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Does the explicit task-cuing procedure require an endogenous act of control? In 5 experiments, cues
indicating which task to perform preceded targets by several stimulus onset asynchronies (SOAs). Two
models were developed to account for changes in reaction time (RT) with SOA. Model 1 assumed an
endogenous act of task switching for cue alternations but not for cue repetitions. Model 2 assumed no
such act. In Experiments 1 and 2, the cue was masked or not masked. Masking interacted underadditively
with repetition and alternation, consistent with Model 2 but not Model 1. In Experiments 3 and 4, 2 cues
were used for each task. RT was slower for task repetition than for cue repetition and about the same as
RT for task alternation, consistent with Model 2 but not Model 1. The results suggest that the explicit
task-cuing procedure does not require an endogenous act of control.

Clever Hans was a remarkable horse who could add, subtract,
multiply, and divide numbers, working with fractions as well as
integers. His owner, von Osten, would ask him questions and Hans
would tap out the answers with his hoof. An early experimental
psychologist, Oskar Pfungst (1907, 1911), investigated Hans’s
ability and found that the horse responded to subtle visual cues
from the person asking the questions. Hans was not so clever when
he could not see the questioner or the questioner did not know the
answer. The purpose of the present article is to report a similar
investigation of the human homunculus—the agent responsible for
executive control—as it appears in the explicit task-cuing proce-
dure. We ask whether aspects of behavior observed in that proce-
dure are due to a clever homunculus or to more mundane psycho-
logical processes.

Executive control refers to the processes by which the mind
controls itself. Executive control processes include choosing
among alternative strategies, enabling performance, monitoring
performance, monitoring the consequences of performance, and
disengaging strategies (Logan, 1985; Logan & Gordon, 2001;
Meyer & Kieras, 1997; Norman & Shallice, 1986). Recently,
research has focused on the role of executive control processes in
task switching, examining costs and benefits in performance as

subjects alternate between tasks or repeat the same task from trial
to trial (Allport, Styles, & Hsieh, 1994; Meiran, 1996; Rogers &
Monsell, 1995). Typically, reaction time (RT) is faster and accu-
racy is higher when subjects repeat the same task than when they
alternate between tasks. This difference in performance between
task repetition and alternation has become controversial. Some
researchers interpret it as reflecting an endogenous act of control
carried out by an executive process—the executive must reconfig-
ure the system when the task alternates, and that takes time and
produces errors (e.g., Rogers & Monsell, 1995; Rubinstein, Meyer,
& Evans, 2001). Others interpret it as reflecting interference from
previously active task sets—prior tasks and prior associations must
be suppressed before the current task can be executed, and that
takes time and produces errors (Allport et al., 1994; Allport &
Wylie, 2000; Wylie & Allport, 2000). Still others interpret it as
reflecting both types of processes (Goschke, 2000; Mayr & Keele,
2000; Mayr & Kliegl, 2000; Meiran, 1996, 2000).

The present article is concerned with the controversy over the
endogenous act of control in the context of the explicit task-cuing
procedure, which is one of several paradigms in which differences
between task repetition and alternation have been observed (see
Goschke, 2000; Mayr & Kliegl, 2000; Meiran, 1996). We provide
a formal model of the endogenous act of control and compare it to
an alternative formal model that accounts for performance without
assuming an endogenous act of control. We present five experi-
ments that test critical predictions of several versions of the alter-
native models. Our novel contributions to theory are to model the
time course of explicit cuing formally, which allows us to measure
the durations of the critical processes, and to provide a new
alternative to the endogenous act of control—one which suggests
that the difference between task repetition and alternation is a
benefit on repetition trials instead of a cost on alternation trials.

The Explicit Task-Cuing Procedure

In most experiments on task switching, subjects are shown a
series of target stimuli that can be classified in several ways. In our
first two experiments, for example, we present numbers like 3 or
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six that subjects can classify in terms of magnitude (greater or less
than five), parity (odd or even), and form (digit or word). The
earliest task-switching experiments compared blocks of trials in
which subjects alternated between tasks (e.g., performing magni-
tude and parity judgments on successive stimuli) with blocks of
trials in which subjects performed the same task throughout (e.g.,
performing magnitude judgments on each stimulus or parity judg-
ments on each stimulus; see Jersild, 1927; Spector & Biederman,
1976). This task alternation procedure is problematic because it
confounds memory load with repetition and alternation—subjects
must remember two tasks in the alternating blocks but only one in
repeating blocks.

Rogers and Monsell (1995) introduced the alternating-runs pro-
cedure to remove the confounds in the alternating tasks procedure.
They had subjects perform one task on two successive stimuli and
another task on the next two successive stimuli (e.g., magnitude,
magnitude, parity, parity, and so on; some experiments involved
longer runs). With this procedure, repetition and alternation trials
are performed in the same block of trials with the same memory
load. The problem with the alternating-runs procedure is that the
experimenter has little control over the point in time at which an
endogenous act of control begins (if an act of control begins at all).

The explicit task-cuing procedure is intended to provide exper-
imental control over the onset of the act of control (if there is one).
Subjects are presented with a cue at the beginning of each trial that
specifies which task is to be performed on the next stimulus (e.g.,
Mayr & Kliegl, 2000; Meiran, 1996; Sudevan & Taylor, 1987). In
the present experiments, for example, we presented High–Low to
cue magnitude judgments, Odd–Even to cue parity judgments, and
Digit–Word to cue form judgments. Repetition and alternation
trials are defined post hoc in terms of the sequence of cues:
Repetition trials repeat the cue from the previous trial, whereas
alternation trials present a different cue. The act of control (if there
is one) begins when the cue has been encoded. The interval
between the cue and the target (stimulus onset asynchrony; SOA)
is manipulated to measure the time course of task switching.
Typically, repetition trials are faster than alternation trials when
the interval between the cue and target is short and the difference
between repetition and alternation diminishes, sometimes to 0 ms,
as the interval increases. This time-course function reflects the
duration of the processes involved in encoding the cue and switch-
ing task sets, but it reflects those durations indirectly. A model
must be applied to the data to extract the durations of the pro-
cesses. We propose models that assume an endogenous act of
control and a model that assumes only a benefit of cue repetition.

Modeling the Time-Course Function

Many studies have investigated the time course of explicit
cuing, but none have modeled the time-course function. Following
Sperling and Weichselgartner’s (1995) analysis of time-course
functions in shifting attention, we model the time-course function
in terms of the cumulative distribution of finishing times for
processes that encode the cue and switch sets (see also Logan &
Bundesen, 1996). When the cue and the target are presented
simultaneously—when SOA is 0—RT includes cue-encoding time
and task-switching time (if task switching occurs) as well as the
time to process the target. When SOA is sufficiently long, the cue
can be encoded and the task set switched before the target appears,
so RT will reflect only target-processing time. As SOA increases

from 0, the probability that the cue is encoded will increase, as will
the probability that the task set will be switched. RT will decrease
as this probability increases, in accordance with the cumulative
distributions of cue-encoding and task-switching times, until both
processes are complete and RT reaches asymptote. We propose
two basic models that differ in terms of their assumptions about an
endogenous act of control in the explicit task-cuing procedure and
in terms of their predictions about the effects of prolonging cue
encoding on the difference between repetition and alternation
trials. We test two versions of the model that assumes an act of
control and we propose a third model that integrates the two
models.

Model 1: An Endogenous Act of Control

The first model assumes that explicit cuing involves an endog-
enous act of control. When the cue is presented, it is encoded,
which takes �c ms on average. If the cue is the same as it was on
the last trial (i.e., if it is a task-repetition trial), no further executive
processes are required, and the target is processed in accord with
the task set that was instantiated on the last trial. If the cue is
different from the last trial (i.e., if it is a task-alternation trial),
executive processes retrieve or derive the new task set and instan-
tiate it, which takes �s ms on average. At that point, the target can
be processed in accord with the new task set. If the cue and the
target are presented simultaneously (i.e., if the SOA between them
is 0 ms), then mean RT on repetition trials is

RTRepetition � RTBase � �c ,

where RTBase is the mean time required to process and respond to
the target. The mean RT on alternation trials is

RTAlternation � RTBase � �c � �s .

Interaction between repetition versus alternation and SOA.
Typically, the cue and the target are not presented simultaneously.
The cue usually precedes the target by SOA ms, and some of the
cue encoding and set switching can be done during this interval. If
the SOA is long enough for cue encoding and set switching to be
complete, then mean RT equals RTBase for both repetition and
alternation trials. Thus, the model predicts an interaction between
repetition and alternation and SOA such that the difference be-
tween repetition and alternation is �s ms at SOA � 0 and ap-
proaches 0 ms at long SOAs.

At intermediate SOAs, RT will depend on the probability that
cue encoding and set switching are finished (Sperling & Weich-
selgartner, 1995). In order to estimate this probability, we must
make some assumption about the distribution of cue-encoding and
set-switching times. To simplify the mathematics and minimize the
number of parameters to be estimated, we assumed that the dis-
tributions were exponential. Exponential distributions are com-
pletely characterized by a single (rate) parameter and have been
used extensively to model the duration of processing stages in
stochastic models of RT (e.g., Ashby, 1982; Ashby & Townsend,
1980; Bundesen, 1990; Logan & Gordon, 2001; Nosofsky &
Palmeri, 1997; Townsend & Ashby, 1983). We examined several
distributions in the family of generalized gamma distributions (see,
e.g., McGill, 1963) and found they led to the same pattern of
predicted results as the exponential, so we decided to use the
simpler distribution.
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We assume that the time for cue encoding is distributed expo-
nentially with a rate parameter of 1/�c. Thus, on repetition trials,
mean RT will equal RTBase if cue encoding is finished and
RTBase � �c if cue encoding is not finished. The probability that
cue encoding is finished by SOA ms is equal to F(SOA) � 1 �
exp[�SOA/�c] and the probability that cue encoding is not fin-
ished is equal to 1 � F(SOA) � exp[�SOA/�c]. Thus, mean RT
equals RTBase with probability 1 � exp[�SOA/�c] and RTBase �
�c with probability exp[�SOA/�c]. Adding these together, Model
1 predicts that mean RT on repetition trials is

RTRepetition � RTBase � �c exp[�SOA/�c] . (1)

On alternation trials, Model 1 assumes that cue-encoding time is
distributed exponentially with rate parameter 1/�c and that set-
switching time is also distributed exponentially with rate param-
eter 1/�s. Thus, mean RT equals RTBase � �c � �s if cue
encoding is not complete. This occurs with probability
exp[�SOA/�c]. Mean RT equals RTBase � �s if cue encoding is
complete but set switching is not complete. This occurs with
probability

1/�c

1/�c � 1/�s
�exp[�SOA/�s� � exp[�SOA/�c]) .1

Finally, if cue encoding and set switching are complete, then mean
RT equals RTBase. This occurs with probability

1 � exp[�SOA/�c] �
1/�c

1/�c � 1/�s
�exp[�SOA/�s�

� exp[�SOA/�c]) .

Putting these together, Model 1 predicts that mean RT on alterna-
tion trials is

RTAlternation � RTBase � exp[�SOA/�c] � ��c � �s�

�
1/�c

1/�c � 1/�s
�exp[�SOA/�s�

� exp[�SOA/�c]) � �s . (2)

Model 1 predicts that the difference in mean RT between
alternation and repetition trials is

RTAlternation � RTRepetition � �s � � 1/�c

1/�c � 1/�s
exp[�SOA/�s]

�
1/�s

1/�c � 1/�s
exp[�SOA/�c]� . (3)

If SOA � 0, this difference equals the mean set-switching time,
�s, independent of cue encoding time.

Interaction between repetition versus alternation and prolonga-
tion of cue-encoding time. The result in Equation 3 reflects the
assumption that set switching is an “inserted Donderian processing
stage” that intervenes between cue encoding and target processing
(Rogers & Monsell, 1995; Rubinstein et al., 2001). Set switching
necessarily follows cue encoding. It occurs only if the current cue
is different from the previous one, and that cannot be determined
until the current cue is encoded. Thus, Model 1 predicts that
factors that selectively influence cue-encoding time will not affect

set-switching time and will not interact with repetition versus
alternation at SOA � 0.

The first two experiments prolonged cue-encoding time by
masking the cue, replacing five randomly chosen characters in the
cue display with # signs. We tested the hypothesis in Equation 3 in
three related ways. The first involved fitting Model 1 to the data
and examining estimates of �s. We fit Model 1 to the data in two
ways. In the constrained fits, we forced �s to take the same value
whether or not the cue was masked. In the unconstrained fits, we
allowed �s to take different values when the cue was masked and
when it was not masked. Model 1 predicts that �s should have the
same value whether or not the cue is masked in the unconstrained
fits, and it predicts no significant improvement in the goodness of
fit from the extra free parameter in the unconstrained fits.

The second way we tested the prediction did not involve fitting
the model directly. We calculated the interaction contrast between
repetition versus alternation and cue masked versus not masked
at SOA � 0 (i.e., RTMask–Alternation � RTMask–Repetition �
RTNo-Mask–Alternation � RTNo-Mask–Repetition). Equation 3 clearly
predicts a null interaction when SOA � 0 because the difference
between repetition and alternation RT equals �s exactly. The third
test of the prediction involved calculating the interaction contrast
between repetition versus alternation and cue masked versus not
masked averaged over SOA. Intuition might suggest that the
additivity would prevail at longer SOAs as the difference between
repetition and alternation gets progressively smaller. However, a
formal analysis of the interaction, presented in Appendix A, re-
veals that Model 1 predicts a positive (overadditive) interaction at
SOAs greater than 0.2 Thus, a negative (underadditive) interaction,
averaged over SOA, would falsify Model 1.

