) were stronger than prior list distance effects (—2 —1 1 2), as in serial recall. In theory, this means that
the cue in cued recall activated position codes, the position codes activated items on both lists, and the activation was greater for items
on the current list. Thus, the position cue in cued recognition should also activate a position code and the items associated with it on
both lists.

2.3. Discussion

Experiments 1 and 2 confirmed the four predictions of position coding theory in serial recall and set the stage for the cued
recognition experiments to follow. They show that position-specific prior list intrusions can be observed under our list presentation
conditions if the retrieval task is serial recall. In theory, this means that position codes were activated in serial recall, and they activated
associated items on the current and prior lists. The data from Logan et al. (2023a) in Fig. 3 show that position-specific prior list in-
trusions can also be observed in cued recall. In theory, this means that the position cues activated position codes, which activated items
in the current and prior list. It means that the position cues in the cued recognition experiments should also activate position codes,

Table 2

Results of contrasts assessing distance effects for within list errors, prior list errors, the difference between within list and prior list errors, and the peak
in prior list errors for distance of zero in serial recall in Experiments 1 and 2, and comparisons of effects between experiments. The peak in prior list
errors (—101) assesses position-specific prior list intrusions.

Experiment t SEM p N>0 BFqo
Within List Errors (—2-112)

1 12.7841 9.1887 <0.0001 32 >1000
2 14.3472 8.2638 <0.0001 32 > 1000
1vs. 2 0.0885 12.3581 0.9298 NA 0.2562

Prior List Errors (—2—-112)

1 6.7441 1.4364 <0.0001 28 >1000
2 4.6384 1.7652 <0.0001 24 404.4950
1vs. 2 0.6591 2.2758 0.5123 NA 0.3071

Within List vs Prior List Errors (-2-112)

1 12.3385 8.7353 <0.0001 32 >1000
2 14.1163 7.8190 <0.0001 32 >1000
1vs. 2 —0.2212 11.7236 0.8256 NA 0.2608

Prior List Error Peak (—101)

1 8.3025 4.4942 <0.0001 30 >1000
2 8.0475 3.8327 <0.0001 31 >1000
1vs. 2 1.2222 5.9830 0.2263 NA 0.4798

Note df = 31 for within-experiment (within-subject) comparisons (Experiments 11 or 12); df = 62 for between-experiment (between-subject)
comparisons (Experiments 11-12).
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which should activate items on the current and prior list. Cued recognition allows us to test that activation directly, using lures from
uncued positions in the current list and lures from all positions in the prior list.

3. Experiments 3-10: Cued recognition

The simulations established that position coding theories predict position-specific prior list interference when cued recognition is
tested with prior list lures. Experiments 1 and 2 established that position-specific prior list intrusions occur under our presentation
conditions in serial recall. Now, we report the cued recognition experiments that test for position-specific prior list interference under
the same conditions. We ran a series of eight experiments with manipulations intended to enhance the activation of position codes. We
began with probes that cued position spatially, following our previous experiments on cued recognition (Logan et al., 2021; Logan
et al., 2023b). The probe consisted of five # symbols and a letter with a caret (") underneath it to indicate the cued position (e.g.,
###D##, where the underline represents the caret). Then we tried cuing spatial position numerically (e.g., 4D cues the fourth po-
sition), thinking that numeric cues might cue position more directly. Then we tried pre-cuing position so subjects could begin to focus
on the cued position in the memory list before the letter probe was presented (Logan et al., 2023b). We first ran the series with
constrained lists (items could not repeat in consecutive lists) and then replicated it with another four experiments that used uncon-
strained lists (items could repeat in consecutive lists) to address alternative interpretations (see General Discussion). Altogether, we ran
eight experiments in a 2 (probe type) x 2 (pre-cue) x 2 (list type) design.

Each experiment had the same basic design to test the predictions of position coding theory. Half of the probes contained targets that
matched the item in the cued position in the memory list. The other half of the probes contained lures that did not match the item in the
cued position in the memory list. Half of the lures (within-list lures) were sampled from the current list —2, —1, 1, or 2 positions away
from the cued position to ensure that subjects focused on the cued position. The other half of the lures (prior-list lures) were sampled
from the prior list —2, —1, 0, 1, or 2 positions away from the cued position to test for position-specific prior list interference.

Each experiment tested the four predictions for RT and error rate derived from the position coding model: (1) Within-list lures
should show a distance effect, with worse performance for lures + 1 position away from the cued position than for lures + 2 positions
away. (2) Prior-list lures should show the same distance effect for lures + 1 and + 2 positions away from the cued position. (3) The
prior list distance effect should be smaller than the within-list distance effect at corresponding positions, reflecting the reduced
strength of prior-list associations (sprior). (4) Prior list lures should show position-specific interference, manifest as worse performance
for lures from the cued position in the prior list (distance = 0) than for lures from adjacent positions (distance = +1). This is the
strongest prediction of the position coding model. The same activation of prior list items predicts position specific interference in cued
recognition and position specific intrusions in serial recall. Failure to confirm this prediction would seriously challenge the position
coding account of position-specific prior list intrusions.

3.1. Method

3.1.1. Subjects

Each experiment recruited 32 subjects from Prolific using the same selection criteria as Experiments 1 and 2. The mean age
(standard deviation in brackets) of the subjects was 28.63 (6.96), 30.16 (5.73), 30.53 (5.86), 29.91 (6.79), 29.22 (5.53), 29.06 (5.54),
31.69 (4.43), and 28.66 (6.39) for Experiments 3-10 respectively. The gender distribution (male:female:prefer-not-to-say) was
15:17:0, 18:14:0, 16:15:1, 16:16:0, 18:14:0, 14:17:1, 16:16:0, and 16:16:0 for Experiments 3-10 respectively. No typing test was
required because subjects only pressed one of two keys.

3.1.2. Apparatus and stimuli

The apparatus was the same as in Experiments 1 and 2 (subjects’ home computers), and the memory lists were the same: six
consonants randomly selected from a set of 20 with the constraint that no items repeat on consecutive lists (Experiments 3-6) or with
no constraint (items could repeat on consecutive lists; Experiments 7-10). The presentation duration of the memory lists (1000 ms), the
retention interval between the memory list and the complete probe (1000 ms), and the intertrial interval (1000 ms) were the same as in
Experiments 1 and 2, but the probe differed. Experiments 3, 4, 7, and 8 used spatial probes, which displayed an array of five # symbols
plus a probe letter with a caret () underneath it in the cued position (e.g., ##C###, where the underline represents the caret).
Experiments 5, 6, 9, and 10 used numeric probes, which displayed a single number and a probe letter presented in the center of the
screen (e.g., 2C). Experiments 3, 5, 7, and 9 had blank 1000 ms retention intervals followed by complete probes (##C### or 2C).
Experiments 4, 6, 8, and 10 pre-cued the probed position 500 ms after the memory list. The position component of the probe was
presented with a blank instead of the probe letter for 500 ms (e.g., ##_### or 2), followed by the complete probe (##C### or 2C), in
which the blank position in the precue was replaced by the probe letter.

3.1.3. Procedure

Each trial began with a fixation cross presented in the center of the screen for 1000 ms. Then the memory list was presented for
1000 ms. In Experiments 3, 5, 7, and 9, the memory list was followed by a blank screen for 1000 ms, and then the complete probe
display (containing the position cue and the probe letter) appeared. In Experiments 4, 6, 8, and 10, the position cue appeared 500 ms
after the memory list for 500 ms, when the probe letter was added to complete the probe display. In all experiments, the probe display
remained onscreen until subjects responded, and then the screen went blank for a 1000 ms intertrial interval.

There were 480 trials per session, constructed by randomly interleaving 240 trials of 120 targets and 120 within-list lures with 240
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trials of 120 targets and 120 prior list lures. The targets were no different in the two sets of trials but the lures differed. The design for
targets and within-list lures involved 6 probe positions and 4 distances (—2 —1 1 2), creating 24 “no” trials, plus 24 “yes” trials (6 probe
positions replicated 4 times), for a total of 48 trials for one replication. The 240 target and within-lure trials replicated this design 5
times. The design for targets and prior-list lures involved 6 probe positions and 5 distances (—2 —1 0 1 2), creating 30 “no” trials and 30
“yes” trials (6 probe positions replicated 5 times), for a total of 60 trials for one replication. The 240 target and prior-list trials
replicated this design 4 times. For each subject, the 240 trials for within- and prior-list lures were randomized separately and then
combined randomly to produce the final set of 480 trials.

Subjects were told to indicate whether the cued letter in the probe was presented in the same position in the memory list, pressing
the M (or Z) key on the keyboard to indicate a “yes” response and the Z (or M) key to indicate a “no” response. Mapping of response
categories to keys was counterbalanced between subjects. The instructions were written and presented using a self-paced series of
manually controlled slides. Subjects were allowed to review the instructions if they wished.

Subjects had to respond within 3000 ms of the presentation of the probe or the trial was terminated with the message “TOO SLOW”
presented centrally in red font for 3000 ms. These trials were excluded from analysis and treated as errors in calculating feedback
during the task. At the end of each block, a screen was presented indicating the overall accuracy for the preceding block, and subjects
were allowed to take a self-timed break. Every five minutes, the experiment checked whether accuracy was greater than 60 %. If
subjects fell below this criterion, they were warned to improve performance and given an opportunity to review the instructions. On
the third warning, subjects were excluded from the experiment.

3.1.4. Data analysis

We tested the four predictions of position coding theory with four contrasts on the mean RTs and error rates. The within-list
distance effects in Prediction (1) were tested with a contrast using weights (—1 1 1 —1) for distances (—2 —1 1 2). The correspond-
ing prior-list distance effects in Prediction (2) were tested using the same contrast weights for the same distances in the prior list. The
attenuation of distance effects in prior lists relative to current list effects in Prediction (3) was tested with contrast weights (-111 —1)
for within-list distances (—2 —1 1 2) and contrast weights (1 —1 —1 1) for prior-list distances (—2 —1 1 2). The position-specific prior list
interference in Prediction (4) was tested with contrast weights (—1 2 —1) for prior-list distances (—101). The confidence intervals
around contrast values cannot be expressed as error bars around the component RTs and error rates. Confidence intervals around mean
RTs and error rates cannot support inferences about the significance of the contrasts. Consequently, we present no error bars in the
figures.

3.2. Results

Mean RT for correct responses (top) and error rate (bottom) for matches (“yes” response), within-list lures (“no” response), and
prior-list lures (“no” response) are plotted as a function of distance from the cued position in Fig. 4 for Experiments 3-6 and Fig. 5 for
Experiments 7-10. The pattern of the data was very similar across experiments. It shifted downward but remained the same when
probe position was pre-cued (Experiments 4, 6, 8, and 10 vs. Experiments 3, 5, 7, and 9), following previous research (Logan et al.,
2023b). RTs were longer with numeric position cues (Experiments 5, 6, 9, 10 vs. Experiments 3, 4, 7, 8) but the pattern of the data was
very similar. The pattern was the same whether lists were constrained to exclude letter repetitions in consecutive lists (Experiments
3-6) or unconstrained to allow repetitions (Experiments 7-10). Serial position data are presented in Appendix C in Fig. C1.

3.2.1. Position coding model predictions
We assessed the four predictions of the position coding model separately for each experiment. Contrasts evaluating the predictions
are presented in Table 3 for Experiments 3-6 and Table 4 for Experiments 7-10.

Prediction 1. Distance Effects for Within-List Lures (—2 —1 1 2). In each experiment, subjects were able to focus on the cued item
and ignore the other items in the list: d’s, calculated from hit rates from “yes” trials and false alarm rates from within-list lures,
averaged (SEM in brackets) 2.0942 (0.1504), 2.5683 (0.1527), 1.9732 (0.1575), and 2.2042 (0.1435) in Experiments 3-6, respec-
tively, and 2.1247 (0.1262), 2.3239 (0.1187), 1.9038 (0.1379), and 2.1344 (0.1630) for Experiments 7-10, respectively. In theory, this
means position codes for the cued positions were activated. Current list items are associated with position codes with strength (sprior)
=1, so within-list lures should be activated in proportion to their distance from the cued position (Eq. (1). In each experiment, RT and
error rate for within-list lures decreased substantially as the distance between the probed position and the lure’s position increased.
The within-list distance contrasts were highly significant for both RT and error rate in each experiment. In theory, this means position
codes activated neighboring items in proportion to their distance from the cued position.

Prediction 2. Distance Effects for Prior-List Lures (—2 —1 1 2). Having established the conditions necessary to produce prior list
intrusions (activation of position codes, activation of neighboring within-list items), the question is whether lures from prior lists
produced the predicted distance effects at the same distances as within-list lures. In each experiment, the answer was clearly negative.
RTs and error rates for prior list lures showed no effect of distance in any experiment. The contrast was significant only for RT in
Experiment 10, where RTs were shorter for distances of + 1 than for distances of + 2 (Tables 3 and 4). These results fail to confirm the
prediction, but the prediction for distances (—2 —1 1 2) is not strong. The simulations in Figs. 2 and 3 show weak effects at these
distances.
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Fig. 4. Mean response times (rts; top panels) and error rates (bottom panels) as a function of distance between the cued position and the position of
the probed item in the current (within) or prior list for responses to matches (“yes”) and responses to within-list and prior-list lures (“no”) in ex-
periments 3-6. The cuing procedure for each experiment is illustrated at the top of each column (list — retention interval — probe). In Experiments 3
and 6, the position cue is presented before the probe item. Experiments 3-6 used lists that were constrained not to repeat letters from the
immediately previous list.

Prediction 3. Distance Effects are Stronger Within-List than Between-List. Position coding theories assume that items in the current
list are more strongly associated with position codes than items in the prior list. This implies that within-list distance effects should be
stronger than prior-list distance effects at the same distances (—2 —1 1 2). Contrasts comparing within- and prior-list distance effects
supported this prediction. They were highly significant for error rate in every experiment and highly significant for RT in every
experiment but Experiment 5 (Tables 3 and 4). On the balance, the data confirm the prediction.

Prediction 4. Distance Effects with Prior List Lures (—101). The results supporting the first and third predictions establish the
conditions necessary to produce position-specific prior list interference. The probe activates the position code in the cued position,
which activates items associated with it and its nearby neighbors on the current list and, to a lesser extent, on the prior list. Prior list
activation should be strongest at the cued position, so interference should peak at distance = 0. The prior list contrast comparing
distance = 0 with distance = +1 tests this prediction directly. The contrast for RT was not significant in any experiment (Tables 3 and
4). The contrast for error rate was significant only in Experiment 7 (i.e., 1 out of 16 contrasts), but the difference may be due to the
negative (—2 —1 1 2) prior list distance contrast, in which error rate was lower for distances + 1 than for + 2. A contrast comparing
error rates at distances + 2 with distance 0 found no significant difference, t(31) = 0.000003, SEM = 0.0215, p = 0.9999, BF;9 =
0.1888. On the balance, the data disconfirm the prediction. They challenge the position coding account of position-specific prior list

13



G.D. Logan et al. Cognitive Psychology 149 (2024) 101641
intrusions in serial and cued recall.

3.2.2. Between-Experiment comparisons

Experiments 3-10 manipulated list type (constrained or unconstrained), probe type (spatial or numerical), and pre-cue delay (0 or
500 ms) between experiments, attempting to increase the likelihood of activating position codes and to address alternative in-
terpretations. Each experiment involved a single combination of these variables, so their effects were not assessed with the inferential
statistics reported so far. Here, we take advantage of the factorial structure of the between-experiment manipulations and evaluate
their effects in 2 x 2 x 2 between-subject analyses of variance (ANOVAs). We performed one set of ANOVAs on mean RTs and error
rates to assess the effects of the manipulations on cued recognition performance. We performed four sets of ANOVAs on the contrasts
evaluating the four predictions of the position coding theory, asking whether the effects assessed with the contrasts interact with the
between-experiment manipulations. Summary tables for the ANOVAs are presented in Appendix B.

