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This article tests the conjecture that memory retrieval is attention turned inward by developing an episodic
flanker task that is analogous to the well-known perceptual flanker task and by developing models of the
spotlight of attention focused on a memory list. Participants were presented with a list to remember
(ABCDEF) followed by a probe in which one letter was cued (##C###). The task was to indicate whether
the cued letter matched the letter in the cued position in the memory list. The data showed classic results
from the perceptual flanker task. Response time and accuracy were affected by the distance between the
cued letter in the probe and the memory list (##D### was worse than ##E###) and by the compatibility of
the uncued letters in the probe and the memory list (ABCDEF was better than STCRVX). There were six
experiments. The first four established distance and compatibility effects. The fifth generalized the results to
sequential presentation of memory lists, and the sixth tested the boundary conditions of distance and flanker
effects with an item recognition task. The data were fitted with three families of models that apply space-
based, object-based, and template-based theories of attention to the problem of focusing attention on the
cued item in memory. The models accounted for the distance and compatibility effects, providing measures
of the sharpness of the focus of attention on memory and the ability to ignore distraction from uncued items.
Together, the data and theory support the conjecture that memory retrieval is attention turned inward and
motivate further research on the topic.
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In this article we examine memory from the perspective of
attention research. We test the conjecture that memory retrieval
is selective attention turned inward. Perceiving and remembering
pose the same computational problems: desired information must be
extracted from complex multidimensional structures. In perception,
the structures represent the outside world. In memory, they represent
a person’s history. Memory stores what we perceive, so the struc-
tures are similar and the processes that extract information from
them may be similar as well. The conjecture is that the extraction
process is selective attention. Turned outward, it retrieves informa-
tion from perception. Turned inward, it retrieves information from
memory. We test this conjecture from the perspective of attention
research, which emphasizes different aspects of the computational
problem and asks different questions than traditional memory
research. Following work on attention in perception, we ask how
sharply one can focus attention on a single element in memory and

how effectively one can ignore distraction from its neighbors and the
context in which it appears.

We answer these questions empirically by developing a new
episodic version of the C.W. Eriksen and Hoffman (1973) and B.A.
Eriksen and Eriksen (1974) flanker task, which is used extensively
to study selective attention in vision (Eriksen, 1995; Fan et al.,
2002). The perceptual flanker task presents a central target sur-
rounded by distractors and asks participants to classify the target
while ignoring the distractors. Response time (RT) and accuracy are
strongly affected by the distance between the target and the flankers,
reflecting the sharpness of the focus of attention, and by the
compatibility between the targets and the flankers, reflecting the
ability to ignore distraction (Eriksen & Eriksen, 1974). The episodic
flanker task presents a study list followed by a probe display in
which one letter is cued, and asks participants to indicate whether the
cued letter matches the letter in the same position in the memory list
(cued recognition). Mismatching letters are chosen from different
positions in the same list tomanipulate distance, and the uncued letters
in the probe display match or mismatch the uncued letters in the
memory list to manipulate compatibility. Distance effects measure the
sharpness of the focus of attention on memory and compatibility
effects measure the ability to ignore distractors in memory.

We answer these questions theoretically with three computational
models of attention turned inward that explain distance and com-
patibility effects. The three models combine three major approaches
to selective attention (space-based, object-based, template-based)
with three major approaches to the representation of serial order in
memory (noisy coding, position coding, item coding). The three
models span a wide range of theory in both literatures, casting the
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inferential net as broadly as possible. We connect the episodic
flanker task to other perception and memory tasks by proposing
common computations on common representations.
After briefly reviewing previous work on the relation between

attention and memory, we review the perceptual flanker task and the
computational models that account for it, and then introduce the
episodic flanker task. We develop the three models of attention
directed inward and apply them to data from six experiments with
the episodic flanker task, testing their ability to account for the
computations underlying distance and compatibility effects.

Attention and Memory

The relations between attention and memory have been important
topics since William James (1890). They were linked theoretically
in Broadbent’s “mechanical model for human attention and imme-
diate memory” (Broadbent, 1957, p. 205), Norman’s “theory of
memory and attention” (Norman, 1968, p. 522), and embedded-
processes theories of working memory (Cowan, 2001; Oberauer &
Kliegl, 2006). They were linked empirically in studies of levels of
processing (Craik & Lockhart, 1972) and transfer appropriate
processing (Morris et al., 1977) that demonstrated better memory
performance when attention was directed to the same cues at
encoding and retrieval (also see Boronat & Logan, 1997; Bentin
et al., 1998; Craik & Tulving, 1975; Logan&Etherton, 1994). More
recent research on the neuroscience of memory has shown links
between perceptual loci of brain activation in encoding and retrieval
(Rugg et al., 2008) and links between loci of brain activation in
attention and retrieval tasks (Griffin & Nobre, 2003; Nobre et al.,
2004; but see Hutchinson et al., 2009).
These memory studies establish that attention plays an important

role in retrieval but they do not directly address the computations
performed by attention to make retrieval happen, nor do they address
important distinctions between theories of selective attention. Mem-
ory theories that address retrieval computationally acknowledge the
potential importance of attention but they rarely attempt to model it
explicitly (Hintzman, 1984, 1986; Howard & Kahana, 2002;
Humphreys et al., 1989; Murdock, 1982, 1993; Polyn et al.,
2009; Sederberg et al., 2008; but see Raaijmakers & Shiffrin,
1981). None of them have modeled attention with the same types
of mechanisms involved in retrieval. The goal of this article is to
connect computational theories of attention with computational
theories of memory to provide more stringent tests of the conjecture
that memory retrieval is attention turned inward.
Models of selective attention can be divided into three broad

categories. Space-based theories assume that attention selects a region
of space from which information is sampled, like a spotlight (Eriksen
&Hoffman, 1973; Logan, 1996; Posner, 1980).Object-based theories
assume that attention selects objects or pointers to their locations
(Duncan, 1984; Kahneman et al., 1992; Kahneman & Henik, 1981;
Logan, 1996). Template-based theories assume that attention selects
targets by activating their representations in memory (Bundesen,
1990; Cohen et al., 1990; Logan, 1996, 2002; Wolfe, 1994). Each
category provides a different approach to the selection of items from
memorized lists. We develop computational models instantiating each
approach, using a different computational theory of serial memory to
represent order in each one. We implement space-based attention with
the COntour DEtector Theory of Visual Attention (CTVA; Logan,
1996; Logan & Bundesen, 1996) and the overlap model of memory

(OVL; Gomez et al., 2008; Ratcliff, 1981), which assume item
information is distributed across space so distributions for neighboring
items overlap.We implement object-based attention with the start-end
model (SEM), which assumes that item information is associated with
position codes that may be confused with each other (Farrell, 2012;
Henson, 1998; Houghton, 2018). And we implement template-based
attention with the context retrieval and updating model (CRU;
Howard & Kahana, 2002; Logan, 2018, 2021), which assumes that
item information is associated with contexts made of fading repre-
sentations of previous items, so contexts for adjacent items are more
similar and thus more confusable.

All three models provide measures of two core characteristics of
selective attention: the sharpness of the focus and the ability to
ignore irrelevant items (Eriksen & Eriksen, 1974). We compare the
models’ fits to data in six experiments, but our goal is more to find at
least one model that works than to find the one model that works
best. If retrieval is attention turned inward on memory, then at least
one model of attention should fit the data. If no models fit well, the
conjecture is less tenable computationally. Our main goal is to test
this conjecture. We chose three different approaches to attention and
the representation of order to cast a broader net.

The Eriksen Flanker Task

Origin and Basic Results

Charles W. Eriksen and his colleagues developed the flanker task
in the early 1970s to study selective attention in vision. Eriksen
realized that the bar probe used by Averbach and Coriell (1961) to
study sensory memory (Sperling, 1960) was an instruction to attend
to a specific location, and that much could be learned about attention
by presenting the bar probe before the target array instead of after it
(Figure 1, left panels). Manipulating the delay between the cue and
the target array, Eriksen and his colleagues found that error rate and
response time (RT) decreased as delay increased, reaching an
asymptote around 250 ms, suggesting that attention took that
long to focus on the cued location (Colegate et al., 1973; Eriksen &
Collins, 1969; Eriksen & Hoffman, 1972a, 1972b; but see
Logan, 2005).

Eriksen and Hoffman (1973) introduced a two-alternative forced
choice version of the task, presenting displays of letters that were
mapped onto two responses and requiring participants to classify the
letter indicated by the cue (Figure 1). As before, they varied cue
delay to measure the time course of attentional focusing. They
introduced the critical manipulations that define the flanker effect,
varying both the compatibility and the distance between the cued
target and the distractors. Compatible distractors mapped onto the
same response; incompatible distractors mapped onto different
responses (see Figure 1). Near distractors were adjacent to the
target; far distractors were not. Both compatibility and distance
had strong effects that were reduced but not eliminated as cue delay
increased. Because the effects occurred at the longest cue delay,
Eriksen and Hoffman concluded that compatibility and distance
effects could occur even when attention was focused on the cued
item. This was important because it suggested fundamental limits on
the ability to focus attention and exclude distractors that occur after
the target has been found.

The next step was to simplify the procedure to eliminate the
requirement to search for the cue and orient to the target. The result
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was the B. A. Eriksen and C. W. Eriksen (1974) flanker task, which
presented a central target flanked by three identical distractors on
each side (see Figure 1). The target always appeared in the same
location, above the fixation point, so participants did not have to
search for it. The distance between the central target and the flanking
letters varied between .6 and 1.0 degrees of visual angle to measure
the sharpness of the focus of attention (Eriksen & Hoffman, 1972b).
The flanking letters were compatible (associated with the same
response as the target) or incompatible (associated with the opposite
response) tomeasure the ability to ignore distractors. Like Eriksen and
Hoffman (1973), B.A. Eriksen and Eriksen (1974) found strong

compatibility effects that decreased with distance, which they inter-
preted as a fundamental limit on the ability to focus attention and
exclude distractors (Figure 1). These results have been replicated
extensively in cognitive psychology and beyond (Eriksen, 1995).
The flanker task has become a standard measure of attention and
control processes (Fan, et al., 2002).

Models of the Flanker Task

Eriksen’s research with the flanker task was driven by his
spotlight theory, which is perhaps the first space-based theory of

Figure 1
The Perceptual Flanker Task

Note. Stimulus displays, response mappings, and response times from C. W. Eriksen and Hoffman 1973; right panels) and
B. A. Eriksen and Eriksen 1974; left panels).
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attention. Attention is like a spotlight because it can be moved
around a display like a spotlight can be moved around a scene. The
key assumption is that things inside the spotlight are processed
(activate their associated responses) and things outside the spotlight
are not. From this assumption, the compatibility effect occurs
because parts of the flanking items fall within the spotlight, facili-
tating performance if they are compatible and impairing perfor-
mance through response competition if they are incompatible. The
distance effect reflects the breadth of the spotlight and the sharpness
of the focus of attention. As distance increases, distractors are less
likely to fall within the spotlight. This simple qualitative theory
generated a lot of research on the flanker task that revealed a lot
about selective attention (Eriksen, 1995).
Subsequent theories modeled the Eriksen and Eriksen (1974)

flanker task, addressing the mechanisms at work when attention is
focused. None of them address the cue search and target orienting
mechanisms at work in the Eriksen and Hoffman (1973) task. In
these theories, selective attention is modeled as stochastic accumu-
lation of information to a threshold. The target and the flankers make
separate contributions to the rate of accumulation (drift rate) such
that the drift rate for the flankers adds to (compatible trials) or
subtracts from (incompatible trials) the drift rate for the target
(Logan, 1980; Ulrich et al., 2015). Some assume more complex
architectures in which the whole array and the target item are
processed separately but combined in the decision to respond
(Cohen et al., 1992; Hübner et al., 2010) or the spotlight of attention
shrinks from a broad focus on the whole display to a narrow focus on
the target (White et al., 2011). The best of these theories account for
RT distributions for correct and error responses in compatible and
incompatible conditions and explain important manipulations in the
flanker task. However, none of them have addressed distance
effects, and none of them say much about how items and space
are represented.
Our modeling derives from Logan’s (1996) CTVA model of the

flanker task, which addresses distance effects and specifies impor-
tant properties of item representations that account for them. CTVA
combines the COntour DEtector (CODE) theory of perceptual
grouping by proximity (Compton & Logan, 1993, 1999; van
Oeffelen & Vos, 1982, 1983) with the Theory of Visual Attention
(TVA; Bundesen, 1990) to account for distance and grouping effects
in several attention paradigms, including illusory conjunctions,
visual search, and the flanker task. Logan and Bundesen (1996)
fit CTVA to the Mewhort, et al. (1981) bar probe task, accounting
for the tendency for errors to come from locations adjacent to the
cued location (another distance effect).
CTVA’s assumptions about representation, inherited from

CODE, are most relevant here. CTVA assumes items are repre-
sented as distributions over space, so adjacent items have over-
lapping representations (Ashby et al., 1996; Estes, 1972; Gomez
et al., 2008; Ratcliff, 1981; Wolford, 1975). The distributions are
centered on the position of the item. The spread of the distributions
(standard deviation) determines the amount of overlap with adjacent
distributions. Logan (1996) used Laplace distributions. Others use
Gaussian distributions. Distributions representing the letters in a
flanker task are illustrated in Figure 2.
CTVA assumes attention is a spotlight that samples information

from a delimited region of space. Logan (1996) addressed how the
shape of the region is determined by the perceptual organization of
the display and the participant’s goals. For the flanker task, we

assume that items are spaced equally and attention samples from a
region centered on the item on which it is focused (see Figure 2).
The sample contains information about all of the items whose
distributions project into the sampled region, in proportion to the
area of their distribution that falls within the sampled region. This
area is called the feature catch because it represents the proportion of
the features of an item that will be sampled in that region. The
feature catch kij for position i given a cue at position j is

kij =
ð
j+.5

j−.5
f iðxÞdt (1)

where fi(x) is the (Gaussian) distribution for item i and the distance
between adjacent items equals 1. Figure 2 shows that the feature
catch is largest for the focal item and decreases with distance from
the focal item. Following TVA, CTVA represents items abstractly as
similarities between perceptual objects and perceptual templates,
expressed as ηi for the item in position i. The ηi are weighted by the
feature catches kij to express their contribution to the information in
the sample, kijηi. The sum of these products determines the drift rate
in a stochastic accumulator:

drift =
XN
i=1

kijηi (2)

Figure 2
CODE Theory of Visual Attention (CTVA)

Note. The attentional spotlight focuses on a region of space. Items are
distributed across space and different proportions of their distributions
(feature catches) fall within the spotlight’s focus. Information about item
identity ηi is weighted by the feature catch kij and summed to produce a
decision variable, which is used as a drift rate in a stochastic accumulator.
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The congruency effect follows from the definition of the drift rate
in Equation 2: The drift rate is determined primarily by the focal
item, but flanking items can increase the drift rate if they are
compatible, reducing RT and error rate, or decrease the drift rate
if they are incompatible, increasing RT and error rate (Logan, 1980).
The distance effect follows from the definition of the feature catch in
Equation 1: the greater the distance between the focal item (j) and a
distractor (i), the smaller the contribution of the distractor.
Our strategy in modeling the episodic flanker effect is to turn

CTVA inward to focus on memory rather than perception. We apply
CTVA to memory representations in which items and order are
represented as overlapping distributions across space or time
(Gomez et al., 2008; Ratcliff, 1981) and compare it with object-
based and template-based models built from other memory repre-
sentations. But first, we must describe the episodic flanker task.

The Episodic Flanker Task

The Paradigm

The episodic flanker task is intended to capture people’s ability to
focus attention on an item in memory that is embedded in a larger
structure, like a word in a sentence or a digit in a memory list.
Illustrated in Figure 3, it combines elements of Eriksen and
Hoffman’s (1973) procedure (random cuing of locations) and B.
A. Eriksen and Eriksen’s (1974) procedure (linear, foveal displays).
Participants are presented with a study list and then are given a probe
display that contains a letter whose position is cued with a caret (^)
underneath it. The task is to decide whether the cued letter appeared
in the same location in the study list (i.e., cued recognition,
Oberauer, 2003). Half of the time it matches and half of the time
it does not. The nonmatching items are drawn from other locations
in the memory list or drawn from letters that were not on the list. The
two main manipulations are depicted in Figure 3: distance and
context. Experiment 1 focused on distance, using probe displays
in which the uncued positions were filled with neutral characters (#),
and manipulating distance by varying the position from which the
nonmatching “no” item was sampled. Figure 3 illustrates distances
of 1 and 2. Each position was cued equally often, and the mis-
matching (“no”) items for each cue position were sampled from each
of the remaining five positions. Near mismatching items should be
harder to reject than far ones, producing a gradient around the
probed position. The shape of this gradient measures the sharpness
with which attention is focused on the cued position in the memory
display (cf. Eriksen & Eriksen, 1974).
Experiment 2 manipulated distance and context. Context was

manipulated by varying the relation between the uncued letters in
the probe display and the study list (see Figure 3). In same context
displays, the uncued letters in the probe match the letters in the study
list (study: ABCDEF, test: ABCDEF; the cued letter is underlined).
In different context displays, the letters in the probe do not match the
letters in the study list (study: ABCDEF, test: NPCRST). The
context manipulation measures participants’ ability to exclude
irrelevant information in memory. To the extent they cannot, RT
should be shorter and accuracy should be higher for compatible
displays (same-context match displays and different context mis-
match displays) than for incompatible displays (different-context
match displays and same-context mismatch displays; cf. Eriksen &
Eriksen, 1974). The compatibility effect should appear as a

crossover interaction between same versus different contexts and
match versus mismatch trials: Same context probes should speed
“yes” responses and increase their accuracy, and slow “no” re-
sponses and decrease their accuracy. Different context probes
should have the opposite effect, producing a crossover interaction
(Figure 3).

Experiments 3 and 4 manipulated distance and context, varying
the overlap between study and probe displays to test models that
include a global matching process in addition to the item matching
process (Cohen et al., 1992; Hübner et al., 2010; White et al.,
2011 vs. Logan, 1980, 1996; Ulrich et al., 2015). The last two
experiments assessed the generality of the distance and context
effects. Experiment 5 extended the procedure to sequentially
presented lists, and Experiment 6 manipulated distance and context
in an item recognition task in which position information was
incidental.

Models of the Episodic Flanker Task

We investigated three models of the episodic flanker task that
differ in their assumptions about what attention selects and how lists
are represented: the overlap model implements space-based atten-
tion (Gomez et al., 2008; Logan, 1996; Ratcliff, 1981), the start-end
model implements object-based attention (Farrell, 2012; Henson,
1998; Houghton, 2018), and the context retrieval and updating
model implements template-based attention (Howard & Kahana,
2002; Logan, 2018, 2020). To maximize comparability, all of the
models are configured to produce the same outputs (vectors repre-
senting items in the memory list and the probe display) that are
processed by the same decision mechanism, implemented as a
limited capacity racing diffusion model (Logan et al., 2014;
Tillman et al., 2020).

The three models provide computational accounts of the spot-
light of attention on memory, describing the mechanisms that focus
on the target and combine information from different sources (local
and global matches), comparable to models of the Eriksen and
Eriksen (1974) flanker task. As such, they should apply to all
retrieval tasks that require attention focused inward on one item to
the exclusion of others, regardless of list length or retention
interval. The models do not provide a computational account of
the search and orienting processes that occur before attention is
focused, which are required for the Eriksen and Hoffman (1973)
task and the episodic flanker task. We model these processes as
differences in residual time that add to the decision time, account-
ing for them but not explaining them.

Overlap Model

OVL explains focused attention as CTVA turned inward (also see
Gomez et al., 2008; Ratcliff, 1981; Wolford, 1975). It is illustrated
in Figure 4. Probe and memory items are represented as distribu-
tions over space (also see Estes, 1972; Lee & Estes, 1977, 1981).
Attention takes samples from the cued region of the memory
representation, and the samples contain information about adjacent
items in proportion to their distance from the cued location. The
proportions represent the feature catch in CTVA and can be
measured with Equation 1, which is repeated here for convenience:
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kij =
ð
j+.5

j−.5
f iðxÞdt

We assume that items are represented by memory vectors ηi with
localist codes (1 in the position representing the item; 0 in all other
positions) and that the result of attending to the cued location j is a
vector memory mj that is the sum of the item vectors weighted by
their feature catch:

mj =
XN
i=1

kij · ηi (3)

Thememory vector ismatched to a probe vector qj that is constructed
in the sameway, by summing the products of (localist) item vectors and
feature catches from the cued position in the probe display. The match
statistic is the dot product of the vectors, which is used to derive drift
rate in the racing diffusion decision process, as described later.

Figure 3
The Episodic Flanker Effect

Note. Participants are presented with a study list for 500 ms followed by a probe list after a 2000 ms retention interval. One of the letters in
the probe list is cued with an arrowhead (^). Participants’ task is to decide whether the cued letter in the probe display matched the letter in the
same position in the study list. Distance is manipulated by varying the position fromwhich a “no” item is sampled. Context is manipulated by
presenting distractors that match the memory list or distractors that are different from the target and not on the memory list (bottom right).
“Yes” and “No” refer to the responses appropriate to the display. The bottom panels present the expected distance and compatibility effects if
attention to memory Is like attention to perception.
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OVL has two kinds of parameters: location and spread for the
item distributions. The location parameters are given by the posi-
tions of the items in the list. We assume the center-to-center distance
between items equals 1. The spread parameters are free to vary to
optimize fit. We assume Gaussian distributions, so the spread
parameter is the standard deviation σ. The σ parameter reflects
the sharpness with which attention is focused on the item. A small σ
results in a sharper focus than a large σ.
OVL accounts for distance and compatibility effects in the same

way as CTVA. Distance effects occur because adjacent items
overlap with the target distribution more than remote items. Given
list ABCDEF, D overlaps with C more than E does (see Figure 4).
Consequently, the probe ##D### matches the memory vector for C
better than ##E### does, and creates a stronger tendency to say
“yes,” which increases in RT and error rate for the required “no”
response. Compatibility effects have a similar explanation. Given
list ABCDEF, the compatible probe ABCDEF overlaps more with
the memory vector than the incompatible probe STCRUV because
the letters adjacent to the cued letter in the probe match the letters
adjacent to the cued letter in the memory representation. The letters
adjacent to the cued letter in STCRUV do not match the memory
representation and so reduce the overall match between the perceptual
vector representing the probe and the memory vector representing
the cued letter.

