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This article asks whether serial order phenomena in perception, memory, and action are manifestations
of a single underlying serial order process. The question is addressed empirically in two experiments that
compare performance in whole report tasks that tap perception, serial recall tasks that tap memory, and
copy typing tasks that tap action, using the same materials and participants. The data show similar effects
across tasks that differ in magnitude, which is consistent with a single process operating under different
constraints. The question is addressed theoretically by developing a Context Retrieval and Updating
(CRU) theory of serial order, fitting it to the data from the two experiments, and generating predictions
for 7 different summary measures of performance: list accuracy, serial position effects, transposition
gradients, contiguity effects, error magnitudes, error types, and error ratios. Versions of the model that
allowed sensitivity in perception and memory to decrease with serial position fit the data best and
produced reasonably accurate predictions for everything but error ratios. Together, the theoretical and
empirical results suggest a positive answer to the question: Serial order in perception, memory, and action
may be governed by the same underlying mechanism.
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The problem of serial order is ubiquitous in perception, mem-
ory, and action. It challenges our ability to perceive structure in the
world and to arrange objects, as in setting a table, understanding an
equation, or seeing a word. It challenges our ability to remember
what happened when and to recall sequences, such as conversa-
tions, the months of the year, or grocery lists. It challenges our
ability to act coherently, to execute steps in the right order when
cooking a meal, singing a tune, or typing a word. Serial order is the
basis of language and STEM skills like logic, mathematics, and
computing. It is an essential part of reading and literacy and a main
culprit in dyslexia (Cowan et al., 2017) and dyscalculia (Fias,
Menon, & Szucs, 2013). The broad purpose of this article is to ask
whether these many phenomena are different manifestations of a
single serial order mechanism or manifestations of different mech-
anisms attuned to each phenomenon. The broad purpose is ad-
dressed with two specific questions: One is empirical, asking
whether serial order phenomena are the same in whole report tasks

that tap perception (Sperling, 1960), serial recall tasks that tap
memory (Conrad, 1964), and copy typing tasks that tap action
(Sternberg, Monsell, Knoll, & Wright, 1978). These tasks maxi-
mize comparability across domains, as they all require sequential
report of letter strings. The other question is theoretical, asking
whether a single computational model can provide a coherent
account of serial order phenomena in all three tasks. The effects
may differ between tasks because of differences in overall
accuracy. A computational model will be required to determine
whether the effects are commensurate, that is, whether differ-
ences in effects can be accommodated by meaningful variation
in model parameters. I generalize my Context Retrieval and
Updating (CRU; Logan, 2018) model of skilled typing to ac-
count for encoding and retrieval of serial order in whole report,
serial recall, and (novice) copy typing tasks, and test its ability
to do so.

One Phenomenon or Many?

Serial order has been a burgeoning topic of research in percep-
tion, memory, and action, but there has been little integration
across areas. Researchers in different areas study different tasks for
different purposes and propose different models. Many studies of
serial order in perception are aimed at “cracking the orthographic
code,” asking how order and identity information are bound to-
gether in letter strings in the course of reading words (Grainger,
2018). Researchers use whole and partial report tasks, identifica-
tion, same-different judgments, and lexical decision tasks to ad-
dress the binding process. Many studies of serial order in memory
are aimed at memory for temporal order, using serial recall, cued
recall, free recall, and recognition tasks to address these processes
(Lewandowsky & Farrell, 2008). Many studies of serial order in
action are aimed at producing sequences of action, using sequence
learning, speaking, music, and typing tasks to address the under-

This article was published Online First August 17, 2020.
I am grateful to Jane Zbrodoff for inspiration and to Greg Cox, Jonathan

Grainger, Alice Healy, Andrew Heathcote, Dora Matzke, Tom Palmeri,
Sean Polyn, Philip Smith, and Trish Van Zandt for valuable discussion. I
am grateful to Dakota Lindsey for programming the experiments and to
Jana Ulrich for testing the participants, helping with the simulations, and
managing heaps of data. Portions of this work were presented at the
Context and Episodic Memory Symposium, the Control Processes meeting,
and the annual meeting of the Psychonomic Society in 2019. Data, anal-
yses, and the fitting, simulation, and data analysis programs are posted on
the Open Science Framework at osf.io/f98kt.

Correspondence concerning this article should be addressed to Gordon
D. Logan, Department of Psychology, Vanderbilt University, 301 David K.
Wilson Hall, 111 21st Avenue South, Nashville, TN 37240. E-mail:
gordon.logan@vanderbilt.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

C
on

te
nt

m
ay

be
sh

ar
ed

at
no

co
st

,
bu

t
an

y
re

qu
es

ts
to

re
us

e
th

is
co

nt
en

t
in

pa
rt

or
w

ho
le

m
us

t
go

th
ro

ug
h

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n.

Psychological Review
© 2020 American Psychological Association 2021, Vol. 128, No. 1, 1–44
ISSN: 0033-295X http://dx.doi.org/10.1037/rev0000253

1

http://osf.io/f98kt
mailto:gordon.logan@vanderbilt.edu
http://dx.doi.org/10.1037/rev0000253


lying processes (Logan & Crump, 2011). Theories of serial order
follow the empirical focus, addressing single tasks with little
integration across research areas.

The literature has made it clear that it is possible to manipulate
serial order in perception, memory, and action separately and
selectively. A lexical-decision task requires perception of serial
order in letter strings, which produces a single categorization
(word or nonword) in memory, and requires a single keypress
response (Ratcliff, Gomez, & McKoon, 2004). Cuing recall of an
item with a marker that indicates its position in the list requires
perception of a single item (the marker), serial ordering in memory
to retrieve the item, and report of a single item (Oberauer, 2003).
Typing the name of the color of an object requires perception of a
single object, memory for a single attribute (color), and serially
ordered action (keystrokes; Logan & Zbrodoff, 1998). This sug-
gests that separate mechanisms are used in each task, but it remains
possible that the results can be explained by a single mechanism
operating under different constraints. The tasks require different
decisions about different materials under different manipulations
in different participants, which makes it hard to compare one effect
to another. A stronger test of the single mechanism hypothesis
would require comparing perception, memory, and action tasks
that require the same decisions on the same materials under the
same manipulations, and running the tasks in the same partici-
pants.

This article provides this stronger test in two experiments that
compare whole report, serial recall, and copy typing tasks in the
same participants using strings of random letters as materials. The
three tasks require participants to report the strings in left-to-right
order by typing them on a computer keyboard. The tasks differ
primarily in conditions of exposure and instructions. The whole
report task presents letter strings for 100 ms and requires imme-
diate recall (Sperling, 1960); the serial recall task presents letter
strings for 1000 ms to ensure accurate encoding and requires
waiting until the display disappears to begin report (Conrad, 1964);
and the copy typing task presents the strings throughout the re-
sponse until the last letter is typed and requires immediate report
(Sternberg et al., 1978).

I designed these tasks to be maximally similar to facilitate
comparisons between them. I chose them because they are impor-
tant tasks in their respective literatures. The whole report task was
the control condition in studies of selective attention and partial
report (Shibuya & Bundesen, 1988; Sperling, 1960). The random
letter strings it employs are the “no-knowledge” controls in studies
of word recognition and lexical decision (McClelland & Rumel-
hart, 1981) and the focus of some investigations of serial order
(Adelman, 2011; Gomez, Ratcliff, & Perea, 2008). The serial
recall task differs from most serial recall tasks in that the items are
presented simultaneously instead of sequentially. However, many
of the results are the same for simultaneous and sequential pre-
sentations and the theories are essentially the same. The copy
typing task differs from everyday typing in requiring immediate
responses to discrete stimuli instead of copying or composing text
and it differs in using random letter strings instead of words and
sentences. Nevertheless, it reveals important properties of serial
ordering in typing (Sternberg et al., 1978). One might argue the
three tasks are different versions of the same task under slightly
different conditions. That is partly my point. Researchers study the
same task for different purposes and there is not much communi-

cation between areas. My goal is to promote communication so
each area can benefit from the others’ insights into the common
problem of serial order.