Mean RT and Error Rate. We focused on RTs for “yes” (match) responses. They appeared to change in the same way across experiments
as “no” responses to within- and prior-list lures. They were based on more observations than “no” responses (240 vs. 120 for each type
of lure) and had not been tested in any of the previous analyses. Averaged across experiments, “yes” RT was 315 ms shorter with a 500
ms pre-cue than without, suggesting that the pre-cue allowed time to focus on the cued position (Logan et al., 2023b), which should
increase the activation of position codes. “Yes” RT was 170 ms longer with numeric probes than spatial probes, and not affected by list
type (difference = 27 ms). These results were confirmed by significant main effects of pre-cue delay and probe type in the ANOVA on
mean RTs. No other effects were significant. Averaged across experiments, error rate on “yes” trials was 0.0281 smaller with a pre-cue
than without, 0.0122 smaller with spatial probes than with numeric probes, and 0.0023 smaller with unconstrained lists than with
constrained lists. The pre-cue effect was the only significant effect in the analyses. The summary tables for the ANOVAs are presented in
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Fig. 5. Mean response times (rts; top panels) and error rates (bottom panels) as a function of distance between the cued position and the position of
the probed item in the current (within) or prior list for responses to matches (“yes”) and responses to within-list and prior-list lures (“no”) in ex-
periments 7-10. The cuing procedure for each experiment is illustrated at the top of each column (list — retention interval — probe). In Experiments
8 and 10, the position cue is presented before the probe item. Experiments 8-10 used unconstrained lists, in which letters from the immediately
previous list were allowed to repeat.
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Table 3
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Contrasts evaluating the four predictions of position coding theories for current and prior lists in cued recognition (distances compared are in
brackets) in Experiments 3-6.

Exp t(31) SEM P N>0 BFyo t(31) SEM p N>0 BFy,
1. RT Distance Within List (—2-112) 1.

Error Rate Distance Within List (—2-112)
3 4.9315 30.0478 <0.0001 25 867.4468 6.4008 0.0251 <0.0001 31 41619.32
4 4.3786 34.4401 0.0001 22 207.3346 7.2050 0.0254 <0.0001 28 336,411
5 4.2778 20.5961 0.0002 25 160.3881 4.0478 0.0196 0.0003 22 89.8625
6 5.2424 21.5628 <0.0001 27 1962.11 4.2424 0.0194 0.0002 24 146.6164
2. RT Distance Prior List (—2112) 2.

Error Rate Distance Prior List (—2—-112)
3 0.7666 17.7154 0.4491 16 0.2477 0.1341 0.0194 0.8942 14 0.1904
4 1.1039 24.3338 0.2781 18 0.3296 0.3938 0.0165 0.6964 15 0.2029
5 1.6062 19.4070 0.1184 15 0.5997 0.4191 0.0187 0.6780 13 0.2049
6 0.3551 21.6912 0.7249 16 0.2002 0.8212 0.0143 0.4178 14 0.2577
3. RT Distance Within vs Prior (-2 -1 1 2) 3.

Error Rate Distance Within vs Prior (-2 -1 1 2)
3 3.5091 38.3569 0.0014 26 24.2132 4.9108 0.0321 <0.0001 27 821.7429
4 3.5596 34.8176 0.0012 22 27.2920 6.1648 0.0287 <0.0001 26 22381.54
5 1.6675 34.1431 0.1055 22 0.6537 2.4691 0.0289 0.0193 23 2.5406
6 3.0685 34.3286 0.0044 23 8.8292 3.1934 0.0221 0.0032 24 11.6707
4. RT Peak Prior List (=101) 4,

Error Rate Peak Prior List (—101)
3 0.0235 32.9330 0.9814 15 0.1889 1.7545 0.0193 0.0892 16 0.7422
4 0.5569 46.9468 0.5816 13 0.2180 1.1223 0.0220 0.2184 12 0.3357
5 0.6473 20.8574 0.5222 18 0.2292 0.1201 0.0217 0.9052 11 0.1901
6 0.0865 32.4205 0.9317 17 0.1895 0.3848 0.0203 0.7030 10 0.2022

Table 4

Contrasts evaluating the four predictions of position

brackets) in Experiments 7-10.

coding theories for current

and prior lists in cued recognition (distances compared are in

Exp t(31) SEM p N>0 BF1o t(31) SEM p N>0 BFi1o

1: RT Distance Within List (-2-112) 1: Error Rate Distance Within List (—2-112)

7 7.2817 23.1304 <0.0001 30 5.0076 0.0268 <0.0001 28 >1000
8 3.8957 24.6635 0.0005 26 4.2463 0.0250 0.0002 25 148.0722
9 5.8127 18.1504 <0.0001 28 8841.26 3.2670 0.0131 0.0027 18 13.7936
10 4.6166 31.8936 0.0001 27 382.312 5.4074 0.0270 <0.0001 25 3031.31
2: RT Distance Prior List (-2-112) 2: Error Rate Distance Prior List (-2-112)

7 0.4769 21.4020 0.6368 20 —2.7829 0.0150 0.0091 11 4.7773
8 —-1.2759 22.4040 0.2115 13 0.5961 0.0153 0.5555 13 0.2226
9 0.3058 19.6308 0.7618 22 0.1972 —0.2981 0.0088 0.7676 10 0.1968
10 —2.3513 20.3793 0.0252 12 2.031 0.7367 0.0230 0.4669 14 0.2426
3: RT Distance Within vs Prior (-2-112) 3: Error Rate Distance Within vs Prior (-2-112)

7 5.2315 30.2443 <0.0001 26 5.3676 0.0328 <0.0001 25 >1000
8 2.7949 29.2231 0.0088 20 3.6148 0.0319 0.0011 22 31.1332
9 4.0090 24.8189 0.0004 27 81.5769 2.8727 0.0158 0.0073 19 5.7731
10 4.9613 39.3365 <0.0001 27 937.795 4.1223 0.0313 0.0003 26 108.295
4:RT Peak Prior List (—=101) 4: Error Rate Peak Prior List (—101)

7 1.2615 19.9368 0.2615 18 2.1627 0.0193 0.0384 23 1.4426
8 1.2759 22.4040 0.2115 19 1.5081 0.0155 0.1417 22 0.5254
9 0.1760 17.8834 0.8615 17 0.1916 1.4827 0.0105 0.1483 8 0.5083
10 1.6878 31.1194 0.1015 20 0.6731 0.2853 0.0228 0.7773 13 0.1961

Table B1 in Appendix B.

Prediction 1. Within Distance (—2 —1 1 2). There were no significant effects in the ANOVA on the RT contrasts. The effects were
consistent across experiments. The null effect of probe delay is consistent with the null interaction between probe delay and distance in
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Logan et al., (2023b). The only significant effects in the ANOVA on the P(Error) contrasts were the main effects of probe type and probe
delay. The contrasts were larger for spatial probes and larger for the 500 ms delay. Summary tables for the ANOVAs are presented in
Table B2 in Appendix B.

Prediction 2. Prior Distance (—2 —1 1 2). There were no significant main effects or interactions in the ANOVAs on RT and P(Error).
The null prior distance effects were consistent across experiments. Summary tables for the ANOVAs are presented in Table B3 in
Appendix B.

Prediction 3. Within vs. Prior Distance (—2 —1 1 2). There were no significant effects in the ANOVA on RT, indicating that within-list
distance effects were stronger than prior-list distance effects in each experiment. The effect of probe delay was significant in the
ANOVA on P(Error), indicating smaller differences between within and prior distance effects with the 500 ms delay, which may be a
floor effect. Summary tables for the ANOVAs are presented in Table B4in Appendix B.

Prediction 4. Prior Distance (—101). A sharp peak in interference at distance = 0 is the strongest prediction of the position coding
model (Fig. 2). There were no significant effects in the ANOVA on this contrast in RT, indicating that the null distance effect replicated
consistently across experiments. List type was the only significant effect in the ANOVA on the contrast in P(Error), indicating a smaller
contrast value with unconstrained lists. These results disconfirm the prediction and thereby challenge the position coding account of
position-specific prior list intrusions. Summary tables for the ANOVAs are presented in Table B5 in Appendix B.

Summary. The ANOVAs provided statistical support for the differences in overall RT and error rate between experiments. There were
few differences in the distance contrasts across experiments, suggesting that the contrasts replicated well.

3.3. Discussion

Across experiments, overall performance varied with pre-cue delay and probe type but the pattern of distance effects remained the
same. Distance had strong effects on within-list lures but null effects on prior-list lures, measured either at (—2 —1 1 2) or (—101). This
pattern of effects confirms Predictions 1 and 3 about within-list lures but disconfirms Predictions 2 and 4 about prior list lures. The
results have strong implications for position coding theories of serial order. The experiments established the conditions necessary (in
theory) to produce position-specific prior list interference. The large d’ values comparing “yes” and within-list “no” responses suggest
that the position code for the cued position was activated more than the others. The within-list distance contrast (—2 —1 1 2) suggests
that position codes for nearby items were activated in proportion to their distance from the cued position. Within-list distance effects
were stronger than prior-list distance effects, suggesting that position codes activated items in the current list more strongly than items
in the prior list. In theory, the activated position codes should activate items from the prior list in proportion to their distance from the
cued position. This activation should reduce the drift rate for “no” responses (Eq. (7), slowing RT and increasing error rate in (inverse)
proportion to their distance from the cued position, but across experiments, distance had no effect on either measure. This key pre-
diction was not confirmed in any of the eight experiments. This challenges the position coding account of position-specific prior list
intrusions and position coding theories more broadly. We discuss alternative interpretations and implications in the General Dis-
cussion, after reporting the last two experiments.

4. Experiments 11-12: Cued recognition with sequential list presentation

In all the experiments so far, the memory lists have been presented simultaneously for 1000 ms. In the literature, experiments on
position-specific prior list intrusions and serial memory in general usually present the memory list sequentially, one item at a time.
Experiments 1 and 2 show that position-specific prior list intrusions can be found with simultaneously presented lists, but the effects
may be more robust with sequentially presented lists. Experiments 11 and 12 replicated the cued recognition results with sequentially
presented lists to determine whether position-specific prior list interference would occur with those lists.

Experiments 11 and 12 were replications of Experiments 5 and 9 with sequential lists. In both experiments, the position cues were
numeric and position and item cues were presented simultaneously (e.g., 5R). Experiment 11 used constrained lists. Experiment 12
used unconstrained lists. Each experiment tested the four predictions of position coding theory.

4.1. Method

4.1.1. Subjects

Each experiment recruited 32 subjects from Prolific, using the same selection criteria as the previous experiments. The mean age
(standard deviation in brackets) of the subjects was 30.19 (5.29) and 29.09 (5.96) for Experiments 11 and 12, respectively. The gender
distribution (male:female:prefer-not-to-say) was 22:10:0 and 18:13:1, respectively.

4.1.2. Apparatus and stimuli
These were the same as in Experiments 5 and 9 (numeric cues, no pre-cue delay), except that the lists were presented sequentially.

Each item appeared in the center of the screen for 500 ms, whereupon it was replaced by the next item. The retention interval, which
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began after the last item was erased from the screen, was 1000 ms, as in the previous experiments.

4.1.3. Procedure
The procedure was the same as in Experiments 3-10.

4.2. Results

Mean RT for correct responses (top) and error rate (bottom) for matches (“yes” response), within-list lures (“no” response), and
prior-list lures (“no” response) for each experiment are plotted as a function of distance from the cued position in Fig. 6. The results
replicated Experiments 5 and 9 closely. There were strong distance effects for within-list lures and null distance effects with prior list
lures.
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Fig. 6. Mean response times (rts; top panels) and error rates (bottom panels) as a function of distance between the cued position and the position of
the probed item in the current (within) or prior list for responses to matches (“yes”) and responses to within-list and prior-list lures (“no”) in ex-
periments 11 and 12. both experiments presented the memory lists sequentially and both used simultaneous numeric probes to cue recognition (e.g.,
5D). Experiment 11 used constrained lists. Experiment 12 used unconstrained lists.
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Table 5
Contrasts evaluating the four predictions of position coding theories for current and prior lists in cued recognition (distances compared are in
brackets) in Experiments 11 and 12.

Exp t SEM p N>0 BFyo t SEM p N>0 BFyo

1: RT Distance Within List (—2-112) 1: Error Rate Distance Within List (—2-112)

11 5.7834 27.7374 <0.0001 29 8182.83 7.0412 0.0198 <0.0001 28 220,612
12 7.4757 23.9611 <0.0001 28 672,278 7.1550 0.0248 <0.0001 29 295,826
11-12 —0.5110 36.6153 0.6612 NA 0.2853 —1,1438 0.0328 0.2571 NA 0.4438
2: RT Distance Prior List (—2—-112) 2: Error Rate Distance Prior List (—2—-12)

11 —1.3830 35.7014 0.1765 13 0.4486 0.8915 0.0234 0.3795 17 0.2722
12 —0.9512 18.8222 0.3489 13 0.2861 0.9049 0.0158 0.3725 16 0.2752
11-12 0.4311 28.6265 0.6679 NA 0.2764 0.2325 0.0280 0.8169 NA 0.2613
3: RT Distance Within vs Prior (-2-112) 3: Error Rate Distance Within vs Prior (—2-112)

11 5.2983 35.9851 <0.0001 25 2273.42 3.8410 0.0309 0.0006 26 53.8626
12 7.9235 24.8662 <0.0001 30 2,081,998 6.2139 0.0308 <0.0001 27 25469.5
11-12 0.1456 43.7408 0.8847 NA 0.2577 1.0570 0.416 0.2946 NA 0.4096
4:RT Peak Prior List (—101) 4: Error Rate Peak Prior List (—101)

11 0.1952 35.7014 0.8465 12 0.1922 —1.0553 0.0234 0.2995 11 0.3144
12 —-0.7225 24.9867 0.4754 11 0.2403 —2.2424 0.0267 0.322 8 1.6627
11-12 0.6944 39.1651 0.4901 NA 0.3133 1.9842 0.0319 0.0517 NA 1.3208

Note df = 31 for within-experiment (within-subject) comparisons (Experiments 11 or 12); df = 62 for between-experiment (between-subject)
comparisons (Experiments 11-12).

As before, d’ comparing hit rates from “yes” trials with false alarm rates from within-list “no” trials showed that subjects were able
to focus sharply on the cued position, activating a position code in theory. The d’s (SEM in brackets) were 2.0872 (0.1459) and 2.0642
(0.1549) for Experiments 11 and 12, respectively. We tested the four predictions of position coding theory in each experiment using
contrasts presented in Table 5 The contrasts evaluating within-list distance effects (—2 —1 1 2) and the contrasts comparing within-list
and prior-list distance effects were highly significant for RT and error rate in each experiment, confirming Predictions 1 and 3. The
contrasts evaluating prior list distances did not show evidence of interference, disconfirming Predictions 2 and 4. The contrast for
distances (—2 —1 1 2) was not significant for RT or error rate in either experiment, nor was the critical contrast for distances (—101).

4.3. Discussion

The results show that the main findings in cued recognition can be replicated with sequentially presented lists. Thus, the findings
generalize to conditions more typical of the literature on position-specific prior list intrusions and the broader literature on serial
memory. As in the previous cued recognition experiments, these experiments established the conditions necessary (in theory) to
produce position-specific prior list interference (activating position codes, activating nearby position codes more strongly than remote
ones, activating the current list more than the prior list), but none was observed in either experiment. The results confirmed Predictions
1 and 3 but disconfirmed Predictions 2 and 4. Now there are 10 experiments showing that result.

5. General discussion

The experiments were designed to test predictions derived from the position coding account of position-specific prior list intrusions. We
showed that a position coding model that produces prior list intrusions must also produce position-specific prior list interference in a cued
recognition task (when coupled with an appropriate decision process; Figs. 1-2). We failed to find such interference in 10 experiments.
Fig. 7 plots the mean observed RTs and error rates (solid lines) across all 320 subjects in Experiments 3-12 for match responses, within-list
lures, and prior-list lures as a function of distance from the cued position. The pattern of the observed data does not resemble the position
coding predictions in Fig. 2 very closely. The observed pattern is most similar to the predictions with the lowest prior list strength (sprior =
0.1). However, these strengths and probabilities are too low to account for the position-specific prior list intrusions we observed in serial
recall in Experiments 1 and 2 (cf. predictions in the top left panels of Fig. 2). Thus, the results challenge the position coding account of prior
list intrusions. They challenge position coding theories more generally because their account of position-specific prior list intrusions is a
unique prediction that distinguishes them from other theories of serial memory (Henson et al., 1996; Osth & Hurlstone, 2023).