The basis for compatibility can be seen in the memory vector
m3 = [.02, .23, .50, .23, .02, .00] in the bottom rightmost panel of
Figure 4 when compared with the vector q3 = [.02, .23, .50, .23,
.02, .00] from the probe display. The values of the third element,
which represents the cued item, are largest and the match between
them largely drives the recognition decision. The values of the
elements representing the uncued positions also contribute to the
match, pushing it in the direction of the correct response with
compatible displays and the error response with incompatible
displays. The distance effect follows from the monotonic reduc-
tion in the values of the uncued elements as distance from the cue
increases.

OVL predicts compatibility effects from local interactions within
the spotlight of attention. It does not include a global matching
process that compares the entire probe display to the entire memory
list, but it could be supplemented by one if the local interactions are
insufficient to account for the data. In Experiments 2–6, we compare
versions of the overlap model that do and do not include a global
matching process.

Start-End Model

SEM explains focused attention as applying position codes to the
memory representation. Henson (1998) developed SEM to address
phenomena in serial recall. It remains a strong contender in that field
(Lewandowsky& Farrell, 2008) and has been extended to free recall
(Farrell, 2012), reading, and spelling (Houghton, 2018; also see
Fischer-Baum et al., 2011). SEM represents order with position
codes, s(i) and e(i) that represent the position of item iwith respect to
the start and the end of the list, respectively. The start code is
maximal at the beginning and the end code is maximal at the end,
and both decay with distance from the start and end of the list.
Following Henson (1998)

sðiÞ = S0 × Si−1 (4)

eðiÞ = E0 × EN−i (5)

where S0 and E0 are the start and end markers, respectively, which
represent the maximum values of the start and end codes, and S and
E are decay parameters, which determine how steeply the start and
end codes decay across position. The top left panel of Figure 5
shows start and end codes for a six-item list with S0 = E0 = 1.0
and S = E = .9.

SEM retrieves items by probing the memory representation with a
position code. In this respect it is like object-based theories of
attention, which characterize selection as sampling information
from an object or a position rather than a region of space
(Duncan, 1984; Kahneman & Henik, 1981; Kahneman et al.,
1992; Logan, 1995). The position code is extracted from the cue
and used to guide attention to the target object (Eriksen & Collins,
1969; Logan, 1995). We interpret SEM as an implementation of this
mechanism of attention.

When SEM probes memory with a position code, items are
activated with a strength proportional to the similarity of their
associated position codes. The position codes for item i are
represented as vectors pi = [s(i), e(i)]. Henson (1998) calculated
similarity by combining the dot product and distance between
vectors:

Figure 4
The Overlap Model

Note. The overlap model is similar to CTVA but attention is focused inward,
onmemory, instead of outward, on perception. The attentional spotlight focuses
on a region ofmemory space. Items are represented as distributions in space and
they are sampled in proportion to the area of their distribution that falls within
the spotlight. The feature catches (kij) for each item are identified in the top left
panel. Items are represented as localist vectors with 1 in the element represent-
ing the item and 0 in all other elements. The feature catch multiplies each item
vector and the item vectors are summed to produce a memory vector mi. A
vector qi is constructed from the corresponding location in the probe, and the
vectors are compared by calculating the dot product, which determines drift rate
in a stochastic accumulator.
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Henson similarity =
�
pi · pj

�1
2

× exp

�
−
�X

k

�
pk
�
i
�
− pk

�
j
��2

�1
2

	
(6)

Henson similarity measures for list ABCDEF are presented in the
bottom left panel of Figure 5.
SEM models recall by choosing the item with the largest activation.

We model recognition with a different calculation on the same repre-
sentation (cf. Gillund & Shiffrin, 1984; Nosofsky, 1988), creating a
memory vector from the active items. The top right panel of Figure 5
shows the similarities of position codeswhen the third position in the list
is cued. The similarities become the kijweights in Equation 3, whichwe
multiply by unit vectors ηi representing the items, and sum the products
across items to produce the memory vectorm3 (Figure 5, bottom right).
The probe vector p3 is constructed in the same way from the probe.
The memory vector m3 has the same structure in SEM and OVL.

The third, cued element has the largest value and drives the match,
and the uncued elements have values that decline monotonically

with distance from the cue. Thus, the models should behave
similarly, just as object-based models of attention often mimic
space-based models of attention. Differences in the models’ behav-
ior will depend on the distributions of values across the perceptual
and memory vectors, which are determined by the models’ repre-
sentational assumptions.

The SEM representation has four parameters, S0, S, E0, and E, that
can be varied to fit the data. It is more complex than the simplest
OVL, which only has one parameter (spread), but it has less
flexibility than more complex OVLs that let spread vary freely
with serial position. Equations 4 and 5 constrain how start and end
codes change with serial position, accounting for all serial positions
with just four parameters.

SEM predicts distance effects because more remote positions are
less similar to the cued position, so the items associated with them are
not activated as much. SEM predicts compatibility effects because
items from adjacent positions intrude into the sample taken from the
memory list in proportion to their activation. Compatible items speed
recognition and increase accuracy. Incompatible items slow recogni-
tion and increase error rate. SEM predicts the compatibility effect

Figure 5
The Start-End Model

Note. Positions are represented by start and end codes and that decrease with distance from the start and the end of the list (top left). The
similarity of position codes is illustrated in the bottom left panel. Each line represents the similarity of a position code in one location to the
position codes in all other locations. Similarity decreases with distance between the positions. The top right panel illustrates the similarities kij
to the position code for item C in the memory list. Each of the items on the list is represented as a unit vector that is activated in proportion to
its similarity to the cued position, and the memory vector m3 is created by summing the products of the similarities and item vectors (bottom
right). A probe vector q3 is constructed from the probe display in the same way. The dot product of the memory vector and the probe vector
determine drift rate.
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from local matches between probe and memory vectors. Like OVL, it
can be supplemented by a global matching process if need be.

Context Retrieval and Updating Model

CRU explains focused attention as comparing a context repre-
sentation with a set of memory representations. CRU is an extension
of Howard and Kahana’s (2002) temporal context model to serial
order phenomena. Logan (2018) applied it to skilled typewriting and
Logan (2021) applied it to serial recall, whole report, and copy
typing. CRU represents order in stored context vectors that record
the evolution of a current context vector during the encoding of the
list. The current context vector is initialized with a “list” represen-
tation and evolves by an updating process that adds new items to
the current context using Howard and Kahana’s (2002) updating
equation:

ci+1 = βηi + ρci (7)

where ci+1 is the updated context vector, ηi is the input vector for the
ith item, β is the weight given to the ith item, and ρ is the weight
given to the current context, ci. The value of ρ is determined by β and

the similarity (dot product) between the input vector and the current
context vector:

ρ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + β2

��
ηi · ci

�2
− 1

	s
− β

�
ηi · ci

�
(8)

Equation 8 normalizes the updated context vector to length =
1.0. If the ith item is independent of the current context (if ηi·ci = 0)

ρ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
(9)

Equation 9 applies to lists of unique items, like those in the
present experiments. Items are represented with localist codes, so a
new item vector ηi will have 1 in an element that has 0 in the current
context vector, and 0 in all other elements, so ηi·ci = 0. CRU
assumes that item i is associated with current context, and that
the association and the updated context vector are stored in memory,
so the list is represented as a set of stored context vectors.

The stored context vectors for list ABCDEF and β = .5 are shown
in the top left panel of Figure 6. The values illustrate the evolution of
the context vector produced by applying Equation 9. The list

Figure 6
The Context Retrieval and Updating Model

Note. Order is represented by stored context vectors that represent the list and the items in it. The stored context vectors are generated by a
context updating process that adds each new item to a decaying representation of previously experienced items (top left panel). Similarity is
calculated as the dot product between the stored context vectors (bottom left panel). Each line represents the similarity of a stored context vector
representing one position to the stored context vectors in all other locations. Similarity decreases with distance between the positions. The top right
panel illustrates the similarities kij to the position code for item C in the memory list. Each of the items on the list is represented as a unit vector that
is activated in proportion to its similarity to the cued position, and the memory vectorm3 is created by summing the products of the similarities and
item vectors (bottom right). A probe vector q3 is constructed from the probe display in the sameway. The dot product of thememory vector and the
probe vector determine drift rate.
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element enters as 1.0 and decreases by ρ as each item is presented.
Each item enters as β × 1.0 and decreases by ρ as each subsequent
item is presented.
When CRU probes memory with a context vector, items are

activated in proportion to the similarity between the probe and the
stored context vectors they are associated with. The similarities are
calculated as dot products between context vectors, ci·cj. The bottom
left panel of Figure 6 shows the dot products for each combination
of the stored contexts in the top left panel. The top right panel shows
the similarities between the stored contexts and a context probing
the third position in the list ABCDEF. Activation peaks at C and
declines monotonically with distance. CRU models serial recall by
choosing the most active item.Wemodel recognition using the same
representations to construct a memory vector m3 for this position
(Figure 6, bottom right), using the similarities as weights kij on the
item vectors (Equation 3; Figure 6 top right). The memory vector is
compared with a similarly constructed probe vector q3 by calculat-
ing the dot product, which contributes to the drift rate in the racing
diffusion decision process.
CRU is an implementation of template-based attention (Bundesen,

1990; Cohen et al., 1990; Logan, 2002; Wolfe, 1994). The perceptual
context vector pi acts like an attentional template that is matched to
memory instead of perception. The perceptual context vector
activates memorial context vector mi for the same position and
the item vector ηi associated with it more strongly than its
neighbors, which allows the context or the item or both to be
selected for further processing. In the episodic flanker task, the task
is to decide whether the items match.
The memory vector mi has the same structure in CRU, OVL, and

SEM as defined in Equation 3. The largest value is in the matching
element and the values decline monotonically around that element.
The models differ in how they create this structure, which may result
in different distributions of values that can be distinguished by
fitting the models to behavioral data.
CRU has one kind of parameter, β, which determines the steep-

ness of the similarity gradients in Figure 6 and thus the sharpness
with which attention can be focused on a single item. It can be fixed
across serial position or it can vary. Following Logan (2021), we
chose to let it decrease exponentially,

βi = β0δi−1 (10)

where βi is the value for position i, β0 is the initial value, and δ is the
decay rate (0 ≤ δ ≤ 1).
CRU predicts distance effects because more distant contexts are

less similar to the probed context. Items associated with them are
activated less and contribute less to the match between the probe and
memory vectors. CRU predicts compatibility effects because flank-
ing letters contribute positively when they point to the same
response as the probed letter and negatively when they point to
the opposite response. CRU can account for compatibility effects
with local matches because the neighbors intrude in the matching
process. If necessary, CRU could be supplemented with a global
matching process, like OVL and SEM.

Limited Capacity Racing Diffusion Decision Model

We model the decision and residual processes in the same way
in OVL, SEM, and CRU to maximize the comparability of the

models. We model the recognition decision as a race between
stochastic accumulators representing “yes” and “no” responses.
Each accumulator is modeled as a diffusion process with a single
upper bound. The distribution of times required for an accumu-
lator to reach threshold is Wald (Inverse Gaussian), parameter-
ized by its drift rate v and its threshold θ. The density and
distribution functions are:

f ðtjν,θÞ = θffiffiffiffiffiffiffiffiffi
2πt3

p exp

�
−
ðvt − θÞ2

2t

	
(11)

and

Fðtjv,θÞ = Φ
�
vt − θffiffi

t
p

�
+ expð2θvÞΦ

�
−
vt + θffiffi

t
p

�
(12)

where Φ(.) is the standard normal cumulative distribution func-
tion. Assuming different drift rates vYes and vNo and thresholds
θYes and θNo for “yes” and “no” responses, the finishing time
distributions for “yes” and “no” responses are:

f ðt,“yes”jvYes,vNo,θYes,θNoÞ
= f ðtjvYes,θYesÞ½1 − FðtjvNo,θNoÞ�

f ðt,“no”jvYes,vNo,θYes,θNoÞ
= f ðtjvNo,θNoÞ½1 − FðtjvYes,θYesÞ� (13)

The thresholds θ in Equations 11–13 are free parameters in the
model fits but the drift rates v are not. They are determined by
model-specific computations on the order representations in OVL,
SEM, and CRU that depend on other parameters. We assume that
drift rates are sums of three components μi based on dot products of
probe q and memorym vectors. Assuming the cued location is i, the
components are:

μL = qi · mi

�
local match

�
(14)

μI =
XN
j=1

qi · mj ðitem recognition matchÞ (15)

μJ =
XN
j=1

qj · mj ðglobal joint matchÞ (16)

The local match is the most important. It is the central calculation
in OVL, SEM, and CRU, reflecting the focus of attention on the
cued item i in the probe and the memory list. It is essential in
Experiments 1–5, which test cued recognition, but not in Experi-
ment 6, which tests item recognition regardless of order.

The item recognitionmatch compares the cued position i in the probe
against the whole memory list regardless of order (Anderson, 1973). It
detects mismatches when the probe is not in the memory list. This is
not useful in Experiment 1, in which all probes are from the
memory list, but it could be helpful in Experiments 2–5, in which
some probes are not from the memory list. It is essential in
Experiment 6, in which the item recognition task explicitly
requires detecting mismatching probes that are not from the
memory list.
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The global joint match compares each position in the probe
display with the corresponding position in the memory list and
sums over positions. It expresses the global match in models of the
perceptual flanker task (Cohen et al., 1992; Hübner et al., 2010;
White et al., 2011) in the representational language of OVL, SEM,
and CRU. We use it to model context effects in Experiments 2–6. It
is maximal in “same” contexts, in which probe and memory items
are in exactly the same positions (ABCDEF vs. ABCDEF), inter-
mediate when items are scrambled or swapped (AECDBF vs.
ABCDEF) and minimal in “different” contexts made of different
items (STCUVX vs. ABCDEF). The global joint match is not a valid
cue for a “yes” or “no” response in any experiment, so in principle,
participants should pay no attention to it. The magnitude of this
component reflects participants’ inability to ignore irrelevant infor-
mation outside the focus of attention.
The matches described in Equations 14–16 contribute positive

evidence for a “yes” response and negative evidence for a “no”
response. The racing diffusion model requires positive evidence for
both accumulators because the diffusion is bounded from above. In
order to make evidence for a “no” response positive, we subtract
evidence for a “yes” response from the product of the lengths of the
probe andmemory vectors, which represents themaximumpossible dot
product. There is a maximum mismatch corresponding to each match:

ML = kqik × kmik ðmax local mismatchÞ (17)

MI =
XN
j=1

ðkqik × kmjkÞ ðmax item recognition mismatchÞ

(18)

MJ =
XN
j=1

ðkqjk × kmjkÞ ðmax joint global mismatchÞ (19)

The total match and mismatch values are weighted sums of the
components in Equations 14–19 including an overall scaling param-
eter A to bring the drift rates into the range of the RTs and additional
scaling parameters for mismatches, which allow the overall match
and mismatch values to be affected differently by different kinds of
matches (Cox & Criss, 2017; Mewhort & Johns, 2000). The total
match and mismatch values are:

TYes = A
X
r∈w

wrμr ðtotal matchÞ (20)

TNo = A
X
r∈w

wrλeðMr − μrÞ ðtotal mismatchÞ (21)

where wr are the weights on matches, constrained so
P

r∈Wwr = 1,
λr are the additional weights on mismatches, constrained so λr ≥ 0,
and W is the set of matches = {local, item recognition, joint global}.
We assume that the weights on matches and mismatches reflect
attention to sources of information in the experiment, determined
by executive processes (Logan, 1980; Logan & Gordon, 2001).
Finally, the drift rates must be normalized so that competition

produces longer RTs. Independent race models with drift rates that are
not affected by the number of runners (unlimited capacity) produce
shorter RTs the greater the competition (e.g., Logan, 1988). Indepen-
dent race models with drift rates that decrease with the number of
runners (limited capacity) produce longer RTs the greater the compe-
tition (Logan et al., 2014). In our models, drift rates are not free

parameters, so we made them decrease with competition by imposing
a form of normalization that amounts to feedforward inhibition
between the “yes” and “no” accumulators. We define the drift rates
vYes and vNo for “yes” and “no” responses, respectively, as

vYes =
TYes

1 + αTNo
ðyes driftÞ (22)

vNo =
TNo

1 + αTYes
ðno driftÞ (23)

where α reflects the amount of inhibition. If α = 0, capacity is
unlimited.

Residual Time

The limited capacity racing diffusion process combined with OVL,
SEM, and CRU predicts decision times and probabilities, which are
only part of the observed RT. Stochastic accumulator models gener-
ally include residual time parameters that represent the time to encode
the stimulus and generate the response, which is added to decision
time to produce RT. The episodic flanker task requires processes that
search for the cue and orient attention to the cued position in the
memory list in addition to stimulus encoding and response generation.
These processes likely take substantial amounts of time and contribute
substantial amounts of variance to RT.Wemodeled residual time with
a log-normal distribution with mean R and standard deviation sR
defined on a log scale. In a linear scale, themean is exp(R + sR

2/2) and
the variance is exp(2 R + sR

2)*(exp(sR
2)−1), so the variance increases

with the mean, which is a desirable property in RT models
(Wagenmakers & Brown, 2007).

The mean residual time R was either fixed or allowed to vary with
serial position, allowing us to account for search and orienting effects
without a computational model to explain them. We also allowed
residual time to differ between neutral contexts (##C###) and same
and different contexts (ABCDEF and STCUVX given ABCDEF) to
allow for the increased difficulty of finding similar targets among
heterogeneous distractors (Duncan & Humphreys, 1989). We used a
multiplicative increment, RC > 0, such that

RNeutral = R

RSame = RDifferent = R × RC (24)

To summarize, our model includes three sources of variability: Drift
rates to the accumulators vary deterministically from trial to trial as they
are calculated from thememory lists and probes presented on each trial.
The accumulators are stochastic, leading to variability within each trial
that manifests in the distributions of RTs and response probabilities.
Finally, residual times vary randomly from trial to trial according to a
lognormal distribution, the parameters of which may also differ
between trials depending on which location is cued and whether the
cued item is presented in the context of other letters.

Factorial Model Comparison as Hypothesis Testing

In each experiment, we fit sets of models implementing OVL,
SEM, and CRU in factorial designs formed by including or exclud-
ing parameters and by fixing or varying parameters across condi-
tions. Each set varied parameters common to all three models,
including attention weights to matches and mismatches (item
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recognition and global joint matches included or excluded), and
residual time for different positions. The OVL and CRU sets varied
model-specific parameters that affect focusing (σ fixed or varied
with position in OVL; β fixed or decayed [δ] across positions in
CRU). We compare the models within each set to find the one that
fits best, and compare the best-fitting model from each set to
determine whether OVL, SEM, or CRU fits best.
The factorial design allows us to test hypotheses about the

components of the theories (Shen & Ma, 2019). We can evaluate
the effects of including or excluding and fixing or varying parame-
ters across each set of models to determine which model compo-
nents are important in producing good fits. In contrast with typical
experimental designs in which the factors are independent variables
manipulated in the experiment, the factors in our model designs are
theoretical entities defined by the computations in the models.
Consequently, the chain of inference from results to theoretical
conclusions is more direct.
Methods for fitting the models are presented in Appendix A.

Experiment 1: Distance Effects

The first experiment focused on distance effects. The memory lists
were strings of six letters (ABCDEF), the probes contained a letter
cued by a caret (^) surrounded by neutral # symbols (##C###, where
underline represents the caret; see Figure 3), and the taskwas to decide
whether or not the cued letter in the probe matched the letter in the
corresponding position in memory list. On half of the trials, the cued
letter matched the memory letter (match trials). On the other half, the
cued letter was drawn from the five remaining positions in thememory
list (mismatch trials). Thus, none of the mismatch trials presented new
items that had not appeared in the list.We cued each position in the list
equally often, and we sampled each of the five possible mismatch
positions equally often. Distance was defined as the difference
between the cued position and the position of the mismatching
item (Figure 3). All three models predict that RT and error rate
will decrease as a function of distance. The steepness of the decrease
reflects the sharpness with which attention can be focused on the
memory list. The question is whether the models can account for
distance effects in the data (as well as RTs and response probabilities).
The details of the method and the inferential statistics are pre-

sented in Appendix B. In this experiment and all the others (except
Experiment 5), lists were presented for 500 ms, followed by a
2000 ms retention interval, after which the probe display was
presented until participants responded. There were 720 trials and
32 participants. The design was 6 (probe position) × 6 (probe letter).

Results

Distance and Serial Position Effects

The data showed strong serial position effects. The RTs, plotted in
first panel in the top row of Figure 7, increased and then decreased
with serial position in an inverted U shape, suggesting greater
difficulty in accessing or retrieving the middle positions than the
ends. The P(“Yes”) values for match trials, plotted as open circles in
the third panel, showed a typical serial position effect with strong
primacy and weak recency.
The data also showed strong distance effects. The second panel in

the top row of Figure 7 shows RTs plotted as a function of the distance

between the probed position and the probe letter. Match trials (dis-
tance = 0) tended to be faster than the adjacent mismatch trials
(distance = ± 1), and mismatch RTs decreased with distance. The
effects were clearer and stronger for the P(“Yes”) data plotted in the
fourth panel of Figure 7, showing a steep gradient that extends ±2 or
±3 positions away from the probed position. These distance effects
suggest that the spotlight of attention has a resolution of three or four
positions when focused on memory.