Model 2: Encoding Benefit From Cue Repetition

Model 2 exploits a peculiar feature that distinguishes the explicit
task-cuing procedure from other task-switching procedures: The
explicit task-cuing procedure presents enough information on a
single trial to determine the correct response. The cue and the

1 The expression presupposes that �c � �s. By Model 1, the probability
that cue encoding is complete but set switching is not complete at time
SOA equals

�
0

SOA

�1/�c� � exp� � t/�c� � exp� � �SOA � t�/�s�dt.

If �c � �s, the integral reduces to the stated expression,

1/�c

1/�c � 1/�s
�exp� � SOA/�s� � exp� � SOA/�c��.

If �c � �s � �, then the integral reduces to

�SOA/�� exp� � SOA/��.
2 In Models 1 and 2, cue-encoding times and set-switching times are

distributed exponentially. However, the predictions by Models 1 and 2
described in Appendix A hold not only when exponential distributions of
cue-encoding and set-switching times are assumed. We have examined
many alternative versions of Model 1 and Model 2 with distributions
belonging to the family of generalized gammas (see, e.g., McGill, 1963)
and found the same basic pattern of predicted results.
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target act as a compound stimulus that uniquely determines the
correct response. For example, in our experiments, the cue Odd–
Even and the target 7 mapped uniquely onto the 4 key on the
numeric keypad that we used to collect responses. From this
perspective, there is no endogenous act of control that prolongs RT
on task-alternation trials. Instead, there may be a benefit from
repeating the cue—part of the compound stimulus—on task-
repetition trials.

We explain the benefit from repeating the cue by formalizing
the cue-encoding process in terms of Bundesen’s (1990) theory of
visual attention (TVA; see also Bundesen, 1998a, 1998b;
Bundesen & Harms, 1999; Logan, 1996, 2002; Logan & Gordon,
2001). We assume that the current cue is compared to memory
representations of the alternative cues and that cue encoding oc-
curs when the current cue matches one of the representations. In
TVA, encoding time is distributed exponentially, with a rate pa-
rameter that increases in proportion to the similarity of the pre-
sented cue to a representation of the cue. The more similar the
current cue to the representation, the faster the cue is encoded. We
assume that there is a short-term memory representation of the cue
from the last trial that is also compared with the current cue. Cue
encoding occurs when the current cue matches either a long-term
memory representation or the short-term memory representation.
Following TVA, the two comparison processes race against each
other, and the first one to finish determines performance. On
repetition trials, the cue matches both the short-term memory
representation and a long-term memory representation, so the rate
at which the cue is processed equals the sum of the comparison
rates for short-term and long-term memory (i.e., �STM � �LTM,
where �STM and �LTM are the rates at which the cue is compared
with short-term memory and long-term memory, respectively). On
alternation trials, the current cue will not match the short-term
memory representation, so only the long-term memory represen-
tation effectively enters the race. Thus, the cue-encoding rate on
alternation trials will equal the comparison rate for long-term
memory (i.e., �LTM). TVA assumes that finishing times are dis-
tributed exponentially, so the mean finishing time equals the
reciprocal of the processing rates. Thus, the mean cue-encoding
time on repetition trials, �r, is

� r �
1

�STM � �LTM
,

and the mean cue-encoding time on alternation trials, �a, is

�a �
1

�LTM
.

Consequently, �r 	 �a. Model 2 predicts faster RT on repetition
trials than on alternation trials.

Interaction between repetition versus alternation and SOA.
The benefit from repeating the cue should appear at short SOAs
when cue encoding has not had time to finish, and it should
disappear at long SOAs when cue encoding is complete. Thus,
Model 2 also predicts an interaction between SOA and repetition
and alternation. On repetition trials, the probability that cue en-
coding is finished at a given SOA is equal to F(SOA) � 1 �
exp[�SOA/�r] and the probability that it is not finished is equal to
1 � F(SOA) � exp[�SOA/�r]. Thus, mean RT is

RTRepetition � RTBase � � r � exp[�SOA/�r] , (4)

where RTBase is the time to process the target and produce a
response, as it was in Model 1. By a similar argument, mean RT
on task alternation trials is

RTAlternation � RTBase � �a � exp[�SOA/�a] . (5)

The difference in mean RT between cue alternation and repetition
is

RTAlternation � RTRepetition � �a � exp[�SOA/�a]

� �r � exp[�SOA/�r] . (6)

If SOA � 0, this difference equals �a � �r, which can take on any
positive value. As SOA increases, this difference gets smaller and
approaches 0, producing the predicted interaction between repeti-
tion versus alternation and SOA.

Interaction between repetition versus alternation and prolonga-
tion of cue-encoding time. The TVA analysis of repetition gen-
erally predicts an underadditive interaction between repetition
versus alternation and our masking manipulation in Experiments 1
and 2. Masking the cue will reduce the similarity between the
current cue and its long-term memory representation on both
repetition and alternation trials. Thus, �LTM�no mask 

�LTM�mask. Masking the cue will also reduce the similarity be-
tween the current cue and the short-term memory representation.
This reduction in similarity will have a strong effect on repetition
trials, where the cue represented in short-term memory matches the
current cue, but it will have little effect on alternation trials, where
the cue represented in short-term memory does not match the
current cue. Indeed, masking will reduce the similarity between the
cue and the short-term memory representation more than it reduces
the similarity between the cue and the long-term memory repre-
sentation. On masking trials, short-term memory contains a repre-
sentation of a degraded cue that is compared with the current
degraded cue. Cue characters are masked randomly, so different
characters are likely to be masked from one trial to the next. There
are 10 characters in each cue display, and 5 are masked randomly,
so, on average, only 2.5 characters in the short-term memory
representation should match the current cue. By contrast, 5 char-
acters in the long-term memory representation should match the
current cue because the long-term memory representation is not
degraded. Thus, �STM�no mask 

 �STM�mask. The match to
short-term memory contributes little to the race on masking trials,
so cue-encoding time is prolonged substantially.

This analysis leads to the following ordinal predictions:

�a�mask � �a�no mask ,

�r�mask � �r�no mask ,

�a�no mask � �r�no mask ,

and

�a�mask � �r�mask .

Model 2 predicts an underadditive interaction between repeti-
tion and masking in the estimated cue-encoding times, that is

��a � �r��no mask � ��a � �r��mask ,

if and only if
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�STM�mask

�
�STM�no mask � ��LTM�mask�

2

��LTM�no mask�
2 � �STM�no mask � ��LTM�no mask � �LTM�mask�

.

The right-hand side of the inequality will always be positive
because all the terms are positive and �LTM�no mask 
 �LTM�mask.
Thus, for any values of �STM�no mask, �LTM�no mask, and �LTM�mask,
Model 2 predicts an underadditive interaction between repetition
and masking if �STM�mask is sufficiently small. Model 2 will predict
a null interaction if the two sides of the inequality are equal, and
it will predict an overadditive interaction if the left-hand side is
greater than the right-hand side. Thus, Model 2 is consistent with
an underadditive interaction between repetition and masking,
whereas Model 1 is not. An underadditive interaction between
repetition and masking would falsify Model 1 and be consistent
with Model 2.

We tested these predictions by fitting Model 2 to the data and
examining the values of the best-fitting parameters. As with Model
1, we tested the predicted interaction in two related ways. First, we
calculated the interaction contrast involving repetition and mask-
ing effects at SOA � 0. According to Equation 6, the difference
between repetition and alternation RT at SOA � 0 is simply �a �
�r. Thus, the underadditive interaction that is consistent with
Model 2 can be tested by computing the interaction contrast at
SOA � 0. Second, we tested the interaction contrast by averaging
RT over SOA. Again, intuition might suggest that the interaction
contrast would remain underadditive but diminish in magnitude as
SOA increases. However, a formal analysis of Model 2, presented
in Appendix A, shows that the interaction diminishes as SOA
increases but switches from underadditive to overadditive when
SOA is sufficiently long (see Footnote 2).

Model 2�1: Benefit for Repetition and an Endogenous
Act of Control

We constructed a third model that combines the cue-encoding
assumptions of Model 2 with the set-switching assumptions of
Model 1. According to this new model, Model 2�1, mean RT on
repetition trials is

RTRepetition � RTBase � � r � exp[�SOA/�r] , (7)

and mean RT on alternation trials is

RTAlternation � RTBase � exp[�SOA/�a] � ��a � �s�

�
1/�a

1/�a � 1/�s
�exp[�SOA/�s�

� exp[�SOA/�a]) � �s , (8)

where �r is the mean cue-encoding time on repetition trials, �a is
the mean cue-encoding time on alternation trials, and �s is the
mean set-switching time. Note that Equation 7 is the same as
Equation 4, and Equation 8 is the same as Equation 2, with �a

substituted for �c.
Models 1 and 2 are “nested” in Model 2�1. Consider the

relation between Model 2�1 and Model 2. Model 2�1 involves
the same parameters as Model 2 plus one additional parameter, �s.
If �s vanishes, then Equations 7 and 8 reduce to Equations 4 and
5. We tested Model 2�1 by fitting it to the data and comparing its

goodness of fit with that of Model 2. If the extra parameter
captures an important process, then Model 2�1 should fit signif-
icantly better than Model 2. We also examined the values of the
best-fitting parameters for Model 2�1. The values of �r and �a

should obey the same inequalities predicted for Model 2. If they
violate the predicted inequalities, the fit by Model 2�1 can be
rejected.

Experiment 1

The first experiment tested 3 subjects over several sessions to
obtain stable data for model fitting. The experiment involved three
number-classification tasks: magnitude, in which subjects decided
whether numbers were greater or less than 5; parity, in which
subjects decided whether numbers were odd or even; and form, in
which subjects decided whether numbers were presented as digits
or words. A cue indicating which task to perform was presented at
one of 20 SOAs before each target. We used a large number of
SOAs in order to capture the shape of the time-course function and
constrain the model fits. Cues, targets, and SOAs appeared in
random order, and the data were separated into repetition and
alternation trials post hoc. For half of the sessions, the cue was
masked to prolong cue-encoding time. Model 1 predicts no inter-
action between repetition and masking at SOA � 0 and overad-
ditive interaction at all SOAs 
 0. Model 2 predicts underadditive
interaction at short SOAs and overadditive interaction at suffi-
ciently long SOAs, but the model is consistent with underadditive
interactions at all SOAs we tested. Model 2�1 predicts an under-
additive interaction at short SOAs and a significant increase in
goodness of fit over Model 2.

Method

Subjects. The subjects were three students from Vanderbilt University
who were paid for their participation in 2 practice sessions and 16 exper-
imental sessions. One was female and 2 were male.

Apparatus and stimuli. The stimuli were presented on Gateway 2000
Crystalscan 1024 NI monitors controlled by Gateway 2000 486 computers.
The cues were High–Low, Odd–Even, and Digit–Word, and the targets
were the digits 1, 2, 3, 4, 6, 7, 8, and 9 and the words one, two, three, four,
six, seven, eight, and nine. The cues appeared centered on the screen and
the targets appeared one line (2.5 mm) below them, also centered on the
screen. Cues and targets were white on a black background. The cue
display was preceded by a fixation display, which consisted of two plus
signs (�). One was presented one line above the line on which the cue
would appear, and one was presented one line below the line on which the
target would appear. The plus signs were also white on a black background.

The cues and targets were 5 mm high. High–Low and Odd–Even were 25
mm wide, and Digit–Word was 30 mm wide. Digit targets were 3 mm
wide. Word targets were 10 (one, two, six), 12.5 (four, nine), and 15 (three,
seven, eight) mm wide. The fixation display was exposed for 500 ms.
Viewing distance was not constrained but was approximately 60 cm. At
this distance, 1 cm is approximately 1° of visual angle.

The cue display was exposed for SOA ms, where SOA was 0, 50, 100,
150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850,
900, or 950 ms. The cue remained on the screen when the target was
presented, and the cue and target were exposed until the subject responded.
After the subject’s response, the screen went blank for a 500-ms intertrial
interval (ITI).

Responses were collected from the numeric keypad. Each subject
pressed 7 to indicate “High,” 9 to indicate “Low,” 4 to indicate “Odd,” 6
to indicate “Even,” 1 to indicate “Digit,” and 3 to indicate “Word.” This
mapping allowed us to distinguish between same-task errors (e.g., indicat-
ing “High” when “Low” was appropriate) and different-task errors (e.g.,
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indicating “Odd” when “Low” was appropriate). Note that the cues were
consistent with the response mapping (e.g., the cue High–Low specified the
left–right order of the responses on the keypad). Subjects used the index
and middle fingers of their right hands to press the keys. The use of
different keys for different tasks required subjects to move their hands from
one row to another on alternation trials but not on repetition trials. We ran
another 3 subjects through 18 sessions (2 practice sessions and 16 test
sessions) with the requirement to respond to all three tasks with the same
keys (4 and 6 on the numeric keypad) and found essentially the same
results. Their data are discussed further in the Limitations section of the
General Discussion.

On masking trials, five pound signs (#) were superimposed on the cue in
random positions. The cues were presented in fields of 10 character
positions, and half of these positions were filled with masks on each trial.
With this arrangement, there was always enough information to specify
each cue uniquely. The assignment of masks to positions was randomized
on each trial, so cue repetitions looked different from one trial to the next
(e.g., #ig#t#W##d f D##it#W#r#).