In each experiment, the tasks were compared on seven standard
measures of serial report: list accuracy, serial position effects,
transposition gradients, contiguity effects, error magnitudes, error
types, and error ratios. Each experiment manipulated a theoreti-
cally important variable in each task. The first experiment manip-
ulated list length, varying the number of letters from five to seven.
List length is an important manipulation in all three tasks, because
it bears on the presence and nature of capacity limitations. The
second experiment manipulated within-list repetitions, so half of
the strings contained repeated letters with lags of zero to three
intervening letters between repetitions. Within-list repetitions are a
major challenge for theories of serial order (Lashley, 1951), deci-
sively ruling out some kinds of models.

One Theory or Many?

For a single theory to provide a unified account for serial order
in perception, memory, and action, it must meet two criteria: First,
it must provide adequate fits to data in each task and account for
differences between tasks with meaningful variation in model
parameters. An inadequate fit in any task would mean that the
theory cannot provide a single account of serial order phenomena.
Second, it must fit each task as well as or better than competing
models. If one model fits perception better than another and the
other model fits memory better, neither model can provide a
single-theory account of serial order. Together, such fits would
provide evidence on how serial order processes differ between
tasks. Here I present a theory aimed at fulfilling the first criterion.
I relate my theory to competing theories in the General Discussion
but quantitative comparisons await future research.

The model fits cannot distinguish between a single mechanism
that is applied to perception, memory, and action tasks and sepa-
rate mechanisms that implement the same design principles—a
single version of the model for all tasks or a different version of the
model for each task. In both cases, a single set of computational
principles governs serial order. The difference is in whether the
computational principles are implemented in the same or different
brain structures. I consider the question in the General Discussion
in the section on Expertise, but definitive answers await future
research.

A Context Retrieval and Updating Theory of
Serial Report

The theoretical question, whether serial order relies on the same
mechanism in perception, memory, and action, could be answered
by applying any one of several existing theories of serial order
from the different literatures. I chose to answer it by proposing and
applying a context retrieval and updating (CRU) theory, which
explains serial order in terms of an evolving context that contains
fading records of the items experienced or recalled so far (Howard
& Kahana, 2002; Logan, 2018). Items are associated with contexts
made of previous items, so in effect, items are associated with each
other This item coding perspective is underrepresented in studies
of serial order, especially in serial recall and whole report where
position coding is the dominant explanation (Brown, Preece, &
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Hulme, 2000; Burgess & Hitch, 1999; Davis, 2010; Farrell, 2012;
Farrell & Lewandowsky, 2002; Henson, 1998b; Houghton, 2018;
Lewandowsky & Farrell, 2008). Good fits to data from all three
tasks will support CRU as a candidate for a single mechanism of
serial order, but it will not suggest that CRU is as good as or better
than alternative theories of serial order. That would require com-
parative fitting of different theories of serial order, which is an
important goal for future research. I address relations between
CRU and other theories in the General Discussion.

CRU embodies my longstanding conjecture that cognitive con-
trol can understood as contextually driven memory retrieval. My
instance theory of automaticity argued that contexts cue retrieval
of past solutions, bypassing the need for thinking (Logan, 1988).
My approach to task switching with Darryl Schneider argued that
task cues act as contexts that combine with ambiguous targets to
retrieve task-appropriate responses (Schneider & Logan, 2005,
2009). In each case, responses are associated with the contexts in
which they occurred and retrieved when those contexts are rein-
stated. CRU also assumes that responses are associated with con-
texts. The new assumption is that the current response becomes
part of the context that retrieves the next response. The context
represents the history of past responses and that enables CRU to
account for serial report (Logan, 2018).

The idea is new to me but familiar in the memory literature. The
context retrieval and updating processes that are the core assump-
tions of CRU are taken from Howard and Kahana’s (2002) tem-
poral context model (TCM) and its intellectual descendants (Loh-
nas, Polyn, & Kahana, 2015; Polyn, Norman, & Kahana, 2009;
Talmi, Lohnas, & Daw, 2019). TCM explains phenomena in free
recall on the assumption that retrieval is driven by a current
context that builds cumulatively across the list. Items are associ-
ated with the current context when they are first presented, and the
associations guide retrieval of the items when a new current
context matches the initial one. Howard and Kahana (2002) pro-
vide a formal analysis of the updating process, which CRU has
adopted. Sean Polyn and his colleagues provided an important
inspiration, fitting their context maintenance and retrieval (CMR)
update of TCM to the sequence of individual responses partici-
pants made in free recall (Kragel, Morton, & Polyn, 2015; Morton
& Polyn, 2016). This convinced me that serial report could be
modeled at the level of individual responses, as in studies of
attention and performance and studies of recognition memory,
allowing the strong tests of theories that abound in those studies.
CRU is focused on individual responses (Logan, 2018).

The CRU theory is implemented as a computer simulation that
takes arbitrary lists of letters as input and retrieves them sequen-
tially. Its computations are organized as four serial processing
stages: encoding the items’ identities, encoding their order, retriev-
ing the items in order, and reporting them (see Figure 1). The
probability of retrieving an item correctly in order is the product of
the probabilities of succeeding at each of these stages. CRU
models the computations in each stage, estimating the probability
of success for each item in the list. My goal here is to extend the
model to whole report, serial recall, and typing nonwords.

Encoding Items

CRU assumes that items are identified before their order is
encoded. The item encoding stage (see Figure 1) takes the features

of the letters in the string as input and identifies or gives a
classification of each letter as output. CRU assumes that items are
identified independently. This is a reasonable assumption for
strings of random letters (Pelli, Farell, & Moore, 2003). Some
models of orthographic processing assume letters are identified
independently (Adelman, 2011), whereas others assume letters
have already been identified before they are bound to locations and
focus on the binding process (Grainger & Van Heuven, 2004;
Houghton, 2018). Models of memory generally assume items are
identified before order and identity are bound. Models of action
generally extract movements from already-bound structures (Lo-
gan, 2018).

CRU assumes that letters are represented as points in a multi-
dimensional feature space and similarity between letters is a neg-
ative exponential function of the Euclidian distance between them.
When a letter is presented, its features activate the representations
of all the letters in the alphabet in proportion to their similarity to
the presented letter, the letter representations compete in propor-
tion to their activation, and the winner of the competition becomes
the encoded letter. The competition is implemented as a race
between diffusion processes representing each letter, with the
winner determining the identity of the encoded item. The racing
diffusions allow estimates of the probability of encoding. How
they do it is explained later.

I used a 25-dimensional feature representation for lowercase
letters derived from response time measures of discrimination
(Courrieu, Farioli, & Grainger, 2004) to represent the letters. The
drift rates for the racing diffusion choice process are similarities
calculated as exponential functions of distance. The drift rate vi for
letter i given that letter j is presented is:

vi � exp[�g · dij] (1)

where dij is the distance between letters i and j in feature space, and
g is a sensitivity parameter scaling the effect of distance. Distance
in feature space is Euclidian, defined as

dij � ���k�1
25 (xik � xjk)

2�
where xik is the coordinate for letter i on feature (dimension) k.
Formally, the result of item encoding is a unit vector that repre-
sents the encoded letter with a localist code: the element corre-
sponding to the item is set to 1 and all other elements are set to 0.
The subsequent context updating and retrieval processes require
unit vector representations.