Model Fits

The model fits implemented a design in which residual time was
fixed or allowed to vary with position for all models, σ was fixed or
allowed to vary with position in the OVLmodels, and β was fixed or
allowed to decay (δ) across position in the CRUmodels. Thus, there
were four OVL models, two SEM models, and four CRU models.
There was no variation in context and all probes were drawn from
the memory list, so the models included only the local match
component of drift rate (Equations 14 and 17).

The models were fit to the RTs and responses for each individual
participant using maximum likelihood methods described in
Appendix A. We assessed goodness of fit with log likelihood
(LL) and BIC = kln(n)−2LL, where k is the number of parameters
and n is the number of trials in a participant’s data set. The negative
log likelihood and BIC values summed over participants for each
model are presented in Table 1.

We used BIC to select the best-fitting model in each set. The best-
fitting OVL model allowed residual time R to vary with position but
held memory spread σ constant. The best-fitting SEM model held
residual time constant over position, but the BIC value for the model
that allowed residual time to varywas notmuch larger and its negative
log likelihood value was smaller. To be consistent with the other
models, we chose the model with residual time varied as the best-
fitting SEMmodel. The best-fitting CRUmodel allowed residual time
to vary with position and β to decaywith position. Among these best-
fitting models, SEM fit best, followed by CRU and OVL. The
parameters for the best-fitting OVL, SEM, and CRU models are
presented in Tables C1–C3 in Appendix C.

Model Predictions

We generated predictions for RT and P(“Yes”) for each cell of the
6 × 6 design for each participant, using the parameters from their
best-fitting OVL, SEM, and CRU models. The means across
participants are plotted as a function of serial position and distance
in the bottom three rows of Figure 7. The observed means are
plotted in the top row.

The three models made very similar predictions. They captured
the bow-shaped serial position effect and the distance effect in RT
equally well, though the fits were far from perfect. The three models
predicted the P(“Yes”) data more accurately. OVL captured the
serial position effect on match trials (open points) accurately. SEM
and CRU predicted serial position effects that were more regular
than the data. Note that the predictions for RT depend on serial
position effects in residual time as well as decision time but the
predictions for P(“Yes”) depend only on the decision process. We
interpret the effect in residual RT as reflecting the time required to
search for the cue and orient to the cued position in the memory list.
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Discussion

The purpose of Experiment 1 was to examine distance effects in the
episodic flanker task. This is an important step in relating the episodic

flanker effect to the perceptual flanker effect, as distance effects are
prominent components of the perceptual flanker effect (B.A.
Eriksen & Eriksen, 1974; C.W. Eriksen & Hoffman, 1972b, 1973).

Figure 7
Experiment 1

Note. Mean Response Times (RT) and P(“Yes”) values across participants as a function of serial position of the probed item and the distance between the cued
item in the probe and the item in the cued location in the memory list.
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The experiment showed robust distance effects in both RT and
P(“Yes”) data, establishing the connection between episodic and
perceptual flanker effects. The distance effects were captured reason-
ablywell by all threemodels. Position effectswere captured in residual
time. SEM did better than CRU and OVL but the differences were not
large. Thus, we have three viable models of the episodic flanker effect.
The fits suggest the models should allow variation in residual time and
in model-specific parameters that affect the breadth of attention.

Experiment 2: Distance and Context Effects

The second experiment manipulated context as well as distance,
presenting a six-letter study list (ABCDEF) and a probe containing
flanking letters were either the same as (ABCDEF) or different
from (STCVNR) the flanking letters in the memory list (see Figure 3).
By analogy to the Eriksen and Eriksen (1974) flanker effect, we
expected same flankers to add to the evidence for a “yes” response,
reducingRT and increasing accuracy onmatch trials but increasingRT
and decreasing accuracy on mismatch trials. By the same logic, we
expected different flankers to add to the evidence for a “no” response,
increasing RT and decreasing accuracy on match trials and reducing
RT and increasing accuracy on mismatch trials. Together these effects
predict a crossover interaction between flanker type (same vs. differ-
ent) and trial type (target, Lag 1, Lag 2, new; see Figure 3). We also
included new letters as mismatch items (ABSDEF cuing ABCDEF) to
assess the role of item recognition and to determine the distance at
which list membership no longer mattered.
For continuity with Experiment 1, we included “neutral” context

probes in which the cued letter was surrounded by # symbols. We did
not expect the neutral contexts to fall in between same and different
contexts, especially in RT, because the categorical difference (# vs.

letters) and the homogeneous repetition of a single context element
should make it easier to locate the cued letter and form the probe vector
(Duncan & Humphreys, 1989). We also varied distance between
mismatching items and the target. To reduce the number of trials,
we only included distances of 1 and 2 because they showed the largest
differences in Experiment 1.

Experiment 2 allowed us to test a broader range of models. The new
items allowed us to test the importance of the item recognition
component of drift rate (Equations 15 and 18). The context
manipulation allowed us to test the importance of the global joint
match component of drift rate (Equations 16 and 19) and the impor-
tance of the adjustment in residual time for same and different (versus
neutral) contexts (Equation 24). This produced a 2 (item recognition
match) × 2 (global joint match) × 2 (residual time adjustment) design
for all three models. OVL had memory spread (fixed or varied) as a
fourth factor. CRU had δ (included or excluded) as a fourth factor.

The details of the method and inferential statistics are presented in
Appendix B. The experimental design was 3 (context: same,
different, neutral) × 4 (probe: target, Lag 1, Lag 2, new). There
were 756 trials and 32 participants.

Results

Distance, Context, and Compatibility Effects

The RT, accuracy, and P(“Yes”) data are plotted in the top row of
Figure 8. The RT and accuracy data showed the predicted crossover
interaction that defines the episodic flanker effect. The same context
conditionswere faster andmore accurate formatch trials and slower and
less accurate for mismatch trials. The different context conditions were
slower and less accurate formatch trials and faster andmore accurate for
mismatch trials. The compatibility effectswere very strong: Compatible
trials (same match, different mismatch) were 108 ms faster and .1482
moreaccurate thanincompatible trials (samemismatch,differentmatch).

The neutral contexts produced faster RTs than same and different
contexts. This suggests the target was easier to find in neutral context
probes than in same or different context probes. Neutral context
accuracy was close to different context accuracy and lower than
same context accuracy.

The P(“Yes”) data provide a different perspective on the interac-
tion in the accuracy data. Context shifted participants’ tendency to
say “yes,” suggesting that the same context added to the evidence for
a “yes” response and a different context subtracted from it. The
P(“Yes”) data also showed a distance effect like Experiment 1.
P(“Yes”) was higher for Lag 1 than for Lag 2 for all contexts. Lag 2
probes about the same as new probes.

Model Fits

We fit 16 OVL models, eight SEM models, and 16 CRU models
to the data following the procedures described in Appendix A. The
three sets of models shared a 2 (item recognition match) × 2 (global
joint match) × 2 (residual time adjustment for same and different
contexts) design. The OVL set and the CRU set included model-
specific variations (memory spread fixed or varied, and β fixed or
decayed, respectively), which added a fourth factor to their designs.

Measures of goodness of fit are presented for each model in
Table 2. Using BIC as the criterion, the best fitting OVL, SEM,
and CRUmodels all included item recognition match and joint global

Table 1
Number of Parameters, Negative Log Likelihood and BIC for
Overlap, Start-End, and Context Retrieval and Updating Models
in Experiment 1

Overlap model

R M N parameters –Log likelihood BIC

0 0 8 15,329 32,320
0 1 13 14,554 31,841
1 0 13 14,468 31,670
1 1 18 14,016 31,817

Start-end model

R N parameters –Log likelihood BIC

0 11 14,429 31,171
1 16 13,917 31,199

Context retrieval and updating model

R δ N parameters –Log likelihood BIC

0 0 8 15,474 32,631
0 1 9 15,215 32,322
1 0 13 14,461 31,656
1 1 14 14,307 31,559

Note. R = residual time; M = standard deviation of memory
representation; δ decay parameter for β; bold italic indicates the best
fitting model of its type. 0 = fixed or not included; 1 = varied or included.
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match components of drift rate and an increment in residual time for
same and different (vs. neutral) contexts. The best-fitting OVLmodel
did not include variation in memory spread over position, and the
best-fitting CRU model did not include β decay. The best-fitting

parameters for the best-fitting OVL, SEM, and CRU models are
presented in Tables C1–C3 inAppendix C. Of the best-fittingmodels,
SEM fit best, followed by OVL and CRU, though the differences in
BIC were very small.

Figure 8
Experiment 2

Note. Mean observed and predicted RT, P(Correct), and P(“Yes”) values across participants for each context
condition as a function of the type of probe.
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Model Predictions

We generated predictions for RT, accuracy, and P(“Yes”) for each
cell of the 3 (context) × 4 (probed letter) design for each participant,
using the parameters from their best-fitting OVL, SEM, and CRU
models Tables C1–C3. The means across participants are plotted as

a function of probed letter in the bottom three rows of Figure 8. The
observed means are plotted in the top row.

The three models made very similar predictions. They captured the
cross-over interaction in the RT and accuracy data, the shift in the
probability of saying “yes” in the P(“Yes”) data, and the Lag 1–Lag 2
distance effects, which characterize the episodic flanker effect. There
were some noteworthy misfits. In the RT data, the models under-
predicted the cost for same contexts on mismatch trials (Lag 1, Lag 2,
New) and underpredicted the overall speed-up on match trials. In the
accuracy data, the models overpredicted accuracy for new mismatch
trials because item recognition contributed significantly to drift rate.
Item recognition also contributed to the speed-up in RT for new
mismatch trials; the two effects go together. The overprediction of
accuracy appeared as an underprediction of P(“Yes”).

The residual time parameters in Tables C1–C3 predict bow-shaped
serial position curves in the RT data for all three models, reflecting the
time required to search for the cue and orient to the target in the
memory list. Observed and predicted serial position curves are dis-
cussed later (Serial Position Effects in Experiments 2–6).

Discussion

The purpose of Experiment 2 was to establish the effects of
compatible and incompatible contexts and replicate distance effects
in the episodic flanker task. This is an important step in establishing
correspondence with the perceptual flanker task, which is defined by
compatibility and distance effects (Eriksen & Eriksen, 1974; Eriksen &
Hoffman, 1973). Context compatibility had strong effects on RT and
accuracy, producing the predicted crossover interactions (Figure 8) and
shifting P(“Yes”) upward. The fits supportedmodels that included item
recognition matches and global joint matches and an increase in
residual time for same and different contexts (relative to neutral).
The best-fitting models captured the essential features of the data but
missed some details. They made similar predictions and produced
similar goodness of fit values, though SEM fit better than OVL, and
OVL fit better than CRU. Thus, we have three viable models of
attention turned inward on memory.

Experiment 3: Same, Different, and Scrambled Contexts

The third experiment compared same, different, and scrambled
contexts to assess the role of global matching in producing the episodic
flanker effect (Cohen, et al., 1992; Hübner, et al., 2010 vs. Logan,
1980; Ulrich, et al., 2015). The contexts are illustrated in Figure 9. The
same and different contexts were like the ones in Experiment 2. Given
list ABCDEF, same context probes matched the list exactly (ABC-
DEF), different contexts contained no letters that overlapped with the
list (STUVXY), and scrambled contexts contained the letters on the list
in a different (randomly selected) order (FAEDCB). The scrambled
lists test the importance of preserving letter order in the global matching
process. If order matters, then scrambled contexts should be like
different contexts. If order does not matter, then scrambled contexts
should be like same contexts. We also included the distance manipu-
lation from Experiment 2, comparing target, Lag 1, Lag 2, and new
probed items. The design was 3 (context: same, different scrambled) ×
4 (probe: target, Lag 1, Lag 2, new). There were 756 trials per
participant and 32 participants. Details of the method and inferential
statistics are presented in Appendix B.

Table 2
Number of Parameters, Negative Log Likelihood and BIC for
Overlap, Start-End, and Context Retrieval and Updating Models
in Experiment 2

Overlap model

I J C M N parameters –Log likelihood BIC

0 0 0 0 13 22,597 47,946
0 0 0 1 18 21,976 47,761
0 0 1 0 14 22,410 47,783
0 0 1 1 19 21,775 47,570
0 1 0 0 15 22,182 47,538
0 1 0 1 20 21,730 47,693
0 1 1 0 16 21,955 47,297
0 1 1 1 21 21,504 47,452
1 0 0 0 15 21,932 47,037
1 0 0 1 20 21,421 47,074
1 0 1 0 16 21,773 46,933
1 0 1 1 21 21,268 46,980
1 1 0 0 17 21,669 46,935
1 1 0 1 22 21,215 47,085
1 1 1 0 18 21,431 46,672
1 1 1 1 23 21,020 46,908

Start end model

I J C N parameters –Log likelihood BIC

0 0 0 16 22,104 47,594
0 0 1 17 21,911 47,420
0 1 0 18 21,838 47,486
0 1 1 19 21,619 47,258
1 0 0 18 21,604 47,017
1 0 1 19 21,423 46,868
1 1 0 20 21,310 46,853
1 1 1 21 21,091 46,627

Context retrieval and updating model

I J C δ N parameters –Log likelihood BIC

0 0 0 0 13 22,498 47,747
0 0 0 1 14 22,410 47,783
0 0 1 0 14 22,313 47,589
0 0 1 1 15 22,219 47,612
0 1 0 0 15 22,050 47,274
0 1 0 1 16 22,010 47,406
0 1 1 0 16 21,830 47,047
0 1 1 1 17 21,807 47,212
1 0 0 0 15 22,081 47,337
1 0 0 1 16 22,046 47,478
1 0 1 0 16 21,884 47,154
1 0 1 1 17 21,853 47,304
1 1 0 0 17 21,703 47,004
1 1 0 1 18 21,689 47,188
1 1 1 0 18 21,497 46,804
1 1 1 1 19 21,485 46,990

Note. I = item recognition; J = joint item position global match;
C = residual time increment for Same and Different contexts;
M = memory spread same or different across serial position; δ = β decay
parameter. 0 = fixed or not included; 1 = varied or included.
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Results

Distance, Context, and Compatibility Effects

The RT, accuracy, and P(“Yes”) data are plotted in the top row of
Figure 10. The RT and accuracy data showed the same crossover
interaction that characterizes the episodic flanker effect. For same
contexts, RT was lower and accuracy was higher on match trials
than on mismatch trials. For different contexts, RT was higher and
accuracy was lower on match trials than on mismatch trials. We
calculated compatibility effects as before (same match and different
mismatch vs. same mismatch and different match) and found large
effects as in Experiment 2. For RT, the compatibility effect was
111 ms. For accuracy, it was .129.
Scrambled contexts fell in between same and different contexts for

accuracy and P(“Yes”). This suggests that participants are sensitive to
the order in probe and memory displays. For RT, scrambled contexts
were slower than same and different contexts for match trials but were
similar to same contexts for mismatch trials. The match trials suggest
participants are sensitive to order; the mismatch trials suggest they are
not. Together, the accuracy and RT data are more consistent with the
hypothesis that order matters.

Model Fits

We fit eight versions of OVL, four versions of SEM, eight versions
of CRU to the data using methods described in Appendix A. All three

sets of models had a 2 (item recognition match) × 2 (joint global
match) design (residual time adjustment was not necessary because
therewere no neutral probes). TheOVL andCRU sets included another
model-specific factor (memory spread in OVL; β decay in CRU).
Measures of goodness of fit appear in Table 3.

The best-fitting OVL model included item recognition match
and global joint match parameters and held memory spread fixed
across positions. The best-fitting SEM model included item
recognition match and global joint match parameters. The best-
fitting CRU model also included item recognition match and
global joint match parameters and held β decay constant. Among
the best-fitting models, SEM fit best, followed by OVL and CRU.
The parameters of the best-fitting OVL, SEM, and CRU models
appear in Tables C1–C3, respectively.

Model Predictions

We generated predictions for RT and P(“Yes”) for each cell of the
3 (context) × 4 (probed letter) design for each participant, using the
parameters from their best-fitting OVL, SEM, and CRU model. The
means across participants are plotted as a function of probed letter in
the bottom three rows of Figure 10. The observed means are plotted
in the top row.

The three models made very similar predictions. They captured
the characteristic crossover interactions in the RT and accuracy
data, the shift in the P(“Yes”) data, and the Lag 1–Lag 2 distance

Figure 9
Stimulus Displays From Experiments 3 and 4

Note. Experiment 3 compared same, different, and scrambled displays. Experiment 4 compared same, different,
and “switch 1” and “switch 2” displays, in which 1 and 2 letters switched position. “Yes” and “No” refer to the
responses appropriate to the display.
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effect. They underpredicted the cost of same contexts and over-
predicted the difference between same and scrambled contexts on
mismatch trials. They underpredicted the speed-up for match
responses. They captured the accuracy data more accurately,

except for overpredicting the advantage for new probes (and under-
predicting the P(“Yes”) data for new probes).

The three models predicted bow-shaped serial position curves
in the residual RT, reflecting the time for search and orienting

Figure 10
Experiment 3

Note. Mean observed and predicted RT, P(Correct), and P(“Yes”) values across participants for each context
condition as a function of the type of probe.
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Tables C1–C3). Observed and predicted serial position curves are
presented later (Serial Position Effects in Experiments 2–6).

Discussion

The purpose of Experiment 3 was to replicate context and distance
effects in the episodic flanker task to strengthen the connection with
the perceptual flanker task (Eriksen & Eriksen, 1974; Eriksen &
Hoffman, 1973). The replication was successful. The novel contri-
bution of Experiment 3 was to compare scrambled probes with same
and different probes to test the importance of letter order in producing
context effects and the role of the global matching process in the
models of the task. For accuracy and P(“Yes”), scrambled probes fell
between same and different probes, suggesting that the global
matching process was sensitive to letter identity and order. All three
models captured these results. The RT results weremore complicated:
Scrambled contexts were slower than same contexts on match trials
but no different from same contexts on mismatch trials. We have no
explanation for that result. The models were unable to capture it,
predicting that scrambled contexts fall between same and different
contexts for RT as it did for accuracy and P(“Yes”).
The best-fitting OVL, SEM, and CRU models made very similar

predictions for RT, accuracy, and P(“Yes”), capturing the essential
features of the data with some notable misfits. Item recognition

match and joint global match were important in all three models.
Overall, SEM fit better than OVL, which fit better than CRU, but the
differences were not large.

Experiment 4: Parametric Variation in Context
Similarity

The fourth experiment was a replication of the third with a more
systematic variation in context similarity. Like Experiments 2 and 3, we
included same and different contexts but we also included that contexts
that differed from the same context by swapping 1 or 2 pairs of letters
(see Figure 9). Given the list ABCDEF, ABCDEF is the same context,
AECDBF swaps one letter pair (E for B), and AECFBD swaps two
letter pairs (E for B, F for D). The context manipulation provides a
converging test of the importance of preserving letter order in the global
matching process. If order matters, then Swap 1 and Swap 2 contexts
should be like different contexts. If order does not matter, then Swap 1
and Swap 2 contexts should be like same contexts.We also included the
same distance manipulation as Experiments 2 and 3, comparing target,
Lag 1, Lag 2, and new probed items. The design was 4 (context: same,
different, Swap 1, Swap 2) × 4 (probe: target, Lag 1, Lag 2, new).
There were 864 trials per participant and 32 participants were tested.
Details of method and inferential statistics are presented in Appendix B.

Results

Distance, Context, and Compatibility Effects

The RT, accuracy, and P(“Yes”) data are plotted in the top row of
Figure 11. The results largely replicated the previous experiments.
Same contexts were faster and more accurate than different contexts
for match trials, but the opposite held on mismatch trials, replicating
the episodic flanker effect. The compatibility effects were 79 ms for
RT and .127 for accuracy. The distance effects replicated as well: RT
decreased by 43 ms from Lag 1 to Lag 2 and accuracy increased by
.058. The new results were the effects of parametric variation in
similarity between probe displays and memory lists. Accuracy and
P(“Yes”) varied systematically with similarity, while RT varied less
systematically. The differences between same contexts and Swap 1
and Swap 2 contexts show the importance of a joint item-position
global match between probe displays and memory lists. The differ-
ences between Swap 1 and Swap 2 contexts and different contexts are
also consistent with a joint item-position global match, reflecting the
effects of letters in shared positions.

Model Fits

We fit eight OVL, four SEM, and eight CRU models built on a 2
(item recognition match) × 2 (joint global match) design that was
common to all models. The OVL and CRU sets included another
model-specific factor (memory spread in OVL; β decay in CRU).
Measures of goodness of fit are presented in Table 4. The parameters
for the best-fitting OVL, SEM, and CRU models are presented in
Tables C1–C3, respectively.

The best-fitting OVL, SEM, and CRU models included item
recognition match and global joint match parameters. The best-fitting
OVL model included memory spread variation. The best-fitting
CRU did not include β decay. Among the best-fitting models,
SEM fit best, followed by OVL and CRU.