Procedure. The basic design involved 3 (cues) � 16 (targets) � 20
(SOAs) � 960 trials. Each session involved one replication of the basic
design. Masking was manipulated between sessions. Subjects 2 and 3
began with a single-task practice session in which they performed 110
trials with each of the three tasks (magnitude, parity, and form). The
purpose was to familiarize them with each task and the mapping of
response categories onto the numeric keypad. Next, they performed a
960-trial practice session with the program from Experiment 2 (see below).
The three tasks were mixed randomly, with cues presented at 10 different
SOAs (0, 100, 200, 300, 400, 500, 600, 700, 800, and 900 ms) covering the
range they would experience during the experimental trials. They did 480
trials with no mask and then 480 trials with a mask. The purpose was to
familiarize them with the conditions they would experience in the exper-
imental sessions. Subject 1 did the practice sessions in the opposite order.

Then each subject performed 16 experimental sessions of 960 trials, 8
sessions with no mask and 8 sessions with a mask. Subjects began with no
mask on the first session and alternated between mask and no mask on
subsequent sessions. All three tasks were included, as were all 20 SOAs.
Subjects were allowed brief breaks every 96 trials. At the end of each
experimental session, subjects were told their mean RT and their percent-
age of correct responses for that session. They were encouraged to do as
well or better on the next session. The data were analyzed as a function of
masking, SOA, and repetition versus alternation. There were approxi-
mately 128 repetition trials and 256 alternation trials for each subject at
each SOA in each masking condition.

Results and Discussion

Accuracy was high (M � 98%, 96%, and 97% for Subjects 1, 2,
and 3, respectively) and did not trade off with RT, so the analyses
focused on RT. (The accuracy data and mean RTs for all of the
present experiments can be found in Appendixes B–F in the online
version of this article, which is part of the PsycARTICLES data-
base.) The data were sorted into repetition and alternation trials
post hoc. The mean RTs in each cell of the 2 (repetition vs.
alternation) � 2 (mask vs. no mask) � 20 (SOA) design appear in
Figures 1, 2, and 3. Figure 1 contains the data and model fits for
Subject 1, Figure 2 contains the data and model fits for Subject 2,
and Figure 3 contains the data and model fits for Subject 3.

Standard analyses. Each subject showed faster RTs and higher
accuracy on repetition trials than on alternation trials and faster
RTs and higher accuracy with no mask than with a mask. Each
subject showed a negatively accelerated reduction in RT as SOA
increased and a reduction in the effects of repetition and masking
as SOA increased. Thus, the main experimental manipulations
were successful.

Each subject showed an underadditive interaction between
repetition versus alternation and mask versus no mask (i.e.,
RTMask–Alternation � RTMask–Repetition � RTNo-Mask–Alternation �
RTNo-Mask–Repetition 	 0). The interaction contrasts were negative
at SOA � 0 (the values were �60, �32, and �22 for Subjects 1,
2, and 3, respectively) and negative when averaged over SOA (the
values were �21, �7, and �21 for Subjects 1, 2, and 3, respec-
tively). Subject 1 showed negative interaction contrasts at 14 of the
20 SOAs (9 in the first 10 SOAs and 5 in the last 10). Subject 2
showed negative interaction contrasts at 10 of the 20 SOAs (7 in
the first 10 SOAs and 3 in the last 10). Subject 3 showed negative
interaction contrasts in 17 of the 20 SOAs (10 in the first 10 SOAs
and 7 in the last 10). These results are inconsistent with Model 1,
which predicts a null interaction at SOA � 0 and positive inter-
action contrasts at all SOAs 
 0. They are consistent with Model
2, which generally predicts negative interaction contrasts at short
SOAs reducing in magnitude and becoming positive as SOA
becomes sufficiently long.

Model fitting. We fit the models to the data from each subject
using the Solver procedure in Microsoft Excel, minimizing the
sum of squared deviations between observed and predicted values.
The values of the best-fitting parameters for each model and
measures of goodness of fit—root-mean-squared deviation be-
tween observed and predicted values (RMSD) and the product–
moment correlation between observed and predicted values (r)—
appear in Table 1.

First, we fit a constrained version of Model 1 (Model 1 Con-
strained). We used Equation 1 for the no-mask and mask repetition
conditions and Equation 2 for the no-mask and mask alternation
conditions. There were 80 data points and four free parameters per
subject: a common value of RTBase for all conditions, a different
value of �c for no-mask and for mask conditions, and a single
value of �s, in alternation conditions for both no-mask and mask
trials. Model 1 Constrained was constrained in the sense that we
required the value of �s to be the same with and without a mask.
Model 1 Constrained produced good fits overall. The average
RMSD was 25 ms, and the average r was .980.

Next, we fit an unconstrained version of Model 1 (Model 1
Unconstrained), using Equation 1 for repetition conditions and
Equation 2 for alternation conditions. There were five free param-
eters: a common value of RTBase, a different value of �c for
no-mask and for mask conditions, and a different value of �s for
no-mask and for mask conditions. Model 1 Unconstrained was
unconstrained in that we allowed �s to take on different values
with and without a mask. Overall, Model 1 Unconstrained pro-
duced better fits than Model 1 Constrained. The average RMSD
decreased to 24 ms and the average r increased to .981. The
increase in goodness of fit was significant in Subjects 1 and 3, F(1,
74) � 9.88 and 4.37, respectively, ps 	 .05. However, the im-
provement in goodness of fit was bought at the cost of violating
Model 1’s assumption that set-switching time is unaffected by
factors that prolong cue-encoding time: �s was smaller when the
cue was masked than when it was not masked for all three subjects.

We fit Model 2 by applying Equation 4 to the repetition con-
ditions and Equation 5 to the alternation conditions. There were
five free parameters: a common value of RTBase for all conditions,
separate values of �r for no-mask and for mask conditions, and
separate values of �a for no-mask and for mask conditions. Over-
all, the fits were about as good as the fits of Model 1. The average

(text continues on page 584)

580 LOGAN AND BUNDESEN



Figure 1. Mean reaction times (RTs) for Subject 1 in Experiment 1 as functions of stimulus onset asynchrony
in no-mask (left panels) and mask (right panels) conditions. The points represent the observed data. Solid
diamonds represent task-repetition trials. Open diamonds represent task-alternation trials. The lines represent
predictions from the models. Solid lines represent predictions for task-repetition trials. Broken lines represent
predictions for task-alternation trials.
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Figure 2. Mean reaction times (RTs) for Subject 2 in Experiment 1 as functions of stimulus onset asynchrony
in no-mask (left panels) and mask (right panels) conditions. The points represent the observed data. Solid
diamonds represent task-repetition trials. Open diamonds represent task-alternation trials. The lines represent
predictions from the models. Solid lines represent predictions for task-repetition trials. Broken lines represent
predictions for task-alternation trials.
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Figure 3. Mean reaction times (RTs) for Subject 3 in Experiment 1 as functions of stimulus onset asynchrony
in no-mask (left panels) and mask (right panels) conditions. The points represent the observed data. Solid
diamonds represent task-repetition trials. Open diamonds represent task-alternation trials. The lines represent
predictions from the models. Solid lines represent predictions for task-repetition trials. Broken lines represent
predictions for task-alternation trials.
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RMSD was 25 ms and the average r was .980. Moreover, the
values of the best-fitting parameters confirmed Model 2’s ordinal
predictions: �r�no mask was less than �r�mask, �a�no mask was
less than �a�mask, and �r�no mask was less than �a�no mask for all
3 subjects. The value of �r�mask was smaller than the value of
�a�mask in Subjects 1 and 2 and larger by only 2 ms in Subject 3.
Each subject showed the negative interaction contrast predicted by
Model 2, that is (�a � �r)�no mask 
 (�a � �r)�mask.

We fit Model 2�1 by applying Equation 7 to repetition conditions
and Equation 8 to alternation conditions. There were six free param-
eters: a common value of RTBase for all conditions, separate values of
�r for no-mask and for mask conditions, separate values of �a for
no-mask and for mask conditions, and a single value of �s for both
alternation conditions. Model 2�1 had more parameters than the
other models, and it fit the data best overall. The average RMSD was
23 ms and the average r was .983. The improvement in goodness of
fit over Model 2 was significant in Subjects 1 and 3, F(1, 73) � 10.58
and 38.27, respectively, ps 	 .01. However, the improvement in
goodness of fit was bought at the cost of violating Model 2’s assump-
tions: �r�mask was larger than �a�mask in all three subjects, and �r�no
mask was larger than �a�no mask in Subject 3.

Conclusions

All 3 subjects showed underadditive interactions between rep-
etition and masking that contradicted the predictions of Model 1

and were consistent with Model 2. The underadditive interactions
appeared in the RT data and in the estimates of cue-encoding time
derived from the fits of Model 2. The unconstrained version of
Model 1 was only able to account for these interactions by allow-
ing set-switching time, �s, to speed up when the cue was masked,
which violates Model 1’s assumption that set-switching time is
unaffected by factors that prolong cue encoding. Model 2�1,
which incorporated Model 2’s assumptions about cue-repetition
effects and Model 1’s assumption about set switching on alterna-
tion trials, fit the data best, but it did so only by violating Model
2’s assumption that cue-processing time is faster on repetition
trials than on alternation trials. Thus, Model 2 appears to provide
the best account of the data. This challenges the idea that the
explicit task-cuing procedure involves an endogenous act of con-
trol—set switching—that accounts for the difference in RT be-
tween alternation and repetition trials.

Experiment 2

The results of Experiment 1 were obtained with highly practiced
subjects. It is possible that the extensive practice they experienced
allowed them to learn to treat cues and targets as compound stimuli
and that this allowed them to do the tasks without switching
sets—that is, to behave in accord with Model 2 rather than Model
1 or Model 2�1. The second experiment was designed to compare
the alternative models in relatively unpracticed subjects, who

Table 1
Values (in ms) of Best-Fitting Parameters and Measures of Goodness of Fit for the Models for
Fits to 3 Subjects in Experiment 1

Subject RTBase �c�nm �c�m �s r RMSD

Model 1 Constrained

1 599 328 422 127 .979 28
2 551 287 462 72 .980 27
3 422 238 347 40 .981 20

RTBase �c�nm �c�m �s�nm �s�m r RMSD

Model 1 Unconstrained

1 600 311 432 160 101 .982 26
2 552 281 464 87 62 .980 27
3 423 229 352 60 26 .982 20

RTBase �r�nm �a�nm �r�m �a�m r RMSD

Model 2

1 577 342 468 464 532 .980 28
2 540 296 362 482 522 .980 27
3 417 239 279 369 367 .980 21

RTBase �r�nm �a�nm �r�m �a�m �s r RMSD

Model 2�1

1 597 313 358 438 425 112 .982 26
2 551 279 296 468 458 71 .980 27
3 430 220 112 352 173 173 .987 17

Note. RT � reaction time; �c � mean cue-processing time; �s � mean set-switching time; �r � mean
cue-processing time on repetition trials; �a � mean cue-processing time on alternation trials; nm � no mask on
cue; m � mask on cue; r � correlation between predicted and observed values; RMSD � root-mean-squared
deviation between predicted and observed values.
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served only in a single session. If extensive practice is necessary
for subjects to treat cues and targets as compound stimuli, Model
2 should not provide a better account of data from relatively
unpracticed subjects.

Experiment 2 was a replication of the conditions of Experiment
1 in a single session. The tasks, cues, and targets were the same,
and the cues were masked for half of the trials and not masked for
the other half. There were only 10 SOAs—0, 100, 200, 300, 400,
500, 600, 700, 800, and 900 ms—but they spanned the same range
as the SOAs in Experiment 1. We tested 32 subjects instead of 3.
The larger number of subjects allowed us to test the interaction
between repetition versus alternation and no-mask versus mask
with a conventional analysis of variance (ANOVA). It also al-
lowed us much greater statistical power in comparing the values of
parameters of models fitted to the data. As in Experiment 1, we
fitted Model 1 Constrained, Model 1 Unconstrained, Model 2, and
Model 2�1 to the data and examined the values of the best-fitting
parameters to see if they confirmed or disconfirmed the assump-
tions of the models.

Method

Subjects. The subjects were 32 students from an introductory psychol-
ogy class who participated to fulfill course requirements. None had served
in Experiment 1.

Apparatus and stimuli. The apparatus and stimuli were the same as in
Experiment 1, except that we used 10 SOAs instead of 20. The SOAs were
0, 100, 200, 300, 400, 500, 600, 700, 800, and 900 ms. As in Experiment
1, subjects used different rows of the numeric keypad to respond to the
different tasks. We replicated Experiment 2 with another group of 32
subjects who responded to all three tasks with the same keys (4 and 6 on
the numeric keypad), and we found essentially the same results. Their data
are discussed further in the Limitations section of the General Discussion.

Procedure. The procedure was the same as in the experimental ses-
sions of Experiment 1, except that subjects served in a single session,
masking was manipulated within the session, and there were 10 SOAs
instead of 20. The basic design involved 3 (cues) � 16 (targets) � 10
(SOAs) � 480 trials with a mask and 480 trials without a mask. Masking
was blocked. Cues, targets, and SOAs appeared in random order within
each set of 480 trials. The order was randomized separately for each
subject. Half of the subjects performed 480 trials without a mask and then
480 trials with a mask, and half performed trials with a mask before trials
without a mask.

Subjects were allowed brief rests every 96 trials. They were warned
when the masking condition changed in the middle of the experiment.