Each experiment tested four predictions derived from the core assumptions of position coding theory. The theory assumes that
position codes are activated in proportion to their distance from the cued location, the position codes activate items associated with
them on the current list and the prior list in proportion to their activation, and associations to the current list are stronger than as-
sociations to the prior list. This leads to the four predictions, which we tested on the data from all 320 subjects in Experiments 3-12.

Prediction 1. For within-list probes, RT and error rate should both decrease with distance, assessed with contrasts comparing
positions (—2 —1 1 2). Prediction 1 was confirmed. The within-list distance effects (—2 —1 1 2) were strong and highly significant.
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For RT, t(319) = 8.9228, SEM = 8.9228, p < 0.0001, N > 0 = 269, BF;p > 1000; for P(Error), t(319) = 9.4483, SEM = 0.0097, p <
0.0001, N > 0 = 248, BF;p > 1000.

Prediction 2. For prior-list probes, RT and error rate should also decrease with distance over the same set of distances (—2 —1 1 2).
Prediction 2 was disconfirmed. The prior-list distance effects (—2 —1 1 2) were null. For RT, t{(319) = 0.1882, SEM = 6.7750, p =
0.8508, N > 0 = 156, BF;p = 0.0638; for P(Error), t(319) = 2.1014, SEM = 0.0056, p = 0.0364, N > 0 = 150, BF;9 = 0.5508.
Prediction 3. The (—2 —1 1 2) distance effect should be stronger for within-list lures than for prior-list lures. Prediction 3 was
confirmed. Within-list distance effects (—2 —1 1 2) were much stronger than prior-list distance effects (—2 —1 1 2). For RT, t(319) =
12.7175,SEM = 11.1316, p < 0.0001, N > 0 = 248, BF;9 > 1000; for P(Error), t(319) = 7.0079, SEM = 0.0114,p < 0.0001 N > 0 =
236, BFyo > 1000.

Prediction 4. For prior-list probes, RT and error rate should peak at distance = 0, assessed with contrasts comparing positions (—101).
Prediction 4 was disconfirmed. There was no peak at distance = 0 for prior list lures. For RT, #(319) = 1.0564, SEM = 10.0030, p =
0.2916, N > 0 = 152, BF;p = 0.1089; for P(Error), t(319) = 0.0177, SEM = 0.0072, p = 0.2810, N > 0 = 118, BF;p = 0.0627.

The data confirm Predictions 1 and 3 but disconfirm the critical Predictions 2 and 4, which are the most diagnostic. These results
challenge the position coding account of position-specific prior list interference and, by extension, position-specific prior list intrusions.
5.1. Model fits

We sought converging evidence on the four predictions by fitting versions of the position coding model that simulated the pre-
dictions in Fig. 2 to the data from Experiments 3-12 to test hypotheses about prior list strength and the distance effects. The contrasts in
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Fig. 7. Observed and predicted performance from the zero prior list strength model (left panels) and the nonzero prior list strength model (right
panels) across experiments 3-12. Solid lines and filled circle: Observed mean RT (top) and error rate (P(Error), bottom) across all 320 subjects in the
cued recognition experiments (3-12) for match trials (circle), within-list lures (red), and prior-list lures (blue) as a function of their distance from the
cued position. The observed data are repeated in the left and right panels to illustrate fits of different models. Dashed lines and empty square:
Predicted mean RT and P(Error) for the zero prior list strength model (left panels) and the nonzero prior list strength model (right panels). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the previous analyses are operational definitions of the strength (sprior) and distance (p) components of Eq. (1). The fits measure these
components directly as best-fitting model parameters and confirm the contrast results. The contrast analyses suggested that prior list
strength equaled zero in Experiments 3-12. Position coding theory predicts strength greater than zero. We test this hypothesis by
comparing the fits of models that fix sprior to 0 with models that allow it to vary freely. Position coding theory predicts models with
sprior free to vary will fit better than models with sprior fixed at 0. The fits with sprior free to vary provide estimates of prior list
strength. Position coding theory predicts the estimates will be greater than 0. The fitting procedure is described in Appendix D.

We used Eq. (1) to generate activation strengths for targets, within-list lures, and prior-list lures, and Equations (6) and (7) to
generate drift rates for “yes” and “no” responses. The position similarity gradient p, prior list strength sprior, and capacity x were each
estimated as free parameters for each subject in each experiment. In addition, we estimated the thresholds for the two accumulators, a
residual time parameter, and two scaling parameters for converting activations into drift rates. For each trial experienced by a subject,
we used Equations (8) and (9) to compute the likelihood of making the response observed on that trial at the time observed on that
trial. We found parameters for each subject in each experiment that maximized the total likelihood of the observed responses and RTs
across all trials. As a result, models were fit to the complete joint distributions of correct and error responses and RTs in all conditions.

We fit two models. The first was a nonzero prior list strength model, representing the position coding model in Fig. 1, which allowed
sprior to vary between 0 and 1. The second was a zero prior list strength baseline model, which fixed sprior at 0 to eliminate prior list
items from the model. A complete description of the models, their best-fitting parameter values, and their predictions for mean correct
RT and error rate in each experiment are presented in Appendix D. The results of a parameter recovery analysis of the models are
presented in Appendix E.

The model predictions across all 320 subjects are shown in the left (zero prior list strength) and right (nonzero prior list strength)
panels of Fig. 7 (dashed lines). The quality of the fits was about the same for the two models (see below) but the nonzero prior list
strength model predicted a peak in RT and error rate at distance = O for prior-list lures that was not observed in the data (Fig. 7). The
zero prior strength model correctly predicted the observed flat function.

The four predictions (contrasts) of position coding theory are determined by the combination of prior list strength and distance
parameters in Eq. (1). Prediction 1 (—2 —1 1 2 distance effect in within-list lures) depends only on the distance parameter p in Eq. (1). It
was greater than zero in every subject, averaging 0.2508 in the zero prior list strength model fits and 0.2826 in the nonzero prior list
strength model fits (Table D1), confirming Prediction 1 in both models.

Predictions 2 and 4 (—2 —1 1 2 and —1 0 1 distance effects in prior list lures) depend on the product of distance and the prior list
strength parameter sprior in Eq. (1). Estimates of sprior were greater than zero on average (0.0938; Table D1), as predicted, but they
were equal to zero in 169 of the 320 subjects, disconfirming the prediction for those subjects. The low sprior values reduce the acti-
vation of prior list lures, eliminating the distance effect and disconfirming Predictions 2 and 4.

Prediction 3 compares within-list distance effects, which depend only on the distance parameter, with prior-list distance effects,
which depend on the product of the distance parameter and the prior list strength parameter. The relatively high value of the distance

Table 6
Contrasts comparing goodness of fit of the position coding models with zero and nonzero prior list strength in Experiments 3-12 (nonzero fit — zero
fit).

Exp t df SEM p BFyo t df SEM p BFyo
AIC* BIC*

3 —1.3014 31 3.9523 0.2027 0.4073 —0.2476 31 3.9530 0.8061 0.1943
4 0.0839 31 1.4138 0.9936 0.1894 3.0306 31 1.4143 0.0049 8.1222
5 —2.1235 31 2.5695 0.0418 1.3472 —0.5019 31 2.5701 0.6193 0.2122
6 —0.9192 31 3.2394 0.3651 0.2784 0.3650 31 3.2407 0.7176 0.2009
7 —1.0167 31 11.6346 0.3172 3.3946 31 1.697 <0.0001 18.5117
8 11.4163 31 0.1493 <0.0001 39.0482 31 0.1504 <0.0001 >1000
9 —2.1075 31 4.6019 0.0433 1.3104 —1.2025 31 4.6032 0.2383 0.3649
10 1.3503 31 0.6419 0.1867 0.4313 7.8126 31 0.6442 <0.0001 >1000
11 —0.2565 31 1.3063 0.7993 0.1947 2.9222 31 1.3057 0.0064 6.4179
12 —0.5223 31 1.2919 0.6052 0.2143 2.6987 31 1.2922 0.0112 4.0136
3-12 —2.3900 319 1.3985 0.0174 2.4997 319 0.7938 0.0129 1.3457
rRT"” r P(Error)”

3 —0.4388 31 0.0176 0.6639 0.2065 0.1934 31 0.0185 0.8479 0.1921
4 1.0829 31 0.0107 0.2872 0.3229 1.3326 31 0.0141 0.1924 0.4223
5 —2.0330 31 0.0152 0.0507 1.1544 0.3001 31 0.0056 0.7661 0.1969
6 0.9629 31 0.0123 0.3431 0.289 0.5215 31 0.0073 0.6058 0.2142
7 —0.2559 31 0.0111 0.7997 2.1319 31 0.0090 0.0411 1.3670
8 —1.1341 31 0.0044 0.2655 0.7534 31 0.0038 0.4569 0.2454
9 —0.4316 31 0.0167 0.6690 0.2059 1.17887 31 0.0190 0.0834 0.3558
10 —-0.6537 31 0.0118 0.5181 0.2301 1.7762 31 0.0063 0.0855 0.7668
11 —1.6353 31 0.0117 0.1121 0.6246 1.1981 31 0.0109 0.2399 0.3632
12 —0.6727 31 0.0070 0.5061 0.2328 1.0499 31 0.0102 0.3019 0.3128
3-12 —1.5701 319 0.0039 0.1174 3.2518 319 0.0116 0.0013 10.8671

Note: * = negative t values indicate preference for the nonzero prior strength model; ** = positive t values indicate preference for the nonzero prior

strength model.
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parameter accounts for the strong distance effects in within-list lures, but its effect in prior-list lures is diminished by the low value of
the prior list strength parameter, predicting the difference in distance effects and confirming Prediction 3.

We tested the importance of the prior list strength parameter underlying predictions 2-4 by comparing the fit of the nonzero prior
strength model, which includes the sprior parameter, with the fit of the zero prior strength model, which excludes it. The position
coding model predicts the nonzero prior strength model will fit better because it allows values of sprior > 0. We compared the fit of the
two models within each experiment and over all 320 subjects with paired sample t tests on four fit measures. AIC and BIC measure the
likelihood of the data given the parameters, using different penalty terms for models with greater complexity (t tests for each
experiment are in Table 6; mean goodness of fit values are in Table C2). Overall, AIC preferred the nonzero prior strength model
(565.85) over the zero prior strength model (569.19), t(319) = -2.3900, SEM = 1.3985, p = 0.0174, BF;9 = 1.0366, but the difference
was significant only in Experiments 5, 8, and 9. Overall, BIC preferred the zero prior strength model (597.18) to the nonzero prior
strength model (599.16), t(319) = 2.4997, SEM = 0.7938, p = 0.0129, BF;9 = 1.3457. The preference for the zero prior strength model
was significant in Experiments 4, 7, 8, 10, 11, and 12.

We calculated the squared correlation r? between observed and predicted RTs and error rates for each subject in each experiment. It
measures the fit of the model to the pattern of the data and uses the same scale for RT and error rate (Table 6). Averaged over subjects
and experiments, the correlation between observed and predicted RTs was larger for the zero prior strength model (0.6758) than for
the nonzero prior strength model (0.6696) but the difference was not significant overall, {(319) = 1.5701, SEM = 0.0039, p = 0.1174,
BF19=0.2117, or in any experiment. The mean correlation between observed and predicted error rates was larger for the nonzero prior
strength model (0.6916) than for the zero prior strength model (0.6797) overall, t(254) = 3.2518, SEM = 0.0116, p = 0.0013, BF;p =
19.1846, but it was significant only in Experiment 7.

Altogether, the model fits lead to the same conclusions as the contrast analyses of the mean RTs and error rates. They provide little
support for the position coding predictions. Estimates of prior list strength were low overall and equal to zero for more than half the
subjects. The position coding model with nonzero prior strength did not fit better than the baseline model with zero prior strength. The
correlation analyses showed that the baseline model predicted the observed RTs and error rates as well as the more complex model.

The 53 % of subjects with best-fitting prior strength values of zero falsify the position coding predictions, but the 47 % with values
greater than zero may provide some support. We separated the data for the two groups of subjects and plotted them in Fig. 8. The sprior
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Fig. 8. Mean rt (top panels) and error rate (p(error), bottom panels) for subjects with estimated prior list strength parameters equal to zero (left
panels) and greater than zero (right panels).
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= 0 group showed no prior list distance effect. The (—101) distance contrast was not significant for RT, #(168) = -1.4707, SEM =
11.6264, p = 0.1432, BF19 = 0.2469, or for P(Error), t(168) = -0.1561, SEM = 0.0079, p = 0.8762, BF;9 = 0.0868. However, the sprior
> 0 group showed a little peak in prior list performance at distance = 0. The (—1 01) contrast was significant for RT, t(150) = 2.4889,
SEM = 16.4102, p = 0.0139, BF;o = 1.7855, and for P(Error), £(150) = 3.1028, SEM = 0.0116, p = 0.0023, BF;o = 8.8611. We
compared the magnitude of the (—101) contrast between groups and found it was significantly larger in the sprior > 0 group for both
RT, t(318) =2.8811, SEM = 20.1114, p = 0.0042, BF;9 = 6.3267, and for P(Error), t(318) = 2.6484, SEM = 0.0140, p = 0.0085, BF19 =
3.4546. The sprior > 0 group provides some hope that the position coding account may explain position specific prior list interference,
at least in some subjects. Position coding may be an individual difference or a strategy choice. Other approaches may be used by other
subjects, either as an individual difference or a choice.

5.2. Summary

The cued recognition results (contrasts and model fits in Experiments 3-12) disconfirm Predictions 2 and 4 of the position coding
account of position specific prior list interference. Predictions 1 and 3 were confirmed, but they are also consistent with theories of
serial memory that do not assume position codes (e.g., item-dependent context theories). By extension, the cued recognition results
challenge the position coding account of position specific prior list intrusions in recall tasks, which played a central role in the
dominance of position coding theories of serial memory (Henson, 1998; Henson et al., 1996; Lewandowsky & Farrell, 2008). However,
the serial recall results (contrasts in Experiments 1-2) confirm Predictions 1-4 of the position coding account of position specific prior
list intrusions. Together, the cued recognition and serial recall results present a bigger challenge to position coding theories: They must
change somehow to account for both the presence of position specific prior list intrusions in serial recall and the absence of position
specific prior list interference in cued recognition.

Alternatives to position coding theories are challenged just as much by our results. Item-dependent theories do not assume position
codes and so would predict the null effects of prior list distance we observed in cued recognition but they would also predict no position
specific prior list intrusions in serial recall (Logan & Cox, 2023; Osth & Hurlstone, 202.3), contrary to the results of Experiments 1 and 2.
They too must change somehow to account the whole set of results.

We consider two ways to accommodate our results. First, we consider alternatives to our model of cued recognition that do not
require focusing on a position to process prior list lures and so should not activate position codes that cause prior list interference. Then
we consider ways to modify item-dependent context theories to produce prior list intrusions in serial recall.

5.3. Can Cued recognition be done without focusing on Position?

The conclusions about position coding theory rest on the assumption that subjects evaluate prior list lures by using the position cue
to retrieve the list item in the cued position and then comparing the retrieved item to the item in the probe (Logan et al., 2021, 2023b).
The assumption implies that probing with the cue activates the position code for the cued position, which should produce position-
specific prior list interference. The assumption may not be valid. Subjects may use the item to retrieve position or to make recogni-
tion judgments without accessing position.

Using the Item to Retrieve a Position Code

Subjects could perform the cued recognition task with an “item-first” strategy that uses the item to retrieve a position code and then
compares the retrieved position code to the one in the probe. This would make exactly the same predictions as our assumed “position-
first” strategy that uses the position cue to retrieve an item because both strategies depend on the similarity between the probed
position and the position of the item in the list. In the position-first strategy, positional similarity determines the activation of items at
different distances from the cued position (Eq. (1), and this determines RT and error rate produced by the decision process that
compares the items (Equations (6) and (7). In the item-first strategy, positional similarity determines the comparison between the
retrieved position and the cued position at different distances (Eq. (1), and this determines RT and error rate produced by the decision
process (Equations (6) and (7). Consequently, the item-first strategy makes the same predictions as the position-first strategy.