Table 3
Number of Parameters, Negative Log Likelihood and BIC for
Overlap, Start-End, and Context Retrieval and Updating Models
in Experiment 3

Overlap model

I J M N parameters –Log likelihood BIC

0 0 0 13 22,990 48,727
0 0 1 18 22,370 48,544
0 1 0 15 22,423 48,017
0 1 1 20 21,905 48,037
1 0 0 15 22,345 47,862
1 0 1 20 21,809 47,845
1 1 0 17 21,986 47,565
1 1 1 22 21,510 47,671

Start end model

I J N parameters –Log likelihood BIC

0 0 16 22,552 48,486
0 1 18 22,045 47,896
1 0 18 21,932 47,670
1 1 20 21,576 47,379

Context retrieval and updating model

I J δ N parameters –Log likelihood BIC

0 0 0 13 22,971 48,691
0 0 1 14 22,840 48,639
0 1 0 15 22,497 48,166
0 1 1 16 22,429 48,240
1 0 0 15 22,401 47,972
1 0 1 16 22,348 48,078
1 1 0 17 22,049 47,692
1 1 1 18 22,026 47,857

Note. I = item recognition; J = joint item position global match;
M = memory spread same or different across serial position; δ = β decay
parameter. 0 = fixed or not included; 1 = varied or included.
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Model Predictions

We generated predictions for RT, accuracy, and P(“Yes”) for the
4 (context) × 4 (probed letter) design for each participant, using the
parameters from their best-fitting OVL, SEM, and CRU models.

The means across participants are plotted as a function of probed
letter in the bottom three rows of Figure 11.

The three models made similar predictions: the crossover inter-
actions in the RT and accuracy data, the shift in the P(“Yes”) data,

Figure 11
Experiment 4

Note. Mean observed and predicted RT, P(Correct), and P(“Yes”) values across participants for each context
condition as a function of the type of probe.
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and the Lag 1–Lag 2 distance effect. They overpredicted differences
in RT between same, Swap 1 and Swap 2 contexts on mismatch
trials and underpredicted them on match trials. They did a better job
with accuracy and P(“Yes”) data, though they overpredicted the
magnitude of the context effects.
The three models predicted similar bow-shaped serial position

curves in the residual RT parameters (Tables C1–C3), reflecting the
time for search and orienting.

Discussion

Experiment 4 replicated the distance and context effects from the
previous experiments, strengthening the connection between the
episodic flanker task and the perceptual flanker task (Eriksen &
Eriksen, 1974; Eriksen & Hoffman, 1973). The novel contribution
was the parametric manipulation of context similarity, comparing
same, Swap 1, Swap 2, and different contexts. Context similarity
had graded effects on accuracy and P(“Yes”), which were predicted
by all three models, but it had little effect on RT, especially for
mismatch responses. We have no explanation for the RT results. All
three models predicted a graded effect.
The predictions were very similar for the best-fitting OVL, SEM, and

CRUmodels, providing little basis for distinguishing among them. The

model fits indicated a role for item recognition matches and joint global
matches in the decision process and indicated role for memory spread in
OVLbut no role for β decay inCRU. SEMfit better thanOVL,whichfit
better than CRU.

Experiment 5: Sequential Presentation of
the Memory List

Our demonstrations of the episodic flanker effect presented the
items in the memory list simultaneously. Memory researchers typi-
cally present lists of items sequentially, ordered in time instead of
space. Experiment 5 asked whether the episodic flanker effect would
replicate with sequential presentation. We reproduced the 3 (context:
same, different, neutral) × 4 (probed: target, Lag 1, Lag 2, new)
design of Experiment 2, presenting the memory list sequentially and
the probe display simultaneously. If sequential presentation results in
the same memory representation as simultaneous presentation, we
should see the same effects. To fit within a 1-hr testing session, there
were 648 trials per participant. We tested 32 participants.

Results

Distance, Context, and Compatibility Effects

The RT, accuracy, and P(“Yes”) data are presented in Figure 12.
The results replicated Experiment 2. Accuracy showed a crossover
interaction between context and match versus mismatch responses
and a compatibility effect of .154, which define the episodic flanker
effect, and both match and mismatch trials showed a distance effect
(Lag 2–Lag 1). The RTs were longer than in Experiment 2 and same
contexts were slower overall than different or neutral contexts. The
interaction did not cross over as before, but the difference between
target and Lag 1 RTs was larger for same contexts (246 ms) than for
different (56 ms) and neutral contexts (94 ms). There was a 146 ms
compatibility effect, and there were distance effects for different and
neutral contexts. The P(“Yes”) data were like Experiment 2, showing
higher values for same contexts than for different and neutral con-
texts, and showing a distance effect (Lag 2–Lag 1).

Model Fits

We fit 16 OVL models, eight SEM models, and 16 CRU
models, following Experiment 2. All models shared a 2 (item
recognition match) × 2 (joint global match) × 2 (residual
time adjustment) design. The OVL models crossed the shared
design with memory spread and the CRU models crossed the
shared design with β decay. Measures of goodness of fit are
presented in Table 5. The parameters for the best-fitting OVL,
SEM, and CRU models are presented in Tables C1–C3,
respectively.

The best-fitting OVL model included item recognition match and
memory spread but not joint global match or residual time adjust-
ment for neutral contexts. The best-fitting SEMmodel included item
recognition match and residual time adjustment but not a global joint
match factor. The best-fitting CRU model included item recognition
match, global joint match, and residual time adjustment but not β
decay. Among the best-fitting models, OVL fit best, followed by
SEM and CRU.

Table 4
Number of Parameters, Negative Log Likelihood and BIC for
Overlap, Start-End, and Context Retrieval and Updating Models
in Experiment 4

Overlap model

I J M N parameters –Log likelihood BIC

0 0 0 13 27,098 56,999
0 0 1 18 26,481 56,844
0 1 0 15 26,511 56,257
0 1 1 20 25,990 56,293
1 0 0 15 26,578 56,391
1 0 1 20 25,707 55,727
1 1 0 17 26,167 55,999
1 1 1 22 25,390 55,523

Start end model

I J N parameters –Log likelihood BIC

0 0 16 26,776 57,003
0 1 18 25,859 55,599
1 0 18 26,101 56,083
1 1 20 25,384 55,080

Context retrieval and updating model

I J δ N parameters –Log likelihood BIC

0 0 0 13 27,332 57,467
0 0 1 14 27,254 57,526
0 1 0 15 26,708 56,651
0 1 1 16 26,666 56,782
1 0 0 15 26,794 56,822
1 0 1 16 26,764 56,978
1 1 0 17 26,287 56,240
1 1 1 18 26,270 56,422

Note. I = item recognition; J = joint item position global match;
M = memory spread same or different across serial position; δ = β decay
parameter. 0 = fixed or not included; 1 = varied or included.

EPISODIC FLANKER TASK 417

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

C
on
te
nt

m
ay

be
sh
ar
ed

at
no

co
st
,b

ut
an
y
re
qu
es
ts
to

re
us
e
th
is
co
nt
en
t
in

pa
rt
or

w
ho
le
m
us
t
go

th
ro
ug
h
th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n.



Model Predictions

We generated predictions for RT, accuracy, and P(“Yes”) for
the 3 (context) × 4 (probed letter) design for each participant,

using the parameters from their best-fitting OVL, SEM, and CRU
models. The means across participants are plotted as a function of
probed letter in the bottom three rows of Figure 12.

Figure 12
Experiment 5

Note. Mean observed and predicted RT, P(Correct), and P(“Yes”) values across participants for each context
condition as a function of the type of probe.
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The three models made similar predictions that captured the
essence of the data but underpredicted the RT effects and over-
predicted the accuracy effects. They also overpredicted accuracy
and underpredicted P(“Yes”) for new mismatches. Again, the

three models predicted bowed serial position curves in the
residual RTs, reflecting the time to search for the cue and orient
attention to the target in the memory list.

Discussion

The purpose of Experiment 5 was to replicate the episodic flanker
effect when lists were presented sequentially rather than simulta-
neously, as in the previous experiments. The replication was largely
successful in the accuracy and P(“Yes”) data, showing the crossover
interaction, the shift in P(“Yes”) with context, and Lag 1–Lag 2 distance
effects. The RT effects were consistent with those in previous experi-
ments, but the same context RTs were long relative to different and
neutral context RTs, perhaps reflecting the difficulty of aligning probe
andmemory list representations to orient attention to the target. Overall,
the data indicate that the episodicflanker effects can occurwhen lists are
presented sequentially. This suggests that sequential and simultaneous
presentations result in similar memory representations of order.

As before, the best-fitting OVL, SEM, and CRUmodels made very
similar predictions. The models captured the qualitative effects but
underpredicted the magnitude of the RT effects and overpredicted the
magnitude of the accuracy effects. OVL fit better than SEM, which fit
better than CRU. Item recognition matches were important in all three
models. Global joint matches were less important in this experiment.
They were included in the best-fitting CRU but not in OVL or SEM.
Perhaps global joint matches depend on dimensions of similarity that
differ between representations of sequential and simultaneous lists.
For example, global joint matches might involve comparing images
of probe and memory displays. These images would be more similar
if both displays were simultaneous.

Experiment 6: Item Recognition

The episodic flanker effect is intended to measure selective attention
to a single item in memory. Our cued recognition task was designed to
achieve this by presenting mismatching items that were also on the
memory list, so focusing on the list as awholewould lead to errors. The
distance effects show that cued recognition does require selective
attention to a single list item, and the congruency effects were often
better explained by models that assumed global joint matches between
probe displays and memory lists. We conducted Experiment 6 as a
converging test of these conclusions, using item recognition instead of
cued recognition. We presented the same memory lists and probes as
the cued recognition experiments but required participants to respond
“yes” if the probed letter matched any of the letters in the memory list.
Many theories of item recognition assume the probe is compared with
the whole memory list and a “yes” response is generated if the probe
matches any item in the memory list (Anderson, 1973; Sternberg,
1969; for a review, see Clark & Gronlund, 1996). If that is the case,
then item recognition should not show the distance effects we
observe with cued recognition.

Of course, Eriksen did itfirst. B.A. Eriksen et al. (1986) combined the
flanker task with a Sternberg (1969) item-recognition memory search
task. They presented lists of 1–10 items and probed recognition with
displays containing compatible flankers that were also in thememory set
and incompatible flankers that were not in thememory set. They found a
strong compatibility effect that was the same across list length, suggest-
ing that compatibility and list length affected different processes.

Table 5
Number of Parameters, Negative Log Likelihood and BIC for
Overlap, Start-End, and Context Retrieval and Updating Models
in Experiment 5

Overlap model

I J C M N parameters –Log likelihood BIC

0 0 0 0 13 22,335 47,354
0 0 0 1 14 22,111 47,113
0 0 1 0 18 21,935 47,585
0 0 1 1 19 21,693 47,307
0 1 0 0 15 22,094 47,285
0 1 0 1 16 21,823 46,948
0 1 1 0 20 21,751 47,631
0 1 1 1 21 21,482 47,299
1 0 0 0 15 21,853 46,801
1 0 0 1 16 21,628 46,559
1 0 1 0 20 21,513 47,154
1 0 1 1 21 21,290 46,914
1 1 0 0 17 21,751 47,011
1 1 0 1 18 21,501 46,717
1 1 1 0 22 21,406 47,352
1 1 1 1 23 21,152 47,052

Start end model

I J C N parameters –Log likelihood BIC

0 0 0 17 21,741 46,991
0 0 1 18 21,678 47,072
0 1 0 19 21,521 46,964
0 1 1 20 21,461 47,050
1 0 0 19 21,375 46,671
1 0 1 20 21,243 46,615
1 1 0 21 21,178 46,690
1 1 1 22 21,128 46,796

Context retrieval and updating model

I J C δ N parameters –Log likelihood BIC

0 0 0 0 14 22,216 47,321
0 0 0 1 15 22,144 47,384
0 0 1 0 15 22,180 47,455
0 0 1 1 16 22,114 47,531
0 1 0 0 16 21,963 47,229
0 1 0 1 17 21,864 47,237
0 1 1 0 17 21,944 47,396
0 1 1 1 18 26,593 56,901
1 0 0 0 16 21,886 47,075
1 0 0 1 17 24,720 52,948
1 0 1 0 17 21,858 47,226
1 0 1 1 18 21,794 47,304
1 1 0 0 18 21,680 47,075
1 1 0 1 19 24,636 53,194
1 1 1 0 19 21,671 47,263
1 1 1 1 20 24,648 53,424

Note. I = item recognition; J = joint item position global match;
C = residual time increment for Same and Different contexts;
M = memory spread same or different across serial position; δ = β decay
parameter. 0 = fixed or not included; 1 = varied or included.
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Experiment 6was a conceptual replication of the Eriksen et al. (1986)
experiment using the displays and context manipulations of Experiment
2. The designwas a 3 (context: same, different, neutral) × 4 (probe: Lag
0 [formerly target], Lag 1, Lag 2, and new). Unlike Experiment 2, Lags
0, 1, and 2 probed letters all required a “yes” response, and only new
probed letters required a “no” response. To equate the frequency of
“yes” and “no” responses, the number of new letter probe trials equaled
the sum of the numbers of Lag 0, Lag 1, and Lag 2 probe trials. There
were 756 trials per participant and 32 participants.

Results

Distance, Context, and Compatibility Effects

The RT, accuracy, and P(“Yes”) data are plotted in Figure 13. Item
recognition differed from cued recognition in several respects. Dis-
tance effects were much smaller. The difference between Lag 1 and
Lag 2, which defined the distance effect in previous experiments, was
only 7 ms for RT and .009 for accuracy.We also compared Lag 0 and
Lag 1 and found a 77 ms effect for RT and a .046 effect for accuracy.
Lag 0may be better than Lag 1 because the location of the letter probe
and the memory item match, increasing the global match between the
probe display and memory.
Context had strong effects that differed somewhat from the

context effects in Experiment 2. The compatibility effect (Lags 0,
1, and 2 match, new mismatch vs. Lags 0, 1, and 2 mismatch, new
match) was only 9 ms for RT and .107 for accuracy (cf. Eriksen
et al., 1986). Both effects are smaller than the ones in Experiment 2.

Model Fits

We fit eight versions of OVL, four versions of SEM, and eight
versions of CRU to the data. Because of the way the parameters were
estimated, we only examined models in which the local match that
drives cued recognition decisions contributes to drift rate. The local
match weight in the model fits will let us judge its importance in
obtaining good fits. All three sets of models shared a 2 (joint global
match) × 2 (residual adjustment) design. The OVL models included
memory spread as a third factor. The CRU models included β decay
as a third factor. Measures of goodness of fit are presented in Table 6.
The parameters for the best-fitting OVL, SEM, and CRU models are
presented in Tables C1–C3, respectively.
The best-fitting OVL model included adjustment in residual

time but not global joint match or memory spread. However, a
model with a global joint match and residual time adjustment
came a close second. The best-fitting SEM model included
adjustment in residual time but not a global joint match. The
best-fitting CRU model included adjustment in residual time but
not a global joint match or β decay. Among the best-fitting
models, OVL fit best, followed by CRU and SEM.

Model Predictions

We generated predictions for RT, accuracy, and P(“Yes”) for the
3 (context) × 4 (probed letter) design for each participant, using
the parameters from their best-fitting OVL, SEM, and CRU models.
The means across participants are plotted as a function of probed
letter in the bottom three rows of Figure 13.
The three models made similar predictions that did not capture

the data very well. They underestimated the difference between

same and different contexts and missed the difference between
different and neutral contexts. The three models did not predict
much variation in residual time with serial position (see Tables
C1–C3). Compared to the fits to cued recognition, the bow-shaped
serial position function was greatly attenuated. We fit models that
allowed no variation in residual time and found that they fit much
better for OVL, SEM, and CRU (BIC values were 37,906, 40,131,
and 39,939 for OVL, SEM, and CRU, respectively). These
models made nearly identical predictions for RT, accuracy, and
P(“Yes”) so we kept the original fits for continuity with the
models in Experiments 2–5. We note that the small variation
in residual time with position suggests that orienting to the target
in the memory list was done differently in item recognition than in
cued recognition.

Discussion

The purpose of this experiment was to determine whether the
characteristics of the episodic flanker effect depended on focusing
attention on a single item in memory by testing participants on a
similarly-structured item recognition task, which required focusing
attention on the entire list rather than a specific position in the list. The
item recognition task showed strong context effects, but the compati-
bility contrast was significant in the accuracy data and not the RT data
(cf. Eriksen et al., 1986). In Experiments 2–5, the cued recognition task
produced significant compatibility effects for both RT and accuracy.
The item recognition task produced null distance effects in RT,
accuracy, and P(“Yes”) for Lag 1 versus Lag 2, whereas the cued
recognition task produced significant distance effects in those measures
in Experiments 1–5. The item recognition task produced rather flat
serial position curves compared to the cued recognition tasks (see Serial
Position Effects in Experiments 2–6). These differences suggest that
item recognition does not use the same attentional strategies as cued
recognition, indicating an important boundary condition on the epi-
sodic flanker effect: its characteristic effects occur only when attention
must be focused on a single item in memory (as we intended).

The model predictions did not capture the data very well, so the
conclusions should be tempered accordingly. The best-fitting
models were different from the previous experiments in that
none of them included a global joint match component. They
all included residual time adjustment for same and different
contexts (relative to neutral).

Serial Position Effects in Experiments 2–6

Experiments 2–6 were designed to focus on compatibility and
distance effects. Each serial position was probed equally often but
there were not enough observations to calculate serial position effects
for each combination of context and probe type. Figure 14 plots the
observed and predicted serial position curves for match (“yes”) re-
sponses in Experiments 2–6 along with the results from Experiment 1.
Two features of the data were noteworthy. First, therewere strong serial
position effects in RT and accuracy in Experiments 2–5, which tested
cued recognition, but the serial position curves were flat in Experiment
6, which tested item recognition. We suggest these differences reflect
the need to find a particular item and focus on it in cued recognition (cf.
Chan et al., 2009). Item recognition can be done by comparing the
probe to the memory set as a whole without focusing on a particular
item (Anderson, 1973; Sternberg, 1969; Equation 15).
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The second notable feature in Figure 14 is the failure of the models
to capture the shape of the serial position curves in accuracy. The
observed data showed an asymmetrical W-shaped function, charac-
teristic of cued report with a bar probe in briefly-exposed displays

(Mewhort et al., 1981). SEM did best, predicting bowed serial
position effects for Experiments 2–5 and flat effects for Experiment
6, but OVL underestimates the curvature andCRU predictsflat effects
for all experiments except Experiment 1. We attribute this difference

Figure 13
Experiment 6

Note. Mean observed and predicted RT, P(Correct), and P(“Yes”) values across participants for each context
condition as a function of the type of probe.
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to the β decay parameter δ, which was included in the best-fitting
model for Experiment 1 but not included in the best-fitting models in
Experiments 2–6. These mispredictions challenge OVL, SEM, and
CRU as explanations of the episodic flanker effect.
All of the models predicted the RT effects quite well, showing

bowed serial position effects for Experiments 2–5 and flat effects for
Experiment 6. CRU is able to account for the RT effects by
differences in residual time. OVL and SEM use differences in
residual time plus differences in decision time.

Compatibility Effects by Quantile

Since De Jong et al. (1994), research on the flanker and related
conflict tasks has been concerned with the way compatibility effects
vary with the quantiles of the RT distribution. Modern theories of the
perceptual flanker task predict these effects quantitatively (Hübner
et al., 2010; Ulrich et al., 2015;White et al., 2011). We calculated the
.1, .3, .5, .7, and .9 quantiles in each condition of Experiments 2–6 for
each participant and collapsed across all factors except for compati-
bility. The compatibility effects for each quantile, averaged across
participants, are plotted as a function of the average RT for each
quantile (delta plots; De Jong et al., 1994) in Figure 15. The observed
functions were linear for the cued recognition Experiments (2–5) but

not for the item recognition Experiment (6). The predicted functions
were linear for each model in each experiment, which is characteristic
of delta plots produced by models in which conflict signals add or
subtract a constant to overall drift rate (Ulrich et al., 2015). The
predicted slopes were shallower than the observed functions for all
three models, reflecting their underestimation of compatibility effects.

General Discussion

The Episodic Flanker Task

The purpose of this article is to test the conjecture that retrieval is
attention turned inward to focus on memory. We addressed this

Table 6
Number of Parameters, Negative Log Likelihood and BIC for
Overlap, Start-End, and Context Retrieval and Updating Models
in Experiment 6

Overlap model

J C M N parameters –Log likelihood BIC

0 0 0 15 19,156 41,484
0 0 1 20 18,991 42,211
0 1 0 16 18,590 40,564
0 1 1 21 18,401 41,243
1 0 0 17 19,091 41,777
1 0 1 22 18,960 42,572
1 1 0 18 18,488 40,783
1 1 1 23 18,350 41,564

Start end model

J C N parameters –Log likelihood BIC

0 0 18 19,070 41,947
0 1 19 18,495 41,008
1 0 20 19,000 42,229
1 1 21 18,392 41,224

Context retrieval and updating model

J C δ N parameters –Log likelihood BIC

0 0 0 15 19,223 41,619
0 0 1 16 19,194 41,771
0 1 0 16 18,644 40,672
0 1 1 17 18,681 40,958
1 0 0 17 19,053 41,701
1 0 1 18 19,025 41,856
1 1 0 18 18,631 41,069
1 1 1 19 18,598 41,214

Note. J = joint item position global match; C = residual time increment
for Same and Different contexts; M = memory spread same or different
across serial position; δ = β decay parameter. 0 = fixed or not included;
1 = varied or included.

Figure 14
Serial Position Effects

Note. Observed (leftmost column) and predicted (columns to the right)
response time and probability of a correct response for match (“yes”) trials as
a function of serial position in experiments 1–6 (different lines). Black
lines = cued recognition tasks; Red lines = item recognition task.
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purpose by developing and testing the episodic flanker task, in which
a cue in a probe display directs participants’ attention to a specific
item in a memory list. The episodic flanker task was modeled after
the perceptual flanker tasks developed by Eriksen and Hoffman
(1973) and Eriksen and Eriksen (1974) to study selective attention in
vision. We looked for the hallmarks of attention from the perceptual
flanker task in the episodic flanker task: distance and compatibility
effects. We found both. Distance effects occurred in the RT, accu-
racy, and P(“Yes”) data in all of the cued recognition experiments (1–
5) but not in the item recognition experiment (6), which did not
require selective attention to a cued item. The data suggest that the
focus of attention includes ±1 or ±2 neighboring items (in random
letter strings), similar to Eriksen and Hoffman (1973). Compatibility
effects occurred in all of the cued recognition experiments (2–5) that
compared same and different contexts: RT was shorter and accuracy
was higher with compatible contexts (same context match and
different context mismatch) than with incompatible contexts
(same context mismatch, different context match), as in the percep-
tual flanker task (Eriksen & Eriksen, 1974; Eriksen & Hoffman,

1973). Thus, the data establish empirical parallels between the
episodic flanker task and the perceptual flanker task, which suggest
that similar mechanisms of attention are at work in the two tasks.
Retrieval of a cued item might involve turning perceptual attention
inward.