Defining item encoding in this way allows CRU to account
for confusions among similar letters, which often occur in serial
report tasks. The sensitivity parameter g modulates the amount
of confusion (see Figure 2). Small values of g bring distant
letters closer together and therefore increase confusions. Large
values of g push nearby letters further away and therefore
reduce confusions.

Encoding Serial Order

CRU encodes serial order by updating the current context,
which represents the structure (list, word) containing the items and
the items experienced so far (see Figure 1). CRU associates the
items it encodes with the contexts in which they appear, and the
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contexts and their associations to items are stored for later re-
trieval. The stored contexts record the evolution of the current
context, which builds cumulatively. Before the list is presented, the
current context is initialized with a representation of the current
list, becoming List. When list abcd is presented, the initial current
context is associated with a, stored, and updated to become List �
a. The new context is associated with b, stored, and updated to
become List � a � b, which is then associated with c, and so on
(see Figure 1).

More formally, items and structures (lists, words) are repre-
sented as unit vectors with 1 in the element corresponding to the
item or structure and 0 in the other elements. The fits and
simulations assume vectors with 1,032 elements. The first 26
elements represent the lowercase letters of the alphabet. Ele-
ment 32 represents the space bar. Elements 33–1,032 represent
the structure in which the items occur. In the typing model, the
structures were words (Logan, 2018). In the current model, the
structure is an abstract representation of the list the person

experienced. I assume word representations and the contexts
they contribute to exist prior to the experiment but list repre-
sentations and the contexts they contribute to are generated
anew for each different list. In principle, instance learning could
turn list representations into permanent ones (Logan, 1988,
2018). I model the structures with localist codes, with 1 in the
element representing the structure and 0 elsewhere, which does
not capture similarities among the structures. However, the
coding scheme could be extended to allow more than one
structural element in each vector, thus representing similarity or
hierarchy (Farrell, 2012; Henson, 1998b). For simplicity, only
the current list is represented in the current implementation of
CRU, so I use element 33 for every list, although in principle
CRU could represent many different lists. Exploring such richer
structures is an important goal for future research.

The current context, c, is a 1032 element vector representing the
list and the items that have occurred so far. It begins with all
elements set to 0. Then the element representing the list is set to 1,

Figure 1. Context Retrieval and Updating model (CRU). The top row shows the flow of information through
stages of processing. Items are encoded, then their serial order is encoded, then serial order is retrieved, and items
are reported. The second row shows the representations that each stage processes. Item encoding and item report
represent items as points in multidimensional space, so confusions are stronger among neighboring items than
remote items. The gray circles represent the distance gradient set by the parameter g (Equation 1). Serial order
is encoded by updating a context representation (vector). The second element in the second row depicts its
evolution as the list is encoded. Its evolution is controlled by the parameter � (Equations 2–4). Each item is
associated with the context in which it appears, producing a stored context that is accessed during retrieval. Serial
order is retrieved by comparing the current context with all stored contexts and selecting the one that is most
similar (with the highest dot product). The third row describes the computations in each stage and the fourth row
gives the equations used to implement them.
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producing a vector with length � 1. Then the first item is pre-
sented, associated with that context, and stored in memory. Then
the context is updated by adding the vector representing the first
item to the current context. The Nth input item rN is weighted by
� and the current context cN is weighted by �, so

cN�1 � � · rN � � · cN (2)

(Howard & Kahana, 2002). The parameter � ranges from 0 to 1,
reflecting the weight on the present; � also ranges from 0 to 1,
reflecting the weight on the past. Following Howard and Kahana
(2002) � is chosen so that the length of the new current context
vector cN�1 is normalized to 1:

� � �1 � �2�(rN · cN)2 � 1� � �(rN · cN) (3)

where rN · cN is the dot product of the item and current context
vectors reflecting the similarity between them. With CRU’s local-
ist representations, a new item that is not already in the current
context will have a dot product of 0 (will be orthogonal) because
its nonzero element will not be occupied in the current context and
all of its other elements equal zero. For unique items, the equation
is simpler:

� � �1 � �2 (4)

Equation 3 shows how CRU deals with repeated items. This will
be important in accounting for within-list item repetitions in Ex-
periment 2.

The effect of updating on the current context vector is illus-
trated in Figure 3. The left panel shows how element values
change with updating. The List representation is initially set to
1.0 and then decreases by � with each updating step, so its value
for serial position i is �(i�1). Each item representation is ini-
tially set to 1 · � and then decreases by � with each updating

step, so the value for serial position i for an item appearing in
serial position j is � · �(i�j) (for i � j and 0 otherwise). This is
illustrated in the left panels of Figure 3. The right panels present
the same data as bar graphs to illustrate what the current context
vector looks like at each serial position. Context vectors in
adjacent positions are more similar than ones in remote posi-
tions.

CRU’s serial order encoding mechanism requires the items to
be presented to it sequentially, as updating is driven by new
items from the item encoding mechanism. This is natural in
studies of free recall and serial recall, where list items are
typically presented one at a time. It is less obvious in studies of
whole report and typing (and the present serial recall tasks),
where list items are presented simultaneously. Theorists have
long recognized that serial report of simultaneous lists poses a
special problem of serial order—translating a parallel represen-
tation into a serial one (Bryden, 1967; Heron, 1957). A popular
solution is to assume a serial scanning mechanism that operates
on the simultaneous representation to produce a sequential
representation (Bryden, 1967; Mewhort, Merikle, & Bryden,
1969). Serial processing is controversial (e.g., Coltheart &
Rastle, 1994; Zorzi, 2000) and has not been resolved conclu-
sively. Serial and parallel processing are notoriously hard to
distinguish (Townsend, 1971, 1990; Townsend & Wenger,
2004). Some modern theories of orthographic processing as-
sume serial scanning (Davis, 2010; Whitney, 2001), but they
can be mimicked by a parallel model that assumes a gradient of
activation that decreases over the list, so items earlier in the list
are encoded before items later in the list (Adelman, 2011). CRU
could implement serial scanning or a gradient of attention
(Bundesen, 1990) to provide sequential input to the context
updating process. I am currently exploring other alternatives.

There are two potential sources of error in CRU’s serial order
encoding mechanism. Noise could be added to input or current
context vectors or to both, and the associations between contexts
and vectors could vary in strength (Howard & Kahana, 2002). To
simplify the modeling, I chose not to implement either source of
error in CRU, forcing errors to come from item encoding or serial
order retrieval.

Retrieving Serial Order

CRU retrieves serial order by comparing the current context
to the set of stored contexts and reporting the item associated
with the best-matching context (see Figure 1). The current
context is initialized with the list representation, which is then
matched to the stored contexts to retrieve the first item. The
current context is then updated by adding the retrieved item,
and matched to the stored contexts to retrieve the next item.
Retrieving serial order uses the same updating process as en-
coding serial order (Equation 2), except that the retrieved item
is added to the context instead of a presented item (see Figure
4). Updating the context with the retrieved item changes its
similarities to the stored contexts, so a different stored context
is selected. Ultimately, CRU retrieves an “end of list” marker,
represented as a space bar response, which terminates report.
For simplicity, CRU assumes the same � and � values for
encoding and retrieving serial order, though in principle they

Figure 2. The effect of the sensitivity parameter g on the relation between
distance and drift rate in the item encoding model (Equation 1).
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could differ (Howard & Kahana, 2002; Lohnas et al., 2015;
Polyn et al., 2009; Talmi et al., 2019).