Results and Discussion

Standard analyses. Accuracy was high, averaging 92%, and
there was no evidence of a speed–accuracy tradeoff, so the anal-
yses focused on RT. RTs were sorted into repetition and alterna-
tion trials post hoc. The mean RTs in each cell of the 2 (repetition
vs. alternation) � 2 (mask vs. no mask) � 10 (SOA) design are
presented in Figure 4.

The RT data replicated standard effects. RT decreased as SOA
increased. It was faster for cue-repetition than for cue-alternation
trials, and the difference between repetition and alternation de-
creased as SOA increased. RT was longer when the cue was
masked than when it was not masked, particularly at short SOAs.

The interaction between repetition and masking was underadditive.
At SOA � 0, the difference between repetition and alternation was
331 ms without a mask and 222 ms with a mask. Averaged across
SOA, the difference between repetition and alternation was 249 ms
without a mask and 202 ms with a mask.

These conclusions were supported by a 2 (repetition vs. alter-
nation) � 2 (mask vs. no mask) � 10 (SOA) ANOVA performed
on the mean RTs. There were significant main effects of repetition,
F(1, 31) � 152.92, p 	 .01, MSE � 106,320.55, masking, F(1, 31)
� 62.60, p 	 .01, MSE � 14,364,277.51, and SOA, F(9, 279) �
397.97, p 	 .01, MSE � 4,293,459.50, and significant interactions
between repetition and SOA, F(9, 279) � 6.93, p 	 .01, MSE �
11,415.97, and masking and SOA, F(9, 279) � 12.93, p 	 .01,
MSE � 11,354.36. The theoretically important interaction between
repetition and masking was significant as well, F(1, 31) � 6.19,
p 	 .05, MSE � 175,078.83. A contrast evaluating the interaction
between repetition and masking at SOA � 0 was significant, F(1,
279) � 9.63, p 	 .01, MSE � 9,874.66.

The accuracy data were submitted to a 2 (repetition vs. alterna-
tion) � 2 (mask vs. no mask) � 10 (SOA) ANOVA. The main
effect of repetition was significant, F(1, 31) � 37.30, p 	 .01,
MSE � 72.54, reflecting higher accuracy on repetition trials than
on alternation trials. The main effect of masking was significant,
F(1, 31) � 24.34, p 	 .01, MSE � 161.79, reflecting lower
accuracy with a mask than without one. The main effect of SOA
was significant, F(9, 279) � 7.71, p 	 .01, MSE � 33.37,
reflecting higher accuracy at longer SOAs. None of the interac-
tions were significant.

Model fitting. We fit the models to the 40 mean RTs averaged
over subjects and to the 40 mean RTs for each of the 32 subjects
individually. We used Equations 1 and 2 for Model 1, forcing �s

to be the same in the no-mask and mask conditions in the con-
strained fits and allowing it to take different values in the no-mask
and mask conditions in the unconstrained fits. We used Equations
4 and 5 for Model 2 and Equations 7 and 8 for Model 2�1.

The models fit the mean data very well. The predicted RTs for
each model are plotted against the observed values in Figure 5. The
values of the best-fitting parameters and measures of goodness of
fit appear in Table 2. Averaged over models, the mean RMSD was
30 ms and the mean r was .992. As in Experiment 1, Model 1
Unconstrained fit the data better than Model 1 Constrained, F(1,
35) � 15.92, p 	 .01, but at the cost of violating Model 1’s
assumption that set-switching time is unaffected by factors that

Figure 4. Mean reaction times (RTs) as functions of stimulus onset
asynchrony in no-mask and mask conditions of Experiment 2.
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prolong cue-encoding time: �s was smaller when the cue was
masked than when it was not masked. Model 2 fit the average data
well, and its ordinal predictions were confirmed: �r was less than
�a with and without a mask, both �r and �a were larger with a
mask than without one, and there was an underadditive interaction
between masking and repetition (i.e., [�a � �r]�no mask 
 [�a �
�r]�mask). Model 2�1 fit the data significantly better than Model
2, F(1, 34) � 8.40, p 	 .01. The improvement in goodness of fit
was bought at the cost of violating Model 2’s assumptions about
repetition effects: �r was greater than �a both with and without a
mask.

The models fit the data from individual subjects quite well,
given the small amount of practice and the small number of
observations per data point. Averaged across subjects and models,
the correlation between observed and predicted values was .926,
and the RMSD between observed and predicted values was 99 ms.
The mean values of the best-fitting parameters and the mean
values of the measures of goodness of fit appear in Table 2. The
standard errors of those means also appear in Table 2. The fre-
quencies with which the ordinal predictions of each model were
confirmed appear in Table 3.

Model 1 Constrained fit the data quite well, and the average
parameter values were reasonable. The value of �c was smaller
with no mask than with a mask in 29 out of 32 subjects. Model 1
Unconstrained fit better. The correlation between observed and
predicted values was higher for the unconstrained Model 1 in 32

out of 32 subjects, and the improvement in goodness of fit was
significant at p 	 .05 in 7 of the 32 subjects. The improvement in
fit was obtained at the cost of violating the assumptions of Model
1, however. The estimate of mean switching time, �s, was greater
with no mask than with a mask on average, t(31) � 3.45, p 	 .01,
and it was greater in 24 of 32 subjects ( p 	 .01, by a binomial
test).

Model 2 fit the data as well as Model 1 Unconstrained, which
had the same number of parameters. The average parameter values
were reasonable. The ordinal predictions were confirmed in nearly
all of the subjects. Mean cue-encoding time was smaller on repe-
tition trials than on alternation trials (i.e., �r 	 �a) in 32 of 32
subjects in both the no-mask and the mask conditions. Mean
cue-encoding time was smaller with no mask than with a mask in
31 of 32 subjects on repetition trials and smaller in 28 of 32
subjects on alternation trials. The interaction contrast was negative
in 25 of 32 subjects ( p 	 .01, by binomial test). In a 2 (repetition
vs. alternation) � 2 (no mask vs. mask) ANOVA on the cue-
encoding parameters, there were significant main effects of repe-
tition, F(1, 31) � 163.66, MSE � 146,599.17, and masking, F(1,
31) � 69.60, MSE � 31,447.62, and the interaction between them
was significant, F(1, 31) � 16.91, MSE � 3,855.37, all ps 	 .01,
consistent with Model 2’s predictions.

Model 2�1 fit the data better than did Model 2. The correlation
between observed and predicted values was higher for Model 2�1

Figure 5. Mean reaction times (RTs) as functions of stimulus onset asynchrony in no-mask and mask
conditions in Experiment 2. The points represent the observed data. The lines represent the fits of the model.
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in 27 of 32 subjects3 and significant at p 	 .05 in 3 of them.
However, the increase in goodness of fit was bought at the cost of
implausible parameter values. On average, cue-encoding time was
longer on repetition trials than on alternation trials with and
without a mask (by 151 and 65 ms, respectively). Cue-encoding
time was longer on repetition trials in 16 of 32 subjects in the
no-mask condition and in 18 of 32 subjects in the mask condition.
In a 2 (repetition vs. alternation) � 2 (no mask vs. mask) ANOVA
on the cue-encoding parameters, there was a significant main
effect of masking, F(1, 31) � 72.41, p 	 .01, MSE � 31,797.39,
and the interaction between repetition and masking was signifi-
cant, F(1, 31) � 14.98, p 	 .01, MSE � 3,892.70, consistent with
Model 2�1’s predictions. However, the main effect of repetition
approached significance, F(1, 31) � 3.36, p 	 .10, MSE �
111,605.93, indicating slower cue-encoding times for repetition
trials than for alternation trials, which is inconsistent with Model
2�1’s predictions.

The fits to individual subject data suggest that the fits to the
average data should be viewed with caution. The parameter values
that fit the average data differed substantially from the average
parameter values that fit the individual data. For Model 1 Con-

strained, Model 1 Unconstrained, and Model 2, the parameters
from the average data were within the 95% confidence intervals of
the average values from the fits to individual data, but for Model
2�1, the values of cue-encoding time on alternation trials with and
without a mask, �a�nm and �a�m, were significantly smaller in the
fits to the average data, and the value of set-switching time, �s,
was significantly larger. Thus, the parameters that represent the
average data may not represent the individual subjects’ data very
well. In this context, as in others, it is better to fit models to
individual subjects than to data averaged over subjects.

3 Technically, a nested model should never fit the same data set better
than the model it is nested in. Model 2 is nested in Model 2�1 in that
Model 2�1 reduces to Model 2 if set-switching time, �s, vanishes (i.e., if
�s vanishes, then Equation 8 becomes Equation 5). However, in fitting the
models with the Excel Solver routine, it was necessary to constrain the
values of the parameters to be greater than or equal to 1, so from a
mathematical perspective, the fitted models were not exactly nested. Con-
sequently, Model 2�1 did not always fit the data as well as or better than
Model 2.

Table 2
Values (in ms) of Best-Fitting Parameters and Measures of Goodness of Fit for Fits of the
Models to the Reaction Times Averaged Over Subjects (Ave) in Experiment 2 and Means (Mean)
and Standard Errors of Values of Best-Fitting Parameters and Measures of Goodness of Fit for
Fits of the Same Models to Individual Data From the 32 Subjects in Experiment 2

RTBase �c�nm �c�m �s r RMSD

Model 1 Constrained

Ave 705 406 664 314 .989 34
Mean 670 441 700 312 .920 103
SE 24 28 31 22 .005 3

RTBase �c�nm �c�m �s�nm �s�m r RMSD

Model 1 Unconstrained

Ave 710 368 680 368 272 .993 29
Mean 675 402 714 364 272 .927 98
SE 24 28 29 27 21 .005 3

RTBase �r�nm �a�nm �r�m �a�m r RMSD

Model 2

Ave 654 443 757 744 973 .993 30
Mean 621 470 789 777 1,006 .927 98
SE 26 33 37 32 36 .005 3

RTBase �r�nm �a�nm �r�m �a�m �s r RMSD

Model 2�1

Ave 685 402 61a 709 304a 677a .994 26
Mean 653 430 365 741 590 411 .930 97
SE 25 31 51 31 66 60 .005 3

Note. RT � reaction time; �c � mean cue-processing time; �s � mean set-switching time; �r � mean
cue-processing time on repetition trials; �a � mean cue-processing time on alternation trials; nm � no mask on
cue; m � mask on cue; r � correlation between predicted and observed values; RMSD � root-mean-squared
deviation between predicted and observed values.
a Outside the 95% confidence interval for the average parameter value from the fits to individual subject data.
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Conclusions

This experiment replicated standard effects in the explicit task-
cuing procedure, and it replicated the pattern observed in Experi-
ment 1. The underadditive interaction between repetition and
masking, which contradicts Model 1 and supports Model 2, ap-
peared in the RT data and in the estimates of cue-encoding time for
Model 2 in the fits to average data and in the fits to individual
subjects. Model 1 Unconstrained was able to account for this
interaction only by violating its assumption that set-switching time
is unaffected by factors that prolong cue encoding. Model 2�1 fit
the data better than Model 2 but only by violating the assumption
that cue encoding is faster on repetition trials than on alternation
trials. Its best-fitting parameters suggested that cue-encoding time
was faster on alternation trials than on repetition trials. As with
Experiment 1, Model 2 provides the best account of the data,
suggesting that the explicit task-cuing procedure does not involve
set switching.

Experiment 3

The third experiment tested a new prediction that contrasted
Models 1, 2, and 2�1. Model 1 predicts that the benefit of cue
repetition stems from a savings in set-switching time; Model 2
predicts that the benefit of cue repetition stems from a savings in
cue-encoding time; and Model 2�1 predicts that the benefit of cue
repetition reflects both types of savings. To contrast these predic-
tions, we cued each task in two different ways. We used two
tasks—magnitude and parity judgments of digits. We cued the
magnitude task with a name cue—the word Magnitude that named
the task—and with a mapping cue—the words High–Low that
specified the mapping of judgments onto responses, which we used
in Experiments 1 and 2. We cued the parity task with a name cue
(the word Parity) and a mapping cue (the words Odd–Even) as
well. With this procedure, three things could happen on successive
trials: The cue could repeat (e.g., Magnitude 3 Magnitude), the

task could repeat (e.g., Magnitude3 High–Low), or the task could
alternate (e.g., Magnitude 3 Odd–Even). Model 1 assumes that
the benefit of cue repetition stems from task repetition, so it
predicts the same benefit on task-repetition trials as on cue-
repetition trials. Model 2 assumes that the benefit of cue repetition
stems from encoding the same cue twice, so it predicts no benefit
on task-repetition trials. Task-repetition trials should be as slow as
task-alternation trials. Model 2�1 assumes that the benefit of cue
repetition reflects savings in both cue encoding and set switching,
so it predicts more benefit on cue-repetition trials than on task-
repetition trials, and it predicts benefit on task-repetition trials
relative to task-alternation trials.

We tested these predictions qualitatively by comparing mean
RTs in the three conditions and quantitatively by fitting Models 1,
2, and 2�1 to the data and evaluating their goodness of fit and the
values of their best-fitting parameters.

Method

Subjects. The subjects were 32 students from an introductory psychol-
ogy course who participated to fulfill course requirements. None had
served in Experiment 1 or Experiment 2.

Apparatus and stimuli. The apparatus and stimuli were the same as in
Experiment 2 (i.e., there were 10 SOAs: 0, 100, 200, 300, 400, 500, 600,
700, 800, and 900 ms), except that there were four cues (Magnitude,
High–Low, Parity, and Odd–Even) and eight targets (the digits 1, 2, 3, 4,
6, 7, 8, and 9). Subjects responded by pressing the 4 key for high and odd
digits and the 6 key for low and even digits.