It is worth emphasizing the episodic nature of the episodic flanker
effect. The compatibility effect is driven by the similarity between the
current probe and the current memory list, which have never been
presented before in the experiment. The perceptual flanker task gener-
ally presents the same items many times (in random order), and the
Stroop (1935) task and its relatives depend on extensive practice
(MacLeod & Dunbar, 1988). The resulting compatibility effects are
often viewed as automatic (Cohen et al., 1990; Logan, 1980). The
present results suggest that automatic flanker effects can result from a
single episode when attention is turned inward on memory. Interest-
ingly, Cohen-Kdoshay and Meiran (2007) found compatibility effects
on the very first presentation of a stimulus in the perceptual flanker task,
suggesting an episodic contribution to the effect.

Episodic Flanker Theories

Focusing Attention on Memory

We addressed the conjecture that retrieval is attention turned inward
theoretically by developing and testing models of focusing selective
attention on items in memory representations of lists: OVL, SEM, and
CRU.We interpreted their assumptions about how order is represented
as implementations of space-based (Eriksen&Hoffman, 1973; Logan,
1996; Posner, 1980), object-based (Duncan, 1984; Kahneman et al.,
1992; Kahneman & Henik, 1981; Logan, 1996), and template-based
attention (Bundesen, 1990; Cohen et al., 1990; Logan, 1996, 2002;
Wolfe, 1994): OVL samples regions of space, SEM samples with
position codes, and CRU samples with contexts. All three models
made very similar predictions in each experiment. They captured
the crucial distance and compatibility effects (the crossover
interaction) in Experiments 1–5 that define both the episodic
and the perceptual flanker effects, and they captured the general
increase in P(“Yes”) in same contexts. All the models predicted
serial position effects in RT but only OVL and SEM predicted
them in accuracy. This challenges CRU’s ability to explain the
episodic flanker effect. Across the three models, there were some
important mispredictions, often in the magnitudes of effects.
Thus, there is room for improvement.

Overall, SEM fit better than OVL, which fit better than CRU.
The mean BIC scores for the best-fitting models across the 192
participants in Experiments 1–6 were 44,651, 44,759, and 45,007
for SEM, OVL, and CRU, respectively. The advantage of SEM
over OVL was not significant, t(191) = 1.555, SE = 29.917,
p < .1216, but the advantage of SEM over CRU,
t(191) = 3.915, SE = 39.343, p = .0001, and the advantage of
OVL over CRU, t(191) = 2.743, SE = 35.805, p = .0067, were
significant. We do not believe that these differences are large
enough to provide strong grounds for rejecting any of the models,
though CRU is also disfavored because it mispredicted serial
position effects in accuracy. Thus, the best conclusion may be
that we have two and maybe three viable models of how attention
is focused on memory. Future research may find ways to distin-
guish them.

Figure 15
Delta Plots for Experiments 2–6

Note. Mean compatibility effects across contexts, target type, and partici-
pants as a function of the .1, .3, .5, .7, and .9 quantiles of the response time
distributions.
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Weighing Attention in Memory

OVL, SEM, and CRU provide input to a racing diffusion decision
process that chooses a response.Wemodeled three kinds of input: the
local match, which compares the cued item with the cued position in
thememory list, the item recognitionmatch, which compares the cued
item with the memory list as a whole, and the global joint match,
which compares the probe and the memory list item by item. The
decision model assumes the participant assigns attention weights to
each kind of input: wL for the local match, wI for the item recognition
match, andwJ for the global joint match. The match values, defined in
Equations 14–16, were based on calculations on the model-specific
representations. The attention weights, defined in Equations 20 and
21, were estimated in model fitting.
The factorial design of the model sets we fitted allowed us to assess

the importance of the three kinds of input in producing good fits. The
local match was included in all experiments and was only allowed to
vary in the item recognition experiment (6). The item recognition
match was important for each model in each experiment that included
probes that were not in the study list (2–6). The global joint match was
important but less consistently than the item recognition match.
We assessed the importance of the three kinds of matches in the

decision by comparing attention weights across experiments. The
weights for the best-fitting OVL, SEM, and CRU models in each
experiment are plotted in Figure 16. Averaged over models, the mean
weights for the cued recognition Experiments (2–5) were wL = .8471,
wI = .1056, and wJ = .0389. The local match and item recognition
weights flipped in the item recognition Experiment (6). Averaged
across models, the mean weights werewL = .1304 andwI = .8696 (wJ

was not included in the best-fitting models). This suggests that OVL,
SEM, and CRU may be able to accommodate cued and item recogni-
tion by adjusting attentional strategies.
The low weight on the global joint match belies its importance in

accounting for the compatibility effects. We compared the predicted
compatibility effects in the best-fittingmodels that included the global
joint match with the predicted effects in models that did not include
the global joint match but shared all the other parameters. The results
were very similar across models and experiments (2–4 for OVL and
SEM; 2–5 for CRU). Overall, the mean predicted compatibility
effects were .1559 for accuracy and 80 ms for RT when the global
joint match was included. They decreased to .0655 and 31 ms when
the joint global match was excluded. Thus, the global joint match
contributes substantially to the compatibility effect.
The reason why the attention weights on the global joint match

were so small is that the global joint match values were quite large
compared to the local match and item recognition match values.
This can be seen in the definitions of the match values in
Equations 14–16, which are reproduced below for convenience:

μL = qi · mi ðlocal matchÞ

μI =
XN
j=1

qi · mj ðitem recognition matchÞ

μJ =
XN
j=1

qj · mj ðglobal joint matchÞ

The local match compares one item from the probe with one item
in memory. Its maximum value is qi·mi. The item recognition match

compares one item from the probe with each item in memory. Its
maximum value is qi·mi for the probed item plus qi·mj for each
nonprobed item, and qi·mj is essentially zero because the item
vectors are orthogonal. However, the maximum joint match value
is 6 × qi·mi when the probe context is the same as the memory list.
Thus, it contributes substantially to RT and accuracy despite the low
attention weight paid to it.

We considered normalizing the match strengths so they occupied
the same range but we decided against it because we could find no
principled reason for doing it. A global match may well have a
stronger effect on the memory system than a single-item match. We
decided to let the attention weights reduce the match values,

Figure 16
Attention Weights in Experiments 1–6

Note. Attention weights for local match (wL), item recognition match (wI),
and global joint match (wJ) as a function of experiment.
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assuming that the attention system has to balance the strengths of the
signals it receives anyway. It might deal with stronger signals that
are less important by assigning weights that are low enough to limit
their influence (Logan, 1980).
Our finding that a global joint match is important in producing the

compatibility effect in the episodic flanker task provides some
support for theories of the perceptual flanker task that assume global
matches (Cohen et al., 1992; Hübner et al., 2010; White et al.,
2011). However, our implementation of the global match is different
from theirs, and that limits generalization. Our results encourage
further exploration of the role of global matches in flanker compati-
bility effects in memory and perception.

Searching and Orienting Attention to Memory

Like the Eriksen and Hoffman (1973) flanker task, the episodic
flanker task requires participants to find the cue and move
attention to the cued item in memory. We did not provide a
computational account of these important processes, though it is
clear they had strong effects in the data. There were serial position
effects in RT and accuracy in all of the cued recognition experi-
ments (1–5) and none in the item recognition experiment (6; see
Figure 14). We modeled the effects on accuracy with OVL, SEM,
and CRU because the serial order models on which they are based
all predict serial position effects. We modeled the effects on RT
as a combination (sum) of effects on OVL, SEM, and CRU and
effects on residual processes that represent the time required to
find the cue and orient attention. Residual time was allowed to
vary with serial position in all six experiments (see Tables C1–C3).
In the cued recognition experiments (1–5), it produced a bow-
shaped curve like the serial position effect in the RT data. In the
item recognition experiment (6), it was flat like the RT data. Thus,
searching and orienting seem necessary to account for the episodic
flanker data. An important goal for future research is to develop
computational models of these processes that interface with OVL,
SEM, or CRU. Perhaps they can account for some of the mis-
predictions in the present models.
One way to extend the models to account for searching and

orienting is to have them step through the probe display serially from
the left or right side until the cue is found, and then make the same
number of steps in the same direction in the memory representation
to find the cued item (Chan et al., 2009). This appears to be the only
option for OVL. SEM provides a more direct solution: Cue position
may be represented with start and end codes without having to step
through the probe display. The caret underneath the cued item
should be easy to find without serial search (Duncan &
Humphreys, 1989; Wolfe, 1994), and the cue’s position code can
be used to probe the memory representations directly, without serial
search (Figure 4).
CRU requires something in between. The cue context could be

created by stepping through the probe display up to the cued
location, updating context in each step, and then using the context
at the cued location to probe memory directly (Figure 5). In this
formulation, the cue context would match the stored contexts only
if the uncued letters were the same. It would not work if the
contexts mismatched because nontarget letters are orthogonal and
do not match. We have explored more general context represen-
tations that contain the list element and a value representing the
sum of the item element values (and so is independent of item

identity). The list element decreases with serial position and
the sum of the item elements increases. The ith list element
equals ρ(i−1) and the sum of the item elements for the ith position
equals [1−{ρ(i−1)}2]1/2. A probe vector constructed in this way
would match a similarly-constructed vector for the same position
without having to step through the memory list. However, these
solutions are speculative and do not exhaust the range of
possibilities.

Implications for Memory

What does it mean to say memory retrieval is attention turned
inward? Calling it attention does not change the process—a rose
by any other name would smell as sweet—so what is gained? We
think of attention as a name for a set of computational problems
that involve selecting information from a set of alternatives.
Memory retrieval names a similar set of computational problems.
Attention theorists usually frame the problem in terms of select-
ing perceptual information. Retrieval theorists frame the problem
in terms of selecting memorial information. The different frames
emphasize different aspects of the computational problems.
Together, they provide a more complete picture of the computa-
tions, which can lead to stronger theory.

A general benefit of thinking of attention and retrieval as the
same process is a reduction in the number of constructs that need
to be explained and an increase in the number of constraints on
the constructs. Theories of retrieval need to address constraints
on attention and theories of attention need to address constraints
on retrieval. Theories of retrieval often talk as if attention
operates in the background, choosing inputs and forming cues,
but they rarely consider the how it implements those operations.
Theories of attention often talk as if attention provides inputs
to memory without addressing how those inputs drive retrieval. If
attention and retrieval are the same process, then theories
must address all these operations in a single computational
model. The constraints make the problem harder but promise
a more comprehensive theory that covers a broader range of
phenomena.

Another general benefit of thinking of retrieval as attention
turned inward is an emphasis on tasks that manipulate cues that
address single elements of a structure like a memory list, a
sentence, or a story. Many memory theories have addressed
the free recall task, in which participants are required to recall
longer lists in any order, claiming that recall depends on many
different cues, including list cues, context cues, position cues,
item cues, and beginning- or end-of-list cues. However, free
recall provides little experimental control over which cues parti-
cipants use at different times in the task; participants are “free” to
choose the cues that suit them best. Cued recall provides more
control, as the experimenter chooses the cues instead of the
participant, allowing for greater insight regarding how cues guide
retrieval (e.g., Wilson & Criss, 2017; Wilson, Kellen & Criss,
2020). Many memory theories have addressed item recognition
tasks, in which participants must say whether or not a probe item
appeared in a list. The task can be done by comparing the probe
(cue) with the whole list without focusing on a single member
(Anderson, 1973). Again, we have learned a lot from experiments
that manipulate the nature of the recognition probe and its
relations to the items on the list (Cox & Shiffrin, 2017), but
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we could learn more from cued recognition tasks that require
focusing on a single item in the list (Oberauer, 2003). Experi-
ments on cued recall and cued recognition should complement
and extend our understanding of free recall and item recognition,
inviting us to theorize about retrieval more comprehensively, as
attention turned inward.

Sharpening the Focus of Attention on Memory

The episodic flanker task was designed to measure the focus of
attention onmemory. The novel contribution to thememory literature is
the idea that the sharpness of focus may vary. Each of the three models
controls the sharpness of focus, OVLwith its spread parameter σ, SEM
with its start and end decay parameters S and E, and CRU with its
updating parameter β. We assume that participants can control these
parameters voluntarily (Logan & Gordon, 2001), though Experiments
1–6 do not test that assumption.
Sharpening the focus of attention on memory will have bene-

ficial effects. Following the insight in Eriksen’s original spotlight
model, a sharper focus excludes distractors and therefore reduces
noise in the decision process. Figures 4–6 illustrate the effects of
noise from distractors in OVL, SEM, and CRU caused by
similarity in item distributions, position codes, and contexts.
The probe vector qi activates the item in position i in memory
but it also activates its neighbors in proportion to their similarity,
and the neighbors are added to the memory vector mi in propor-
tion to their activation. Sharpening the focus would reduce
activation of the neighbors and reduce the noise they contribute
to the memory vector. The activated items may also activate
associated items, which could contribute noise to the decision.
Sharpening the focus would reduce this noise as well. The
reduced noise would produce faster and more accurate decisions.
However, the benefits of sharpening the focus may be limited.
When applied to serial recall, OVL, SEM, and CRU all rely
on overlap of adjacent items to represent order. A sharp focus
that excluded all the neighbors would lose information
about order.

Focusing Attention and Filtering

In the attention literature, the episodic and perceptual flanker
tasks are examples of a broad class of filtering tasks, in which items
are selected on the basis of one attribute (location) and responses are
selected on the basis of another (identity; Broadbent, 1971;
Bundesen, 1990; Kahneman et al., 1983; Treisman, 1969). Early
shadowing experiments had people select messages to repeat by ear
or by voice (Cherry, 1953). Partial report experiments had people
select letters to report based on location, color, and category
(Sperling, 1960). Visual search experiments had people search
through subsets of items defined by color and other features
(Bacon & Egeth, 1997).
Filtering tasks provide benchmark effects that challenge theo-

ries of attention, and many different explanations of filtering have
appeared over the years. Bundesen’s (1990) theory of visual
attention (TVA) provides an explanation that we find particularly
useful (Logan, 2002). TVA solves the filtering problem by adding
a dimension to the decision process that distinguishes targets
from distractors but does not (necessarily) distinguish alternative
targets from each other. If the target is an X and it is red among

black distractors, then X+red is a more distinctive target repre-
sentation than X. The more distinctive target representations
reduce the number of distractors that must be considered, and
that facilitates performance (Duncan &Humphreys, 1989; Wolfe,
1994). More generally, adding a dimension that distinguishes
targets from distractors increases the distance between them in
multidimensional similarity space, which reduces noise and
makes them easier to discriminate (Logan, 2002). This is the
essence of differentiation theories of memory (Cox & Criss,
2020; Cox & Shiffrin, 2017; Gibson, 1940; Kilic et al., 2017;
McClelland & Chappell, 1998; Nosofsky & Zaki, 2003; Shiffrin
& Steyvers, 1997).

Filtering is related to perceptual grouping. It is easier to filter
objects that group together perceptually through similarity in loca-
tion, shape, or dynamics (Kahneman & Henik, 1981; Merikle,
1980). TVA would explain the filtering advantage as adding a
dimension that distinguishes the groups (Bundesen, 1990; Logan,
2002). Grouping can be explained by shared features: Sets of objects
that share conspicuous features group together, and sets of objects
that differ in conspicuous features form separate groups. Grouping is
easier when within-group similarity is high and between-group
similarity is low.

Filtering in Categorization

Similar principles of organization govern unsupervised cate-
gory learning (Love et al., 2004; Pothos & Chater, 2002). When
people are asked to organize perceptual and conceptual entities
into categories without feedback, they produce categories with
high within-category similarity and low between-category simi-
larity. Similar principles govern supervised category learning, in
which people learn to organize entities into categories with
feedback based on rules (Bruner et al., 1956) or exemplars
(Medin & Schaffer, 1978). Nosofsky et al. (1994) characterized
rule and exemplar learning in terms of attention to dimensions of
the stimuli. Rule-based categorization involves attending to a
single dimension that divides the categories. Exemplar-based
categorization involves dividing attention between dimensions
so that exemplars in the same category have high similarity and
exemplars in different categories have low similarity. Rules may
be easier to learn. Johansen and Palmeri (2002) noted a shift from
rule-based to exemplar-based categorization with practice, sug-
gesting that people begin with simple rules and abandon them
when they encounter exceptions.

The general idea emerging from these investigations is that atten-
tion acts on objects in multidimensional similarity space, reducing the
space to a set of relevant dimensions that distinguish the objects and
finding weights for the dimensions that support adequate performance
on the task at hand. The important lesson from filtering tasks is that
performance can be improved by adding dimensions that discriminate
targets from nontargets, group members from nonmembers, and
category members from nonmembers. Sometimes performance is
facilitated by increasing the number of dimensions. Increasing load
generally impairs performance.

Filtering and Memory Organization

We believe these principles apply to organization in memory.
Theorists share the general idea that objects are represented in
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multidimensional similarity space in memory (i.e., memory re-
presentations are distributed; Eich, 1982, 1985; Hintzman, 1984,
1986; Murdock, 1982, 1993; Nosofsky, 1986; Shiffrin &
Steyvers, 1997). Encoding processes produce representations
of list items in regions of that space, and retrieval processes
perform computations on those representations that extract infor-
mation about the items. Memories can be organized by semantic,
orthographic, phonological, and temporal similarity (Cox et al.,
2018; Freeman et al., 2010; Underwood et al., 1978). Each kind
of similarity provides a set of features items can share, and items
that share the same features tend to group together, just as in
perception.
Temporal similarity is a core component of memory theories, as

it is one of the dimensions that defines the context in which an
event was experienced (though spatial context is important as well;
R.C. Anderson & Pichert, 1978). Episodic memory tasks typically
entail recognition or recall of material from a designated study
context, and memories formed in that context will share contextual
features. People rely on these features to mitigate against intrusions
of material from other contexts (Klein et al., 2007; Zaromb et al.,
2006). While this function of context is often left implicit in formal
specifications of memory theories (e.g., Murdock, 1982), other
memory theories model context explicitly as part of the retrieval
process (Cox & Shiffrin, 2017; Dennis & Humphreys, 2001;
Humphreys et al., 1989; Osth & Dennis, 2015; Raaijmakers &
Shiffrin, 1981). Temporal organization is present within memory
lists as well, as exemplified by temporal contiguity effects
(Kahana, 1996). These effects are explained by models like
TCM (Howard & Kahana, 2002), CMR (Polyn et al., 2009),
and CRU (Logan, 2018, 2021) in terms of an evolving temporal
context (see also Davelaar et al., 2005; Mensink & Raaijmakers,
1988). Shared temporal context features can act to distinguish
nearby items from the rest of the list (Healey et al., 2019), like
OVL, SEM, and CRU.
Memory organization is often studied with categorized lists,

which show effects like those of selective attention. In free recall,
participants tend to recall items from the same categories together
(Bousfield, 1953; Kahana & Wingfield, 2000), as if the category
is a feature that distinguishes the retrieved items from the rest (cf.
Sirotin, Kimball & Kahana, 2005). The degree of output inter-
ference in recall (Roediger & Schmidt, 1980; Smith, 1971;
Wilson et al., 2020) and recognition (Criss et al., 2011) as
well as the amount of false recognition (Shiffrin et al., 1995)
and recall intrusions (Deese, 1959; Roediger & McDermott,
1995) all depend strongly on the number of exemplars in the
category that is tested and depend much less on the number of
exemplars in categories that are not tested. Finally, recognition
from a list of categorized words is enhanced when the words are
organized by category at test (Jacoby, 1972). These results
suggest that attention is focused on the tested category and
excludes the untested categories from consideration, like focus-
ing on one color in visual search reduces the effects of the number
of items in other colors (Bacon & Egeth, 1997). In multidimen-
sional terms, the cued category adds a dimension of similarity that
increases the distance between cued and uncued items. Sharpen-
ing the focus of attention in this way reduces the overall amount
of interference, restricting it to the cued category while reducing
interference from items in uncued categories.

Like attention researchers, memory theorists have long recog-
nized the need to balance different cues (Atkinson & Shiffrin,
1968). For example, grouping by semantic category and temporal
contiguity can compete as participants shift between cues (Polyn
et al., 2009). We view these effects as the result of focusing
attention on specific retrieval cues (category, contiguity) and
shifting attention between cues when one cue is no longer
effective, as in the SAM model (Gillund & Shiffrin, 1984;
Raaijmakers & Shiffrin, 1981). Our emphasis on attention invites
consideration of the sharpness of the focus of attention and how
that sharpness is achieved.

Like theories of attention, theories of memory differ in how they
combine multiple cues. Some theories, generally those based on
spreading activation (e.g., Anderson & Bower, 1972; Collins &
Loftus, 1975; Collins & Quillian, 1969), assume that cues combine
additively (e.g., Anderson, 1973; Buchler et al., 2011), like the
local, item and global matches in our models. However, various
lines of evidence support intersectional or configural cue combina-
tions in retrieval as well (Cox & Criss, 2017; Dosher & Rosedale,
1989, 1997; Murnane et al., 1999; Ratcliff & McKoon, 1988).
Examples of these include the multiplicative cue combination in
SAM (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981) and
the interactive cue mechanism in the Matrix model (Humphreys
et al., 1989). These mechanisms enable combinations of cues to
specify sets of items in memory with greater precision, like TVA
(Bundesen, 1990; Logan, 1996, 2002). We interpret the choice of
cues and the application of cues to memory as attentional processes
that are aimed at separating targets from distractors. Following
Eriksen, we believe there is much to be learned about attention
to memory by manipulating cues and their properties.