A more challenging possibility is that subjects may use the probe item in an item recognition process that compares the probe to all
the items in the memory list without focusing on the cued position. The probe could be compared with each item in the memory list in
parallel (Ratcliff, 1978) or with a composite representation formed by collapsing the memory list (e.g., by summing item vectors;
Anderson, 1973). Neither case involves position information, so RT and error rate would not depend on activating position codes. Prior
list distance effects would be null, as observed. Item recognition is a serious alternative that challenges the validity of using prior list
lures to measure activation of position codes. We addressed it in five ways.

List Discrimination Strategy

First, we realized that the constrained lists in Experiments 3-6 and 11 allow a list discrimination strategy, in which subjects determine
whether the probe came from the prior list and say “no” if it did. [tems could not repeat from one trial to the next, so this strategy would
produce correct “no” responses to prior list lures and predict RTs and error rates that were unaffected by distance. To address this
strategy, we ran Experiments 7-10 and 12, replicating the original experiments with unconstrained lists, in which items could repeat
from one trial to the next, so membership in the prior list was no longer a valid cue for a “no” response. The results replicated well with
unconstrained lists, which disabled the list discrimination strategy. In the between-experiment comparisons of Experiments 3-10
(Tables B1-B5), list type had no effect on RT or error rate, and no effect on any of the eight analyses assessing distance contrasts in RT
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and error rate except for the interaction between list type and probe delay in the within-list distance contrast (—2 —1 1 2) in error rate.
None of the contrasts differed significantly between Experiment 11 (constrained lists) and Experiment 12 (unconstrained lists; see
Table 6). We conclude that the list discrimination strategy was not an important factor in our cued recognition experiments, ruling out
one possible item recognition strategy.

Item Recognition Followed by Position Cuing

Second, subjects could use an item recognition process to determine whether the probe item came from the current list and say “no”
if it did not. Prior list probes were never present in the current list, so prior list probes could be rejected quickly without accessing
position, producing null prior list distance effects. However, if the probe item was in the current list, the position-based cued
recognition process would have to be engaged to distinguish matching probes from within-list lures. Subjects would have to focus on
the cued position, retrieve the item, and compare it with the probe. This would increase their RTs for matches and within-list probes by
an amount roughly equal to prior list lure RT minus motor execution time (Logan et al., 2023a). The data in Figs. 4-6 show prolonged
RTs to within-list lures, but match RTs were only 18 ms longer than prior-list lures despite wide variation in overall RT across ex-
periments. The difference was significant, t(31) = 3.0113, SEM = 5.8313, p = 0.0028, BF;p = 7.7859, but small compared to the
prolongation of RTs observed in sequential retrieval decisions in the “psychological refractory period” dual task procedure: Logan
etal., (2023a) found a 395 ms prolongation in cued recall dual-task experiments (RT2 for SOA = 100 ms minus RT2 for SOA = 900) and
Logan and Delheimer (2001) found a 602 ms prolongation in an item recognition dual-task experiment (with words; RT2 for SOA = 0
ms minus RT2 for SOA = 1000 ms; also see Carrier & Pashler, 1995).

Pre-Cue Effect

Third, we realized that the pre-cue effect distinguishes cued recognition from item recognition. Cued recognition requires focusing
on the cued position in the memory list, and the pre-cue allows time to focus before the item part of the probe is presented. This reduces
RT in the pre-cue condition relative to the no-pre-cue condition (Logan et al., 2023b). Thus, decisions based on cued recognition should
be shorter with a pre-cue than without one. Item recognition does not require focusing on the cued position and so would not benefit
from pre-cuing the position. Item recognition can begin only after the item part of the probe is presented, at the end of the pre-cue
delay. RT is measured from the onset of the item part of the probe, so RTs for decisions based on item recognition should be unaf-
fected by pre-cuing. A second, related, prediction is that pre-cues should speed up correct recognition of targets (based on cued
recognition) while leaving correct rejection of prior list lures (based on item recognition) unaffected. The difference between RTs to
prior list lures and RTs to targets should be larger in experiments with pre-cues than in experiments without pre-cues. On the other
hand, if all responses are based on cued recognition, then the pre-cue should speed both “yes” and “no” responses by the same amount.
The difference between RTs to prior list lures and RTs to targets should be the same in experiments with and without a pre-cue. The
data, plotted in Figs. 4 and 5, are more consistent with cued recognition.

We tested the first prediction by comparing prior list lure RTs from experiments with pre-cued probes (4, 6, 8, and 10) and ex-
periments with simultaneous probes (3, 5, 7, and 9). Prior list lure RTs were 292 ms shorter with pre-cued probes than with simul-
taneous probes, and the difference was significant, t(254) = 11.0413, SEM = 26.4097, p < 0.0001, BF;p > 1000, disconfirming the item
recognition prediction. We tested the second prediction by comparing the difference between prior list lure RT and “yes” RT in ex-
periments with (4, 6, 8, and 10) and without pre-cues (3, 5, 7, and 9). The 24 ms difference of differences only approached significance,
t(254) = 1.9221, SEM = 12.2933, p = 0557, BF;9 = 0.7838, failing to provide clear support for the item recognition prediction. The
results of both comparisons are consistent with our assumption that subjects use cued recognition to evaluate prior list lures.

Cue Type Effect

Fourth, we realized that the same logic applies to the effect of cue type on RT and leads to similar predictions. Cued recognition
requires accessing position information in the probe but item recognition does not. Cued recognition RTs will be faster when position
information is easier to extract from the cue (spatial cues) than when it is harder (numeric cues). Item recognition does not require
position information, so item recognition RT should be unaffected by cue type. We tested this prediction by comparing RTs to prior list
probes from experiments with spatial cues (3, 4, 7, 8) with RTs from experiments with numeric cues (5, 6, 9, 10). The difference was
163 ms. It was highly significant, t(254) = 5.3686, SEM = 30.4472, p < 0.0001, BF;p > 1000, consistent with our assumption that prior
list lures were processed with cued recognition. We tested a second prediction, that “yes” RTs should vary with cue type (because they
depend on position) but prior list probe RTs should not (because they do not depend on position), by comparing the difference between
“yes” and prior list probe RTs in experiments with spatial cues (3, 4, 7, 8) and with the difference in experiments with numeric cues (5,
6, 9, 10). The difference of differences was 7 ms, which was not significant, t{(254) = 0.5611, SEM = 12.3747, p = 0.5752, BFj9 =
0.1591, suggesting that prior list lures were processed with cued recognition.

Model Fits

Finally, we used model fits to test the importance of including item recognition in the decision process, comparing models that
included item recognition in the decision process with models that did not include it. We assumed that item recognition was not
position specific and modeled it by comparing the probe item to each item in the list (following Logan et al., 2021). We assumed this
version of item recognition went on in parallel with cued recognition (following Logan et al., 2021). We added value of the item match
to the drift rate in the decision process with weight w. The contribution from cued recognition was given weight 1 —w, so the evidence
for “yes” is
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We fit two versions of this model. One implemented item recognition in the position coding model with nonzero prior list strength.
The other implemented item recognition in the model with zero prior list strength. Values of the best fitting parameters, measures of
goodness of fit, and predicted RTs and error rates for each experiment are presented in Appendix D. The mean predicted and observed

Mean RT in ms

Fig. 9. Observed and predicted performance from the item recognition model with prior list strength = 0 (left panels) and the item recognition with
prior list strength > 0 (right panels) across Experiments 3-12. Solid lines and filled circle: Observed mean RT (top) and error rate (P(Error), bottom)
across all 320 subjects in the cued recognition experiments (3-12) for match trials (circle), within-list lures (red), and prior-list lures (blue) as a
function of their distance from the cued position. The observed data are repeated in the left and right panels to illustrate fits of different models.
Dashed lines and empty square: Predicted mean RT and P(Error) for the item recognition only model (left panels) and the item recognition plus prior
list strength model (right panels). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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values across the 320 subjects are presented in Fig. 9.

We calculated contrasts comparing goodness of fit measures in models with and without item recognition and got mixed results.
Table 7 contains the values for zero prior list length models with and without item recognition within each experiment and over all 320
subjects. AIC favored models without item recognition in four of the 10 experiments but the overall difference was not significant. BIC
favored models with without item recognition in five experiments but the overall difference was not significant. The correlations with
RT were significantly higher in models with item recognition in eight experiments and overall. The correlations with error rate were
not significantly higher in models with item recognition in any experiment or overall.

Table 8 contains the contrasts comparing goodness of fit measures for nonzero prior list strength models with and without item
recognition within each experiment and over all 320 subjects. AIC favored models with item recognition in three experiments but the
difference was not significant overall. BIC favored models with item recognition in three experiments but the difference was not
significant overall. Correlations with RT were larger with item recognition than without in four experiments and the difference was
significant overall. Correlations with error rate were smaller with item recognition than without in one experiment and the difference
was significant overall.

In summary, item recognition does not improve the fit of the zero prior list strength model or the nonzero prior list strength model,
as measured with AIC and BIC. The correlations with RT improved by adding item recognition, but the correlations with error rate
either did not change or reversed. These results converge on the conclusions from the analyses of list discrimination, pre-cue delay, and
cue type. They suggest that item recognition is not a viable explanation the results that challenge position coding theory.

5.4. Other accounts of position-specific prior list intrusions

Taken by themselves, the results of the cued recognition experiments (3-12) support item-dependent context theories of serial
memory, which would not predict position specific prior list interference (Botvinick & Plaut, 2006; Lewandowsky & Murdock, 1989;
Logan, 2021; Murdock, 1995; Solway et al., 2012). Item-dependent context theories account for prior list intrusions that are
semantically related to items in the current list (Loess, 1967; Wickens, 1970) and intrusions that follow an item that repeats from the
prior list, intruding the item that followed the repeated item on the prior list (Fischer-Baum & McCloskey, 2015; Kahana et al., 2002;
Zaromb et al., 2006). However, item-dependent context theories do not account for the position specific prior list intrusions observed
in the serial recall (Experiments 1-2) and cued recall (Logan et al., 2023a) experiments in this article and many others (Conrad, 1959;
Henson, 1998; Melton & Von Lackum, 1941; Osth & Dennis, 2015; but see Caplan et al., 2022; Dennis, 2009; Logan & Cox, 2023).
Taken together, our results on serial recall and cued recognition challenge item-dependent context theories as much as position coding
theories. Both have to explain why position specific prior list intrusions occur in serial recall and why position specific prior list
interference does not occur in cued recognition. As a first step, we consider ways to produce position specific prior list intrusions in
item-dependent context models.

Table 7
Contrasts comparing goodness of fit of the zero prior list strength position coding models with and without item recognition in Experiments 3-12 (zero
prior list strength and item recognition - zero prior list strength and no item recognition).

Exp t df SEM p BF1o t df SEM P BFyo
AIC* BIC*

3 0.0504 31 0.2335 0.9601 0.1890 5.6941 31 0.2334 <0.0001 >1000
4 —0.6534 31 0.1958 0.5183 0.2301 6.0820 31 0.1957 <0.0001 >1000
5 —4.3915 31 0.2879 0.0001 214.2841 0.1855 31 0.2878 0.8541 0.1919
6 —3.1638 31 0.2615 0.0035 10.9181 1.8649 31 0.2617 0.0717 0.8788
7 —1.1240 31 3.6600 0.2696 0.3363 2.5348 31 0.3479 0.0165 2.8879
8 —0.0848 31 0.1793 0.9323 0.1895 7.2667 31 0.1793 <0.0001 >1000
9 —3.3575 31 0.3140 0.0021 16.9845 0.8360 31 0.3138 0.4096 0.2606
10 —2.0873 31 0.2132 0.0452 1.2657 4.0962 31 0.2130 0.0003 101.4303
11 —4.0716 31 0.2868 0.0003 95.3704 0.5070 31 0.2859 0.6158 0.2127
12 0.2941 31 17.9702 0.7706 0.1966 0.3675 31 17.9633 0.7158 0.2011
3-12 0.2050 319 5.7345 0.8377 0.0640 0.7393 319 5.6144 0.4603 0.0822
rRT"” r P(Error)”

3 2.3828 31 0.0038 0.0235 2.1547 —1.9464 31 0.0023 0.0607 1.0008
4 3.9673 31 0.0060 0.0004 73.5475 0.8072 31 0.0031 0.4257 0.2550
5 2.8023 31 0.0035 0.0087 4.9752 —0.8148 31 0.0037 0.4214 0.2564
6 3.4010 31 0.0059 0.0019 18.7896 0.2111 31 0.0038 0.8342 0.1928
7 1.8425 31 0.0055 0.0750 0.8487 0.7218 31 0.0030 0.4758 0.2402
8 2.4032 31 0.0071 0.0224 2.2395 1.1827 31 0.0035 0.2459 0.3573
9 3.0147 31 0.0042 0.0051 7.8440 —0.2997 31 0.0036 0.7664 0.1969
10 3.5000 31 0.0069 0.0014 23.6986 -1.3297 31 0.0062 0.1933 0.4209
11 1.2186 31 0.0036 0.2322 0.3713 —1.4156 31 0.0046 0.1669 0.4669
12 0.7640 31 0.0095 0.4507 0.2472 —0.3691 31 0.0119 0.7145 0.2012
3-12 7.3881 319 0.0059 <0.0001 >1000 —1.0859 319 0.0052 0.0938 0.1123

Note: * = negative t values indicate preference for the item recognition model; ** = positive t values indicate preference for the no item recognition

model.

25



G.D. Logan et al. Cognitive Psychology 149 (2024) 101641

Table 8
Contrasts comparing goodness of fit of the nonzero prior list strength position coding models with and without item recognition in Experiments 3-12
(nonzero prior list strength and item recognition - nonzero prior list strength and no item recognition).

Exp t df SEM P BFqo t df SEM p BFyo
AIC* BIC*
3 —0.7227 31 0.2694 0.4753 0.2404 4.1675 31 0.2693 0.0002 121.3375
4 1.1520 31 10.9857 0.2581 0.3460 1.2263 31 11.0905 0.2293 0.3744
5 —3.3826 31 0.4835 0.0020 18.0024 —0.6575 31 0.4834 0.5157 0.2306
6 —1.2453 31 9.3170 0.2224 0.3823 —-1.1039 31 9.3149 0.2781 0.3296
7 —1.4704 31 0.3696 0.1515 0.5003 2.0952 31 0.3696 0.0444 1.2830
8 —0.2100 31 0.1826 0.8350 0.1927 7.0086 31 0.1826 <0.0001 >1000
9 —3.5927 31 0.5099 0.0011 29.5313 —-1.0111 31 0.5098 0.3198 0.3017
10 —0.6733 31 9.4167 0.5058 0.2329 —0.5337 31 9.4149 0.5973 0.2155
11 —4.4876 31 0.3599 0.0001 274.1432 —0.8427 31 0.3590 0.4059 0.2619
12 —0.8390 31 20.3149 0.4079 0.2612 —0.8165 31 20.6231 0.4204 0.2568
3-12 1.0601 319 8.089 0.2889 0.1093 —0.6142 319 8.4983 0.5395 0.0756
rRT” r P(Error)”
3 0.9633 31 0.0047 0.3429 0.2891 —2.3544 31 0.0036 0.0251 2.0428
4 1.0547 31 0.0117 0.2997 0.3142 —0.5935 31 0.0092 0.5571 0.2223
5 2.3275 31 0.0047 0.0266 1.9430 —1.3134 31 0.0041 0.1987 0.4130
6 2.8030 31 0.0091 0.0087 4.9825 0.3438 31 0.0092 0.7333 0.1995
7 2.8732 31 0.0059 0.0073 5.7792 0.2850 31 0.0039 0.7776 0.1961
8 2.4366 31 0.0071 0.0208 2.3867 1.3352 31 0.0036 0.1915 0.4236
9 2.8420 31 0.0043 0.0079 5.4090 —0.4578 31 0.0045 0.6503 0.2081
10 2.3095 31 0.0105 0.0277 1.8794 —0.6759 31 0.0087 0.5041 0.2332
11 1.2842 31 0.0040 0.2086 0.3993 —1.9044 31 0.0050 0.0662 0.9354
12 —0.7179 31 0.0151 0.4782 0.2396 —1.6658 31 0.0153 0.1058 0.6522
3-12 4.3672 319 0.0086 <0.0001 608.8551 —2.1906 319 0.0077 0.0292 0.6641
Note: * = negative t values indicate preference for the no item recognition model; ** = positive t values indicate preference for the no item recognition
model.