Retrieval is based on similarity. The comparison process
calculates similarity as the dot product (correlation) between
current context (cc) and stored context (cs) vectors and chooses
the stored context with the largest dot product using a racing
diffusion decision process. The dot product ranges from 0 to 1
because the elements are positive and the vectors are normal-
ized to length 1. The dot products serve as drift rates in the
racing diffusion process,

vi � �
k�1

1032

cc(k) · csi(k) (5)

where cc(k) is the kth element of the current context vector and csi

is the ith stored context vector. The racing diffusion process
provides estimates of the probability of retrieval.

Context is updated by adding a single element to the current
context, so adjacent contexts are more similar than remote ones.
Context i contains one more element than context i � 1 and one
less element than context i � 1. More remote contexts differ in two

Figure 3. The evolution of element values over successive cycles of context updating. The left panel
emphasizes the changes in value. The right panel emphasizes changes in the context vector.
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or more elements (see Figure 3). This relationship is captured in
the dot products. Figure 5 shows dot products for each letter in a
four-item list abcd and the space bar response that terminates it.
Each line represents the similarity of the context associated with a
serial position to stored contexts representing each position. The
dot products are 1.0 for items in the correct position (a in position
1, b in position 2, etc.) and decrease smoothly with increasing
distance from the correct serial position. The decrease is the same
for items that precede and follow a given item: consider the
symmetry of the line representing c in Figure 5.

The similarities depend on the elements of the context vectors,
which in turn depend on �. The higher the value of �, the steeper
the decline in element values over successive updates (see Figure
3), reducing the overlap between successive contexts. This is
illustrated in Figure 5, which plots the dot products for different
values of �. The higher the value of �, the steeper the decline in
dot product over successive updates. The items become more
distinct but the dot products are still graded symmetrically around
the correct position.

Table 1 shows the stored contexts for list abcdef represented
more abstractly in terms of � and �. The rows represent stored
context vectors and the columns represent the values of the vector
elements. The list element starts at 1.0 (i.e., as a unit vector) and
decreases by a factor of � when each new item is encoded, so the
value for the list element for context i is �(i�1). Each item starts at

� (i.e., as a unit vector multiplied by �) and decreases by � as each
subsequent item is encoded, so the value for the item presented in
list position j is � · �(i�j) for i � j and 0 otherwise.

Imagine that CRU has retrieved a, b, and c and the current
context has been updated so it now matches the 4th stored context.
The dot products of this current context (4) with stored contexts

Figure 4. The evolution of the current context during retrieval. Retrieval
begins when an element representing “list” is set in the current context
vector (the rest of the vector is set to 0). The current context is matched to
the stored contexts and an item is retrieved. That item is then added to the
current context, and the cycle repeats until an “end marker” (the space
character) is retrieved.

Figure 5. Similarities among stored context vectors for a four-item list,
abcd, calculated as dot products, which serve as drift rates in the racing
diffusions. The different panels show the effect of � on the similarities.
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1–7 (calculated as the sum of the products of corresponding
columns in the two rows following Equation 5) are:

dot(4, 1) � �3 ��3

dot(4, 2) � �2 · �2 � �4 ��2

dot(4, 3) � �2 · �3 � �2 · � � �5 ��

dot(4, 4) � �2 · �4 � �2 · �2 � �2 � �6 �1.0

dot(4, 5) � �2 · �5 � �2 · �3 � �2 · � � �7 ��

dot(4, 6) � �2 · �6 � �2 · �4 � �2 · �2 � �8 ��2

dot(4, 7) � �2 · �7 � �2 · �5 � �2 · �3 � �9 ��3

The dot products peak at 1.0 for the matching item and decrease
symmetrically as distance from the matching item increases: dot(4,
3) � dot(4, 5), dot(4, 2) � dot(4, 6), and dot(4, 1) � dot(4, 7).
More generally, the dot product between an item in position i and
an item in position j is:

dot(i, j) � ��i�j� (6)

The |i – j| term implies that the dot product declines symmetri-
cally around the matching position. This relation was new to me
but familiar to Howard and Kahana (2002) and Murdock (1997),
who showed it was a property of TCM and a general property of
evolving context models. I find it interesting that the drift rate
depends only on �.

One may wonder why CRU assumes two context updating
processes, one for encoding serial order and one for retrieving it.
It would be simpler to assume that the items accessed during serial
order encoding were reported without a subsequent retrieval pro-
cess. The complexity is made necessary by the procedures of
whole report and serial recall tasks: The items to be reported are no
longer physically present at the time of report. Report must be
based on some internal representation (Sperling, 1963). CRU’s
order encoding processes construct that representation and its
retrieval processes extract reported items from it.

Reporting Items

CRU’s serial order retrieval process retrieves abstract represen-
tations of items that must be translated into motor commands for
responses. The item report process in Figure 1 fulfills this purpose.
If the responses are typewritten, the abstract codes are locations on
the keyboard, represented as points in two-dimensional space

(Logan, 2018). The locations serve as cues for the retrieval of
motor commands that select the fingers and movement trajectories
required to strike keys in those locations (Rosenbaum, Loukopou-
los, Meulenbroek, Vaughan, & Engelbrecht, 1995; Rosenbaum,
Meulenbroek, Vaughan, & Jansen, 2001). CRU assumes key lo-
cations are activated in proportion to their distance from the target
location. These activations become drift rates in a racing diffusion
process that chooses the motor commands, so erroneous key-
strokes are sometimes directed to adjacent keys (Logan, 2018).
Drift rate for response i is a negative exponential function of
distance from the target location j, using Equation 1, reproduced
here for convenience:

vi � exp[�g · distanceij]

This formulation was natural for representing the goals for
motor programs in skilled typing where the response apparatus is
clearly two dimensional. Indeed, I chose to model item encoding
as finding points in multidimensional space because of the success
of that approach in modeling responding. The goals for motor
programs in other modalities could be modeled as points in mul-
tidimensional feature space, such as speech or continuous report
tasks (Ratcliff, 2018; Smith, 2016).

I did not include item report in any of the models I fit in this
article. One reason was that motor errors (striking adjacent keys)
were rare and not much different between tasks in the two exper-
iments reported below. Both experiments had participants type
nonwords, which is slower than typing words and perhaps less
prone to motor errors. Another reason was to keep the models
simple. Adding an item report stage would add at least one
parameter and as many as three or four, and that would increase the
time required to fit the models substantially. The responses were
the same in all three tasks and I did not expect differences between
tasks, so I assumed that the model reported the items it retrieved
with no further errors in item report (i.e., the probability of
reporting an item correctly � 1.0).

Racing Diffusion Decision Process

Each stage involves choosing one of several possible alterna-
tives based on the similarities among the alternatives. I model the
choice process as an independent race between diffusions (Logan,
2018; Logan, Van Zandt, Verbruggen, & Wagenmakers, 2014;
Tillman, Van Zandt, & Logan, 2020). Each runner is a diffusion to
a single bound governed by a rate parameter v and a threshold �.
The finishing time is characterized by the Wald distribution

f(t) � 	(2
t3)�1 ⁄ 2 · exp�� 1
2t(vt � 	)2� (7)

The race between runners is characterized generally as

f(t, i) � fi(t)�
j�i

N

�1 � Fj(t)� (8)

The probability that runner i wins the race is the integral of
Equation 8:

P(i) � �
0

�

f(t, i)dt (9)

Table 1
Representations of Stored Context Vectors Encoded When
Presented With List abcdef

abcdef

Position a b c d e f List Assoc.