The dynamic approach to recognition taken by Cox and Shiffrin
(2017) represents a first step toward integrating the processes of
attention and perception with those of retrieval and decision along
the lines we envision. Retrieval is driven by a probe of memory that
evolves over time as new features are sampled from the environment
and from knowledge. Memory traces are activated when they share
features with the dynamic probe and are deactivated when they
contain mismatching features. Attention is one of the processes that
governs which features enter the probe and when. Attention thus
determines which memory traces will become active and which will
be suppressed, enabling memory decisions that are sensitive to
different types of information at different times or in different tasks.
Operationalized this way, attention explains the influence of in-
structions on the dynamics of recognition from categorized lists
(Cox & Shiffrin, 2017) as well as differential weighting of item
versus associative information (Cox & Criss, 2020). In essence, by
allocating the features used to probe memory, attention sets the stage
for the subsequent drama of retrieval to play out (Logan, 1978).

Avoiding Distraction in Memory

The episodic flanker task was designed to measure the compati-
bility effect and the models were designed to dissect it. The relation
between the probe context and the memory list is not relevant to the
cued recognition judgment and provides no information about it. It
should be ignored but it is processed anyway, presenting the same
challenge to theory as perceptual compatibility effects. All three
models suggest the compatibility effect has two sources: the local
match and the joint global match. These sources, individually and in
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combination, have implications for the autonomy and automaticity
of flanker processing, which have beenmajor issues driving research
on compatibility (conflict) effects.
All three models attribute the compatibility effect that results from

the local match to a failure to focus of attention sharply enough on
the memory list. As in Eriksen’s original spotlight model (and
CTVA), attention is centered on the target, and flankers are pro-
cessed because they fall within the focus of attention. They fall
within the sampled region in OVL, and they are activated by the
cued position code in SEM and the cued context in CRU (see
Figures 4–6). Consequently, they are processed along with the
target, adding noise to the local match calculation that pushes the
decision process toward one response or the other. This processing
may be considered automatic in that it is obligatory (Moors & De
Houwer, 2006; Zbrodoff & Logan, 1986), but it is an obligatory
consequence of attention to the target. It is not automatic in the sense
of processing without attention. The idea that flanker effects result
from attention is consistent with studies that show perceptual
compatibility effects that vary with the focus of attention (Besner
et al., 1997; Kahneman & Henik, 1981).
The three models attribute the compatibility effect that results

from the global joint match to an inability to ignore distraction. We
assume the global joint match weight wJ was low to reduce the
influence of the context but not low enough to eliminate it. This
could be interpreted as automatic processing without attention
because context should not be attended after the focus has shifted
to the cued item. However, it may be possible to explain the data
with a shrinking spotlight model that first attends the whole memory
list and then sharpens the focus on the cued item (White et al.,
2011). In that theory, compatibility effects would reflect attentional
processing, not processing without attention.
Another possibility is that participants must attend to the list in

order to attend to an item in the list. The cued recognition requires a
judgment about the item and the list (“was that item in the same
position in the memory list?”), and it may be necessary to represent
the list to support the judgment (in the memory list). Logan and
Zbrodoff (1999) talked about supportive attention in processing
relations, arguing that both of the arguments of a relation had to be
attended in order to make judgments about the relation or use it to
guide processing. When asked, “Is John next to Paul?” the focus is
on John, but Paul and the relation between them must be attended to
make sense of the question. We suggest supportive attention to the
list may be necessary for retrieving and interpreting the items it
contains. Supportive attention may be enough to produce compati-
bility effects. Similar effects are found in text comprehension, where
context must be maintained and updated to interpret the main events.
Of the three models, CRU provides the most natural interpretation

of attending to the list while attending to the item. Its context
representations contain elements that represent the current list as
well as elements that represent the items (Figure 6; Logan, 2018,
2021). The list element performs a kind of filtering, adding a
dimension to the context representations that increases the similarity
within lists and decreases similarity between lists. The list element is
present in each of the stored contexts that represent list items, so
activating any of the contexts will activate others through similarity
to the list element (as well as similarity to the rest of the context).
However, the list element cannot be manipulated independently of
the elements that represent the items, and that restricts its utility as an
explanation of the global joint match effect. The list element

explains the contribution to the local match. It is only 1 of 7
contributors to the global joint match.

These remarks must be viewed as speculative. They follow from the
theories we considered but we do not know whether they also follow
from other theories that could be proposed, so our conclusions cannot
be definitive. They suggest possibilities and show they are feasible
computationally, but they do not rule out alternatives. A lot of open
questions remain about the interpretation of compatibility effects in the
episodic flanker task as well as the perceptual flanker task and other
conflict tasks. We hope the theory and data we have provided will
encourage theoretical and empirical work on the problem. There is a
lot to do.

Conclusions

Our purpose was to evaluate the conjecture that memory retrieval is
attention turned inward, accomplished by the same computational
mechanism that retrieves information from perception. We tested the
conjecture by developing an episodic memory version of the Eriksen
and Hoffman (1973) and Eriksen and Eriksen (1974) flanker task,
which addresses the selective nature of attention and allows us to ask
how sharply one can focus attention on a single item in memory. Our
experiments manipulated distance and context, which are the theo-
retically important factors in the perceptual flanker task. We found
strong effects in each experiment. We proposed three models of the
spotlight that implement space-based, object-based, and template-
based attention in theories of memory representations of serial
order. We found that all three models provided useful accounts of
the observed data. Together, these results support the conjecture
that memory retrieval is attention turned inward and encourage
further empirical and theoretical investigation. We have not tested
other implications of the conjecture or tested alternative perspec-
tives, so our conclusions should be regarded as speculative and
perhaps tantalizing.
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Appendix A

Model Fitting

Each model was implemented in Stan. The parameters for each
model and its variants were fit to the trial-by-trial responses of each
participant in each experiment. For each model variant and experi-
ment, data from all participants was fit simultaneously and hierar-

chically via gradient descent to find the set of parameters across
participants that yielded the maximum a posteriori probability. The
general structure of the estimation procedure is depicted in Figure A1.

Core Quantities to be Estimated

Let NP be the number of free parameters in a particular model
applied to a particular experiment. The core quantities that we
estimate are a vector of group means for each parameter of length
NP (ξ), a vector of scale values for each parameter also of length NP

(ψ), the Cholesky factor (Λ) of the NP × NP correlation matrix
between parameters, and a matrix Z of participant deflections that
has dimension NP × NS where NS is the number of individual
participants and the rows of Z are constrained to sum to zero
(such that Z only has NP × (NS−1) degrees of freedom).

Using these quantities, we can directly compute the NP × NS

matrix of parameters for each individual participant via P = ξ +
diag(ψ)ΛZ where diag(ψ) is an NP × NP diagonal matrix with
vector ψ along the diagonal and zeros elsewhere.

Parameter Transformations

The resulting matrix P contains parameter values that all lie on the
full real line, but many parameters in our models are restricted to
particular ranges, notably, some are constrained to be positive and some
are constrained to lie between 0 and 1. For parameters with restricted
ranges, we therefore transform the corresponding rows of P to go from
the full real line to the appropriate range, yielding a new matrix ~p of
transformed parameters. For parameters constrained to be positive, we
use the exponential transform (i.e., ~pi = exp(Pi) for parameter i that is
constrained to be positive). For parameters constrained to lie between 0
and 1, we use the logistic transform (i.e., ~pi = 1/(1+exp(−Pi))).

A special transformation is required for the weight parameters wr

because these are not only required to lie between 0 and 1, but are
also required to sum to one. Since there are at most three possible
matches that can contribute to the decision process and their weights
must sum to 1, there are at most 2 degrees of freedom; in general, if
there are NR matches allowed in a particular model variant, then
there are NR − 1 weight parameters to estimate. The resulting
weights for a given participant s are given by

w1s =
1

1 +
PNR−1

j=1 expPjs

wrs =
expPis

1 +
PNR−1

j=1 expPjs

where wrs = 0 for any match r not included in the particular model
variant. Note that this is equivalent to a “one-hot,” “softmax,” or
Luce’s choice procedure, where the underlying parameters to be

Table A1
Parameters, constraints, and possible values

Model Parameter Description Constraint
Value if
restricted

All q Boundary separation (0,∞) —

b Bias (0,1) —

Feedforward inhibition
between “yes” and “no”
accumulators

(0,∞) —

A Accumulator input scale (0,∞) —

wr Weight on comparison
term r

P
4
r=1 wr = 1 0

lr Strength of mismatch
relative to match on
comparison r

[0,∞) 0

Rk Mean of log residual time
for cued location k

(−∞,∞) Rk

constant
for all k

RC Effect of non-neutral
context on mean log
residual time

(−∞,∞) 0

sR SD of log residual time (0,∞) —

OVL sj Standard deviation of item
distribution at location j

(0,∞) j
constant
for all j

k Scale of standard
deviation in probe
representation relative
to memory

(0,∞) 1

SEM S0 Maximum magnitude of
start code gradient

(0,∞) —

E0 Maximum magnitude of
end code gradient

(0,∞) —

S Rate of decay of start code
gradient

(0,1) —

E Rate of decay of end code
gradient

(0,1) —

Concentration of position
coding in probe relative
to memory

(0,∞) 1

CRU β0Mem Initial rate of context
update in memory

(0,1) —

β0Probe Initial rate of context
update in probe

(0,1) β0Mem

δ Rate at which β persists
across positions

(0,1) 1

Each model was implemented in Stan. The parameters for each model and its
variants were fit to the trial-by-trial responses of each participant in each
experiment. For each model variant and experiment, data from all participants
was fit simultaneously and hierarchically via gradient descent to find the set of
parameters across participants that yielded the maximum a posteriori probability.
The general structure of the estimation procedure is depicted in Figure A1.
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estimated are “preferences” or “strengths” for each type of match,
and the preference/strength for the local match (r = 1) is constrained
to be 0 (such that exp 0 = 1).

Priors

We placed weakly informative priors on each quantity to be
estimated to keep parameters from getting too large or small and
posing numerical problems for optimization. All entries in Zij ˜N (0,1),
since these were constrained to sum to zero and would eventually be
scaled by ψ. Λ ˜ LKJ(2), where LKJ stands for the Lewandowski-
Kurowicka-Joe prior on correlation matrices. For parameters i that

would eventually be transformed to be strictly positive (or for those
that would be used to derive weights wr), we set ξi ˜N (0, .34) and ψi ˜
Exponential (2.96); these priors encouraged the resulting transformed
parameters to be on a unit scale (with median 1 and standard deviation
1). For parameters i that would eventually be transformed to lie
between 0 and 1, we set ξi ˜N (0,2.5) and ψi ˜ Exponential (.4) to
ensure that the resulting transformed values would be able to cover the
full 0–1 range under the logistic transformation. Any remaining
parameters simply had ξi ˜N (0,1) and ψi ˜ Exponential (1).

Likelihoods

For each trial in an experiment, we used the parameters for the
participant on the trial to compute all the values needed to obtain the
joint likelihood of their response and RT on that trial, as described
above. The final quantity to be maximized then consists of the summed
log-likelihood over all trials plus the log-prior probability of the
parameters. Maximizing this quantity yields the maximum a posteriori
estimate of parameter values for every participant in the experiment.

Coding of Positions

Several model variants allow parameters to vary as a function of
location within the string, notably the mean of the log-residual times as
a function of cued location k (Rk) and the spread of item distributions at
each position j in the Overlap model (σj). To minimize correlations
between parameters and overall lead to more efficient search of the
parameter space, we coded positions in terms of orthogonal polyno-
mials of degree 0–(N − 1), where N is the length of the string.

Orthogonal polynomials were computed by exploiting the QR
decomposition to create anN × Nmatrix κ. We first constructed matrix
Ywhere Yij = ði − N+1

2 Þj−1. Each column j of matrix Y thus encodes the
j − 1th power of each of the N locations, relative to the center of the
string (located at N+1

2 ). But these columns are not orthogonal to one
another, so to obtain orthogonal polynomials we take the QR decom-
position of Y = QR, where Q is an orthogonal matrix and R is upper
triangular. The resulting matrix Q encodes the orthogonal polynomials,
though we additionally normalize each column to have unit variance
and replace the first columnQ.,1 with ones rather than zeros to represent
a constant effect. These additional transformations yield matrix Q′.
Entry Q′k,j is the value of the polynomial of order j − 1 at location k.

By including the full set of polynomial orders, we are still
allowing different parameters for each location. But this means that
the corresponding estimated parameters are weights on different
effects of position, from constant (Order 0) to linear (Order 1) to
quadratic (Order 2), up to Order 5, rather than values for each
separate position. Nonetheless, the mean log-residual time at
position j is obtained in a straightforward manner by summing
Rk = PR0Q

′

k,1 + PR1Q
′

k,2 + : : : + PR5Q
′

k,6 where each PRj is the
parameter representing the effect of order j on log-mean residual time.

Figure A1
Model Structure

Note. Structure of the model by which parameters were estimated for each
model applied to each experiment. moving from the bottom to the top of the
figure, each model assigns a likelihood to the response (“yes” or “no”) and
Response Time (RT) on each trial. The likelihood on each trial is conditional
on the studied string and test probe for that trial as well as the model
parameters for the participant that produced that trial. These participant
parameters are, in turn derived by transforming a set of “raw” parameters
which are jointly distributed as a multivariate normal across participants. The
parameters of that multivariate normal distribution—the mean vector (Σ),
scale vector (Ψ), and correlation matrix (with cholesky factor Λ)—describe
the group-level distribution of parameters across participants, while a matrix
of deflections (Z) describes how participant parameters differ from the group
mean.

(Appendices continue)
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Appendix B

Methods and Inferential Statistics

Experiment 1 Method

Participants

We sampled 32 participants from the Vanderbilt University
community. To ensure adequate data, we replaced participants
with overall accuracy (the average of hit rate and correct rejection
rate) of 60%. Two participants were replaced for this reason.
Demographic data are not available at this time because they are
stored in a locked cabinet in our laboratory and we are not allowed to
enter the building because of COVID-19.

Apparatus and Stimuli

The experiment was run in E-Prime 2.0 (Psychology Software
Tools, 2012) on ASUS M32BF desktop computers with BenQ
XL2411Z flat screen monitors. Each participant was tested in a
separate testing room. The letters in the memory and probe
displays were the 20 consonants rendered in capitals in Courier
New font, size 26. Responses were taken from the Z and M keys
on standard QWERTY keyboards, which were the only responses
the program accepted.
Each trial began with a fixation cross (+) centered horizontally

and vertically on the screen, which was presented for 500 ms. It
was replaced by a six-consonant memory list, which was also
centered horizontally and vertically on the screen (e.g.,
XTMDVP). It was displayed for 500 ms and replaced by a blank
screen for 2000 ms. Then the probe display appeared and remained
on until the participant responded. The probe display consisted of
one capital letter with a caret (^) cue underneath it, surrounded by #
symbols (e.g., ###D##). The probe display was centered horizon-
tally and vertically, and the monospace font made spacing identical
to the memory display. When the participant responded, the screen
went blank for 500 ms, after which the fixation point for the next
trial appeared.

Procedure

The basic design of the experiment involved 60 trials, in which
each serial position was probed 10 times, 5 times for “yes” trials and
once for each of the 5 possible “no” trials (i.e., letters from the
uncued list positions). There were 12 replications of the basic design
for a total of 720 trials divided into 6 blocks of 120. A different set of
six unique memory letters was sampled at random for each trial for
each participant. Each block consisted of two replications of the
basic design presented in random order. The experiment began with
instructions and a set of 12 practice trials that were identical in
structure to the experimental trials and probed each serial position
twice. All participants saw the same practice trials but the order was
randomized separately for each participant.
The instructions, presented in Table B1, described the sequence

of displays and the task, including the stimulus to response mapping,

which was counterbalanced across participants with half pressing z
for “yes” and m for “no” and half doing the opposite. Breaks were
encouraged between blocks of 120 trials.

Experiment 1: Results

The data were trimmed to exclude trials with RT > 4,000 ms,
which resulted in removing .6% of the data. Mean RT for correct
trials and the probability of saying “yes” (P(“Yes”)) on all trials
were calculated for each cell of a 6 (probe position) × 6 (probe
letter) design.

Distance and Position Effects

We performed 6 (probe letter) × 6 (probe position) analyses of
variance (ANOVAs) on the mean correct RTs and P(“Yes”)
data. For RT, the main effect of probed letter, F(5, 55) = 7.292,
MSe = 23744.891, p < .0001, η2p = .190, probed position,
F(5, 55) = 38.414, MSe = 53426.047, p < .0001, η2p = .553, and
the interaction between them,F(25, 775) = 6.196,MSe = 18428.123,
p < .0001, η2p = .167, were significant. For P(“Yes”), the main
effect of probed letter was not significant, F(5, 55) = 1.237,MSe =
.011, p = .294, η2p = .038, but the main effect of probed position,
F(5, 55) = 4.682, MSe = .019, p = .001, η2p = .131, and the
interaction between them, F(25, 775) = 157.572, MSe = .018,
p < .0001, η2p = .836, were significant.

To focus more precisely on the distance effects, we tested three
planned orthogonal contrasts that decompose the letter x position
interaction. The contrast weights are presented in Table B2. The first
contrast tests the distance effect in the mismatch items (off diag-
onals) with weights that form an inverted V. The second contrast
tests the symmetry of the distance effect in the mismatch items. The
third contrast tests the difference between match and mismatch
items. The error term for the contrasts is the error term for the letter x
position interaction.

We tested distance effects with planned contrasts. The distance
contrast was highly significant in the RTs, F(1, 775) = 307.836,
MSe = 18428.123, η2p = .178 p < .0001, and the P(“Yes”) data,
F(1, 775) = 88.967, MSe = .018, η2p = .103, p < .0001. The
distance effect was symmetrical for both measures. The symme-
try contrast was not significant for RT, F(1, 775) = 2.776,
MSe = 18428.123, η2p = .0002, p = .096, or for P(“Yes”),
F(1, 775) = .048, MSe = .018, η2p = .00004, p = .8258. The
contrast between match and mismatch trials was significant for
RT F(1, 775) = 8.432, MSe = 18428.123, η2p = .0005,
p = .0038, and for P(“Yes”), F(1, 775) = 3753.476, MSe =
.018, η2p = .829, p < .0001. The latter contrast reflects the
difference between hits (P(“Yes”|match)) and false alarms
(P(“Yes”|mismatch)) and so reflects sensitivity: d
′ = z(P(“Yes”|match))−z(P(“Yes”|mismatch)).

(Appendices continue)
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Model Fits

The model fits implemented a design in which residual time was
fixed or allowed to vary with position for all models, σ was fixed or
allowed to vary with position in the OVLmodels, and β was fixed or
allowed to decay (δ) across position in the CRUmodels. Thus, there
were four OVL models, two SEM models, and four CRU models.
There was no variation in context and all probes were drawn from
the memory list, so the models included only the local match
component of drift rate (Equations 14 and 17).
The factorial design allowed us to assess the effects of model

mechanisms on goodness of fit across the set of models. Choosing
the best model discards information available in the remainder of the
set. We assessed these effects in within-participants ANOVAs and t
tests on BIC scores from each participant. The sampling distribution
of BIC scores should be normal by the central limit theorem. BIC is
based on the (negative) sum of log likelihoods, and were summed
over 720 trials. Convergence on the normal distribution is good for
sums of 30 or so values, so the convergence here should be
excellent. The summary tables for 2 (residual time fixed or varied) ×
2 (memory spread fixed or varied) ANOVAs on the BIC scores for
the OVL model appear in Table B3. Summary tables for 2 (residual
time fixed or varied) × 2 (β fixed or decayed) ANOVAs on the BIC
scores for the CRU models also appear in Table B3.
Variation in residual time with serial position produced lower

likelihoods for all three models but did not survive the penalty for
the five extra parameters in the BIC scores for OVL and SEM
(t(31) = .164, SE = 5.238) though it was significant for CRU.
Because of the consistent likelihood advantage, we decided to let
residual time vary in fitting all the subsequent models. To reduce the

number of models we fit, the subsequent models did not include
a condition in which residual time was fixed. We can determine
whether variation in residual time is important by examining how it
varies with position.

Variation in model-specific parameters also affected BIC. In OVL,
variation in memory spread reduced BIC significantly, so we decided
to include the comparison in all subsequent fits. In CRU, variation
in β decay had weaker effects, not reducing BIC significantly. Nev-
ertheless, we decided to include the comparison in all subsequent fits.

Model Predictions

Goodness of fit was assessed by calculating the correlation and the
root-mean-squared deviation (rmsd) between observed and predicted
means in the 6 × 6 design for each participant. For OVL, the mean
correlations across participants were .916 (.089) for P(“Yes”) and .662
(SD = .148) for RT; the mean rmsds were .107 (.033) for P(“Yes”)
and 147 (78) ms for RT. For SEM, the mean correlations across
participants were .896 (.129) for P(“Yes”) and .667 (SD = .138) for
RT; the mean rmsds were .107 (.033) for P(“Yes”) and 147 (78) ms for
RT. For CRU, the mean correlations across participants were .887
(.130) for P(“Yes”) and .662 (.156) for RT; the mean rmsds were .117
(.038) for P(“Yes”) and 128 (35) ms for RT.