Changing Memory Theories

One way to accommodate our results is to develop accounts of position-specific prior list intrusions that do not assume position
coding or do not attribute them to serial memory. Accounts of prior list intrusions must assume that items in the prior list are activated
at retrieval time along with items in the current list. They must also assume the prior list is activated less than the current list, or else
prior list intrusions would dominate correct retrievals. Neither of these assumptions require position coding. In principle, they could be
implemented in any theory of serial order, including item-dependent context theories. Accounts of position-specific prior list intrusions
must also assume that prior list activation is position specific. The prior list item that is activated most strongly is the one in the list
position that is the focus of retrieval in the current list. Position coding theories account for this position specificity in their funda-
mental assumption that items are associated with position codes and their equally fundamental assumption about activation and
distance (Eq. (1). It is less clear how item-dependent context theories would account for it.

Osth and Hurlstone (2023) showed important constraints on the ability of item-dependent context theories to produce prior list
intrusions, analyzing the Context Retrieval and Updating (CRU) model of serial recall (Logan, 2021). They modified CRU to represent
the prior list as well as the current one, and they manipulated similarity between the list contexts to produce intrusions. CRU made
position-specific prior list intrusions when list contexts were sufficiently similar, but it did so by switching to the prior list and reporting
prior-list items from the intrusion onward. Subjects typically make one prior list intrusion and then return to the current list. There was
only one trial in Experiment 1 and one trial in Experiment 2 in which a subject recalled the prior list entirely. We confirmed Osth and
Hurlstone’s results with our own simulations (Logan & Cox, 202.3). List similarity by itself does not seem to be the answer (cf. Dennis,
2009).

Caplan et al. (2022) showed that a simple modification of a classical chaining model could produce position-specific prior list
intrusions. The model assumes that the current list ABCDEF and the prior list ghijkl are both represented as associative chains that link
adjacent items. Retrieval is initiated by activating a start element that is associated with the first item in each chain. The start element
is associated more strongly with the current list than with the prior list, so A is more likely to be retrieved than g. A prior list intrusion
occurs when g is retrieved instead of A. The model prevents perseverating on the prior list (like CRU does) by using the evidence
retrieved in the decision process as the cue for the next item instead of the item retrieved (Lewandowsky & Li, 1994). The evidence for A
and gretrieves evidence for B and h, continuing both chains. The evidence for A is stronger than the evidence for g despite g winning the
competition, so B tends to be retrieved next, getting the model back on track. If the retrieved item g is used to cue retrieval instead of
the evidence that drove retrieval, h is more likely to be retrieved than B, and the model will perseverate on the prior list, like CRU but
unlike human subjects. Caplan et al. (2022) showed that their model could fit position-specific prior list intrusion data, making it an
attractive alternative to position coding. They viewed their model as promising but preliminary, as they had not yet fitted it to the
range of data and effects in the serial recall literature.

Logan and Cox (2023) tried the Caplan et al. (2022) idea with CRU and found that it showed promise. Using the evidence that drove
retrieval instead of the item retrieved to update context, they were able to produce position-specific prior list intrusions but the model
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still tended to perseverate on the prior list. They developed a version of CRU that updated context with the retrieved item on some trials
and with the evidence that drove retrieval on other trials. The updating was adaptive, using the item when it was likely that the
retrieved item was correct and using the evidence when it was likely that the retrieved item was an error. This produced position-
specific prior list intrusions without perseverating (as much) on the prior list, more like human subjects. However, the simulations
are proofs of concept at best, and the changes to the model (adding an error detection component that assesses the likelihood of an
error) are extensive, so the extension of CRU requires further investigation.

These models suggest it may be possible to account for position-specific prior list intrusions without position coding, but they are
challenged by our experimental results as much as position coding theories are. They must also explain why position-specific prior list
interference does not appear in cued recognition.

Intruded Responses, Not Memories. The changes to the models we proposed are based on the assumption that prior list intrusions are
produced by retrieval from memory. Position coding accounts are based on the same assumption. An alternative possibility is that prior
list intrusions are produced in the output processes required in recall tasks rather than in the memory system itself. Serial recall re-
quires a sequence of actions to report each of the items (keystrokes in our experiments), and the order of the sequence is controlled by a
motor program (Keele, 1968; Logan, 2018). Prior list intrusions may result from position coding in the motor program instead of
position coding in memory. The motor program might associate keystrokes with positions (“first press the A key, second press the B
key,” etc.) and position-specific intrusions might occur if the motor program used to report the previous list was still available (e.g.,
“first press the g key, second press the h key,” etc.) and the keystroke from the prior list wins the competition. This would explain why
prior list intrusions occur in serial recall and why prior list interference does not occur in cued recognition. Cued recognition requires a
simpler motor program that conveys a single judgment about the probe item, not a sequence of judgments about the identity of every
item. There is only one “position” in this motor program, so there is less opportunity for confusion.

The motor program account predicts position specific prior list intrusions in tasks in which subjects execute the motor program
without retrieving items from memory. Copy typing is one such task, as it involves reporting a continuously visible list so the infor-
mation required to respond is available perceptually. Logan (2021) compared copy typing, serial recall, and perceptual report of 5, 6,
and 7 letter consonant strings. Each task required the same motor program (typing the letters in order) but varied in its requirements
for memory and perception. Copy typing required the motor program but not memory. The motor programming account predicts
position specific prior list intrusions in the copy typing task.

We tested this prediction by searching for prior list intrusions in Logan’s (2021) data. The subjects were 24 skilled typists who typed
192 lists in each condition. Serial recall, whole report, and copy typing were run in separate blocks. We identified intrusions in each
task and determined whether they came from the previous list. If they did, we calculated the distance between their position in the
prior list and their position in the current response. This was complicated by the random variation in list length within blocks. Subjects
could encode position from the beginning or the end of the list (Henson, 1998; Fischer-Baum & McCloskey, 2015). Following precedent
(Fischer-Baum & McCloskey, 2015), we calculated distance from the beginning of the list and distance from the end of the list and
chose the shorter distance. We summed the frequencies of prior list intrusions at each distance in each task across list lengths and
subjects. The frequencies for each task are plotted as a function of distance in Fig. 10 (left).

Prior list intrusions were more frequent in report than in recall and least frequent in typing (1979, 1337, and 173 intrusions,
respectively), reflecting large differences in overall accuracy, so we replotted the data as the proportion of the total number of prior list
intrusions in each task at each distance (Fig. 10, right). Both plots show position specific prior list intrusions in copy typing. There is a
peak at distance = 0, confirming Prediction 4 of position coding theory (the critical contrast comparing distances —1 0 1). This is
consistent with the motor program account, in which position specific prior list intrusions are the product of position coding in the
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Fig. 10. Prior list intrusions from copy typing, serial recall, and whole report tasks from Logan (2021). The left panel contains frequency counts of
the number of intrusions across list lengths (5, 6, 7 letters) and subjects (N = 24). The right panel converts the frequencies to proportions of the total
number of prior list intrusions.
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motor program.

Serial recall and whole report also showed position specific prior list intrusions with sharp peaks at distance = 0. The similarity of
the proportions in Fig. 10 (left) invites the conclusion that the motor system uses position coding but the memory system does not, but
we cannot rule out the possibility that the memory system also uses position coding. The difference in frequency between memory and
typing could reflect additional memory-based intrusions. We note as well that the motor programming account does not explain prior
list intrusions in cued recall (Fig. 3; Logan et al., 2023a), where the motor program specifies only one response. At this point, the results
invite speculation, not strong conclusions, but the speculation is intriguing. Understanding the role of the motor system and output and
decision processes more generally is an important goal for future research (Dendauw et al., in press).

5.5. Implications for position coding theories

The results of our experiments challenge the core assumptions of the position coding account of position-specific prior list in-
trusions. We showed in theoretical analysis and in simulations that position coding theories that predict position-specific prior list
intrusions in recall must also predict position-specific prior list interference in cued recognition. Contrary to this prediction, we failed
to find position-specific prior list interference in 10 experiments.

Our experiments challenge the core assumption that prior list items are associated with the same position codes as current list items
with lower strength (Fig. 1 top row). In recall, the core assumption implies that prior list items can compete with current list items and
it predicts intrusions when prior list items win the competition (Fig. 1 s row; Fig. 2 top row). The prior list intrusions observed in
Experiments 1 and 2 and many others are interpreted as confirming this prediction. In cued recognition, we showed that the
assumption predicts interference when prior list items are used as lures (Fig. 1 bottom; Fig. 2) and we failed to observe such inter-
ference (Figs. 4-6). The contrast testing the predicted peak in RT and error rate was not significant and the sprior parameter that
represents prior list strength was 0 in 53 % of the subjects and close to 0 in the other 47 %.

The challenge to the position coding account of position specific prior list intrusions has broader implications for position coding
theories. A major impetus for the development of position coding theories was their ability to account for four error phenomena that
classical chaining theories could not explain: recovery from errors, transpositions to earlier list positions, phonological confusion
effects, and position-specific prior list intrusions (Henson et al., 1996). Previous research has shown that theories based on different
assumptions can account for the first three phenomena (Botvinick & Plaut, 2006; Logan, 2021; Osth & Hurlstone, 2023; Solway et al.,
2012), leaving prior list intrusions as the last of the four unique predictions that support position coding theories. Our experiments
falsify this prediction when it is extended to cued recognition, leaving position coding models with no unique predictions that
distinguish them from other theories of serial memory. This challenges the dominance of position coding theories and encourages
renewed attention to other theories and different approaches.

5.6. Implications for serial memory

The dissociation between position-specific prior list intrusions and position-specific prior list interference challenges all theories of
serial memory, not just position coding theories. The theories that account for intrusions must explain why there is no interference
from prior-list lures in cued recognition. The theories that account for the lack of interference must explain why intrusions occur in
serial and cued recall. We hope our results encourage theorists of all persuasions to rise to the challenge.

Our results highlight the importance of using different retrieval tasks to test assumptions about memory representations (Hintzman,
2011). Most of the work on serial memory has focused on serial recall to the exclusion of other retrieval tasks (Hurlstone et al., 2014).
Our results show that the retrieval task matters. The predictions derived from the memory representations may be the same, but the
results differ substantially. Serial recall shows evidence of position-specific prior list activation (Fig. 3). Cued recognition does not
(Figs. 4-6). These results underscore the important point that memory performance is a joint function of the representations and the
processes that operate on them (Anderson, 1978; Atkinson & Shiffrin, 1968). Representation and process are confounded in a single
task, like serial recall or cued recognition. Their effects can be separated by using different retrieval tasks to access the same repre-
sentation (e.g., Cox et al., 2018). This has been a productive strategy in global theories of memory, explicating the relations between
recognition and recall (Anderson et al., 1998; Gillund & Shiffrin, 1984; Humphreys et al., 1989; Murdock, 1982, 1983). It should also
be productive in theories of serial memory and further the goal of integrating those theories with other memory theories (Ward et al.,
2010; Ward & Tan, 2023).

Our results show the benefits of using cued recognition to probe serial memory. The position cue requires attention to order in-
formation. The item cue probes the state of the memory system, and different cues can be chosen to probe different states. Carefully
designed lures have led to important insights into the nature of false recognition (Shiffrin, Huber, & Marinelli, 1995), correct rejection
of novel lures (Mewhort & Johns, 2000; Osth et al., 2023), the relationship between item and associative information (Cox & Criss,
2020), the organization of lexical memory (Grainger, 2018), and the organization of semantic memory (Ratcliff & McKoon, 1988;
Zbrodoff, 1999). In cued recognition, lures probe the state of current and prior lists at different distances from the cued position,
measuring their activation to test theories of serial order.

5.7. Strategies and models of memory

Our experiments challenge the position coding account of prior list intrusions, which distinguishes them from other theories of
serial memory (Henson, 1998; Osth & Hurlstone, 2023). The theories are no longer so distinct. This may be frustrating from the usual
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perspective on modeling, where models are treated as mutually exclusive and the goal is to find the one that fits best, declare it the
winner, and discard the rest. Mimicry makes models harder to distinguish. But mimicry can be beneficial. Sometimes it reveals a basic
truth in all models that account for the same phenomenon (Anderson, 1978). For serial memory, the basic truth is the exponential
distance gradient a(i|j) = /)“'j‘ in Eq. (1) that represents the similarity of position codes (Logan & Cox, 2021; Murdock, 1997). It appears
in models that represent order as associations of items to contexts, whether the contexts are independent of (Lewandowsky & Farrell,
2008) or dependent on the items (Logan, 2021). It is the key assumption that allows them to account for a broad range of order
phenomena.

One way to deal with mimicry is to embrace it, accepting that different models may fit the data equally well and using other criteria
to distinguish models. We might choose models based on how clearly they relate theoretical constructs to observable behavior in a
specific domain (Navarro, 2019; Singmann et al., 2023). If the task requires memory for positions, we might choose a position coding
model because it provides a clear and direct way to relate the theory to the experiment, not because it provides a better fit (assuming
the fits are equivalent). We might also choose models based on the questions they allow us to ask and use them to test hypotheses. We
tested hypotheses about the interaction between distance and prior list strength by comparing different versions of the position coding
model. Theoretical analyses and simulations of the models allowed us to derive four core predictions about the data. The fits allowed us
to measure the distance gradient and prior list strength directly as model parameters (p and sprior).

Another way to deal with mimicry is to treat models as alternative strategies subjects might employ to represent order instead of
different candidates for the One True Model. Different subjects may choose different models for the same task, like our subjects with
prior strength = 0 and prior strength > 0. The same subject may choose different models for different tasks or choose different models
at different times on the same task (Logan & Cox, 2023). Different models may be better suited to different tasks. We represent position
explicitly when keeping track of standings in sports, songs on the hit parade, and birth order of siblings. We represent order with
reference to context in understanding events and biographies. These possibilities are enticing, inspiring broader multiple-
representation theories of memory and new research on the determinants and consequences of strategy choice and the control pro-
cesses that make the choices. Mimicry will make it harder to distinguish between strategies in particular cases, but much can be learned
from the core assumptions, like the similarity gradient in Eq. (1), that all models share.

The call to consider models as strategies emphasizes the role of processing as much as representation. Processing is required to form
a memory representation and to extract information from it at retrieval (e.g., Craik, 2020). Processing is required to control the
encoding and retrieval processes, directing them to the relevant parts of the memory representation and controlling the order and
timing of their execution (Atkinson & Shiffrin, 1968; Logan et al., 2023a, 2023b). The emphasis on processing raises the value of
experimental procedures that allow the processes to be measured directly with RT as well as accuracy, to take advantage of the many
process models that predict both measures (e.g., Ratcliff, 1978; Tillman et al., 2020; Usher & McClelland, 2001) and develop more
complete models of memory. The emphasis on processing is essential in distinguishing among memory representations. The behavior
we measure is the result of processes operating on representations. To make inferences about representation from behavior, we must
unravel the interactions between representations and processes, and that requires understanding the processes. Our research has
attempted to do that.

5.8. Limitations

Our 10 cued recognition experiments are close variations on a common design. They all used lists of six consonants drawn from a
pool of 20, presented briefly, and tested after a short 1000 ms retention interval. We chose to vary cue type and cue delay between
experiments because of our interest in the relation between memory and attention tasks that manipulate cues in the same way (Logan
et al., 2021, 2023a, 2023b). The close variations demonstrate the replicability of the results but they do not demonstrate their gen-
erality. It is possible that our results would not replicate with a broader range of materials and more variation in experimental design.