1 0 0 0 0 0 0 1.0 a
2 � 0 0 0 0 0 � b
3 � · � � 0 0 0 0 �2 c
4 � · �2 � · � � 0 0 0 �3 d
5 � · �3 � · �2 � · � � 0 0 �4 e
6 � · �4 � · �3 � · �2 � · � � 0 �5 f
7 � · �5 � · �4 � · �3 � · �2 � · � � �6 ‘_’

Note. Rows represent the context vectors for positions 1–7. Columns a–f
and List represent the elements of the context vector. Column assoc.
indicates the letter that is associated with the context vector.
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The likelihood function for the racing diffusion model is ob-
tained by substituting Equation 7 into Equation 8:

f(t, i) � 	i(2
t3)�1 ⁄ 2 · exp�� 1
2t(vit � 	i)

2�
 �

j�i

N

[1 � �(t�
1
2�vjt � 	j	)

�exp(2vj	j)�(�t�
1
2�vjt � 	j	)] (10)

where vi and �i are the drift rate and the threshold for alternative
i and � is the cumulative normal distribution. The probability of
choosing response i is obtained by integrating Equation 10 with
respect to time (i.e., applying Equation 9). Note that the drift rate
is not a free parameter in any stage of processing. It is determined
by similarity—the distance in item encoding and report and the dot
product in serial order retrieval—which is determined by the
structure of the stimuli, context representations, and response
representations and the sensitivity (g) and updating parameters (�)
that modulate them. Although the notation allows threshold to vary
among alternatives, I held it constant in all the fits.

I chose the racing diffusion process because it is a simple and
tractable way to model immediate performance in serial report,
which was the main focus of the modeling. Racing diffusions
address response probability and response time distributions,
which are the most common measures of immediate performance.
Equation 10 provides the likelihood for choices among many
alternatives (26 letters, 5–7 list items). Models of response time
that fit two-choice data (somewhat) better than independent racing
diffusions do not generalize easily to multiple choice responses
(e.g., Ratcliff, 1978; but see Ratcliff, 2018). Many models of serial
order violate independence, using lateral inhibition between re-
sponse alternatives in the choice process, following Grossberg
(1978), but likelihoods have to be simulated (Usher & McClelland,
2001) instead of calculated (Equation 10). That is less satisfying
theoretically and it adds substantially to the cost of fitting the
models. Since my purpose was not to test alternative models of the
decision process, I opted for the simpler alternative.

Evaluating the Model

Fitting the model. Inspired by Polyn and colleagues (Kragel
et al., 2015; Morton & Polyn, 2016), I fit CRU to the sequence of
3456 keystrokes from the 576 lists each participant reported in
each experiment. The likelihood for each keystroke was calculated
as the product of the probability that the letter was encoded, stored,
retrieved, and reported correctly. That is

PLetter � PEncode  PStore  PRetrieve  PReport

For simplicity, I assume that letters are stored and reported with
perfect accuracy (i.e., PStore � PReport � 1), so PLetter reduces to

PLetter � PEncode  PRetrieve

where PEncode and PRetrieve are obtained by integrating Equation 10
using drift rates from Equations 1 and 5, respectively. The likeli-
hood of reporting all the letters in the list is the product of
reporting each letter:

PList � PLetter1  PLetter2  · · ·  PLetterN

and the likelihood of reporting all 576 lists is the product of the
probability of reporting each list:

PAll � PList1  PList2  · · ·  PList576

I fit the data by maximizing the likelihood of reporting all lists
for each participant. Because products of probabilities become
small very quickly, I calculated the logs of the probabilities and
maximized likelihood by minimizing the negative log likelihood of
the data given the parameters using fmincon in Matlab. Model
comparison was based on BIC scores to adjust for differences in
the number of parameters, where

BIC � � 2 · log(likelihood) � ln(N) · k,
N is the number of observations (roughly 3456 per participant),
and k is the number of parameters in the model. The model with
the lowest BIC is preferred.

To determine the effects of the parameters, I fit several versions
of the model to the same data from each participant. The baseline
(B) model required the same encoding (g) and retrieval (�) pa-
rameters for all three tasks. The encoding (E) model allowed
different g parameters for each task but only one � for all three
tasks. The serial order (SO) model allowed different �s for each
task but only one g for all three tasks. The encoding � serial order
(E�SO) model allowed different gs and �s for each task. Model
comparisons reveal the importance of encoding (B vs. E) and serial
order (B vs. SO) separately and jointly (B vs. E�SO) in account-
ing for differences between tasks.

Although the racing diffusion decision process can predict both
response time and response probability, I chose to fit response
probabilities (error data) and not response times at this stage in
model development. Two major problems must be overcome to
model response times. First, CRU models decision times in two or
four stages, so the final response time distribution would be the
convolution of the finishing time distributions of each stage (Equa-
tion 10), which would be very complex. Second and more funda-
mental, although it is clear when responses end in serial report
tasks (i.e., when the key is pressed), it is not at all clear when
responses begin. The “stimulus” for the response is internal and
there is no way to measure when it occurs. I set these problems
aside for future research and focused on response probability
instead.

Without the constraint of response time, threshold and drift rate
tended to trade off in the fitting. To focus the fits on drift rates,
which are the parameters the model predicts (Equations 1 and 5),
I fixed threshold at 200 for item encoding and serial retrieval.
Consequently, the values of g and � estimated in the fits are
conditional on � � 200. Different values of threshold produced
values of g and � that differed somewhat in absolute magnitude
but showed the same patterns across tasks. Details of the fitting
process are described in Appendix A. A limited parameter recov-
ery study is reported in Appendix B.

Evaluating model predictions. The BIC values from the fits
indicate which of the alternative models fits best, but they do not
indicate whether the fit to the data is good or bad. That has to be
tested separately, by generating predictions and comparing them
with the observed data (Palminteri, Wyart, & Koechlin, 2017). To
generate predictions, I simulated the model for each participant,
using the participant’s best-fitting parameters, giving it the same
sequences as the participant, and asking it to make the same
responses—a series of 3,456 keystrokes—replicated 1,000 times.
Then I scored the simulated sequences using the same calculations
I performed on the participant’s observed sequences to predict list
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accuracy, serial position effects, transposition gradients, contiguity
effects, error magnitudes and error distances. I compared these
predicted summary statistics with the observed ones with least
squares measures—the correlation (r) and the root mean squared
deviation (rmsd) between observed and predicted values—which
reflect how closely they agree.

It is worth emphasizing that the parameters were fixed at the
best-fitting values throughout the simulations that generated the
data from which summary statistics were calculated. The same
parameters predict all the effects.

Unit of replication. The models are fitted to data from indi-
vidual participants, so the unit of analysis and the unit of replica-
tion is the individual participant (Smith & Little, 2018). All models
are fit individually to all participants, so model comparisons are
conducted within each participant. There were 576 lists per par-
ticipant with an average of six letters per list, which resulted in
(about) 3,456 keypress responses per participant. That should be
sufficient to constrain the model fits, which are based on two to 11
parameters.

Experiment 1: List Length in Whole Report, Serial
Recall, and Copy Typing

The first experiment addresses the empirical and theoretical
relations between serial order phenomena in perception, memory,
and action. I presented lists of random consonants in whole report,
serial recall, and copy typing tasks, manipulating list length: five,
six, or seven letters. The tasks differed in instructions and stimulus
presentation. Responses were typed on the computer keyboard. In
whole report, lists were exposed for 100 ms and reported imme-
diately. In serial recall, lists were presented for 1,000 ms and
reported after the list disappeared. In copy typing, the lists were
reported immediately and presented until the last response was
registered (a space bar press to indicate the end of the list). Each
participant performed each task using the same materials and the
same responses to maximize the comparability of the tasks.