Procedure. The basic design involved 4 (cues) � 8 (targets) � 10
(SOAs) � 320 trials. The experiment involved two replications of the basic
design, in an order randomized separately for each subject, for a total of
640 trials. Short breaks were allowed every 64 trials. In all other respects,
the procedure was the same as in Experiment 2, except that subjects used
the same keys (4 and 6 on the numeric keypad) for both tasks.

Results and Discussion

Standard analyses. Accuracy was high, averaging 95%, and
there was no suggestion of a speed–accuracy tradeoff, so the
analyses focused on RT. RT data were sorted into cue-repetition,
task-repetition, and task-alternation trials post hoc. The mean RTs
in each cell of the 3 (cue repetition, task repetition, task alterna-
tion) � 10 (SOA) design are presented in Figure 6.

The data from cue-repetition and task-alternation trials repli-
cated standard effects. RT decreased with SOA, and it was faster
for cue repetitions (M � 784 ms) than for task alternations (M �
987 ms). The difference between cue repetition and task alterna-
tion decreased as SOA increased. The theoretically important
results concerned the task-repetition condition. Model 1 predicts
that task-repetition RTs should resemble cue-repetition RTs,
whereas Model 2 predicts that task-repetition RTs should resemble
task-alternation RTs. The data were closer to the predictions of
Model 2 than Model 1. Mean RTs for task repetitions (M � 952
ms) were substantially slower than RTs for cue repetitions (differ-
ence � 168 ms) and almost as slow as RTs for task alternations
(difference � 35 ms). Model 2�1 predicts an advantage of cue
repetition over task repetition and an advantage of task repetition
over task alternation, so it is most consistent with the results.
However, the 35-ms difference between task repetition and task
alternation was quite small and appeared to increase rather than
decrease with SOA. It may be an unrealistic estimate of set-
switching time in unpracticed subjects.

Table 3
Number of Subjects (Max � 32) Confirming Ordinal Predictions
of Model 1 Constrained, Model 1 Unconstrained, Model 2, and
Model 2�1 in Experiment 2

Prediction

Model

1 Constrained 1 Unconstrained

�c�nm 	 �c�m 29 32
�s�nm 	 �s�m 8
�s�nm 
 �s�m 24

Model

2 2�1

�r�nm 	 �a�nm 32 16
�r�m 	 �a�m 32 14
�r�nm 	 �r�m 31 31
�a�nm 	 �a�m 28 28
(�a � �r)�nm 
 (�a � �r)�m 25 24

Note. Max � maximum; �c � mean cue-processing time; �s � mean
set-switching time; �r � mean cue-processing time on repetition trials;
�a � mean cue-processing time on alternation trials; nm � no mask on
cue; m � mask on cue.
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These conclusions were supported by a 3 (repetition type: cue
repetition, task repetition, task alternation) � 10 (SOA) ANOVA
performed on the mean RTs. There were significant main effects of
repetition type, F(2, 62) � 90.58, p 	 .01, MSE � 41,524.85, and
SOA, F(9, 279) � 102.02, p 	 .01, MSE � 13,414.83, and a
significant interaction between repetition type and SOA, F(18,
558) � 2.17, p 	 .01, MSE � 9,731.11. Nonorthogonal compar-
isons showed that cue repetitions were significantly faster than
task repetitions, F(1, 62) � 108.75, p 	 .01, MSE � 41,524.85,
and that task repetitions were significantly faster than task alter-
nations, F(1, 62) � 4.72, p 	 .05, MSE � 41,524.85.

The accuracy data were analyzed in a 3 (repetition type) � 10
(SOA) ANOVA. The main effect of repetition type was signifi-
cant, F(2, 62) � 17.78, p 	 .01, MSE � 36.86, reflecting higher
accuracy on repetition trials than on alternation trials. The main
effect of SOA was also significant, F(9, 279) � 2.39, p 	 .05,
MSE � 21.77, reflecting higher accuracy with longer SOAs. The
interaction between repetition and SOA was not significant. Non-
orthogonal contrasts showed that the 96% accuracy in the cue-
repetition condition was significantly higher than the 95% accu-
racy in the task-repetition condition, F(1, 62) � 4.34, p 	 .05, and
the 95% accuracy in the task-repetition condition was significantly
higher than the 93% accuracy in the task-alternation condition,
F(1, 62) � 8.68, p 	 .01, both MSEs � 38.86.

Model fitting. We fit Models 1, 2, and 2�1 to 30 mean RTs
averaged over subjects and to the 30 mean RTs from the 32
individual subjects. Model 1 assumes no benefit from repeating the
cue, so cue-repetition and task-repetition conditions were both fit
using Equation 1 and task alternation was fit using Equation 2 (all
conditions constrained to have the same value of �c). Model 2
assumes no set switching, so cue repetition was fit using Equation
4 and task repetition and task alternation were both fit using
Equation 5 (constrained to have the same value of �a for both
conditions). Model 2�1 assumes benefit from cue repetition and
set switching on alternation trials, so cue repetition was fit using
Equation 4, task repetition was fit using Equation 5, and task
alternation was fit using Equation 8. The mean and standard errors
of the parameter values and measures of goodness of fit are
presented in Table 4.

The predicted RTs for the model fits to the data averaged across
subjects are plotted along with the observed RTs in Figure 6.
Model 1 did not fit the average data very well, compared to Models
2 and 2�1. The correlation between observed and predicted values
was substantially smaller, and RMSD was more than twice as
large. Model 2�1 fit better than Model 2, but the improved fit for
Model 2�1 was not significant and was bought at the cost of an
unreasonably small value for the set-switching time parameter; �s

Figure 6. Mean reaction times (RTs) as functions of stimulus onset asynchrony in cue-repetition (filled
diamonds, solid lines), task-repetition (filled squares, dashed lines), and task-alternation (open circles, dashed
lines) conditions of Experiment 3. Top left panel: data points connected by lines. Remaining panels: points �
observed data; lines � model predictions.
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for Model 2�1 was almost an order of magnitude smaller than �s

in Model 1.
The fits to the individual subject data were not as good as the fits

to individual subjects in Experiment 2, but they were still good
enough to be informative. Model 2 fit the data better than Model
1 on average and in 30 of the 32 subjects. Model 2�1 fit the data
better than Model 2 on average, but it only fit better in 17 of the
32 subjects.4 The improvement in fit was not significant in any
subject. Moreover, the switching-time parameter in Model 2�1,
�s, was unreasonably small. It was about one quarter of the value
estimated in the fits of Model 1.

Again, the fits to the average data should be viewed with caution
because the parameter values diverged somewhat from the average
parameter values from the fits to individual subjects. The set-
switching time parameter in Model 2�1 was outside the 95%
confidence interval around the mean value from the fits to indi-
vidual subjects. This underscores the point that models should be
fit to individual subject data rather than to data averaged across
subjects.

Conclusions

The contrast between cue-repetition and task-alternation trials
replicated standard results. The difference was large at short SOAs
and decreased as SOA increased. Task-repetition trials were more

like task-alternation trials than cue-repetition trials, suggesting that
cue-repetition effects account for most of the difference between
repetition and alternation conditions. The fits of the models led to
similar conclusions. Model 1 did not fit the data very well, either
for individual subjects or averaged across subjects. It predicted no
difference between cue repetitions and task repetitions, and the
large observed difference contradicts that prediction. Model 2 fit
individual subject and average data quite well. It predicted no
difference between task repetitions and task alternations, and the
small but significant difference between those conditions is incon-
sistent with that prediction. Model 2�1 fit the data slightly better
than Model 2, but the improvement in fit was not significant.
Model 2�1 predicted the observed difference between cue repe-
titions and task repetitions and the observed difference between
task repetitions and task alternations, and so it would appear to be
most consistent with the data. However, the difference between
task repetitions and task alternations, which reflects set-switching
time, was quite small. The values of �s required for the Model
2�1 fits were very small. They were smaller than the values
required to fit Model 1 to the same data and much smaller than the
values required to fit Model 1 and Model 2�1 to the data from
Experiment 2. As in the previous experiments, Model 2�1’s
ability to account for the data is bought at the cost of implausible
parameter values. Even if we accept Model 2�1, the data suggest
that the benefit from repetition is mostly due to the processes
involved in encoding the cue rather than the processes involved in
switching task sets. This conclusion challenges the idea that the
explicit task-cuing procedure evokes an endogenous act of control.

Experiment 4

The fourth experiment was designed to replicate the comparison
between cue repetition, task repetition, and task alternation with a
different set of cues and tasks. We used tasks developed by Meiran
(1996) that required subjects to judge the location of a happy face
presented in one of four quadrants in a 2 � 2 grid. In one task,
subjects judged vertical location, indicating whether the happy
face appeared in the top two or bottom two quadrants—that is,
above or below the horizontal line that ran through the center of
the grid. In the other task, they judged whether the happy face
appeared in the left two or right two quadrants—that is, left of or
right of the vertical line that ran through the center of the grid. We
used two different cues for each task: Above–Below and Horizon-
tal for the first task and Left–Right and Vertical for the second.

As in Experiment 3, Model 1 predicts that cue repetitions and
task repetitions will be equally fast and both will be faster than task
alternations. Model 2 predicts that cue repetitions will be faster
than task repetitions, which will not be faster than task alterna-
tions. Model 2�1 predicts that cue repetitions will be faster than
task repetitions, and task repetitions will be faster than task alter-
nations. As in Experiment 3, we fit Models 1, 2, and 2�1 to the
data averaged over subjects and to the individual data from each
subject.

4 Again, Model 2�1 did not always fit the data as well as or better than
Model 2 because the version we fitted was constrained to have �s greater
than or equal to 1. Truly nested versions of Models 2 and 2�1 would allow
�s to vanish.

Table 4
Values (in ms) of Best-Fitting Parameters and Measures of
Goodness of Fit for Fits of the Models to the Data Averaged
Across Subjects (Ave) in Experiment 3 and Means (Mean) and
Standard Errors of Values of Best-Fitting Parameters and
Measures of Goodness of Fit for Fits of the Same Models
to 32 Individual Subjects in Experiment 3

RTBase �c �s r RMSD

Model 1

Ave 769 306 190 .844 78
Mean 749 323 189 .712 122
SE 28 23 20 .018 5

RTBase �r �a r RMSD

Model 2

Ave 724 241 503 .971 35
Mean 703 261 522 .804 101
SE 24 24 25 .016 4

RTBase �r �a �s r RMSD

Model 2�1

Ave 725 239 498 22a .972 34
Mean 705 258 493 47 .816 98
SE 24 24 25 11 .016 4

Note. RT � reaction time; �c � mean cue-processing time; �s � mean
set-switching time; �r � mean cue-processing time on repetition trials;
�a � mean cue-processing time on alternation trials; r � correlation
between predicted and observed values; RMSD � root-mean-squared
deviation between predicted and observed values.
a Outside the 95% confidence interval of the mean parameter value across
subjects.
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Method

Subjects. We tested 32 graduate and undergraduate students and paid
them $8 for their participation. Two subjects had served in Experiment 1.

Apparatus and stimuli. The apparatus was the same as in the previous
experiments. The cues and targets were different. Each trial began with a
display containing a grid that was exposed for 500 ms. The grid was 32 mm
high and 38 mm wide. The vertical lines were 1 mm thick, and the
horizontal lines were 0.8 mm thick. Then a cue was presented 6 mm above
the grid. All cues were 5 mm high. Vertical was 24 mm wide, Left–Right
and Horizontal were 31 mm wide, and Above–Below was 34 mm wide.
After an SOA of 0, 100, 200, 300, 400, 500, 600, 700, 800, or 900 ms, a
happy-face target appeared in the center of one of the four quadrants. It was
made from the ASCII character 1, and it was 5 mm high and 3 mm wide.
The cue and the target were exposed until the subject responded, where-
upon the display went blank for a 1,500-ms ITI. Responses were taken
from the 1 and 9 or the 7 and 3 keys on the numeric keypad.

Procedure. The basic design involved 4 (cues) � 4 (target loca-
tions) � 10 (SOAs) � 160 trials. There were six replications of the basic
design, for a total of 960 trials. The order in which the trials appeared was
randomized separately for each subject. The mapping of stimuli onto
responses was counterbalanced between subjects. Half of the subjects
pressed the 1 key for “Below” and “Left” and the 9 key for “Above” and
“Right.” The other half pressed the 7 key for “Above” and “Left” and the
3 key for “Below” and “Right.”

Results and Discussion

Standard analyses. Accuracy was high, averaging 96%, and
there was no suggestion of a speed–accuracy tradeoff, so the
analyses focused on RT. Trials were divided post hoc into cue
repetitions, task repetitions, and task alternations. The mean RTs in
each cell of the 3 (repetition type: cue repetition, task repetition,
task alternation) � 10 (SOA) design are plotted in the top left
panel of Figure 7.

RT decreased with SOA, and the difference between repetition
conditions decreased as SOA increased. Averaged over SOA, RT
was 109 ms faster for cue repetitions than for task alternations,
replicating the standard effect. RT for task repetitions was 95 ms
slower than RT for cue repetitions and only 14 ms faster than RT
for task alternations, suggesting that the bulk of the difference
between cue repetition and task alternation is due to repetition
benefits in cue encoding.