It would be worthwhile adapting our procedure to word lists, which are common materials in studies of interference, and varying
the size of the pool of items (Osth & Dennis, 2015) and list length over a broad range (Ward et al., 2010; Ward & Tan, 2023). It would
also be worthwhile adapting our procedure to simple visual stimuli like color patches or oriented gratings, or to pictures, which are
common in studies of visual memory. If our results replicated across these variations, our conclusions would be much stronger.

Our major result, the contrast between strong position-specific intrusions in serial recall and null position-specific interference in
cued recognition, was tested between subjects. Each set of subjects performed only one task, and it is possible that they represented
serial order differently in ways that were tailored to the tasks they performed. Possibly, subjects let item activation decay more rapidly
in cued recognition, and that produced the null results (if they can control decay, which is not clear). It would be worthwhile repli-
cating our experiments but mixing serial recall and cued recognition randomly and post-cuing the task so the lists would be represented
in the same way.

The major result of Experiments 3-12 is the null effect of position-specific prior list interference. We found no evidence of such
interference. Indeed, we found no evidence of any kind of prior list interference. Our focus on the predictions of position coding theory
led us to an experimental design that maximized the number of targets, within-list lures, and lures from the immediately prior list at
each distance (—2 —1 0 1 2). A different control condition is required to demonstrate prior list interference that is not position specific.
Items from the immediately prior list would have to be compared with novel items or items from earlier lists. There is a large literature
demonstrating such interference in item recognition (Badre & Wagner, 2005; Jonides et al., 1998; McElree & Dosher, 1989; Monsell,
1978; for a review, see Jonides & Nee, 2006). Similar interference might occur in cued recognition.

Failing to find prior list interference in cued recognition could mean that the task does not produce interference. That could be true
as an empirical observation, but it would raise the important theoretical question, why not? Why should cued recognition show no
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prior list interference? Prior list activation may decay faster in cued recognition, but why should that happen? These are the same
questions we raise about position specific prior list interference and they would require similar answers. The answers are important
and worth obtaining for what they will reveal about the nature of recognition memory and the nature of interference, expanding the
insights gained from understanding the lack of position-specific prior list interference.

Finding or failing to find prior list interference that is not position specific is not directly relevant to the specific question that
motivated our experiments. We were interested in position-specific prior list interference. We showed that the assumptions shared by
all position coding theories predict that prior list items should be activated in proportion to their distance from the current focus of
retrieval, and we showed that a plausible decision process that is typical of the literature predicts longer RTs and higher error rates at
shorter distances. Whether that particular kind of prior list interference would occur was the question, and that question does not
require the existence of any other kind of prior list interference. Indeed, the only kind of prior list interference predicted by position
coding theories is position specific. They say nothing about other kinds of interference.

5.9. Conclusions

The ability to predict position specific prior list intrusions has led to the dominance of position coding theories in serial memory. We
showed that the assumptions that allow position coding theories to predict position specific prior list intrusions in serial recall also
predict position specific interference from prior list lures in cued recognition. We found no such interference in 10 experiments,
falsifying the prediction. This challenges the position coding account of position specific prior list intrusions and, by extension,
challenges their dominance in research on serial memory. The cued recognition results are consistent with alternatives to position
coding theories, which do not assume position codes.

We ran two serial recall experiments that used the same lists and presentation conditions as the cued recognition experiments and
found position specific prior list intrusions in both of them, consistent with position coding theories and inconsistent with the alter-
natives. Together, the results of our cued recognition and serial recall experiments challenge all theories of serial memory, whether or
not they assume position coding. All theories must explain why prior list intrusions are position specific while prior list interference is
not.
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Appendix A. Simulation methods

We conducted two sets of simulations. One varied the strength of associations to the prior list (sprior). The other varied the
probability of using position coding (pprior). Each simulation generated a list of five items in which the middle position was cued,
creating distances {—2 —1 0 1 2}. The activation of current and prior list items was generated using Eq. (1) for each distance. These
activation values were used to generate drift rates for the limited-capacity racing diffusion model using Eq. (2) for recall and Equations
(6) and (7) for cued recognition. Thus, the same position codes and representations of order were used to simulate recall and cued
recognition. In both simulations, p = 0.3, recall threshold = 10.0, recognition thresholds = 2.8 for “yes™ and 3.0 for “no,” x = 1.0, and 1
= 0.8. In the simulations that varied list probability, prior list strength was greater than zero (sprior > 0) on pprior proportion of the
trials (when position coding was engaged) and set equal to zero (sprior = 0) on 1 — pprior proportion of the trials (when position coding
was not engaged) (see Fig. Al).
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Fig. Al. Simulated predictions of within- and prior-list distance effects in response time (RT) and response probability from the position coding
model. The same representations of position are used in each panel. The columns represent different probabilities (pprior) of using position coding to
represent lists. The top row presents serial and cued recall error rates, the middle row presents cued recognition task error rates, and the bottom row
presents cued recognition response times (RT). Prior list distance effects are observed in recall and cued recognition for pprior values greater than or
equal to 0.2.

On each trial, the simulation used drift rates defined in Eq. (2) or Equations (6) and (7) and a threshold (10 for recall; 2.8 for “yes”
and 3.0 for “no” in cued recognition) to sample a random value from a Wald distribution (the finishing time distribution for a diffusion
to a single bound) for each response category (10 current and prior list items for recall; “yes” vs. “no” for cued recognition), and the
simulation chose the category with the shortest simulated RT. Each condition (recall vs. recognition x 10 current- and prior-list items)
was simulated 100,000 times. Response probabilities and mean RTs were calculated for each response category as a function of the
cued position in the current or prior list. The results are plotted in Fig. 2 (sprior varied) and Al (pprior varied).

To simulate recall, the program stepped through the 10 items in the current and the prior lists, using Eq. 5 to calculate the
probability of recalling the items in each list given their activation and strength of association to the position code (1 for the current
list; sprior for the prior list) when trying to recall the item in position 3 in the current list. To simulate cued recognition, the program
stepped through the same 10 items in the current and prior lists, using Eq. (8) and (9) to simulate the probability and response time
(RT) for “yes” and “no” decisions, respectively. To evaluate the effects of the strength of prior associations, the simulation was run five
times with sprior = 0.1, 0.2, 0.3, 0.5, and 0.7 to cover the range where the changes were most dramatic. To evaluate the effects of the
probability of using position coding, the simulation was run five times with pprior = 0.1, 0.2, 0.3, 0.5, and 0.7 with sprior fixed at 0.5.

Matlab code for the simulations and the simulation results can be found on the Open Science Framework at https://osf.io/j4z7a/.

Appendix B. Between-Experiment ANOVAs
We compared Experiments 3-10 in 2 (precue vs no precue) x 2 (spatial vs numeric cues) x 2 (constrained vs unconstrained lists)
between-subject ANOVAs on RT and error rate for “yes” responses (Table B1), within-list distance contrasts (—2 —1 1 2; Table B2),

prior list distance contrasts (—2 —1 1 2; Table B3), contrasts evaluating the difference between within-list and prior-list distance
contrasts (Table B4), and contrasts evaluating the peak in prior-list distance effects at distance = 0 (Table B5).
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Table B1

Summary tables for ANOVAs on Response Time (RT) and error rate (P(Error)) for “yes” responses across Experiments 3-10.
Source df Mean Square F p ng
Response Time
List Type (L) 1 45571.9314 1.1869 0.2770 0.0048
Probe Type (P) 1 1858346.0481 48.4015 < 0.0001 0.1633
Probe Delay (D) 1 6359450.0220 165.6350 < 0.0001 0.4004
LxP 1 3168.1888 0.0825 0.7742 0.0038
LxD 1 87652.5105 2.2830 0.1321 0.0091
PxD 1 47771.0235 1.2442 0.2657 0.0050
LxPxD 1 74845.1045 1.9494 0.1639 0.0078
Error 248 38394.3716
P(Error)
List Type (L) 1 0.0037 0.3172 0.5738 0.0013
Probe Type (P) 1 0.0095 0.8243 0.3648 0.0033
Probe Delay (D) 1 0.0504 4.3790 0.0374 0.0174
LxP 1 0.0017 0.1434 0.7052 0.0006
LxD 1 0.0213 1.8482 0.1752 0.0074
P xD 1 0.0121 1.0495 0.3066 0.0042
LxPxD 1 0.0146 1.2688 0.2611 0.0051
Error 248 0.0115

Note: Significant effects are in bold font.

Table B2
Summary tables for ANOVAs on within list distance contrasts (—2 —1 1 2) in response time (RT) and error rate (P(Error)) across Experiments 3-10.

Source df Mean Square F p ng

Response Time

List Type (L) 1 15306.3291 0.5842 0.4454 0.0024
Probe Type (P) 1 30465.5207 1.1628 0.2819 0.0047
Probe Delay (D) 1 159885.0207 6.1027 0.0142 0.0240
LxP 1 117.3160 0.0045 0.9467 0.0000
LxD 1 2023.3129 0.0772 0.7813 0.0003
PxD 1 16856.1535 0.6434 0.4233 0.0026
LxPxD 1 8848.9297 0.3378 0.5617 0.0014
Error 248 26199.2664

P(Error)

List Type (L) 1 0.0069 0.3783 0.5391 0.0015
Probe Type (P) 1 0.0564 3.0753 0.0807 0.0122
Probe Delay (D) 1 0.2542 13.8574 <0.0001 0.0529
LxP 1 0.0063 0.3422 0.5591 0.0014
LxD 1 0.0780 4.2507 0.0403 0.0169
P x D 1 0.0044 0.2419 0.6232 0.0010
LxPxD 1 0.0044 0.2419 0.6233 0.0010
Error 248 0.0183

Note: Significant effects are in bold font.

Table B3
Summary tables for ANOVAS on prior list distance contrasts (—2 —1 1 2) in response time (RT) and error rate (P(Error)) across Experiments 3-10.

Source df Mean Square F P 1112)

Response Time

List Type (L) 1 51938.4100 3.5204 0.0618 0.0140
Probe Type (P) 1 24230.8139 1.6424 0.2012 0.0066
Probe Delay (D) 1 10070.1225 0.6826 0.4095 0.0027
LxP 1 21708.3389 1.4714 0.2263 0.0059
LxD 1 3800.7225 0.2576 0.6122 0.0010
PxD 1 35160.9377 2.3832 0.1239 0.0095
LxPxD 1 65.4077 0.0044 0.9470 0.0000
Error 248 14753.4940

P(Error)

List Type (L) 1 0.0252 2.6913 0.1022 0.0107
Probe Type (P) 1 0.0150 1.5977 0.2074 0.0064
Probe Delay (D) 1 0.0220 2.3508 0.1265 0.0094

(continued on next page)
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Table B3 (continued)

Source df Mean Square F P 1112)
LxP 1 0.0074 0.7879 0.3756 0.0032
LxD 1 0.0125 1.3365 0.2488 0.0054
PxD 1 0.0000 0.0007 0.9786 0.0000
LxPxD 1 0.0000 0.0007 0.9786 0.0000
Error 248 0.0094

Note: Significant effects are in bold font.

Table B4
Summary tables for ANOVAs on contrasts comparing within-list and prior-list distance effects (—2 —1 1 2) in response time (RT) and error rate (P
(Error)) across Experiments 3-10.

Source df Mean Square F p ng

Response Time

List Type (L) 1 123635.7454 3.0473 0.0821 0.0121
Probe Type (P) 1 109036.1675 2.6875 0.1024 0.0107
Probe Delay (D) 1 89703.9938 2.2110 0.1383 0.0088
LxP 1 25017.3535 0.6166 0.4331 0.0025
LxD 1 11370.2235 0.2803 0.5970 0.0011
PxD 1 100707.0557 2.4822 0.1164 0.0099
LxPxD 1 10435.8994 0.2572 0.6125 0.0010
Error 248 40571.6360

P(Error)

List Type (L) 1 0.0586 2.1157 0.1471 0.0085
Probe Type (P) 1 0.0133 0.4784 0.4898 0.0019
Probe Delay (D) 1 0.4259 15.3697 <0.001 0.0584
LxP 1 0.0000 0.0016 0.9679 0.0000
LxD 1 0.0280 1.0102 0.3158 0.0041
PxD 1 0.0041 0.1479 0.7008 0.0006
LxPxD 1 0.0041 0.1479 0.7009 0.0006
Error 248 0.0277

Note: Significant effects are in bold font.

Table B5
Summary tables for ANOVAs on prior list distance contrasts (—101) in response time (RT) and error rate (P(Error)) across Experiments 3-10.

Source df Mean Square F p nlz,
Response Time

List Type (L) 1 4911.3816 0.1494 0.6995 0.0006
Probe Type (P) 1 20059.4110 0.6101 0.4355 0.0025
Probe Delay (D) 1 9019.0635 0.2743 0.6009 0.0011
LxP 1 8538.9150 0.2597 0.6108 0.0010
LxD 1 293.0516 0.0089 0.9249 0.0000
P x D 1 13825.3504 0.4205 0.5173 0.0017
LxPxD 1 88346.4160 2.6868 0.1024 0.0107
Error 248 32881.2113

P(Error)

List Type (L) 1 0.0260 1.7932 0.1818 0.0072
Probe Type (P) 1 0.0002 0.0167 0.8974 0.0000
Probe Delay (D) 1 0.0850 5.8570 0.0162 0.0231
LxP 1 0.0022 0.1517 0.6972 0.0006
LxD 1 0.0004 0.0298 0.8630 0.0001
P x D 1 0.0088 0.6050 0.4374 0.0024
LxPxD 1 0.0053 0.3661 0.5457 0.0015
Error 248 0.0145

Note: Significant effects are in bold font.

Appendix C. Serial position effects
Mean RTs for correct responses and error rates for match (“yes™), within-list lures (“no”), and prior-list lures (“no”) in Experiments
3-12 are plotted as a function of the serial position of the probe in Fig. C1. Contrasts evaluating linear and quadratic trends in the serial

position effects in these data are presented in Tables C1 (RT) and C2 (proportion correct). The raw data and the means Fig. C1 depicts
are available on the Open Science Framework at https://osf.io/j4z7a/.
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Fig. C1. Mean rt (rows 1 and 3) and mean error rate (rows 2 and 4) for targets (match), within-list lures (within), and prior-list lures (prior) as a
function of serial position in experiments 3-12. Rows 1 and 2 show data from constrained lists. Rows 3 and 4 show data from unconstrained lists.
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Contrasts evaluating linear and quadratic trends in RT for correct responses as a function of serial position for match (yes) trials, within-list lures, and
prior-list lures. Each t test has 31 degrees of freedom.

Trial Trend Exp t SEM p BF1o Exp t SEM p BF19
Yes Linear 3 0.3512 229.4812 0.7278 0.2000 7 1.2285 197.3516 0.2285 0.3753
Quad 6.0704 179.7317 <0.0001 >1000 7.8704 167.4703 <0.0001 >1000
Within Linear 1.7801 164.8887 0.0849 0.7714 1.2912 248.0939 0.2062 0.4025
Quad 8.1089 167.0396 <0.0001 >1000 7.4094 223.4416 <0.0001 >1000
Prior Linear 1.4667 138.5296 0.1525 0.4980 2.9715 111.2028 0.0057 7.1392
Quad 4.7457 116.5855 <0.0001 534.3189 3.4544 159.8824 0.0016 21.2875
Yes Linear 4 —1.6635 169.2890 0.1063 0.6500 8 —-0.7377 142.5805 0.4662 0.2428
Quad 8.8555 136.5208 <0.0001 >1000 6.9917 152.3969 <0.0001 >1000
Within Linear —0.9802 154.2175 0.3346 0.2935 —0.6368 141.8076 0.5289 0.2278
Quad 7.8751 181.4746 <0.0001 >1000 6.6350 172.7026 <0.0001 >1000
Prior Linear —1.2036 106.6782 0.2378 0.3653 —0.2723 108.9151 0.7872 0.1954
Quad 4.2685 136.7072 0.0002 156.6463 3.4795 122.6473 0.0015 22.5808
Yes Linear 5 3.8004 329.3887 0.0006 48.7689 9 1.5716 288.5769 0.1262 0.5719
Quad 8.2568 209.4112 <0.0001 >1000 9.6502 233.5605 <0.0001 >1000
Within Linear 1.8566 268.9361 0.0729 0.8675 4.8283 190.4943 <0.0001 662.5154
Quad 9.8953 136.0669 <0.0001 >1000 9.3640 162.4536 <0.0001 >1000
Prior Linear 2.2000 207.5342 0.0354 1.5410 2.6624 140.5042 0.0122 3.7272
Quad 2.3852 196.4266 0.0234 2.1645 6.1778 136.5590 <0.0001 >1000
Yes Linear 6 3.6919 201.4793 0.0009 37.4755 10 3.3521 249.8308 0.0021 16.7736
Quad 6.5997 252.3151 <0.0001 >1000 7.4755 244.1973 <0.0001 >1000
Within Linear 5.2903 142.2577 <0.0001 >1000 2.1750 248.4765 0.0374 1.4742
Quad 7.7347 246.2249 <0.0001 >1000 7.9714 266.8444 <0.0001 >1000
Prior Linear 2.8782 140.4779 0.0072 0.2000 1.2249 179.5029 0.2299 0.3738
Quad 6.7136 173.1142 <0.0001 >1000 5.9659 192.7160 <0.0001 >1000
Yes Linear 11 1.2072 403.9968 0.2365 0.7714 12 2.1768 297.9729 0.0372 1.4789
Quad 11.0087 209.3930 <0.0001 >1000 12.0144 205.2672 <0.0001 >1000
Within Linear 3.7532 259.6868 0.0007 0.4980 4.0314 227.7606 0.0003 86.2591
Quad 11.2647 194.4027 <0.0001 534.3189 7.0327 252.9921 <0.0001 >1000
Prior Linear 1.3253 178.5305 0.1948 0.6500 2.7380 204.1361 0.0101 4.3517
Quad 7.1728 173.0699 <0.0001 >1000 4.9306 160.1743 <0.0001 865.4073

Note: Significant effects are in bold font.