The empirical answer to the question, “are serial order phenom-
ena the same in perception, memory, and action,” was obtained by
comparing list accuracy, serial position effects, transposition gra-
dients, contiguity effects, error magnitudes, error types, and error
ratios between whole report, serial recall, and typing tasks. The
theoretical answer was obtained by fitting models that differed in
the way item encoding (g) and serial retrieval (�) parameters
varied between conditions. The models followed a factorial struc-
ture, examining the effects of allowing versus not allowing param-
eters to vary between tasks to assess the role of each parameter in
accounting for the data (Shen & Ma, 2019). The best-fitting model
was simulated on the same lists as the participant and the simulated
report sequences were analyzed in the same way as the actual data,
producing predicted serial position effects, transposition gradients,
contiguity effects, error magnitudes, error types, and error ratios
that can be compared with the actual data. An adequate model
should account for all these effects with one set of parameters
whose values vary meaningfully between tasks.

Method

Participants. Twenty-four volunteers from the Vanderbilt
community served in the experiment for course credit or $12 for

serving in a single 1-hr session. Six identified as male, 17 as
female, and one as male to female trans. They were selected for
their self-professed ability to type 40 words per minute (WPM) or
more. Their skill was confirmed on a typing test we have used for
many years (Logan & Zbrodoff, 1998), which involved typing a
paragraph of approximately 100 words espousing the many virtues
of border collies. Their mean speed on the typing test was 64.36
WPM (SD � 14.80), and their mean accuracy was 91.72% (SD �
4.38).

Apparatus and stimuli. The experiment was run in E-Prime
2.0 (Psychology Software Tools, 2012) on ASUS M32BF desktop
computers with BenQ XL2411Z flat screen monitors. Responses
were taken from standard QWERTY keyboards with the back-
space keys disabled. Lists were random strings of lowercase con-
sonants, five, six, or seven letters in length.

Procedure. The experiment began with informed consent, the
typing test, and the experimental trials. There were 576 experi-
mental trials preceded by 15 practice trials in which each list
length occurred equally often. The 576 trials were divided into
three blocks of 192, one for each task (type, report, recall) and the
order of tasks was counterbalanced across participants. List length
(five, six, or seven letters) varied randomly within each block.
Each trial began with a fixation cross (�) in the center of the
screen for 500 ms. It was replaced with the list for that trial, which
was presented for 100 ms in the whole report task, 1,000 ms in the
serial recall task, and until the last response in the copy typing task.
In whole report and serial recall, the lists were replaced by a blank
screen when their exposure duration was complete, which was
exposed until the last response was registered. In all three tasks,
there was a 1,000-ms intertrial interval with a blank screen before
the next trial began. Participants were run individually in separate
testing rooms.

Participants were told that they would see lists of letters and
their task was to report them in left-to-right order. They were told
the sequence events on each trial and told that the lists would differ
in duration for whole report, serial recall, and typing tasks. In
whole report and typing, they were told to begin typing immedi-
ately. In serial recall, they were told not to begin typing until the
list disappeared from the screen. They were told to type as quickly
and accurately as possible but not to correct their mistakes as the
backspace key had been disabled. They were told to guess if they
were unsure of a letter. They were allowed breaks every 96 trials
and each session took about 1 hr.

Results

Model fits. My main goal is to evaluate CRU’s ability to
account for differences between tasks in terms of meaningful
variation in its parameters. To address this goal, I fit two sets of
models, the nondecrease models described above, in which g and
� were held constant across list position, and decrease models in
which g and � decreased with list position.

Nondecrease models. Four nondecrease models were fit to the
data for each participant separately. The details of the fitting
process are presented in Appendix A. The first model was a
baseline model in which g and � were not allowed to vary between
tasks. The other three models allowed g or � or both to vary
between tasks. The encoding model (E) allowed g to vary between
tasks but held � constant. The serial order model (SO) allowed �
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to vary between tasks but held g constant. The encoding plus serial
order model (E�SO) allowed both g and � to vary between tasks.
Comparisons among these models allow inferences about the
necessity of allowing g and � to vary in accounting for the data.
The mean likelihoods, BIC scores, and parameter values across the
24 participants are presented for each model in Table 2.

The model comparisons in Table 3 show that the E model fit
better than the baseline model in 23 participants, and the E�SO
model fit better than the SO model in 23 participants. This indi-
cates that variation in item encoding (g) between tasks is necessary
to account for performance. Table 3 also shows that the SO model
fit better than the baseline model in 23 participants and the E�SO
model fit better than the E model in 23 participants. This indicates
that variation in serial retrieval (�) between tasks is necessary to
account for performance. Finally, the E�SO model fit better than
the baseline model in 24 participants, better than the E model in 23
participants, and better than the SO model in 23 participants. This
indicates that variation in both g and � are necessary to account for
the data.

The likelihoods and BIC scores in Table 2 identify the best-
fitting model, but the question remains whether the fits were
produced by meaningful variation in the model parameters. The
parameter values in Table 2 suggest the variation is meaningful.
The encoding parameter g decreased from typing to serial recall to
whole report, suggesting poorer encoding of items in tasks with
shorter exposure durations. The serial order parameter � also
decreased from typing to serial recall to whole report, suggesting
more emphasis on maintaining context and less on distinguishing
new items as exposure duration decreased. Thus, g and � both vary
meaningfully between tasks. Interestingly, estimates of � were the
same whether or not g varied between task, and estimates of g were
the same whether or not � varied between tasks.

Decrease models. I generated predictions from the best-
fitting nondecrease model (E�SO) and found that it mispre-

dicted serial position curves and the distribution of error types
across serial position. In the observed serial position curves, the
first serial position was reported very accurately in each task
and differences emerged across subsequent serial positions,
with the curves fanning out from this position. The predicted
serial position curves differed substantially in the first serial posi-
tion due to differences in g and � between tasks. The observed
error type distributions were clustered around the later serial
positions, whereas the predicted functions were flat.

To accommodate these results, I developed decrease models in
which g and � have the same initial values for all three tasks (gMax

and �Max) but decrease across serial position. The decrease pa-
rameters (gDecrease and �Decrease) either vary between tasks or are
held constant. Thus, the encoding parameter for serial position i,
gi, is

gi � gMax · gDecrease
i�1 (11)

and the serial order parameter for serial position i, �i, is

�i � �Max · �Decrease
i�1 (12)

with gDecrease and �Decrease ranging from 0 to 1. Thus, the decrease
models were the same as the nondecrease models except that gi

(Equation 11) replaced g in Equation 1 and �i (Equation 12)
replaced � in Equation 2, and more parameters were fitted. I have
no strong commitment to the form of the decrease in Equations 11
and 12. I wanted a monotonic decrease that would not go below 0.
I could have used separate g and � parameters for each serial
position but that would increase the number of parameters sub-
stantially to five to seven per task compared with eight for all three
tasks in the decrease models (1 gMax for all tasks and 1 gDecrease for
each task; 1 �Max for all tasks and 1 �Decrease for each task).