These conclusions were supported in a 3 (repetition type) � 10
(SOA) ANOVA on the mean RTs. The main effects of repetition
type, F(2, 62) � 69.88, p 	 .01, MSE � 16,014.07, and SOA, F(9,
279) � 200.96, p 	 .01, MSE � 5,564.38, were significant, and
the interaction between them was significant, F(18, 558) � 4.56,
p 	 .01, MSE � 4,992.80. Nonorthogonal contrasts showed that
the difference between cue repetitions and task repetitions was

Figure 7. Mean reaction times (RTs) as functions of stimulus onset asynchrony in cue-repetition, task-
repetition, and task-alternation conditions of Experiment 4. Top left panel: data points connected by lines.
Remaining panels: points � observed data; lines � model predictions.
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significant, averaged over SOA, F(1, 62) � 90.17, p 	 .01, but the
difference between task repetitions and task alternations was not,
F(1, 62) � 1.96.

We performed a 3 (repetition type) � 10 (SOA) ANOVA on the
accuracy data. The main effect of repetition type was significant,
F(2, 62) � 12.73, p 	 .01, MSE � 27.33, as was the main effect
of SOA, F(9, 279) � 2.27, p 	 .05, MSE � 13.09. The interaction
between repetition type and SOA was not significant, F(18,
414) � 1.36, MSE � 13.04. Nonorthogonal contrasts showed that
the 97% accuracy in the cue-repetition condition was significantly
higher than the 96% accuracy in the task-repetition condition, and
the 96% accuracy in the task-repetition condition was significantly
higher than the 95% accuracy in the task alternation condition,
both Fs(1, 62) � 5.85, p 	 .05, MSE � 27.33.

Model fitting. We fit Model 1 to the mean RTs using Equation
1 for cue repetition and task repetition and Equation 2 for task
alternation. We fit Model 2 to the mean RTs using Equation 4 for
cue repetition and Equation 5 for task repetition and task alterna-
tion. We fit Model 2�1 to the mean RTs using Equation 4 for cue
repetition, Equation 5 for task repetition, and Equation 8 for task
alternation. We fit all three models to the 30 mean RTs averaged
over subjects and to the 30 mean RTs from individual subjects.
The mean and standard errors of the parameter values and mea-
sures of goodness of fit are presented in Table 5.

The predicted RTs for the model fits to the data, averaged across
subjects, are plotted along with the observed RTs in Figure 7.

Models 2 and 2�1 fit the average data very well. The improve-
ment in fit from Model 2 to Model 2�1 was very small but
significant statistically, F(1, 27) � 6.74, p 	 .05. Moreover, the
switching-time parameter in Model 2�1 was unreasonably small
(14 ms). Model 1 did not fit the average data as well as Models 2
and 2�1. The correlation between observed and predicted values
was smaller, and RMSD was more than four times as large.

As before, the fits to individual subjects were not as good as the
fits to the data averaged across subjects, but the pattern was the
same. The best-fitting parameters for the fits to the average data
were close to the average of the best-fitting parameters of the fits
to individual subject data for all three models. The average corre-
lation between observed and predicted values was higher for
Model 2�1 than for Model 2, but it was larger in only 18 of the
32 subjects.5 The average correlation was higher for Model 2 than
for Model 1, and it was larger in 29 of the 32 subjects.

Conclusions

Cue repetitions were faster than task alternations, replicating
results from Experiment 3 and standard results in the literature.
Task repetitions were much slower than cue repetitions and nearly
as slow as task alternations, replicating results from Experiment 3.
These results suggest that benefit from cue repetition accounts for
most of the difference between cue repetitions and task alterna-
tions and that set switching, if it occurs at all, accounts for very
little of the difference. The model fits led to similar conclusions.
Model 1 did not fit the average data or the individual subject data
as well as Model 2, and Model 2�1 did not fit the average data or
the individual subject data much better than Model 2. Model 2,
which assumes no endogenous act of control in the explicit task-
cuing procedure, provides the best account of the data.

Experiment 5

Experiments 1–4 used a constant, 500-ms interval between the
subject’s response and the appearance of the warning signal for the
next trial. The constant ITI resulted in a correlation between SOA
and the interval between successive targets. Thus, it is possible that
the effects we have attributed to SOA are due to the interval
between successive targets instead (cf. Allport et al., 1994). This
issue has been raised in the literature before, and researchers have
established that SOA has effects independent of ITI (e.g., Logan &
Zbrodoff, 1982; Meiran, 1996), but it is important to determine the
extent to which the SOA effects in Experiments 1–4 were due to
the interval between successive targets. Experiment 5 was con-
ducted to address this issue. Subjects made magnitude and parity
judgments about digits, and ITI and SOA were varied indepen-
dently. There were three values of ITI (250, 500, and 1,000 ms)
and 10 values of SOA (0, 100, 200, 300, 400, 500, 600, 700, 800,
and 900 ms).

Method

Subjects. Thirty-two subjects from the general university population
were paid for participating in a single session. None had served in Exper-
iments 1–4.

5 Model 2�1 did not always fit the data as well as or better than Model
2 because our fitting routine did not allow �s to vanish.

Table 5
Values (in ms) of Best-Fitting Parameters and Measures of
Goodness of Fit for Fits of the Models to the Data Averaged
Across Subjects (Ave) in Experiment 4 and Means (Mean) and
Standard Errors of Values of Best-Fitting Parameters and
Measures of Goodness of Fit for Fits of the Same Models
to 32 Individual Subjects in Experiment 4

RTBase �c �s r RMSD

Model 1

Ave 594 307 116 .925 44
Mean 587 316 117 .806 77
SE 27 19 14 .018 5

RTBase �r �a r RMSD

Model 2

Ave 578 248 411 .995 11
Mean 572 257 422 .864 65
SE 26 19 18 .015 4

RTBase �r �a �s r RMSD

Model 2�1

Ave 579 246 401 14 .996 10
Mean 574 254 404 30 .874 63
SE 26 18 18 10 .013 4

Note. RT � reaction time; �c � mean cue-processing time; �s � mean
set-switching time; �r � mean cue-processing time on repetition trials;
�a � mean cue-processing time on alternation trials; r � correlation
between predicted and observed values; RMSD � root-mean-squared
deviation between predicted and observed values.
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Apparatus and stimuli. The apparatus and stimuli were the same as
those used in Experiments 1–3. There were two cues, High–Low and
Odd–Even, and eight targets, the digits 1, 2, 3, 4, 6, 7, 8, and 9. Responses
were collected from the 4 and 6 keys on the numeric keypad. There were
three ITIs: 250, 500, and 1,000 ms. There were 10 SOAs (0, 100, 200, 300,
400, 500, 600, 700, 800, and 900 ms).

Procedure. The basic design involved 2 (cues) � 8 (targets) � 3
(ITIs) � 10 (SOAs) � 480 trials. The experiment consisted of two
replications of the basic design, for a total of 960 trials. Subjects were
allowed short breaks every 96 trials. In all other respects, the procedure
was the same as in Experiments 1–3.

Results and Discussion

Standard analyses. Accuracy was high, averaging 97%, and
there was no evidence of a speed–accuracy tradeoff, so the anal-
yses focused on RT. Trials were divided into repetitions and
alternations post hoc. The means across subjects for each combi-
nation of repetition and alternation and ITI are plotted as a function
of SOA in Figure 8.

Standard effects were replicated at each ITI. RT was faster for
repetitions than for alternations, RT decreased as SOA increased,
and the difference between repetitions and alternations decreased
as SOA increased. ITI had small effects compared to SOA, and
these occurred primarily on alternation trials. On repetition trials,
mean RT was 715, 714, and 721 ms for ITI � 250, 500, and 1,000,
respectively. On alternation trials, mean RT was 816, 807, and 787
ms for ITI � 250, 500, and 1,000, respectively. This suggests that
the effects of SOA in the previous experiments were due to
processes that intervened between the cue and the target (e.g., cue
encoding and, possibly, set switching) rather than processes inter-
vening between successive targets (cf. Allport et al., 1994; Logan
& Zbrodoff, 1982; Meiran, 1996).

Support for these conclusions was sought in a 2 (repetition vs.
alternation) � 3 (ITI) � 10 (SOA) ANOVA on the mean RTs.
There were strong main effects of repetition, F(1, 31) � 149.51,
p 	 .01, MSE � 24,595.39, and SOA, F(9, 279) � 184.62, p 	
.01, MSE � 7,641.74, and a strong interaction between repetition
and SOA, F(9, 279) � 11.50, p 	 .01, MSE � 5,963.71. The main
effect of ITI was significant but weak, F(2, 62) � 3.64, p 	 .05,

MSE � 6,969.30, and ITI interacted significantly with repetition,
F(2, 62) � 7.07, p 	 .01, MSE � 6,846.41, but with nothing else.

The accuracy data were subjected to a 2 (repetition vs. alterna-
tion) � 3 (ITI) � 10 (SOA) ANOVA. It yielded significant main
effects of repetition, F(1, 31) � 39.15, p 	 .01, MSE � 29.86, and
SOA, F(9, 279) � 4.51, p 	 .01, MSE � 20.52, and a significant
interaction between repetition and SOA, F(9, 279) � 2.11, p 	
.05, MSE � 21.88. None of the effects involving ITI were
significant.

Model fitting. We fit Models 1 and 2 to the 20 mean RTs in
each ITI condition. As before, we fit the data averaged over
subjects, and we fit the data from individual subjects. We used
Equations 1 and 2 to fit Model 1 and Equations 4 and 5 to fit
Model 2. The values of the best-fitting parameters and measures of
goodness of fit for the fits to the average data and the means and
standard errors of the values of the best-fitting parameters and
measures of goodness of fit for the fits to individual subjects are
presented in Table 6.

The observed and predicted RTs from the model fitting are
plotted in Figure 9. The models fit the average data rather well.
The mean correlation between observed and predicted RTs was
.982, and the mean RMSD was 18 ms. Model 2 fit better than
Model 1. For Model 2, the mean correlation was .987, and the
mean RMSD was 15 ms. For Model 1, the mean correlation was
.976, and the mean RMSD was 21 ms.

The fits to the individual subject data were not as good as the fits
to the average data. Model 2 fit better than Model 1 in 23, 23, and
20 out of 32 subjects for ITI � 250, 500, and 1,000 ms, respec-
tively. The differences at the 250- and 500-ms ITIs were signifi-
cant ( p 	 .05, by a binomial test). In this experiment, the param-
eters for the fits to the average data were similar to the mean of the
parameters for the fits to the individual subject data. None of the
parameters for the average data fell outside the 95% confidence
intervals of the mean parameters from the individual fits.

To determine whether the parameters were affected by ITI, we
ran one-way ANOVAs on each parameter, with ITI as the effect.
For Model 1, there was no effect of ITI on RTBase, F(1, 31) 	 1.0,
and no effect of ITI on cue-encoding time, �c, F(1, 31) � 1.54,
MSE � 4,370.62. ITI had a significant effect on set-switching
time, �s, F(1, 31) � 10.46, p 	 .01, MSE � 4,113.70; set-
switching time decreased as ITI increased. For Model 2, there was
no effect of ITI on RTBase, F(1, 31) 	 1.0, or on �r, F(1, 31) 	 1.0,
but �a decreased significantly as ITI increased, F(1, 31) � 5.26,
p 	 .01, MSE � 5,852.92.

Conclusions

The main purpose of this experiment was to determine whether
ITI had a substantial effect on performance in our version of the
explicit task-cuing task. Experiments 1–4 held ITI constant, so
SOA was confounded with the interval between successive targets
(see Allport et al., 1994; Logan & Zbrodoff, 1982; Meiran, 1996).
The results of Experiment 5 suggest that ITI has much smaller
effects than SOA in our procedure, so it seems safe to conclude
that the effects of SOA in Experiments 1–4 were due primarily to
processes intervening between the cue and the target (i.e., cue
encoding and, possibly, set switching).

Figure 8. Mean reaction times (RTs) as functions of stimulus onset
asynchrony for task repetitions (solid lines) and task alternations (dashed
lines) at the 250-ms, 500-ms, and 1,000-ms intertrial intervals (ITIs) in
Experiment 5.
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General Discussion

The experiments replicated standard effects found with the
explicit task-cuing procedure. RT was faster for cue repetitions
than for task alternations, and the difference between repetition
and alternation trials decreased as SOA increased. The main ques-
tion addressed was whether this effect reflected an endogenous act
of control that was evoked by the cue on task-alternation trials. The
interactions between repetition and masking the cue in Experi-
ments 1 and 2 and the large advantage of cue repetitions over task
repetitions in Experiments 3 and 4 suggest that cue-encoding
processes contribute much to the difference between repetitions
and alternations. Experiment 5 showed that the SOA effects in
Experiments 1–4 were due to processes intervening between the
cue and the target rather than processes intervening between suc-
cessive targets (cf. Allport et al., 1994; also see Logan & Zbrodoff,
1982; Meiran, 1996). The modeling analyses in each experiment
showed that a model that assumes only benefit from cue repetitions

and no endogenous act of control (Model 2) accounts for the data
quite well, quantitatively and qualitatively. A model that assumes
only an act of control (Model 1) does not account for the data as
well. A model that includes cue-encoding benefits and an act of
control (Model 2�1) accounts for the data well quantitatively but
yields parameter values that violate the assumptions of the model.
On balance, the data provide more support for Model 2 than for
Model 1 or Model 2�1, suggesting that the explicit task-cuing
procedure does not necessarily evoke an endogenous act of control
(cf. Goschke, 2000; Mayr & Keele, 2000; Mayr & Kliegl, 2000;
Meiran, 1996; Sudevan & Taylor, 1987).