Table C2

Contrasts evaluating linear and quadratic trends in proportion of correct responses as a function of serial position for match (yes) trials,

lures, and prior-list lures. Each t test has 31 degrees of freedom.

within-list

Trial Trend Exp t SEM P BF1o Exp t SEM P BF1o
Yes Linear 3 1.7649 0.2957 0.0874 0.7539 7 —1.0001 0.2742 0.3250 0.2987
Quad —-3.0199 0.2246 0.0050 7.9338 —4.9276 0.1495 <0.0001 858.6436
Within Linear —1.7482 0.1466 0.0903 0.7354 —1.4901 0.1017 0.1463 0.5132
Quad —3.9957 0.1384 0.0004 78.9219 —6.1795 0.1651 <0.0001 >1000
Prior Linear —0.5336 0.1142 0.5974 0.2155 —0.4618 0.0812 0.6474 0.2085
Quad -0.3613 0.0908 0.7203 0.2006 —2.7368 0.1033 0.0102 4.3410
Yes Linear 4 —0.5678 0.2133 0.5743 0.2192 8 —0.7481 0.2590 0.4600 0.2445
Quad 2.1193 11.8699 0.0422 1.3374 —3.9908 0.1913 0.0004 77.9664
Within Linear 0.8587 0.1019 0.3971 0.2652 0.2639 0.0947 0.7936 0.1950
Quad —2.9357 0.1613 0.0062 6.6072 —5.9239 0.1089 <0.0001 >1000
Prior Linear —0.3603 0.0954 0.7210 0.2006 1.4535 0.0634 0.1561 0.4897
Quad —1.1837 0.0805 0.2455 0.3576 —2.1754 0.0725 0.0373 1.4753
Yes Linear 5 —2.9027 0.4330 0.0068 6.1549 9 1.5274 0.3018 0.1368 0.5390
Quad 1.8171 0.1836 0.0789 0.8160 —1.0008 0.1077 0.3247 0.2989
Within Linear -3.1107 0.1708 0.0040 9.6956 —2.9900 0.1792 0.0054 7.4322
Quad —3.6950 0.2089 0.0008 37.7544 —7.4705 0.1627 <0.0001 >1000
Prior Linear —2.7393 0.1683 0.0101 4.3635 —1.9992 0.1258 0.0544 1.0912
Quad —0.6975 0.2352 0.4907 0.2364 —-1.7312 0.0939 0.0934 0.7171
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Table C2 (continued)
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Trial Trend Exp t SEM p BF1o Exp t SEM p BF1o
Yes Linear 6 —2.9527 0.3612 0.0060 6.8542 10 —2.0419 0.3872 0.0497 1.1718
Quad 0.0269 0.2612 0.9787 0.1889 0.0912 0.1970 0.9279 0.1896
Within Linear —3.4100 0.0765 0.0018 19.1878 —3.4445 0.1461 0.0017 20.7992
Quad —4.6294 0.1458 0.0001 395.1826 —5.4572 0.1549 <0.0001 >1000
Prior Linear —1.9987 0.0876 0.0545 1.0903 —1.5648 0.0909 0.1278 0.5667
Quad —3.5806 0.0847 0.0012 28.6911 —2.7453 0.0882 0.0100 4.4180
Yes Linear 11 1.7684 0.2567 0.0868 0.7579 12 1.5494 0.2108 0.1314 0.5550
Quad —3.8493 0.1372 0.0006 54.9704 22.8041 0.1824 <0.0001 >1000
Within Linear 0.3466 0.1533 0.7313 0.1997 —0.3037 0.0926 0.7634 0.1971
Quad —5.6375 0.2001 <0.0001 >1000 —5.2350 0.2337 <0.0001 >1000
Prior Linear 2.8955 0.0863 0.0069 6.0608 1.4146 0.1381 0.1672 0.4663
Quad —3.8128 0.1025 0.0006 50.2692 —3.3548 0.0880 0.0021 16.8787

Note: Significant effects are in bold font.

The contrasts can be interpreted as measures of the direction of sequential access to list items (Logan et al., 2023a): The linear trend
reflects sequential access from the beginning of the list (positive slope) or from the end of the list (negative slope). The quadratic trend
reflects access from both ends of the list, as if subjects start at the end of the list that is nearest to the probed position. Of course there are
other interpretations of the serial position effects, including interference (greater for middle positions) and encoding differences (early
items may be encoded better than later items).

Appendix D. Model fitting methods

The models we fit to the data from each experiment are simplified versions of the models Logan et al. (2021) fit to their episodic
flanker task. We assume that memory for the current list is represented in the form of a matrix M. The matrix M has N rows and 6
columns. N is the total number of unique items in the stimulus set (for the consonants used in our experiments, N = 20). The six
columns correspond to the six locations in which items are presented. The entry m;; in the matrix M gives the degree to which item i is
activated by the position code for location j (i.e., my = a(il) in Eq. (1). Let C; be an indicator variable that equals 1 if item i was on the
current list and zero otherwise and let [*; be an indicator variable that equals 1 if item i was on the previous list and zero otherwise.
Then my; is given by my = (C; +sprior x P;)pl"7! where parameters p and sprior are as defined in the main text.

Each trial of cued recognition involves a probe item and a cued location k. The probe item is represented using a vector g with a 1 in
the entry corresponding to the probe item and zeros elsewhere. The degree to which the probe item is activated by the code for position
k is given by the dot product between the vector q and the kth column of M. The kth column of M, written as m g, is equivalent to the
vector of item activations m described in the main text. The only difference is that, in the main text, only the elements of m corre-
sponding to items that were in either the current or prior list are depicted; all other elements of m have activations of zero (since, for
any item i not in either the current or prior list, C; = P; = 0).

As described in the main text, a recognition decision is modeled as the outcome of a race between a “yes” accumulator and a “no”
accumulator. The input to the “yes” accumulator is a function of the degree to which the contents of the recognition probe match the
contents of memory. The input to the “no” accumulator is a function of the maximum possible match value. As such, a subject will be
more willing to make a “yes” response, and to do so more quickly, to the extent that the degree of match is large relative to how large it
could be. In total, we fit four different models to each of our cued recognition experiments. The four models represent a factorial
combination of the presence or absence of two potential contributors to the recognition process: prior-list representations and item
recognition. The simplest model, with no additional contributors, assumes that the inputs to the “yes” and “no” accumulators depend
only on a comparison between the probe and the memory representation for the cued position in the current list, that is, the column of
M corresponding to the cued position. We first describe the simplest model and its implementation.

D.1. Cued recognition

On any given trial, the probe consists of an item and cued location k, which together are used to construct a vector q which serves as
a retrieval cue. The vector q has 6 entries, one for each possible position. If the probe item had been presented at position i in the
current list, then the vector q has a 1 in its ith position and zeros elsewhere. Otherwise, vector q consists of all zeros, although this is
merely a shorthand for the idea that the probe item does not have a corresponding row in the memory matrix M. The joint item-
position match is the dot product between the kth column of M and the cue vector q. Because q has zeros everywhere except for
the entry corresponding to the position in which the probe item had been studied (if it had been), this dot product is simply my = p -
Kl je., the degree to which the item studied in position I is associated with cued location k. This match value is multiplied by a scaling
parameter A (A > 0) to yield Ty, the total input to the “yes” accumulator:

Ty = Alg e M) = Apli™

The maximum possible match is the product of the magnitudes of q and M i, which would occur if they had exactly the same
values in each of their entries. By design, the magnitude of q is | |q|| = 1, so the maximum possible match is determined by the
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magnitude of M x. The magnitude of M i is the square root of the sum of the squared entries in column k of matrix M, i.e.,

6 o
M| =[S0 g,

The maximum match is multiplied by both the scaling parameter A from above as well as an additional weighting factor A (A
> 0) to yield the total input to the “no” accumulator:

6 .
Ty = AX(lgl | < (1Ml |) = AAIM| | = A2y D pPH

where the 1 parameter acts to give different degrees of weight to mismatch information. When 1 > 1, the total input to the
“yes” accumulator will never exceed that to the “no” accumulator since, by definition, the input to the “no” accumulator is
based on the maximum possible match. The 1 parameter therefore reflects how large a match needs to be relative to its
maximum before the match is seen as strong enough to favor a “yes” response. For example, if 1 = 0.5, then the total input to
the “yes” accumulator would exceed that of the “no” accumulator if the degree of match were at least half of its maximum
possible value (see Table D1).

Table D1
Mean parameter values for model fits in Experiments 3-12.

Expt p Msmtch K Bound Bias Scl RT Residual sprior o_item
Zero Prior List Strength

3 0.2225 0.6587 0.3819 3.5704 0.5367 4.6853 0.3241
4 0.1247 0.5333 0.4872 2.9956 0.5378 6.2008 0.2070
5 0.3383 0.6776 0.3027 4.9415 0.5445 3.7936 0.2621
6 0.2071 0.5625 0.4484 3.4991 0.5312 5.0891 0.1608
7 0.2441 0.5961 0.4337 3.7335 0.5286 4.9420 0.3261
8 0.1371 0.5521 0.5981 3.0091 0.5276 6.0719 0.2183
9 0.3624 0.6765 0.2921 5.0483 0.5512 3.9276 0.2558
10 0.1932 0.5071 0.7616 3.2817 0.5321 5.4502 0.1972
11 0.3284 0.7200 0.2686 5.3314 0.5658 3.8052 0.2753
12 0.3508 0.6655 0.3283 5.3019 0.5563 4.2929 0.2482
Mean 0.2508 0.6149 0.4303 4.0713 0.5412 4.8259 0.2475

Nonzero Prior List Strength

3 0.2780 0.5499 0.3839 3.7374 0.5308 5.0790 0.3090 0.1636
4 0.1410 0.5056 0.4894 3.0250 0.5363 6.3203 0.2049 0.0528
5 0.4240 0.5403 0.3229 5.3506 0.5311 4.8966 0.2257 0.2085
6 0.2271 0.5173 0.4613 3.6473 0.5276 5.3816 0.1497 0.0857
7 0.2585 0.5615 0.4352 3.7699 0.5270 5.0137 0.3237 0.0594
8 0.1411 0.5421 0.6003 3.0157 0.5273 6.1024 0.2178 0.0151
9 0.3855 0.6269 0.2965 5.1239 0.5485 4.0078 0.2495 0.0712
10 0.2035 0.4797 0.7643 3.3100 0.5309 5.4906 0.1942 0.0421
11 0.3838 0.6218 0.2845 5.7388 0.5558 4.6619 0.2343 0.1627
12 0.3839 0.6120 0.3337 5.3678 0.5527 4.3867 0.2431 0.0764
Mean 0.2826 0.5557 0.4372 4.2086 0.5368 5.1341 0.2352 0.0938

Zero Prior List Strength and Item Recognition

3 0.1717 0.6790 0.3917 3.5904 0.5374 4.8299 0.3226 0.0439
4 0.0850 0.5343 0.5127 2.9979 0.5384 6.5128 0.2075 0.0318
5 0.1738 0.7611 0.3036 5.0613 0.5465 3.8063 0.2513 0.1495
6 0.0944 0.6003 0.4837 3.5389 0.5326 5.4687 0.1579 0.0980
7 0.1511 0.5013 0.4543 3.7407 0.5297 5.1595 0.3267 0.0742
8 0.0897 0.4696 0.6329 3.0233 0.5279 6.4195 0.2174 0.0389
9 0.1396 0.8200 0.2889 5.1902 0.5547 3.8781 0.2438 0.1955
10 0.1342 0.5900 0.8431 3.2920 0.5334 5.9884 0.1970 0.0770
11 0.1300 0.8169 0.2645 5.4740 0.5688 3.8088 0.2635 0.1787
12 0.1396 0.7603 0.3498 5.3859 0.5602 4.4834 0.2439 0.1723
Mean 0.1309 0.6533 0.4525 4.1295 0.5429 5.0355 0.2432 0.1060

(continued on next page)
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Table D1 (continued)

Expt p Msmtch K Bound Bias Scl RT Residual sprior o_item

Nonzero Prior List Strength and Item Recognition

3 0.1849 0.5561 0.3963 3.8551 0.5300 5.3521 0.2967 0.2050 0.0923
4 0.0858 0.5093 0.5192 3.0312 0.5369 6.6807 0.2050 0.0588 0.0446
5 0.1769 0.6693 0.2860 5.9494 0.5568 4.6514 0.2154 0.2114 0.1938
6 0.1144 0.5320 0.5009 3.7088 0.5283 5.8238 0.1448 0.1057 0.1052
7 0.1798 0.4645 0.4587 3.7842 0.5278 5.2670 0.3237 0.0723 0.0692
8 0.0897 0.4554 0.6372 3.0346 0.5276 6.4696 0.2164 0.0194 0.0434
9 0.1317 0.7603 0.2946 5.3046 0.5519 3.9815 0.2335 0.0935 0.2285
10 0.1381 0.5620 0.8546 3.3316 0.5322 6.0929 0.1926 0.0489 0.0852
11 0.1769 0.6693 0.2860 5.9494 0.5568 4.6514 0.2154 0.2114 0.1938
12 0.1338 0.7009 0.3562 5.4980 0.5564 4.6102 0.2352 0.1066 0.2147
Mean 0.1412 0.5879 0.4590 4.3447 0.5405 5.3581 0.2279 0.1133 0.1271

The activation level of each accumulator is assumed to evolve over time according to a Wiener process with infinitesimal variance
of 1. The drift rates for each accumulator are functions of the total input to each accumulator along with feedforward inhibition from
the input to the other accumulator, the strength of which is governed by parameter x (x > 0):

T
dy =—2
14+ «Ty

Ty
dy = ——
N 1+ «Ty

where dy and dy are the drift rates for the “yes” and “no” accumulators, respectively.

Each accumulator has a threshold, 0y for the “yes” accumulator and 0y for the “no” accumulator. Both accumulators start with zero
activation at the beginning of a trial and the first accumulator to reach its threshold determines the response as well as the response
time. We parameterize the thresholds in terms of a “response caution” parameter B (B > 0) and a “bias” parameter w (0 < w < 1).
“Response caution” is the sum of the thresholds, i.e., B = 0y + 0y, and reflects the total amount of memory evidence a subject generally
requires before responding. “Bias” reflects the degree to which the threshold for the “yes” accumulator is lower than that for the “no”
accumulator, thereby favoring a “yes” response. The two thresholds are given by

Oy = B(1 —w)
Oy = Bw

such that the thresholds are unbiased when w = 0.5, are biased in favor of “yes” responses when w > 0.5, and are biased in favor of “no”
responses when w < 0.5. The total response time on a given trial is the time needed for the first accumulator to reach its threshold, plus
a residual time R that includes the time needed to detect and orient to the probe, to focus on the cued position, and to execute the
response associated with the winning accumulator. In the present models, we simply assume that R is a constant.