I compared three decrease models with the baseline model from
the nondecrease fits: an encoding decrease model (ED) in which g

Table 2
Experiment 1 Nondecrease Models: Measures of Goodness of Fit and Best-Fitting Parameter
Values for Baseline (B), Encoding (E), Serial Order (SO), and Encoding � Serial Order
(E�SO) Models in Experiment 1

Measure Likelihood BIC gType gRecall gReport �Type �Recall �Report

Base 4223.81 8454.69 .2513 .4687
Encoding 4088.58 8165.52 .3395 .2542 .2147 .4687
Serial Order 4075.68 8192.30 .2515 .5947 .4476 .4257
E�SO 3940.68 7902.59 .3395 .2542 .2148 .5947 .4477 .4257

Note. BIC � Bayesian information criterion.

Table 3
Experiment 1 Nondecrease Models: Model Comparisons Assessed by Differences in BIC Scores, Number of Participants Showing the
Difference, and t Tests of the Difference in Experiment 1

Measure Base – E Base – SO Base – E�SO E – SO SO – E�SO E – E�SO

BIC difference 289.17 263.39 552.10 25.79 262.92 288.71
N different 23 23 24 16 23 23
t(23) 10.714 8.632 10.358 1.161 8.598 10.609

Note. Base � baseline model; BIC � Bayesian information criterion; E � encoding model; SO � serial order model; E�SO � encoding � serial order
model.
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was allowed to decrease differently between tasks but � was held
constant, a serial order decrease model (SOD) in which � was
allowed to decrease differently between tasks but g was held
constant, and an encoding decrease plus serial order decrease
model (ED�SOD) in which both g and � were both allowed to
decrease differently between tasks. The models were fit to each
participant separately. The mean goodness of fit measures and
parameter values are presented in Table 4. The parameter values
and measures of goodness of fit for each participant for the
best-fitting ED�SOD model appear in Table A1.

Model comparisons in Table 5 showed that all three decrease
models fit better than the baseline model in all 24 participants, and
the ED�SOD model fit better than the ED model and the SOD
model in all 24 participants. These results indicate that variation in
item encoding and serial retrieval parameters (g and �) between
tasks and across serial positions is necessary to achieve good fits.

The parameter values in Table 4 changed meaningfully across
tasks. Encoding (g) decreased more severely from typing to serial
recall to whole report tasks, and so did emphasis on new items (�)
in retrieving serial order. The reduction of g and � across serial
position is consistent with left-to-right scanning and with differ-
ential attention to the first part of the list.

The decrease models fit better than the nondecrease models.
Encoding decrease models fit better than encoding nondecrease
models in 24 participants (E-ED BIC difference � 359.34, t(23) �
9.956); serial order decrease models fit better than serial order
nondecrease models in 19 participants (SO-SOD BIC difference �
57.42, t[23] � 3.703); and encoding decrease plus serial order
decrease models fit better than encoding plus serial order nonde-
crease models in 24 participants (E�SO—ED�SOD BIC differ-
ence � 417.38, t[23] � 12.697). Thus, decrease of g and � over
serial position seems to be necessary to produce good fits.

Model predictions. I generated predictions for the best-fitting
model (ED�SOD) for each participant individually, using their

parameters to drive a simulation of CRU. The simulation took the
same lists as the participant as input and produced a sequence of
responses for each list as output, replicated 1,000 times. The
simulated sequences were then scored with the same programs that
were used to score the participant’s data, producing seven sets of
summary statistics: list accuracy, serial position effect, transposi-
tion gradient, contiguity effect, error magnitude, error type, and
error ratio. The accuracy of CRU’s predictions was assessed indi-
vidually for each participant, with correlation (r) and root mean
squared deviation (rmsd) between observed and predicted values.

Two points deserve emphasis: First, the predictions were based
on the parameter values derived from the fits with no further
adjustment. Second, for each subject, predictions for all seven
summary measures were generated from a single set of eight
parameters (gMax, gDTupe, gDRecall, gDReport, �Max, �DType, �DRecall,
and �DReport). The summary measures provide different perspec-
tives on serial order but they all derive from the same processes
operating on the same representations, which is the behavior we
measured in the experiments and modeled with variants of CRU.

List accuracy. The probability of reporting the entire list cor-
rectly in order (list accuracy) is a common measure in studies of
serial recall. It is the basis for measuring the memory span, which
is defined as the longest list that can be recalled in order 50% of
the time. The mean observed and predicted list accuracies are plotted
in Figure 6 as a function of list length and task. The observed
accuracies decreased from typing to serial recall to whole report and
decreased with list length in each task, although the decrease was
steeper for serial recall than for the other tasks. The predicted
accuracies also decreased with task and list length but underpre-
dicted observed accuracy overall and missed the steeper decrease
for serial recall. Correlation and rmsd were calculated for each
participant. Across participants, the average correlation was .9238
(SD � .0883), reflecting the overall similarity in the pattern, and

Table 4
Experiment 1 Decrease Models: Measures of Goodness of Fit and Best-Fitting Parameter Values for Baseline (B), Encoding
Decrease (ED), Serial Order Decrease (SOD), and Encoding Decrease � Serial Order Decrease (ED�SOD) Models in
Experiment 1

Measure Likelihood BIC gMax gDType gDRecall gDReport �Max �DType �DRecall �DReport

Baseline 4223.81 8454.69 .2513 1.0000 .4687 1.0000
ED 3907.14 7831.96 .3609 .9775 .8897 .8278 .4687 1.0000
SOD 4045.20 8108.09 .2513 1.0000 .5743 .9988 .9251 .9061
ED�SOD 3728.46 7485.21 .3612 .9775 .8896 .8276 .5744 .9988 .9250 .9016

Note. BIC � Bayesian information criterion. Parameter values of 1.0000 were fixed, not fitted.

Table 5
Experiment 1 Decrease Models: Model Comparisons Assessed by Differences in BIC Scores, Number of Participants Showing the
Difference, and t Tests of the Difference in Experiment 1

Measure B – ED B – SOD B – ED�SOD SOD – ED SOD – ED�SOD ED – ED�SOD

BIC difference 622.73 346.59 969.47 276.13 622.88 346.75
N different 24 24 24 21 24 24
t(23) 9.749 17.064 12.558 5.020 9.751 17.086

Note. Base � baseline model; BIC � Bayesian information criterion; ED � encoding decrease model; SOD � serial order decrease model; ED�SOD �
encoding decrease � serial order decrease model.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

C
on

te
nt

m
ay

be
sh

ar
ed

at
no

co
st

,
bu

t
an

y
re

qu
es

ts
to

re
us

e
th

is
co

nt
en

t
in

pa
rt

or
w

ho
le

m
us

t
go

th
ro

ug
h

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n.

12 LOGAN



the average rmsd was .2104 (SD � .0669), reflecting CRU’s
underestimation of the observed data.

Serial position effects. The practice of plotting the probability
of reporting an item correctly in its correct position—assessing the
serial position effect—is common in studies of memory and per-
ceptual report, dating to Nipher (1878) and Ebbinghaus (1885).
The serial position effect is robust and highly replicable. It is a
benchmark prediction for theories of memory in general and serial
recall in particular (Lewandowsky & Farrell, 2008).

The observed and predicted serial position effects for each task
and list length are plotted in Figure 7. The observed effects are

typical. Accuracy decreased across serial position with some spar-
ing of the last items. Accuracy was the same across tasks for the
initial position but decreased across serial position at different
rates. Typing hardly decreased while serial recall and whole report
decreased more steeply. Serial recall and whole report showed
recency effects for the last item. The predicted curves show similar
declines from a common starting point without the recency effect.
This shape follows from the parameterization of the ED�SOD
model. It has one gMax and �Max parameter for all three tasks,
which produce the common starting point, but it has different
gDecrease and �Decrease parameters for each task, which produce the
differential declines. Recency could be accommodated by allowing
g or � to be larger for the last serial position, reflecting better
perceptibility (g) or a sharper focus on the present in memory
encoding (�). Agreement between observed and predicted values
was assessed with r and rmsd for each participant. The average
correlation across participants was .9195 (.0246) and the average
rmsd was .1506 (.0245).