Experiment 2: Method

Participants

We sampled 32 participants from the Vanderbilt University
community. No participants were replaced for low accuracy. Demo-

(Appendices continue)

Table B1
Instructions for Experiments 1–4 Consisted of the Following Five Displays. Displays 1–4 Were Presented at the Beginning of the Experiment
The Last Display Was Presented After Each Block of Trial (120 Trials in Experiment 1; 126 Trials in Experiments 2–4)

(Display 1)
In this experiment you will see strings of letters that you have to memorize.
A “+” sign will be presented in the center of the screen, signaling that a new trial is about to begin. The “+” will disappear, and the string you need to
remember will replace it.

The string you need to remember will disappear after a short period, and a new string will be presented in its place. An arrowwill be below one of the letters in the
new string.

The letter with the arrow beneath it may be the same or different from the letter in the same position in the first string. Your task is to decide whether the
letter is the same or different.

Press Enter to continue.

(Display 2)
If the letter with the arrow beneath it is the same as the letter in the same position in the first string, press [YesResponse].
If it is different from the letter in the same position in the first string, press [NoResponse].
Please make your response as quickly and accurately as possible.
Press Enter to continue.

(Display 3)
If you have any questions, or if anything is unclear, please ask the experimenter at this time.
You will now do some practice trials. Press the 's’ key when you are ready to begin the practice.
(Display 4; after completion of the practice trials)
If you have any questions, or if anything is unclear, please ask the experimenter at this time.
You are about to begin the experiment. You will have the opportunity to take short breaks every 10–15 min.

(Display during break screen)
You now have the chance to take a short break
When you are ready to continue, press Enter.

Note. Yes Response and No Response = z or m key depending on counterbalancing.
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graphic data are not available at this time because they are stored in a
locked cabinet in our laboratory and we are not allowed to enter the
building because of COVID-19.

Apparatus and Stimuli

The apparatus and timing were the same as in Experiment 1. The
stimuli were made from the same font. The main difference was in
adding same and different contexts to the probe display (see
Figure 3). Same contexts repeated the letters in the memory list.
Different contexts sampled six letters that had not appeared in the
memory list. Neutral contexts were the same as in Experiment 1.

Procedure

The procedure was the same as in Experiment 1. The instructions
were the same except that the three contexts were explained. The cued

letter in the probe was either a target,which matched the correspond-
ing letter in the memory list, Lag 1, which was one position away
from the target, Lag 2, which was two positions away from the target,
and new, which was selected at random from letters that were neither
in the memory list nor in other locations in the probe display. The
basic design was 3 (context: same, different, neutral) × 4 (probed
letter: target, Lag 1, Lag 2, new). To equalize the number of match and
mismatch trials, targets were probed three times for every time Lag 1,
Lag 2, and new items were probed. Thus, there were three contexts
and six probed letter trials, and each position was probed equally
often, producing a total of 3 × 6 × 6 = 108 trials. These trials were
repeated seven times, producing a total of 756 trials. The order was
randomized separately for each participant and breaks were al-
lowed every 126 trials.

Experiment 2: Results

The data were trimmed to exclude trials with RT > 4,000 ms,
which resulted in removing 1.3% of the data. Mean RT for correct
trials, accuracy (the probability of responding correctly), and
P(“Yes”) were calculated for each cell of a 3 (context: same,
different, neutral) × 4 (probed letter: target, Lag 1, Lag 2, new)
design. Accuracy and P(“Yes”) plot the same data differently. We
included the accuracy data to test for the predicted crossover
interaction. We included the P(“Yes”) data to show distance effects
in the same format as Experiment 1.

Distance and Compatibility Effects

We performed 3 (context) × 4 (probed letter) ANOVAs on the
RT, accuracy, and P(“Yes”) data. For RT, the main effect of context,
F(2, 62) = 78.938, MSe = 10972.205, p < .0001, η2p = .718,
probed letter, F(3, 93) = 38.024, MSe = 15948.912, p < .0001,
η2p = .551, and the interaction between them, F(6, 186) = 15.917,
MSe = 6460.346, p < .0001, η2p = .339, were significant. For
accuracy, the main effect of context, F(2, 62) = 55.750, MSe =
.004, p < .0001, η2p = .643, probed letter, F(3, 93) = 34.013,
MSe = .014, p < .0001, η2p = .523, and the interaction between
them, F(6, 186) = 54.991, MSe = .004, p < .0001, η2p = .639,
were significant. For P(“Yes”), the main effect of context,
F(2, 62) = 93.095,MSe = .010, p < .0001, η2p = .750, themain effect
of probed position, F(3, 93) = 397.020, MSe = .019, p < .0001,
η2p = .928, and the interaction between them, F(6, 186) = 2.860,
MSe = .018, p = .015, η2p = .084, were significant.

The crucial contrast assessing the compatibility effect (same
match and different mismatch vs. same mismatch and different
match) was highly significant for RT, F(1, 186) = 110.420,
MSe = 6460.346, η2p = .373 p < .0001, and accuracy, F(1, 186) =
351.412, MSe = .004, η2p = .654 p < .0001. We estimated the
distance effect by comparing Lag 1 with Lag 2 in the RT and
P(“Yes”) data, collapsing over contexts. For RT, the 38 ms distance
effect was significant, F(1, 93) = 4.195, MSe = 15948.912,
η2p = .043, p = .043. For P(“Yes”), the .065 distance effect was
significant, F(1, 93) = 10.223, MSe = .020, η2p = .099, p = .002.
We also compared Lag 2 with new items. For RT, the 125 ms
difference was significant, F(1, 93) = 15.742, MSe = 15948.912,
η2p = .145, p = .0001. For P(“Yes”), the -.0009 difference was not
significant, F(1, 93) = .203, MSe = .020, η2p = .002, p = .653.

(Appendices continue)

Table B3
Analyses of Variance BIC Scores in Experiment 1

Effect df MSe F p η2p

Overlap model
R 1,31 1151.1 3.09 .089 .091
M 1,31 182.5 16.84 <.0001 .352
R × M 1,31 1271.2 .67 .418 .021

Context retrieval and updating model
R 1,31 2540.4 9.29 .005 .231
δ 1,31 607.1 2.13 .155 .064
R × δ 1,31 42.8 8.19 .007 .209

Table B2
Planned Orthogonal Contrast Weights for Assessing Distance,
Symmetry, and Match-Mismatch Effects in Experiment 1

Probed position

Probed letter

Distance
1 2 3 4 5 6

1 0 4 1 –2 –5 –8
2 4 0 4 1 –2 –5
3 1 4 0 4 1 –2
4 –2 1 4 0 4 1
5 –5 –2 1 4 0 4
6 –8 –5 –2 1 4 0

Symmetry
1 2 3 4 5 6

1 0 1 1 1 1 1
2 –1 0 1 1 1 1
3 –1 –1 0 1 1 1
4 –1 –1 –1 0 1 1
5 –1 –1 –1 –1 0 1
6 –1 –1 –1 –1 –1 0

Match-mismatch
1 2 3 4 5 6

1 5 –1 –1 –1 –1 –1
2 –1 5 –1 –1 –1 –1
3 –1 –1 5 –1 –1 –1
4 –1 –1 –1 5 –1 –1
5 –1 –1 –1 –1 5 –1
6 –1 –1 –1 –1 –1 5
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Model Fits

To determine the importance of the model components we ran 2
(item recognition match) × 2 (global joint match) × 2 (residual
time adjustment) ANOVAs on BIC for each set of models. The
OVL and CRU ANOVAs each included another model-specific
parameter (memory spread in OVL, β decay in CRU). Summary
tables are presented in Table B4.
Item recognition match had strong effects on BIC in all three sets

of models. Global joint match had less consistent effects. It was
significant in OVL and CRU but not in SEM. Residual time
adjustment was only significant for SEM and CRU. Varying the
OVL-specific memory spread parameter reduced goodness of fit
significantly. The best-fitting OVLmodel fixed memory spread over
position (Table 2). Varying the CRU-specific β decay reduced
goodness of fit significantly. The best-fitting CRU model fixed β
across positions.

Model Predictions

Goodness of fit was assessed by calculating the correlation and
the rmsd between observed and predicted means in the 3 × 4 design
for each participant. For OVL, the mean correlation across partici-
pants was .6122 (.1183) for RT and .8624 (.0835) for P(“Yes”). The
mean rmsd was 213 (49) ms for RT and .1490 (.0378) for P(“Yes”).
For SEM, the mean correlation was .6081 (.1191) for RT and .8948
(.0578) for P(“Yes”), and the mean rmsd was 213 (49) ms for RT
and .1348 (.0265) for P(“Yes”). For CRU, the mean correlation was
.6098 (.1269) for RT and .8573 (.0850) for P(“Yes”). The mean
rmsd was 213 (52) ms for RT and .1509 (.0376) for P(“Yes”).

Experiment 3: Method

Participants

We sampled 32 participants from the Vanderbilt University
community. Three participants were replaced for having overall
accuracy less than 60%. Demographic data are not available at this
time because they are stored in a locked cabinet in our laboratory and
we are not allowed to enter the building because of COVID-19.

Apparatus and Stimuli

These were the same as in Experiments 1 and 2 except for the context
manipulation, which compared same, different, and scrambled contexts.

Procedure

The procedure was the same as Experiment 2 except that neutral
contexts were replaced by scrambled contexts (see Figure 9). The
number (756) and composition of the trials was the same. Breaks
were allowed every 128 trials.

Experiment 3: Results

The data were trimmed to exclude trials with RT > 4,000 ms,
which resulted in removing 2.03% of the data. Mean RT for correct

trials, accuracy (the probability of responding correctly), and
P(“Yes”) were calculated for each cell of a 3 (context: same, different,
neutral) × 4 (probed letter: target, Lag 1, Lag 2, new) design. The
means across participants are plotted in the top row of Figure 10.

Distance and Compatibility Effects

We performed 3 (context) × 4 (probed letter) ANOVAs on the
RT, accuracy, and P(“Yes”) data. For RT, the main effect of context,
F(2, 62) = 39.002, MSe = 8512.520, p < .0001, η2p = .557,
probed letter, F(3, 93) = 38.228, MSe = 19499.314, p < .0001,
η2p = .552, and the interaction between them, F(6, 186) = 11.592,

(Appendices continue)

Table B4
Analyses of Variance on BIC Scores in Experiment 2

Effect df MSe F p η2p

Overlap model
I 1,31 3499.3 16.37 <.0001 .346
J 1,31 1222.5 3.62 .067 .104
C 1,31 2769.9 .10 .751 .003
M 1,31 632.9 6.71 .014 .178
I × J 1,31 85.7 9.81 .004 .240
I × C 1,31 52.9 11.52 .002 .271
I × M 1,31 35.8 2.10 .157 .064
J × C 1,31 191.9 10.40 .003 .251
J × M 1,31 20.6 13.11 .001 .297
C × M 1,31 20.8 .46 .501 .015
I × J × C 1,31 28.2 11.44 .002 .270
I × J × M 1,31 21.6 1.15 .291 .036
I × C × M 1,31 19.5 1.56 .221 .048
J × C × M 1,31 13.6 1.53 .225 .047
I × J × C × M 1,31 13.8 .301 .587 .010

Start end model
I 1,31 1648.2 13.58 .001 .305
J 1,31 680.0 2.61 .116 .078
C 1,31 283.2 8.33 .007 .212
I × J 1,31 78.3 .89 .352 .028
I × C 1,31 3.4 .84 .367 .026
J × C 1,31 5.9 11.53 .002 .271
I × J × C 1,31 .9 2.40 .131 .072

Context retrieval and updating model
I 1,31 2708.1 6.839 .014 .181
J 1,31 51.1 39.61 <.0001 .561
C 1,31 551.4 8.029 .008 .206
δ 1,31 1754.7 6.459 .016 .172
I × J 1,31 36.4 5.368 .027 .148
I × C 1,31 14.1 2.412 .131 .072
I × δ 1,31 143.2 3.478 .072 .101
J × C 1,31 13.6 .152 .699 .005
J × δ 1,31 32.6 5.590 .025 .153
C × δ 1,31 18.7 .001 .970 .000
I × J × C 1,31 13.2 .233 .633 .007
I × J × δ 1,31 24.5 1.963 .171 .060
I × C × δ 1,31 23.0 .221 .641 .007
J × C × δ 1,31 13.4 .008 .929 .000
I × J × C × δ 1,31 13.4 .419 .522 .013

Note. I = item recognition; J = joint item position global match;
C = residual time increment for same and different contexts;
M = memory spread same or different across serial position; δ = β decay
parameter.
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MSe = 7156.016, p < .0001, η2p = .339, were significant. For
accuracy, the main effect of context was not significant,
F(2, 62) = .805, MSe = .041, p = .452, η2p = .025, but the
main effect of probed letter, F(3, 93) = 18.039, MSe = .011,
p < .0001, η2p = .552, and the interaction between them,
F(6, 186) = 20.700, MSe = .006, p < .0001, η2p = .400, were sig-
nificant. For P(“Yes”), the main effect of context, F(2, 62) = 5.894,
MSe = .038, p = .005, η2p = .160, the main effect of probed posi-
tion, F(3, 93) = 73.113,MSe = .082, p < .0001, η2p = .699, and the
interaction between them, F(6, 186) = 6.179,MSe = .010, p = .006,
η2p = .166, were significant.
The contrast testing the compatibility effect (same match, differ-

ent mismatch vs. same mismatch, different match) was highly
significant for RT, F(1, 186) = 55.923, MSe = 7156.016,
η2p = .368, p < .0001, and for accuracy, F(6, 186) = 173.060,
MSe = .006, η2p = .482, p < .0001.
We evaluated the distance effect with planned contrasts that

compared Lag 1 and Lag 2 in the RT and P(“Yes”) data. The contrast
was significant for RT, F(1, 93) = 5.171, MSe = 19499.31,
η2p = .053, p = .025, but not for P(“Yes”), F(1, 93) = 1.354,
MSe = .082, η2p = .014, p = .248. We also compared Lag 2 with
new items. The difference was highly significant for RT
F(1, 93) = 22.325, MSe = 19499.31, η2p = .194, p < .0001, but
not significant for P(“Yes”), F(1, 93) = .176, MSe = .082,
η2p = .002, p = .676.
We compared scrambled and same contexts separately for match

and mismatch responses. For match responses, same contexts were
different from scrambled contexts for RT, F(1, 186) = 37.774,
MSe = 6460.346, η2p = .169, p < .0001, accuracy, F(1, 186) =
84.565, MSe = .004, η2p = .313, p < .0001, and P(“Yes”),
F(1, 186) = 169.129, MSe = .002, η2p = .476, p < .0001. For
mismatch responses, same contexts were not different from scram-
bled contexts for RT, F(1, 186) = .298,MSe = 6460.346, η2p = .057,
p = .586, but they were more accurate, F(1, 186) = 48.387, MSe =
.004, η2p = .957, p < .0001, and had higher values of P(“Yes”), F(1,
186) = 7.42, MSe = .002, η2p = .871, p < .0001.
We also compared scrambled and different contexts separately for

match and mismatch trials. For match trials, scrambled and different
contexts differed significantly for RT F(1, 186) = 5.378, MSe =
6460.346, η2p = .028, p = .022, accuracy, F(1, 186) = 4.277,
MSe = .004, η2p = .022, p = .040, and P(“Yes”), F(1,
186) = 8.554, MSe = .002, η2p = .044, p = .004. For mismatch
trials, scrambled and different contexts also differed significantly for
all three measures. For RT, F(1, 186) = 99.175, MSe = 6460.346,
η2p = .741, p < .0001, for accuracy,F(1, 186) = 28.969,MSe = .004,
η2p = .400, p < .0001, and for P(“Yes”), F(1, 186) = 57.938,
MSe = .002, η2p = .727, p < .0001.

Model Fits

Summary tables for ANOVAs on the BIC scores are presented in
Table B5. Item recognition match significantly improved good-
ness of fit in all three models. Joint global match significantly
improved goodness of fit for OVL and SEM but not for CRU.
Varying the memory spread parameter had no significant effect

in OVL, and varying the β decay reduced the fit significantly
for CRU.

Model Predictions

The correlation and rmsd between observed and predictedmeans in
the 3×4 experimental design were calculated for each participant. For
OVL, the mean correlations were .5752 (.1164) for RT and .8434
(.1060) for P(“Yes”). The mean rmsds were 226 (65) ms for RT and
.1513 (.0382) for P(“Yes”). For SEM, the mean correlations were
.5881 (.1154) for RT and .8726 (.0994) for P(“Yes”). Themean rmsds
were 224 (66) ms for RT and .1374 (.0305) for P(“Yes”). For CRU,
themean correlationswere .5734 (.1156) for RT and .8415 (.1071) for
P(“Yes”). The mean rmsds were 226 (66) ms for RT and .1520
(.0383) for P(“Yes”).

Experiment 4: Method

Participants

We sampled 32 participants from the Vanderbilt University
community. Two participants were replaced for having accuracy
less than 60%. Demographic data are not available at this time
because they are stored in a locked cabinet in our laboratory and we
are not allowed to enter the building because of COVID-19.

Apparatus and Stimuli

The apparatus, stimuli, and timing were the same as in the
previous experiments, except that there were four context types
(same, Swap 1, Swap 2, different) instead of three. This resulted in 4

(Appendices continue)

Table B5
Analyses of Variance on BIC Scores in Experiment 3

Effect df MSe F p η2p

Overlap model
I 1,31 683.2 32.44 <.0001 .511
J 1,31 1014.2 10.98 .002 .261
M 1,31 3916.0 .01 .942 .000
I × J 1,31 66.5 32.83 <.0001 .514
I × M 1,31 88.7 2.81 .104 .083
J × M 1,31 45.1 9.18 .005 .229
I × J × M 1,31 15.9 1.62 .212 .050

Start end model
I 1,31 508.2 27.30 <.0001 .468
J 1,31 530.3 11.42 .002 .269
I × J 1,31 51.4 13.65 .001 .306

Context retrieval and updating model
I 1,31 903.1 8.79 .006 .221
J 1,31 125.7 2.68 .112 .080
δ 1,31 642.0 27.74 <.0001 .472
I × J 1,31 11.1 11.95 .002 .278
I × δ 1,31 69.1 10.15 .003 .247
J × δ 1,31 63.5 3.83 .059 .110
I × J × δ 1,31 2.7 6.49 .016 .173

Note. I = item recognition; J = joint item position global match;
M = memory spread same or different across serial position; δ = β decay
parameter.
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(context) × 6 (3 probed targets, 1 Lag 1, 2, and new) × 6 serial
position trials in the basic design, which was repeated six times for a
total of 864 trials.
We quantified the similarity between the four contexts with

Levenshtein (1966) edit distance, which is the number of insertion,
deletion, and substitution steps required to transform one string into
another, using a Matlab algorithm provided by Schauerte and Fink
(2010). The average distances in each combination of contexts
and probed letters are presented in Table B6. The mean distances
were 1.3, 3.2, 4.9, and 5.8 for same, Swap 1, Swap 2, and different
contexts, respectively.

Procedure

The procedure was the same as in the preceding experiments
except that the number of trials increased to 864. Breaks were
allowed every 144 trials.

Experiment 4: Results

The data were trimmed to exclude trials with RT > 4,000 ms,
which resulted in removing 2.04% of the data. Mean RT for correct
trials, accuracy (the probability of responding correctly), and P(“Yes”)
were calculated for each cell of a 4 (context: same, Swap 1, Swap 2,
different) × 4 (probed letter: target, Lag 1, Lag 2, new) design.

Distance and Compatibility Effects

We tested these effects with a 4 (context: same, Swap 1, Swap 2,
different) × 4 (probed letter: target, Lag 1, Lag2, new) ANOVAs on
the RT, accuracy, and P(“Yes”) data. For RT, the main effect of
context,F(3, 93) = 30.188,MSe = 7445.316, p < .0001, η2p = .493,
probed letter, F(3, 93) = 33.305, MSe = 16624.540, p < .0001,
η2p = .518, and the interaction between them, F(9, 279) = 4.956,
MSe = 8855.366, p < .0001, η2p = .138, were significant. For accu-
racy, the main effect of context was not significant, F(3, 93) = .541,
MSe = .041, p = .655, η2p = .017, but the main effect of probed
letter, F(3, 93) = 34.123, MSe = .015, p < .0001, η2p = .524, and
the interaction between them, F(9, 279) = 12.829, MSe = .007,
p < .0001, η2p = .293, were significant. For P(“Yes”), the main effect
of context, F(3, 93) = 3.457, MSe = .045, p = .020, η2p = .100, the
main effect of probed position, F(3, 93) = 115.670, MSe = .066,
p < .0001, η2p = .789, and the interaction between them, F(9,
279) = 3.413, MSe = .013, p = .049, η2p = .099, were significant.
We assessed the effect of similarity between probe displays and

memory lists by constructing linear contrasts based on the Levenshtein
distances that evaluated the similarity effect within each probed letter
condition (target, Lag 1, Lag 2, new). The distances and the contrast
weights are shown in Table B6. For RT, the results of the contrasts
were F(1, 279) = 4.484, 21.986, 20.032, and 2.332 for target, Lag 1,
Lag 2, and new, respectively, p = .0354, < .0001, < .0001,
and = .1278, respectively, η2p = .016, .070, .067, and .008, respec-
tively, MSe = 8855.366. For accuracy, the contrasts were F(1,
279) = 25.956, 16.858, 10.234, and 13.516 for target, Lag 1, Lag
2, and new, respectively, p < .0001, = .0001, = .0015, and = .0003,
respectively, η2p = .085, .057, .035, and .046, respectively,

MSe =.019. For P(“Yes”), the contrasts were F(1, 279) = 70.450,
4.290, 27.779, and 36.687 for target, Lag 1, Lag 2, and new,
respectively, p < .0001, = .0393, < .0001, and < .0001, respectively,
η2p = .202, .015, .091, and .116, respectively, MSe = .007.