Limitations

Aspects of the present experimental design may limit these
conclusions. We used a small number of stimuli (3 cues and 16
targets in Experiments 1 and 2; 4 cues and 8 targets in Experiment
3; 4 cues and 4 targets in Experiment 4; 2 cues and 8 targets in
Experiment 5) and a small number of responses (6 in Experiments
1 and 2; 2 in Experiments 3–5) so subjects could learn the mapping
between cues, targets, and responses and adopt the compound-
stimulus strategy (i.e., Model 2). If the set of cues, targets, or
responses was larger, subjects might not be able to learn the
compound-stimulus strategy, particularly in the course of a single-
session experiment. A larger set of cues, targets, or responses may
force subjects to adopt the strategy of switching task sets in
response to the cue (i.e., Model 1 or Model 2�1). The limits of the
compound-stimulus strategy remain to be discovered in future
research.

The present conclusions are limited to the explicit task-cuing
procedure. In this procedure, the stimuli presented on an individual
trial provide enough information to uniquely specify a response.
Other procedures for studying task switching, such as the task-
alternation procedure (Allport et al., 1994; Jersild, 1927) and the
alternating-runs procedure (Rogers & Monsell, 1995), do not pro-
vide enough information to specify a unique response on each trial,
so they may require an endogenous act of control. For example,
they both require the subject to remember or retrieve the task to be
performed on the current stimulus, and this may be viewed as an
endogenous act of control (Goschke, 2000; Mayr & Kliegl, 2000;
Rubinstein et al., 2001).

Experiments 1 and 2 may be limited because subjects used keys
on different rows of the numeric keypad to respond to the different
tasks. They used the 7 and 9 keys for the High–Low task, the 4 and
6 keys for the Odd–Even task, and the 1 and 3 keys for the
Digit–Word task. This assignment of tasks to keys required sub-
jects to move their hands from one row to another on alternation
trials but not on repetition trials. To determine whether hand
movements affected our conclusions, we replicated Experiments 1
and 2, requiring subjects to press the same keys (4 and 6) for all
three tasks. We found essentially the same results. The difference
between repetition and alternation was smaller in the replications
than in the original experiments, but the pattern of the data and the
model fits was essentially the same. The only striking difference
was that one of the subjects in the replication of Experiment 1
showed a slightly overadditive interaction between repetition and
masking, which is consistent with Model 1. However, that subject
had the slowest RTs, the highest error rates, and the worst model
fits of the 3 subjects in the replication. Even for the best-fitting
model, this subject’s RMSD was 1.5 times as large as the RMSDs

Table 6
Values (in ms) of the Best-Fitting Parameters and Measures of
Goodness of Fit for Fits of the Models to the Data for Each
Intertrial Interval (ITI) Averaged Across Subjects (Ave) in
Experiment 4 and Means (Mean) and Standard Errors of Values
of Best-Fitting Parameters and Measures of Goodness of Fit
for Fits of the Same Models to 32 Individual Subjects in
Experiment 5

ITI

Model 1

RTBase �c �s r RMSD

250
Ave 681 180 201 .974 23
Mean 673 187 195 .812 68
SE 19 14 14 .020 4

500
Ave 685 167 193 .977 21
Mean 674 177 189 .806 68
SE 17 14 16 .018 4

1,000
Ave 678 201 132 .979 19
Mean 670 206 129 .781 66
SE 20 13 13 .029 4

Model 2

RTBase �r �a r RMSD

250
Ave 666 201 372 .987 16
Mean 659 206 376 .820 67
SE 20 15 17 .020 4

500
Ave 671 187 351 .989 14
Mean 662 197 359 .812 67
SE 17 14 17 .018 4

1,000
Ave 666 215 327 .986 15
Mean 659 218 316 .784 65
SE 20 14 19 .029 4

Note. RT � reaction time; �c � mean cue-processing time; �s � mean
set-switching time; �r � mean cue-processing time on repetition trials;
�a � mean cue-processing time on alternation trials; r � correlation
between predicted and observed values; RMSD � root-mean-squared
deviation between predicted and observed values.
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for the other subjects. Note that an overadditive interaction be-
tween repetition and masking is possible under some parameter-
izations of Model 2, so this subject’s data are not inconsistent with
Model 2. The replication of Experiment 2 was almost perfect in
terms of the interactions and model fits. The best-fitting parame-
ters of Model 1 Unconstrained and Model 2�1 violated the as-
sumptions of the models, just as they did in the original Experi-
ment 2. Thus, the use of different keys for different tasks was not
responsible for the pattern of results we observed.

Relations to the Literature

The models we propose address cue encoding and set switching
explicitly but remain mute on other processes that may contribute
to differences between repetition and alternation trials. For exam-
ple, Allport et al. (1994) argued that previous task sets persist from
one trial to the next and interfere with processing the target.
Allport and Wylie (2000; Wylie & Allport, 2000) argued that the
target retrieves responses associated with it in the past, and these

Figure 9. Mean predicted and observed reaction times (RTs) for repetition and alternation for each intertrial
interval (ITI; in ms) in Experiment 5.
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may interfere with target processing if the retrieved responses are
incompatible with the required ones. Meiran (1996, 2000) argued
that switching costs depend on interactions between stimulus task
sets and response task sets for the alternative tasks. In principle, it
should be possible to accommodate these effects in our models by
allowing RTBase to vary between repetition and alternation condi-
tions. RTBase reflects target encoding and response selection,
among other things, and it may account for factors other than cue
encoding and set switching. Our models could be viewed as special
cases that are nested within these more general models. Future
research will be required to assess the generality of our models.

The models we propose ignored the idea of residual switch
costs, which has received much attention in the literature. Several
investigators have found substantial differences between repetition
and alternation trials at the longest SOAs or intertrial intervals
in their experiments (e.g., Allport et al., 1994; De Jong, 2000;
Goshcke, 2000; Rogers & Monsell, 1995). The SOAs or intertrial
intervals were so long that the researchers concluded that set
switching must be “complete,” yet some difference between rep-
etition and alternation trials remained. These residual switch costs
are important theoretically. Some investigators interpret them as
evidence against an endogenous act of control (Allport et al., 1994;
Goschke, 2000). Other investigators interpret them in terms of
incomplete preparation, some arguing that not all acts of control
can be completed in advance of the target stimulus (Mayr & Keele,
2000; Rogers & Monsell, 1995), others arguing that response
preparation cannot be optimal (Meiran, 2000), and still others
arguing that subjects do not try to prepare in advance on every trial
(De Jong, 2000).

On the one hand, it should be possible to account for residual
switch costs in the models we proposed by letting RTBase vary
between repetition and alternation conditions. This ploy would
diminish the value of Equation 3 in estimating set-switching time.
Set-switching time equals the difference between alternation and
repetition RT at SOA � 0 only if RTBase is the same for alternation
and repetition trials. Many of the factors that may cause residual
switch costs would seem to affect RTBase on alternation trials, in
which case Equation 3 would overestimate set-switching time. It is
also possible that some factors could affect RTBase on repetition
trials, and in some conditions, RTBase may be larger on repetition
trials than on alternation trials. In those conditions, Equation 3
would underestimate set-switching time. Fortunately, our models
provide a way around this problem. Set-switching time can be
estimated independent of RTBase by applying Equation 2 or Equa-
tion 8 to the time-course function for alternation trials.

On the other hand, it may be possible to account for the
appearance of residual switch costs without varying RTBase be-
tween repetition and alternation conditions. We obtained good fits
in the present experiments assuming that there were no residual
switch costs (i.e., assuming that RTBase was the same on repetition
and alternation trials). The fits to the data from Experiments 2 and
3 are particularly relevant. There were substantial differences
between repetition and alternation trials at the longest (900 ms)
SOA, yet the models assumed that the difference between repeti-
tion and alternation vanished at asymptote.

The evaluation of residual switch costs depends on what it
means for cue-encoding and set-switching processes to be “com-
plete.” Residual switch costs are defined as the difference between
repetition and alternation RT that remains when set switching is
“complete,” but the meaning of “complete” has not been specified

in the literature. Our models provide a specific meaning. They treat
cue encoding and set switching as stochastic processes, in that the
time at which they are complete varies randomly from trial to trial.
The parameters �c and �s reflect mean finishing time—that is, the
time at which the processes are complete on average. The time-
course function reflects the cumulative distribution of finishing
times. The asymptote of the time-course function reflects the
asymptote of the cumulative distribution function, which in theory
occurs when SOA becomes infinite. In practice, the asymptotic
completion time may be estimated from the maximum completion
time, which is much longer than the mean completion time, par-
ticularly if the distributions of cue-encoding time and set-
switching time are skewed like RT distributions. Thus, it is pos-
sible that in many studies of residual switch costs, cue encoding
and set switching are not complete on a substantial proportion of
the trials, even at the longest SOA or intertrial interval (cf. De
Jong, 2000). Future research will be necessary to determine
whether or not this is the case. Such research will require a formal
model of the time course of cue encoding and set switching to
estimate the distribution of completion times to determine whether
these processes are complete. Perhaps our models will be useful in
those endeavors.

Modeling Executive Control

We have treated the models as alternatives that compete with
each other to provide mutually exclusive accounts of the data.
From this perspective, Model 2 is superior to Model 1 in that it
captures the interaction between repetition and masking observed
in Experiments 1 and 2 and the difference between cue repetition
and task repetition observed in Experiments 3 and 4. Model 2 is
superior to Model 2�1 because it accounts for these effects
without requiring parameter values that contradict its assumptions.
However, it is possible to view the models differently, as members
of a family that may be applied to data sets to measure cue-
encoding and set-switching times.

From this perspective, Model 2�1 is the general case, Model 1
is a special limiting case in which cue-encoding time is indepen-
dent of cue repetition, and Model 2 is a special limiting case in
which set-switching time equals zero. The general model can be
fitted to the data by adding constraints to the fitting program that
are implied by the assumptions of the special cases. That is, Model
2�1 can be fitted to the data with the constraint that �r � �a with
and without a mask, and �c�no mask � �c�mask for repetitions and
alternations. Indeed, we tried fitting Model 2�1 to the data from
Experiments 1 and 2 with these constraints and found that the
reduction in goodness of fit was quite small. The advantage of this
general-case/special-case perspective is that it allows us to mea-
sure cue-encoding time and set-switching time and use those
measures to answer other questions about executive control. For
example, the measures could be used in investigations of residual
switching times to determine the expected proportion of trials on
which set switching is complete for a given SOA.

An important goal for future development is to specify the
processes that contribute to RTBase. This goal is important for
several reasons, some of which are outlined above. Perhaps the
most important reason is to ground our theory of executive pro-
cessing in a theory of subordinate processing. It is difficult to say
whether a task involves an endogenous act of control without
knowing what the act of control does and what processes it acts on.

596 LOGAN AND BUNDESEN



We have begun to ground our theory of executive control in
Bundesen’s (1990, 1998a, 1998b) TVA model of attention (see
also Logan, 2002). Logan and Gordon (2001) proposed a theory
called Executive Control of TVA (ECTVA) in which executive
processes control TVA. TVA has bias and priority parameters that
Bundesen (1990) assumed were controlled by an intelligent agent.
ECTVA was intended to provide a theory of that intelligent agent.
In ECTVA, a task set is a set of bias and priority parameters that
is sufficient to program TVA to perform a given task. Task
switching involves deriving a set of TVA parameters from instruc-
tions or retrieving them from memory and then instantiating them
in TVA. In principle, the tasks we investigated in the present
experiments could be modeled in TVA, grounding our current
models in TVA and constraining the values of RTBase in a variety
of conditions (see Logan & Gordon, 2001).

Other investigators have begun to ground models of executive
control in architectures other than ECTVA. Kieras, Meyer, Ballas,
and Lauber (2000) provided models of executive control with the
executive process interactive control formalism (also see Meyer &
Kieras, 1997). Gilbert and Shallice (2002) provided a model of
executive control within the parallel distributed processing frame-
work, extending Cohen, Dunbar, and McClelland’s (1990) model
of the Stroop task to set-switching situations. Byrne and Anderson
(2001) and Sohn and Anderson (2001) applied the adaptive control
of thought—rational model to executive phenomena in dual-task
and task-switching situations. The cue-encoding and set-switching
models we proposed in this article could also be instantiated in
these architectures to ground them more completely and constrain
them even further. This would allow researchers to develop more
precise hypotheses about executive control and to test them more
rigorously.

Conclusions

The present experiments suggest that the difference between
repetition and alternation trials in the explicit task-cuing procedure
does not necessarily reflect an endogenous act of control. Like
Pfungst (1907, 1911), we have shown that the homunculus may
not be so clever, or at least that its cleverness may not be respon-
sible for the difference between repetition and alternation trials in
the explicit task-cuing procedure. Simpler psychological processes
that give rise to benefits from repeating the cue seem sufficient to
explain the observed difference. Following Pfungst’s example, we
urge caution in attributing behavioral effects to acts of control by
a clever homunculus. We do not doubt the existence of an intel-
ligent agent that controls human cognition. Instead, we suggest
that converging operations are necessary to determine whether
executive actions are responsible for aspects of performance that
are intended to measure executive control.
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Appendix A

Interaction Between Repetition and Masking

Model 1 Interaction Predictions

Model 1 predicts nonnegative interaction between alternation versus
repetition and any factor that prolongs cue-encoding time. In Model 1, the
difference in mean RT between alternation and repetition trials is

RTAlternation � RTRepetition � �s � � 1/�c

1/�c � 1/�s
exp[�SOA/�s]

�
1/�s

1/�c � 1/�s
exp[�SOA/�c]� . (A1)

If SOA � 0, this difference is a constant equal to the mean set-switching
time, �s, independent of the value of the mean cue-encoding time, �c.
However, if SOA 
 0 and �s is kept constant, then the difference is a
monotonic increasing function of the mean cue-encoding time, �c.