To summarize, the simplest model we consider has seven free parameters: The position association gradient (0 < p < 1), the scaling
parameter for converting matches to accumulator inputs (A > 0), the mismatch weight parameter (A > 0), the feedforward inhibition
between accumulators (x > 0), response caution (B > 0), response bias (0 < w < 1), and residual time (R > 0). For models assuming no
contribution from the prior list, sprior is not a free parameter because it is fixed at sprior = 0. For models that allow for prior list
representations to contribute to cued recognition, sprior (0 < sprior < 1) is an additional free parameter to be estimated.

D.2. Item recognition

We also explored models that included an additional form of match/mismatch process corresponding to simple item recognition.
Item recognition was modeled by matching the probe vector g not just to the kth column of M, but to all columns of M and summing the
result. This amounts to item recognition because the resulting match represents the degree to which the probe item matches anything
that had been studied recently, regardless of location. This is accomplished by summing the dot products between the cue vector q and
all 6 columns of the memory matrix M. The total input to the “yes” accumulator is then a weighted sum of the joint item-position match
and the item recognition match, where the parameter ® (0 < ® < 1) represents the relative weight of the item recognition match:

Ty =A [(1 —)(geM,) +a)<z;lq .M.,) ]
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The maximum possible item recognition match, which contributes to the input to the “no” accumulator, is the sum of the maximum
possible item-position joint match across all positions (columns) in the memory matrix M. The contribution of the maximum possible
item recognition match to the “no” input is weighted by the same factor as the contribution to the “yes” input:

Ty = A2 (gl < ML) + (1 - ) (Z_flm x |M.,-||”

The rest of the model is unchanged and operates exactly as described above. Thus, modeling the contribution of item recognition
involves adding only one free parameter, the weight  given to item recognition as opposed to joint item-position recognition.

D.3. Prior list representations

Just like the current list is represented in memory with the matrix M, the previous list is represented in another matrix L with the
same structure (i.e., six columns corresponding to the six locations in the prior list and six rows corresponding to the six items pre-
sented in the prior list). If a probe item was present in the prior list, the degree to which it activates its representation in the prior list is
given by parameter p, which ranges between 0 and 1. For models that assume no contribution of prior list representations, p is assumed
to be fixed at zero. If p is greater than zero, then the prior list representation contributes to both the joint item-position match as well as
the item recognition match. In addition, the maximum possible values of both types of match are higher, reflecting the additional
contribution of prior-list representations.

Let qy, denote a cue vector constructed in an analogous manner to the one for the current list (q). The vector qy, has all zeros except
for the entry corresponding to the position in which the probe item appeared in the prior list (as above, this vector is all zeros if the item
was not present in the prior list). Then the total match value is given by

o)

while the maximum total match value is given by

Y {(1 ERIYRIEETR >+w<z_§’,|»M,- Y L ») }

Ty A{(l —o)lgeM, +p(qgely)]+o

Note that, because the matrices for each list are constructed in an identical manner, 37, ||M,| | = 337, [|L;||-

Model fitting

We fit a total of four models to the data from each subject in each experiment, finding the parameters of each model that maximized
the total log-likelihood of the choices and response times produced by each subject in each experiment. Let dy[n] and dy[n] denote the
drift rates for the “yes” and “no” accumulators on trial n, which are determined by the study items and cues on trial n as described
above. The likelihood that the “yes” accumulator reaches its threshold at time t is given by the probability density function of an
inverse Gaussian (Wald) distribution

Jr(tldy[n), 0y ) = or exp [(HY = }

V2t 2t

where we assume that the infinitesimal variance of the diffusion process is one (since this amounts to a scaling parameter). The
likelihood that the “no” accumulator reaches its threshold at time t is defined analogously, replacing dy[n] with dy[n] and 6y with 6.
Then, according to the racing diffusion decision process we employ, the likelihood of making response Q[n] (either Y for “yes” or N for
“no”) on trial n with response time RT[n] is

Ln] = fo (RT[n]—Rldgy [n], g1 ) {1 —Fop (RT["]*RWQM [n], Og1 )}

where Q [n] denotes the response that was not made on trial n and R is the residual time. The total log-likelihood of choices and response
times is then given by

LL = Z:ll logL[n)
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where N7 is the total number of trials observed.

When fitting these models, we noticed some numerical problems that arose when certain parameters were allowed to take extremely
large or small values, which interfered with the parameter search routines we used (discussed shortly). To address this issue, we introduced
a set of regularization terms that encouraged model parameters to stay within a reasonable range. These terms amount to prior information
about the scales of particular model parameters and were expressed in terms of simple probability distributions. For the bias w and position
similarity gradient y, both of which range between 0 and 1, we imposed a weak Beta prior with both shape parameters set to 1.5. The
intent of this prior was to prevent these parameters from being exactly zero or exactly one, both of which are a priori implausible anyway.
For competition k, boundary separation B, drift scale A, and “no” scale A, all of which must be nonnegative, we imposed a weak Gamma
prior with shape 1.05 and rate 0.05, corresponding to a mode of 1 and a standard deviation of 20. The effect of this was to avoid extremely
large values while also preventing these parameters from being exactly zero; again, both of these situations are implausible regarding any
of these parameters. Notice that no regularization was applied to either the prior-list strength parameter p or the item recognition weight
parameter . This was to avoid introducing any bias into the model comparisons that might arise from favoring particular values for these
parameters. As a result, the total quantity to be maximized during model fitting is given by

V= Zj;logL[n] +log Beta(w|1.5,1.5) + log Beta(y|1.5,1.5) +log Gamma(k|1.05,0.05)
+log Gamma(B|1.05,0.05) 4+ log Gamma(A|1.05,0.05) +log Gamma(A|1.05,0.05)

To find the model parameters that maximized V, we first ran the Nelder-Mead Simplex routine starting from a generic starting point for
500 iterations. The set of parameters from the final step of the Simplex search was then used as the initial seed value for a more
sophisticated nonlinear optimization routine implemented in the ‘ucminf* R package (Nielsen & Mortensen, 2016).

The predicted and observed RTs in each experiment are presented in Fig. D1. The predicted and observed error rates in each
experiment are presented in Fig. D2 (see Table D2).
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Fig. D1. Observed (solid lines) and predicted (dashed lines) response times (rts) in experiments 3-12 (columns) for each model (rows).
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Fig. D2. Observed (solid lines) and predicted (dashed lines) error rates in experiments 3-12 (columns) for each model (rows).

Table D2
Measures of goodness of fit for each model fit in Experiments 3-12.

Expt ZPL NZPL IRO IRPL ZPL NZPL IRZ IRNZ
Akaike Information Criterion Bayesian Information Criterion

3 519.50 514.36 519.54 513.74 548.66 547.68 552.86 551.23

4 252.63 252.75 252.23 292.77 281.81 286.09 285.57 329.10

5 738.02 732.57 734.03 727.40 767.19 765.90 767.36 764.90

6 493.53 490.56 490.92 453.87 522.66 523.84 524.20 491.32

7 569.19 565.85 565.94 563.02 597.18 599.16 599.25 600.49

8 340.08 341.78 340.03 341.66 369.25 375.12 373.37 379.17

9 762.73 753.03 759.40 747.24 791.87 786.34 792.70 784.71
10 647.90 648.76 646.49 628.71 677.06 682.09 679.82 666.20
11 694.89 694.56 691.20 689.45 723.95 727.76 724.40 726.80
12 706.02 705.34 722.73 651.45 735.15 738.64 756.03 685.39
Mean 544.31 541.97 544.19 533.43 573.46 575.28 577.50 536.51

Correlation RT Correlation P(Error)

3 0.6769 0.6692 0.7056 0.6834 0.7149 0.7185 0.7010 0.6920
4 0.6760 0.6876 0.7512 0.7265 0.5869 0.6056 0.5949 0.5883
5 0.7701 0.7391 0.8007 0.7735 0.7594 0.7611 0.7499 0.7441
6 0.6175 0.6294 0.6807 0.7097 0.6818 0.6856 0.6843 0.6956
7 0.6962 0.6911 0.7407 0.7373 0.6932 0.7036 0.6877 0.6950
8 0.5767 0.5696 0.6198 0.6121 0.7643 0.7661 0.7791 0.7822
9 0.7285 0.7213 0.7686 0.7603 0.7075 0.7415 0.7041 0.7351
10 0.6857 0.6780 0.7615 0.7544 0.6533 0.6645 0.6273 0.6460
11 0.8188 0.7996 0.8328 0.8157 0.7242 0.7373 0.7034 0.7073
12 0.8072 0.8025 0.8301 0.7682 0.7849 0.7955 0.7710 0.7148
Mean 0.7152 0.7088 0.7623 0.7490 0.6903 0.6979 0.6812 0.6760

Note: ZPL = zero prior list strength; NZPL = nonzero prior list strength; IRZ = item recognition with zero prior list strength; IRNZ = item recognition
with nonzero prior list strength.
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Appendix E. Parameter recovery

In the main text, we used model fits to test the hypothesis that subjects did not activate prior list representations in cued recog-
nition. The alternative hypothesis is that subjects did activate prior-list representations. These two hypotheses are embodied by model
variants that either fix sprior = 0 (no prior-list activation) or allow for sprior to take any value between 0 and 1 (allowing for prior-list
activation). We conducted a parameter recovery exercise to understand how well the design of our cued recognition experiments
would be able to distinguish between these two hypotheses. For example, it may be difficult to distinguish a subject with a very small
value of sprior from one with sprior = 0. For such a subject, model selection metrics like AIC or BIC might favor the simpler model (with
sprior fixed to zero) not because this subject actually had sprior = 0, but because the improvement in model fit is overwhelmed by the
penalty for introducing an additional free parameter. These parameter recovery exercises were designed to understand how often we
might expect that to occur, both at the level of individual subjects and when these metrics are aggregated across groups of subjects. For
example, AIC or BIC might favor the simpler model for a single subject with a small value of sprior, but if many subjects have a small
value of sprior, the more complex—and more correct—model may be identified when comparisons are based on summed or average
AIC/BIC across subjects. Therefore, as part of this parameter recovery exercise, we examined not just how well AIC/BIC could
distinguish between individual subjects with sprior = 0 vs. sprior # 0, but how well summed AIC/BIC could distinguish between groups
of subjects, all of whom have sprior = 0 vs. sprior # 0.

We simulated 6 groups of 10,000 subjects each. Within each group, each subject had the same value of sprior, which could take one
of six different values: 0, 0.1, 0.2, 0.3, 0.5, or 0.7 (matching the values used for our initial simulations in the main text). Because these
simulations did not include an item recognition component, there were seven other parameters that were randomly sampled for each
simulated subject. These were sampled from the probability distributions summarized in Table E1, which were chosen to roughly
match the mean and standard deviation of the estimated parameters values across all 10 cued recognition experiments described in the
main text. For each subject, we simulated choice and RT in 480 trials of cued recognition. Those 480 trials had exactly the same
frequency of trial types as in each of our experiments. As such, each simulated subject engaged in the same number of target, within-list
lure, and prior-list lure trials across different cued locations and lags as was experienced by each actual subject. To simulate the
outcome of a trial, we used the sampled parameter values for each simulated subject to compute the drift rates of the “yes” and “no”
accumulators on each trial and drew random samples from the resulting Wald distributions to represent the time needed for each
accumulator to reach its threshold on each trial. The simulated choice on each trial was given by which accumulator had the shortest
simulated time-to-threshold. The simulated RT was how long it took the fastest accumulator to reach its threshold, plus the simulated
subject’s residual time.

Table E1

Distributions from which parameters were
sampled for simulated participants during
parameter recovery.

Parameter Distribution

Beta(1.5, 3.8)
Gamma(3, 0.6)
Gamma(9.4, 17)
Gamma(1.7, 3.8)
Gamma(7.3, 1.8)
Beta(62, 53)
Gamma(2.7, 11)

mE WA SRS

Note: Parameters for Gamma distributions are
given as shape and rate.

After simulating data from each simulated subject, we fit both the constrained model (with sprior fixed at zero) and the uncon-
strained model (with sprior as a free parameter) to the data from each simulated subject. To do so, we used exactly the same fitting
procedure as was used for the real subjects (described in Appendix D). As such, our parameter recovery methods exactly matched the
methods we used to apply these models, simply exchanging data produced by real subject with data produced by simulated subjects.

Fig. E1 shows the fits of each model to the simulated data from each group of subjects. The unconstrained model that allows for
nonzero prior list strength is able to fit the error rates and RTs for each group, although there is a slight tendency for this model to
predict higher error rates and RTs for prior list lures at lag zero even when the data are simulated assuming sprior = 0. Note that this is
not a consequence of the regularizing priors described in Appendix C, since no such regularization was applied to sprior (such regu-
larization could push estimates of sprior away from zero). On the other hand, the constrained model that assumes zero prior list
strength is clearly unable to fit the data produced by subjects with sprior > 0 (See Fig. E2).
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Fig. E1. Mean simulated rts (top pair) error rates (bottom pair) across different probe types at different lags (solid lines), and mean predicted error
rates (dashed lines) from models fit to simulated data. each column represents a different value of the sprior parameter, representing “true” prior list
strength, used to generate the simulated data in each column. The top row in each pair shows fits of the model constrained to have zero prior list
strength (i.e., the estimated value of sprior was constrained to be zero). The bottom row in each pair shows fits of the model allowing for nonzero
prior list strength (i.e., sprior was a free parameter).

But while this discrepancy is apparent when looking at averages over 1000 simulated participants, does it also result in model
comparison metrics that favor the appropriate model? This question is addressed by Fig. E2, which shows the proportion of simulated
samples of different sizes (from 1 participant up to 320 participants) that resulted in summed AIC (left panel) or summed BIC (right
panel) favoring the unconstrained model. For each sample size, we simulated 10,000 samples by sampling with replacement from the
pool of 1000 simulated participants. For single participants, AIC is more likely to favor the correct model regardless of the true value of
sprior (see the individual points on the left side of the left panel of Fig. E2). On the other hand, BIC is more conservative at the in-
dividual participant level, only favoring the more complex model when sprior > 0.1 (see the individual points on the left side of the
right panel of Fig. E2). When aggregating across participants in each sample, both AIC and BIC are more likely to favor the correct
model. Sample sizes of 32 and 320 are highlighted in Fig. E2 with vertical bars, since these reflect the sample size of each of our
experiments (each of which had 32 actual participants) as well as the sample size across all ten cued recognition experiments (320 total
participants). With a sample size of 32, summed AIC favors the correct model essentially the whole time, regardless of the value of
sprior used to simulate the data. With a sample size of 32, summed BIC favors the correct model almost always except when sprior =
0.1, in which case it correctly favors the unconstrained model in 63 % of simulated samples. When aggregating across 320
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participants—equivalent to aggregating across each participant across all 10 of our cued recognition experiments—both summed AIC
and summed BIC favor the correct model the vast majority of the time; summed BIC favors the correct model in 94 % of samples of size
320 when sprior = 0.1. To be sure, these results are optimistic in the sense that the models being used to fit the data have the same
structure as the models used to produce the data. Moreover, each group of simulated participants has the same value of sprior when
actual participants would not be so homogeneous. Nonetheless, these results verify that our experimental designs have sufficient
power to distinguish between participants with different values of sprior on the basis of relative model fit. Moreover, considerable
power might be achieved by aggregating across participants.
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Fig. E2. Each point corresponds to10,000 simulated samples of each size and gives the proportion out of those 10,000 simulated samples in which
AIC (left panel) or BIC (right panel) summed across all subjects in each simulated sample favors the unconstrained model that allows nonzero prior
list strength. Highlighted sample sizes at 32 and 320 correspond to the sample size for each of the 10 cued recognition experiments in the main text
(each of which had 32 subjects) as well as the sample size that would result from aggregating across all experiments (320 subjects total).
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