We tested the compatibility effects with planned contrasts. The
79 ms compatibility effect was significant for RT, F(1,
279) = 45.191, MSe = 8855.366, η2p = .139, p < .0001, and
the .127 compatibility effect was significant for accuracy, F(1,
279) = 148.337,MSe = .007, η2p = .347, p < .001. We evaluated
distance effects by comparing Lag 1 with Lag 2 and comparing Lag
2 with new probe letters. For Lag 1 versus Lag 2, the distance
contrast was significant for RT, F(1, 93) = 7.143, MSe =
16624.54, η2p = .071, p = .009, and accuracy, F(1,
93) = 14.107, MSe = .015, η2p = .132, p = .0003, but the
P(“Yes”) contrast was not significant, F(1, 93) = 3.206,
MSe =.066, η2p = .033, p = .077. For Lag 2 versus new, the
contrast was significant for RT, F(1, 279) = 16.554, MSe =
16624.54, η2p = .151, p = .0001, but not for accuracy, F(1,
93) = .851, MSe = .015, η2p = .009, p = .359, or P(“Yes”),
F(1, 93) = .194, MSe = .066, η2p = .002, p = .661.

Model Fits

Summary tables for ANOVAs on the BIC scores for OVL, SEM,
and CRU appear in Table B7. Item recognition matches signifi-
cantly improved goodness of fit for all three models. Joint global
matches improved BIC for OVL, SEM, and CRU. Variation in
memory spread significantly improved OVL fits and variation in β
decay significantly reduced CRU fits.

Model Predictions

The correlation and rmsd between observed and predicted means
in the 4×4 experimental design were calculated for each participant.
For OVL, the mean correlations were .5147 (.1452) for RT and
.8574 (.0816) for P(“Yes”). The mean rmsds were 247 (81) ms for
RT and .1529 (.0255) for P(“Yes”). For SEM, the mean correlations
were .5158 (.1475) for RT and .8587 (.0804) for P(“Yes”). The
mean rmsds were 247 (81) ms for RT and .1515 (.0250) for
P(“Yes”). For CRU, the mean correlations were .5098 (.1471)

(Appendices continue)

Table B6
Levenshtein Distances Between Probe Displays andMemory Lists for
Each Context Type and Contrast Weights Based on the Distances for
Experiment 4

Target Lag 0 Lag 1 New

Levenshtein distance
Same .0 2.0 2.0 1.0
1 Swap 2.0 3.8 4.0 3.0
2 Swap 3.9 5.0 5.7 4.9
Different 5.0 6.0 6.0 6.0

Contrast weights
Same –2.733 –2.208 –2.416 –2.727
1 Swap –.733 –.400 –.416 –.727
2 Swap 1.198 .815 1.248 1.181
Different 2.267 1.792 1.584 2.273
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for RT and .8076 (.0979) for P(“Yes”). The mean rmsds were 248
(81) ms for RT and .1742 (.0350) for P(“Yes”).

Experiment 5: Method

Participants

We sampled 32 participants from the Vanderbilt University
community. Seven participants were replaced for having accuracy
less than 60% (possibly because of the fast presentation rate).
Demographic data are not available at this time because they are
stored in a locked cabinet in our laboratory and we are not allowed to
enter the building because of COVID-19.

Apparatus and Stimuli

The apparatus and stimuli were the same as in Experiment 2,
except that the memory list items were presented sequentially
instead of simultaneously. Each trial began with a centered
fixation cross for 500 ms. Each letter in the memory list was
presented in the center of the screen for 200 ms, followed by a
100 ms interstimulus interval. The entire list presentation took
1800 ms. After the last item, there was a 2000 ms retention
interval with a blank screen, and then the probe display was
presented until participants responded. As before, it was followed
by a 500 ms intertrial interval.

Procedure

The procedure was the same as Experiment 2. Sequential
presentation of the list lengthened the time for each trial, so we

reduced the number of trials to 648 to fit within a 1-hr experi-
mental session.

Experiment 5: Results

The data were trimmed to exclude trials with RT > 4,000 ms,
which resulted in removing 2.85% of the data. Mean RT for correct
trials, accuracy (the probability of responding correctly), and
P(“Yes”) were calculated for each cell of a 3 (context: same, different,
neutral) × 4 (probed letter: Target, Lag 1, Lag 2, New) design.

Distance and Compatibility Effects

We performed 3 (context) × 4 (probed letter) ANOVAs on the RT,
accuracy, and P(“Yes”) data. For RT, the main effect of context, F(2,
62) = 89.184, MSe = 26240.397, p < .0001, η2p = .742, probed
letter, F(3, 93) = 30.092, MSe = 19108.636, p < .0001,
η2p = .493, and the interaction between them, F(6, 186) = 8.965,
MSe = 11372.209, p < .0001, η2p = .224, were significant. For accu-
racy, the main effect of context, F(2, 62) = 36.808, MSe = .006,
p < .0001, η2p = .543, probed letter,F(3, 93) = 32.585,MSe = .012,
p < .0001, η2p = .512, and the interaction between them, F(6,
186) = 29.637,MSe = .007, p < .0001, η2p = .489, were significant.
For P(“Yes”), the main effect of context, F(2, 62) = 56.400, MSe =
.015, p < .0001, η2p = .645, the main effect of probed position, F(3,
93) = 224.556,MSe = .028, p < .0001, η2p = .879, were significant
but the interaction between them, F(6, 186) = 1.369, MSe = .004,
p = .229, η2p = .042, were significant.

The compatibility contrast (same match and different mismatch vs.
same mismatch and different match) was significant, for RT
F(1, 186) = 120.043,MSe = 11372.209, η2p = .392 p < .0001, and
accuracy, F(1, 186) = 217.819, MSe = .007, η2p = .539 p < .0001.

For RT, the distance contrast comparing Lag 1 and Lag 2 was
not significant, F(1, 93) = .248, MSe = 19108.636, η2p = .003
p = .248, but the contrast comparing Lag 2 with new was signifi-
cant, F(1, 93) = 45.780,MSe = 19108.636, η2p = .330 p = .0001.
For P(“Yes”), the distance contrast was significant for Lag 1 versus
Lag 2, F(1, 93) = 6.768, MSe = .028, η2p = .068, p = .011, but
the contrast comparing Lag 2 and new was not, F(1, 93) = .963,
MSe = .028, η2p = .010, p = .329.

Model Fits

The ANOVAs on BIC scores for each model are presented in
Table B8. Item recognitionmatch was significant for OVL and SEM
and significant for AIC but not for CRU (p = .053). Joint global
match was not significant in all three models. Residual time
adjustment was significant for all three models. In the OVL AN-
OVA, varying the memory spread parameter reduced BIC signifi-
cantly. In the CRU ANOVA, varying the β decay parameter
increased BIC significantly.

Model Predictions

The correlation and rmsd between observed and predicted means
in the 3×4 experimental design were calculated for each participant.

(Appendices continue)

Table B7
Analyses of Variance on BIC Scores in Experiment 4

Effect df MSe F p η2p

Overlap model
I 1,31 1472.7 20.09 <.0001 .393
J 1,31 1636.0 8.51 .007 .215
M 1,31 3795.7 1.63 .212 .050
I × J 1,31 72.0 26.43 <.0001 .460
I × M 1,31 1592.5 2.56 .120 .076
J × M 1,31 77.3 7.26 .011 .190
I × J × M 1,31 18.9 .004 .949 .000

Start end model
I 1,31 1049.0 15.42 <.0001 .332
J 1,31 5763.7 7.85 .009 .2
I × J 1,31 92.0 13.63 .001 .305

Context retrieval and updating model
I 1,31 1592.0 9.47 .004 .234
J 1,31 2713.1 10.49 .003 .253
δ 1,31 15.0 72.49 <.0001 .700
I × J 1,31 73.5 9.50 .004 .235
I × δ 1,31 8.7 9.89 .004 .242
J × δ 1,31 4.2 8.69 .006 .219
I × J × δ 1,31 1.4 6.02 .020 .163

Note. I = item recognition; J = joint item position global match;
M = memory spread same or different across serial position; δ = β decay
parameter.
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For OVL, the mean correlations were .6344 (.1171) for RT and
.8147 (.1102) for P(“Yes”). The mean rmsds were 270 (74) ms for
RT and .1642 (.0405) for P(“Yes”). For SEM, the mean correlations
were .6369 (.1264) for RT and .8377 (.0954) for P(“Yes”). The
mean rmsds were 269 (76) ms for RT and .1556 (.0364) for
P(“Yes”). For CRU, the mean correlations were .6503 (.1224)
for RT and .8077 (.1148) for P(“Yes”). The mean rmsds were
267 (74) ms for RT and .1656 (.0399) for P(“Yes”).

Experiment 6: Method

Participants

We sampled 32 participants from the Vanderbilt University
community. Two participants were replaced for having accuracy

less than 60%. Demographic data are not available at this time
because they are stored in a locked cabinet in our laboratory and we
are not allowed to enter the building because of COVID-19.

Apparatus and Stimuli

The apparatus, stimuli, and timing were the same as in
Experiment 2.

Procedure

The procedurewas the same as Experiment 2 except that the taskwas
item recognition rather than cued recognition. Participants were in-
structed to respond “yes” if the cued letter in the probe matched any of
the letters in the memory list. Half of the trials required “yes” responses
and half required “no” responses. There were 756 trials in total.

Experiment 6: Results

The data were trimmed to exclude trials with RT > 4,000 ms,
which resulted in removing 3.39% of the data. Mean RT for correct
trials, accuracy, and P(“Yes”) were calculated for each cell of a 3
(context: same, different, neutral) × 4 (probed letter: Lag 0, Lag 1,
Lag 2, new) design.

Distance and Compatibility Effects

Weperformed 3 (context) × 4 (probed letter) ANOVAs on the RT,
accuracy, and P(“Yes”) data. For RT, the main effect of context,
F(2, 62) = 68.949, MSe = 27458.768, p < .0001, η2p = .690,
probed letter, F(3, 93) = 17.160, MSe = 19556.145, p < .0001,
η2p = .356, and the interaction between them, F(6, 186) = 12.131,
MSe = 7113.297, p < .0001, η2p = .281, were significant. For accu-
racy, the main effect of context, F(2, 62) = 36.866, MSe = .003,
p < .0001, η2p = .499, probed letter, F(3, 93) = 13.554, MSe =
.016, p < .0001, η2p = .304, and the interaction between them,
F(6, 186) = 24.247, MSe = .004, p < .0001, η2p = .489, were sig-
nificant. For P(“Yes”), the main effect of context, F(2, 62) = 10.605,
MSe = .004, p < .0001, η2p = .255, the main effect of probed
position, F(3, 93) = 194.383, MSe = .035, p < .0001, η2p = .862,
and the interaction between them, F(6, 186) = 29.800, MSe = .004,
p < .0001, η2p = .490, were significant.

For RT, the compatibility contrast (same match and different
mismatch vs. samemismatch and differentmatch) was not significant,
F(1, 186) = .665, MSe = 7113.297, η2p = .004 p = .417. The dis-
tance contrast comparing Lag 1 and Lag 2 was not significant,
F(1, 93) = .137, MSe = 19556.145, η2p = .001 p = .712, but
the contrast comparing Lag 0 with Lag 1 was significant,
F(1, 93) = 14.439, MSe = 19556.145, η2p = .134 p = .0003.

For accuracy, the compatibility contrast was significant, F(1, 186)=
184.470, MSe = .004, η2p = .499 p < .0001. The distance contrast
comparing Lag 1 and Lag 2 was not significant, F(1, 93) = .901,
MSe = .004, η2p = .010, p = 345, but the contrast comparing Lag 0
and Lag 1 was, F(1, 93) = 24.989, MSe = .004, η2p = .212,
p < .0001.

For P(“Yes”), distance contrast was not significant for Lag 1
versus Lag 2, F(1, 93) = .103, MSe = .035, η2p = .001, p = .712,

(Appendices continue)

Table B8
Analyses of Variance on AIC and BIC Scores in Experiment 5

Effect df MSe F p η2p

Overlap model
I 1,31 1600.7 10.69 .003 .256
J 1,31 538.3 .93 .341 .029
C 1,31 637.3 15.71 <.0001 .336
M 1,31 1319.6 9.31 .005 .231
I × J 1,31 62.3 25.40 <.0001 .450
I × C 1,31 3.9 6.15 .019 .165
I × M 1,31 33.5 3.99 .055 .114
J × C 1,31 11.9 11.26 .002 .266
J × M 1,31 38.8 2.90 .099 .086
C × M 1,31 .6 3.88 .058 .111
I × J × C 1,31 .4 6.40 .017 .171
I × J × M 1,31 12.8 14.05 .001 .312
I × C × M 1,31 .3 4.48 .042 .126
J × C × M 1,31 .4 5.01 .032 .139
I × J × C × M 1,31 .3 18.23 <.0001 .370

Start end model
I 1,31 777.8 7.86 .009 .202
J 1,31 410.9 .15 .706 .005
C 1,31 291.2 15.78 <.0001 .337
I × J 1,31 23.9 2.083 .159 .063
I × C 1,31 1.5 9.69 .004 .238
J × C 1,31 7.2 10.61 .003 .255
I × J × C 1,31 .4 3.55 .069 .103

Context retrieval and updating model
I 1,31 1301.1 4.06 .053 .116
J 1,31 695.1 .22 .640 .007
C 1,31 609.6 10.81 .003 .259
δ 1,31 34.1 91.37 <.0001 .747
I × J 1,31 55.9 6.59 .015 .175
I × C 1,31
I × δ 1,31 4.1 3.86 .059 .111
J × C 1,31
J × δ 1,31 8.0 3.52 .070 .102
C × δ 1,31 .5 1.16 .288 .036
I × J × C 1,31 .6 10.97 .002 .261
I × J × δ 1,31 2.6 .35 .560 .011
I × C × δ 1,31 .5 .97 .334 .030
J × C × δ 1,31 .5 1.99 .169 .060
I × J × C × δ 1,31 .5 .78 .385 .024

Note. I = item recognition; J = joint item position global match;
C = residual time adjustment; M = memory spread same or different
across serial position; δ = β decay parameter.
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nor was the contrast comparing Lag 0 and Lag 1, F(1, 93) = 2.856,
MSe = .035, η2p = .030, p = .094.

Model Fits

The ANOVAs on BIC scores for each model are presented in
Table B9. Joint global match was significant for all three models.
Residual time adjustment was also significant for all three models. In
OVL, memory spread was significantly worse when it varied with
serial position. In CRU, β decay was significantly worse when it
varied with serial position.

Model Predictions

The correlation and rmsd between observed and predicted means
in the 3×4 experimental design were calculated for each participant.
For OVL, the mean correlations were .4999 (.1378) for RT and
.8308 (.0915) for P(“Yes”). The mean rmsds were 206 (68) ms for
RT and .1628 (.0384) for P(“Yes”). For SEM, the mean correlations
were .4980 (.1364) for RT and .8467 (.0807) for P(“Yes”). The
mean rmsds were 206 (69) ms for RT and .1564 (.0334) for
P(“Yes”). For CRU, the mean correlations were .4859 (.1585)
for RT and .8307 (.0925) for P(“Yes”). The mean rmsds were
207 (68) ms for RT and .1626 (.0379) for P(“Yes”).

Appendix C

Best Fitting Parameters

Table B9
Analyses of Variance on AIC and BIC Scores in Experiment 6

Effect df MSe F P η2p

Overlap model
J 1,31 53.9 103.64 <.0001 .770
C 1,31 1335.8 44.27 <.0001 .588
M 1,31 60.5 574.53 <.0001 .949
J × C 1,31 3.1 16.27 <.0001 .344
J × M 1,31 8.1 13.92 .001 .310
C × M 1,31 2.3 6.38 .017 .171
J × C × M 1,31 1.5 2.89 .099 .085

Start end model
J 1,31 24.9 77.70 <.0001 .715
C 1,31 698.1 42.24 <.0001 .577
J × C 1,31 1.6 20.89 <.0001 .403

Context retrieval and updating model
J 1,31 470.1 5.60 .024 .153
C 1,31 1234.9 29.10 <.0001 .484
δ 1,31 29.4 72.02 <.0001 .699
J × C 1,31 309.7 2.97 .095 .087
J × δ 1,31 62.2 1.21 .280 .038
C × δ 1,31 35.4 1.68 .205 .051
J × C × δ 1,31 41.2 1.94 .173 .059

Note. I = item recognition; J = joint item position global match;
M = memory spread same or different across serial position; δ = β
decay parameter.

Table C1
Median Values of Best Fitting Parameters for the Overlap Model (OVL) in Experiments 1–6

Experiment 1 2 3 4 5 6

Decision parameters
Boundary separation θYes + θNo 1.3706 2.3767 2.1853 1.9109 2.3137 1.4699
Bias θNo/(θYes + θNo) .4547 .5058 .5197 .4942 .5026 .5219
Inhibition α .4151 .0727 .0535 .0632 .0634 .1569

Attention orienting parameters
Residual SD sR .4509 .7866 .7804 .6587 .7789 .5376
Residual 1 R1 558 434 498 567 551 521
Residual 2 R2 670 466 571 649 570 528
Residual 3 R3 740 577 613 683 661 517
Residual 4 R4 719 595 630 683 674 523
Residual 5 R5 712 526 609 692 623 544
Residual 6 R6 637 461 552 655 577 514
Context RC 1.1698 1.1927 1.3168

Attention weighting parameters
Local match wL 1.0000 .8218 .8146 .8987 .8880 .1163
Item recognition wI .1130 .1162 .0558 .1120 .8837
Joint global wJ .0523 .0441 .0318

(table continues)

(Appendices continue)
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Table C1 (continued)

Experiment 1 2 3 4 5 6

Local mismatch λ1 1.0611 .6307 .5690 .4614 .6064 .3983
Item mismatch λ2 .1382 .1541 .0633 .1261 7.6048
Global mismatch λ3 .0626 .0552 .0398
Scale A 1.4541 1.0734 1.0675 1.0817 1.3319 1.2356

Attention focusing parameters (OVL)
Spread 1 σ1 .3778 .3176 .3023 .1868 .4976 .3376
Spread 2 σ2 .3778 .3176 .3023 .2824 .4976 .3376
Spread 3 σ3 .3778 .3176 .3023 .3055 .4976 .3376
Spread 4 σ4 .3778 .3176 .3023 .3097 .4976 .3376
Spread 5 σ5 .3778 .3176 .3023 .3869 .4976 .3376
Spread 6 σ6 .3778 .3176 .3023 .4213 .4976 .3376

Table C2
Median Values of Best Fitting Parameters for the Start-End Model (SEM) in Experiments 1–6

Experiment 1 2 3 4 5 6

Decision parameters
Boundary separation θYes + θNo 1.4306 2.0566 2.1845 1.9257 2.6706 1.4547
Bias θNo/(θYes + θNo) .4511 .5044 .5179 .5001 .4973 .5200
Inhibition α .4953 .1948 .0714 .0749 .1382 .1553

Attention orienting parameters
Residual SD sR .4493 .6379 .7689 .7318 .6488 .5296
Residual 1 R1 555 508 486 581 588 526
Residual 2 R2 652 566 586 651 629 524
Residual 3 R3 707 582 590 661 693 516
Residual 4 R4 671 583 600 681 713 523
Residual 5 R5 681 595 609 709 692 546
Residual 6 R6 590 549 551 638 595 516
Context RC 1.1596 .0383 1.3224

Attention weighting parameters
Local match wL 1.0000 .8597 .8408 .8860 .8945 .1396
Item recognition wI .0750 .1030 .0676 .1055 .8604
Joint global wJ .0554 .0430 .0412
Local mismatch λ1 .9633 .5743 .5154 .4650 .6026 .3231
Item mismatch λ2 .0830 .1220 .0733 .1306 6.1655
Global mismatch λ3 .0694 .0528 .0538
Scale A –3.3994 –4.7858 –5.1222 –5.1461 –3.106 –4.7019

Attention focusing parameters (SEM)
Start mark S0 10.2370 19.4181 19.7362 22.1463 8.6616 16.8596
End mark E0 9.9698 15.9790 14.2246 13.9867 8.8875 17.0180
Start decay S .7830 .8378 .8065 .8503 .7858 .8510
End decay E .8837 .8460 .8409 .8249 .7523 .8764

(Appendices continue)
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Table C3
Median Values of Best Fitting Parameters for the Context Retrieval and Updating Model (CRU) in Experiments 1–6

Experiment 1 2 3 4 5 6

Decision parameters
Boundary separation θYes + θNo 1.4463 2.6029 2.1864 1.9142 2.3710 2.4965
Bias θNo/(θYes + θNo) .4549 .5112 .5196 .5013 .5250 .5612
Inhibition α .4953 .1948 .0714 .0749 .0771 .1553

Attention orienting parameters
Residual SD sR .4570 .7922 .7823 .7351 .7831 .7775
Residual 1 R1 533 403 482 533 515 399
Residual 2 R2 656 478 583 642 575 427
Residual 3 R3 744 555 618 694 687 400
Residual 4 R4 686 586 639 706 710 420
Residual 5 R5 680 536 618 749 652 443
Residual 6 R6 584 455 543 634 523 408
Context RC 1.1582 1.1917 1.3248

Attention weighting parameters
Local match wL 1.0000 .8207 .8167 .8323 .7916 .1354
Item recognition wI .1193 .1224 .1067 .1708 .8646
Joint global wJ .0636 .0485 .0495 .0372
Local mismatch λ1 1.0168 .5397 .5498 .4900 .5601 .4922
Item mismatch λ2 .1461 .1519 .1262 .2115 6.3851
Global mismatch λ3 .0833 .0574 .0628 .0501
Scale A 1.2210 .9245 .9212 .7786 .7387 .8770

Attention focusing parameters (CRU)
Beta β .9982 .9999 .9996 .9998 .9999 .9957
Beta decay δ .9952
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