Proof. To prove that the right-hand side of Equation A1 is a monotonic
increasing function of �c for all positive values of �c, �s, and SOA, we
show that the partial derivative of the right-hand side of Equation A1, with
respect to �c, is positive for all positive values of �c, �s, and SOA (where
�c � �s, so that Equation A1 is meaningful). The partial derivative of the
right-hand side of Equation A1 with respect to �c equals

�exp[�SOA/�s� � �1 � �1/�c

� 1/�s�SOA� exp[�SOA/�c]}� 1/�c

1/�c � 1/�s
� 2

.

This derivative is positive if, and only if,

�1 � �1/�c � 1/�s�SOA� exp[�SOA/�c] � exp[�SOA/�s] ,

which is equivalent to

1 � �1/�c � 1/�s� SOA � exp��1/�c � 1/�s� SOA� ,

that is,

1 � x � exp�x) (A2)

for x � (1/�c � 1/�s) SOA. For x � 0, both 1 � x and exp(x) are equal
to 1. But the line 1 � x is the tangent to exp(x) at the point (0, 1), and exp(x)
is concave upward at every value of x, so Equation A2 is true for all values
of x except 0. Hence, the partial derivative of the right-hand side of
Equation A1 with respect to �c is positive for all positive values of �c, �s,
and SOA, where �c � �s, Q.E.D.

Model 2 Interaction Predictions

In Model 2, the difference in mean RT between cue alternation and
repetition, RT, equals

RTAlternation � RTRepetition � �a � exp� � SOA/�a�

� � r � exp[�SOA/�r] . (A3)

For SOA � 0, we get RT � �a � �r. In Model 2, both �a and �r are
increased by masking, and the model is consistent with negative interaction
(underadditivity), with null interaction (additivity), and with positive in-
teraction (overadditivity) between masking and alternation versus repeti-
tion at SOA � 0. The negative interaction at SOA � 0 should be found
when the effect of masking is greater on �r than on �a. Below, we analyze
this case and show that the negative interaction diminishes (in absolute
value) as SOA increases and that the interaction contrast switches from
negative to positive when SOA is sufficiently long.

Consider the general case in which SOA 	 0. Let �r and �a be
increasing functions of the level of masking, m, with continuous first
derivatives d�r /dm and d�a/dm. Thus, d�r/dm 
 0 and d�a /dm 
 0. Also
assume that �r(m) 	 �a(m) and d�r/dm 
 d�a /dm for any given level of
masking m. RT is a function of m and SOA. Let 
(RT)/
m denote the
partial derivative of RT with respect to m. The sign of 
(RT)/
m equals
the sign of the interaction between an infinitesimal increment in masking
and alternation versus repetition. Thus, 
(RT)/
m 
 0 if the interaction
between an increment in masking and alternation versus repetition is
positive, provided that the increment is sufficiently small; 
(RT)/
m � 0
if the effects of an increment in masking and alternation versus repetition
are additive in the limit as the size of the increment approaches zero; and

(RT)/
m 	 0 if the interaction between an increment in masking and
alternation versus repetition is negative provided that the increment is
sufficiently small. By Equation A3,
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�RT�/
m � exp[�SOA/�a] �1 � SOA/�a� d�a/dm

� exp[�SOA/�r] �1 � SOA/�r�d�r/dm , (A4)

which implies that

Sign�
�RT�/
m]�Sign[fm�SOA� � �d�r/dm�/�d�a/dm�� , (A5)

where

fm�SOA� � exp[�SOA/�a] �1 � SOA/�a�

/�exp[�SOA/�r� �1 � SOA/�r�}. (A6)

Thus, the sign of the interaction between a small increment in masking and
alternation versus repetition depends on the ratio of d�r/dm (i.e., the rate of
increase in �r as a function of the level of masking m) to d�a/dm (i.e., the
rate of increase in �a with m). The interaction is positive if (d�r/dm)/(d�a/
dm) is smaller than fm(SOA), null if the ratio is equal to fm(SOA), and
negative if the ratio is greater than fm(SOA).

By taking the derivative of the right-hand side of Equation A6 with
respect to SOA, and using the assumption that �a 
 �r, we find that
dfm(SOA)/dSOA 
 0, so fm(SOA) is a monotonic increasing function of
SOA. Equation A6 also implies that, as SOA increases from a value of 0
and approaches infinity, fm(SOA) increases from a value of 1 and ap-
proaches infinity. Hence, by Equation A5 and the assumption that d�r /dm

 d�a/dm, 
(RT)/
m is negative at all SOAs from zero up to a certain
critical value (SOAc), null at SOAc, and positive at all SOAs above SOAc.
Analysis of Equation A4 shows that 
(RT)/
m reaches a maximum at a

value of SOA that depends on �a, �r, and the ratio between d�r /dm and
d�a/dm, and approaches zero from above as SOA tends to infinity.

For any given value of m, the critical SOA at which 
(RT)/
m crosses
zero is uniquely determined by

fm�SOAc� � �d�r/dm�/�d�a/dm),

where

fm(SOAc)

� exp[�SOAc/�a](1 � SOAc/�a)/{exp[�SOAc/�r](1 � SOAc/�r)}

(cf. Equations A5 and A6). Thus, SOAc is a function of m. As �a, �c,
d�a/dm, and d�r/dm are continuous functions of m, SOAc is also a
continuous function of m.

Let the two levels of masking (m) used in a given experiment be 0 and
M, respectively. The interaction contrast formed by subtracting the value of
RT for m � 0 from the value of RT for m � M can be obtained by
integrating 
(RT)/
m from m � 0 to m � M. Because SOAc is a
continuous function of m, it has a maximum, max[SOAc], in the closed
interval from 0 up to M. For values of SOA greater than max[SOAc],

(RT)/
m 
 0 at all points in the interval from m � 0 to m � M, so the
interaction contrast obtained by the integration must be positive as well.
Thus, Model 2 predicts positive interaction at sufficiently long SOAs.
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Appendix B

Mean Reaction Times and Accuracy Scores for Subjects 1, 2, and 3 in Experiment 1
as Functions of Repetition Condition, Masking, and Stimulus Onset Asynchrony

SOA

No mask Mask

Repetition Alternation Repetition Alternation

RT P(C) RT P(C) RT P(C) RT P(C)

Subject 1

0 924 97 1,086 96 1,069 98 1,171 98
50 871 99 1,027 98 1,084 99 1,089 97

100 850 100 948 98 964 99 1,057 97
150 775 99 944 98 887 99 983 99
200 751 100 837 99 909 97 942 99
250 715 99 848 99 803 98 914 97
300 701 99 812 99 858 99 891 96
350 663 98 799 98 761 97 815 99
400 663 99 753 98 710 98 835 99
450 671 97 725 98 709 98 756 98
500 664 99 726 97 704 98 761 99
550 698 99 716 99 701 98 767 98
600 642 99 706 99 713 99 725 98
650 666 99 701 97 672 99 726 98
700 658 96 705 99 695 98 692 98
750 630 98 657 99 722 98 721 99
800 617 98 655 99 660 100 701 99
850 637 99 671 99 635 99 671 98
900 604 100 665 99 652 99 639 99
950 621 99 620 100 613 100 655 98
Mean 701 99 780 98 776 99 826 98

Subject 2

0 864 98 909 94 1,087 96 1,100 94
50 796 96 872 93 1,086 93 1,063 94

100 739 96 816 92 895 96 996 96
150 680 97 767 97 862 95 910 95
200 666 97 737 93 813 95 930 97
250 683 100 735 96 822 92 820 94
300 602 98 685 97 812 96 840 95
350 643 99 662 96 780 97 797 95
400 618 96 671 97 716 93 755 97
450 614 98 641 97 716 98 749 97
500 581 97 647 96 690 96 743 98
550 611 99 633 96 658 97 706 96
600 599 91 595 95 678 95 668 96
650 575 99 601 98 629 92 672 96
700 633 98 583 97 665 99 641 97
750 570 98 575 95 659 92 675 96
800 587 96 582 99 637 96 669 96
850 520 94 585 97 593 93 630 97
900 529 97 568 96 623 96 670 97
950 590 97 556 95 630 98 605 98
Mean 635 97 671 96 753 95 782 96
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Appendix B (continued)

SOA

No mask Mask

Repetition Alternation Repetition Alternation

RT P(C) RT P(C) RT P(C) RT P(C)

Subject 3

0 678 96 730 93 840 98 870 94
50 604 97 682 95 750 94 812 96

100 582 98 623 97 700 95 714 96
150 524 99 570 98 638 97 650 95
200 502 98 539 97 630 98 604 98
250 483 96 508 97 576 96 559 97
300 477 97 492 100 568 98 551 95
350 474 96 470 95 542 98 530 96
400 472 98 480 98 542 95 522 97
450 448 98 469 97 515 96 507 97
500 472 94 459 97 511 98 495 98
550 450 98 449 97 480 95 484 97
600 448 97 461 98 490 97 490 99
650 443 99 439 97 515 99 465 95
700 443 98 449 99 492 98 473 99
750 434 98 432 98 463 97 452 96
800 429 99 442 96 478 98 461 97
850 443 98 432 96 452 97 447 96
900 438 98 429 98 461 97 449 99
950 430 98 429 96 433 98 435 96
Mean 484 98 499 97 554 97 549 97

Note. SOA � stimulus onset asynchrony (ms); RT � mean reaction time (ms); P(C) � percent correct.

Appendix C

Mean Reaction Times and Accuracy Scores as Functions of Repetition Condition,
Masking, and Stimulus Onset Asynchrony in Experiment 2

SOA

No mask Mask

Repetition Alternation Repetition Alternation

RT P(C) RT P(C) RT P(C) RT P(C)

0 1,132 93 1,463 92 1,465 90 1,687 84
100 976 95 1,330 91 1,322 91 1,577 86
200 929 95 1,237 94 1,242 92 1,460 88
300 850 96 1,127 91 1,142 91 1,368 88
400 820 96 1,063 93 1,090 93 1,266 91
500 790 97 1,013 93 1,016 93 1,262 90
600 760 96 995 95 925 94 1,139 90
700 764 97 964 94 912 94 1,106 92
800 769 95 918 94 903 93 1,058 91
900 750 96 917 94 874 92 1,020 91
Mean 854 96 1,103 93 1,089 92 1,291 89

Note. SOA � stimulus onset asynchrony (ms); RT � mean reaction time (ms); P(C) � percent correct.
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Appendix D

Mean Reaction Times and Accuracy Scores as Functions
of Repetition Condition and Stimulus Onset Asynchrony

in Experiment 3

SOA

Cue repetition Task repetition Task alternation

RT P(C) RT P(C) RT P(C)

0 1,037 96 1,217 95 1,240 91
100 907 95 1,135 95 1,147 92
200 790 97 993 95 1,062 93
300 779 97 972 96 982 93
400 721 96 905 94 935 93
500 709 97 882 95 937 92
600 721 96 889 96 906 95
700 711 97 856 96 911 93
800 745 96 844 94 861 95
900 720 97 825 96 888 96
Mean 784 96 952 95 987 93

Note. SOA � stimulus onset asynchrony (ms); RT � mean reaction time
(ms); P(C) � percent correct.

Appendix E

Mean Reaction Times and Accuracy Scores as Functions
of Repetition Condition and Stimulus Onset Asynchrony

in Experiment 4

SOA

Cue repetition Task repetition Task alternation

RT P(C) RT P(C) RT P(C)

0 815 97 984 94 1,002 94
100 762 98 889 96 913 93
200 684 96 823 96 827 94
300 662 97 758 95 774 95
400 623 97 728 95 749 96
500 585 97 692 97 717 95
600 605 98 659 97 670 95
700 599 97 659 97 647 96
800 574 97 635 96 656 95
900 589 97 621 97 635 96
Mean 650 97 745 96 759 95

Note. SOA � stimulus onset asynchrony (ms); RT � mean reaction time
(ms); P(C) � percent correct.

Appendix F

Mean Reaction Times and Accuracy Scores as Functions of Repetition Condition,
Intertrial Interval, and Stimulus Onset Asynchrony in Experiment 5

SOA

ITI � 250 ITI � 500 ITI � 1,000

Rep Alt Rep Alt Rep Alt

RT P(C) RT P(C) RT P(C) RT P(C) RT P(C) RT P(C)

0 874 97 1,033 93 873 97 1,021 92 892 97 987 95
100 799 97 926 94 765 97 909 96 805 98 901 94
200 953 97 917 95 739 97 890 96 762 98 865 98
300 688 98 816 96 703 98 811 96 701 97 789 95
400 673 97 783 95 706 97 794 96 693 96 746 96
500 666 97 761 95 671 98 758 97 666 98 722 94
600 691 97 766 96 686 98 724 97 670 97 726 98
700 665 98 724 96 676 98 717 96 672 97 703 97
800 675 97 734 98 661 99 734 96 694 98 725 98
900 667 98 699 95 655 97 716 97 653 98 705 98
Mean 715 97 816 95 714 98 807 96 721 97 787 96

Note. ITI � intertrial interval (ms); Rep � repetition; Alt � alternation; SOA � stimulus onset asynchrony
(ms); RT � mean reaction time (ms); P(C) � percent correct.
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