Transposition gradients. Transposition gradients show the
probability that an item is recalled in its correct position or an

Figure 6. List accuracy in Experiment 1: Observed and predicted prob-
abilities of reporting the entire list correctly as a function of list length and
task. Predictions are from the ED�SOD model. Error bars are standard
errors of the mean.

Figure 7. Serial position effects in Experiment 1: Observed and predicted
probabilities of responding with the correct item in the correct position for
typing, serial recall, and whole report tasks at each list length. Predictions
are from the encoding decrease � serial order decrease (ED�SOD) model.
Error bars are standard errors of the mean.
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adjacent position earlier (�) or later (�) in the list, given that the
item is recalled. Positive and negative shifts are transpositions and
the data typically show a gradient decreasing symmetrically from
the correct position (Lewandowsky & Farrell, 2008). The symme-
try of transposition gradients is important theoretically. Strict
chaining models predict only forward movements (�) through the
list (Henson, Norris, Page, & Baddeley, 1996).

Transposition gradients were calculated for each task and list
length for each participant, collapsed across serial position. The
means of the observed and predicted gradients from the individual
participants are plotted in Figure 8. The observed gradients were
typical, being higher for adjacent than remote positions. They
broadened with list length and task (typing, serial recall, whole
report), reflecting the increase in error rate and showing it is
largely accommodated by an increase in adjacent errors. The
observed functions showed a negative asymmetry in which items
are more likely to be transposed to earlier list positions. The
asymmetry may result from the increase in order errors with serial
position. Items from later positions can only move back toward the
beginning of the list, producing a negative transposition.

The predicted gradients in Figure 8 closely resemble the ob-
served gradients, showing the same preponderance of adjacent
errors and the same broadening of the gradient with list length and
task (typing, serial recall, whole report). They show the same
negative asymmetry, reinforcing the idea that it reflects more order
errors in late list positions. The correlation and rmsd between
observed and predicted values were calculated for each participant.
The average correlation across participants was .9744 (.0143) and
the average rmsd was .0707 (.0170), reflecting the close fit.

Contiguity effects. Contiguity effects measure the tendency to
move forward through the list, focusing on the lag or distance in
the list between adjacent items in the report sequence (Healey,
Long, & Kahana, 2019). The lag conditional recall probability
(lag CRP) curve plots the probability of recalling item from
position N � lag given that the item in position N has been recalled
(conditional on opportunities for the lag to occur at position N;
Kahana, 1996). It is usually asymmetric and peaked at lag � �1,
reflecting the tendency to report lists in order.

Lag CRP curves were calculated for each task and list length for
each participant’s real and simulated data. The averages across
participants are presented in Figure 9. The observed data showed
a strong asymmetry with a large peak at lag � �1, reflecting
compliance with the instruction to report the items in order. The
peaks were lower and the curves were broader in serial recall than
in typing and lower and broader in whole report than in serial
recall, suggesting differential loss of order information across
tasks. The predicted lag CRP curves were very similar to the
observed ones for each participant, showing the same sharp peak
at lag � � 1 and the reduction in the peak and broadening of the
curve from typing to serial recall to whole report. The agreement
between observed and predicted values was excellent. Correlation
and rmsd were calculated for each participant. The averages across
participants were r � .9889 (.0060) and rmsd � .0409 (.0072).

Error magnitude. Error magnitude is a measure of the number
of errors in an erroneously reported string. It is useful because it
measures the tendency for people (and models) to recover from
errors. For example, skilled typists typing paragraphs typically
make one error and recover from it immediately (and so does
CRU; Logan, 2018). Following Logan (2018), I measured error
magnitude by calculating edit distance between the correct list and
the reported list for all reported lists that contained at least one
error. Edit distance is the number of editing operations (changes)
required to transform the error list into the correct list. Analysis of
serial position effects relies on Hamming distance, which allows
substitution as the only editing operation (Hamming, 1950). It does
not capture the similarities between strings with insertions and
deletions (e.g., correct list � abcdef; error lists � abxcdef or
abdef), counting all responses after the initial error as substitution
errors. Instead, I used Damerau distance to capture these errors. It
allows substitution, insertion, deletion, and transposition as editing
steps (Damerau, 1964), counting one error in abxcdef and one error
in abdef given list abcdef.

I calculated Damerau distance for each participant for each list
that contained at least one error using a Matlab algorithm provided
by Schauerte and Fink (2010) and calculated the distribution of
distances for each task and list length. I performed the same
calculations on the participant’s data and the CRU simulation of
the participant. The observed and predicted distributions averaged
over participants are presented in Figure 10.

Figure 8. Transposition gradients in Experiment 1: Observed and pre-
dicted probabilities of reporting items in the correct position (0), positions
before (negative values), and positions after (positive values). Predictions
are from the encoding decrease � serial order decrease (ED�SOD) model.
Error bars are standard errors of the mean.
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The Damerau distance distributions differed between tasks and
word lengths. The typing distributions replicated previous results
with typing text (Logan, 2018). About 80% of the errors were one
editing step from the correct list, indicating that typists made a
single error and recovered from it. The distribution became a little
broader as list length increased. The serial recall distributions had
a broader version of the same shape for list lengths of five and six,
but the mode shifted for list length of seven. The whole report
distributions were even broader and peaked at two, three, and four
for list lengths five, six, and seven, respectively. The predicted
distributions captured these shapes well. The average correlation
across participants was .9379 (.0602) and the average rmsd across
participants was .0758 (.0294), indicating an excellent fit.

Error type. Much research on serial order in action has fo-
cused on error categories using various taxonomies (Dell, 1986;
Logan, 2018; Norman, 1981; Salthouse, 1986). Lists containing
multiple errors are harder to categorize, as the same error may fit
different categories. Consequently, I focused on error categories
that could be distinguished unambiguously. I defined order errors
as reports of items that were in the list in a position other than the

correct position. Intrusion errors were reports of items that were
not presented in the list. Omission errors were failures to report
items that were on the list. This taxonomy does not distinguish
between intrusions that are insertions (abxcdef for abcdef) and
intrusions that are substitutions (abxdef for abcdef). Substitutions
were scored as an intrusion and as an omission. CRU produces
order errors primarily in the retrieval stage, intrusion errors in the
encoding stage, and omission errors either in the encoding stage or
in the retrieval stage.

I calculated the proportion of trials on which order, intrusion,
and omission errors occurred in each serial position relative to the
total number of trials for each task and list length for each partic-
ipant, analyzing both their actual and simulated data. The observed
and predicted proportions of errors averaged across participants
are presented in Figure 11. The observed proportions were lower
for typing than for serial recall and lower for serial recall than for
whole report. In all tasks, the observed proportions increased with
list length and increased with serial position. For typing, order
errors were always more likely than omission errors for all serial
positions. For serial recall and whole report, order errors were

Figure 9. Contiguity effects in Experiment 1: Observed and predicted lag
conditional recall probabilities as a function of task and list length. Pre-
dictions are from the encoding decrease � serial order decrease
(ED�SOD) model. Error bars are standard errors of the mean.

Figure 10. Error magnitudes in Experiment 1: Observed and predicted
distributions of Damerau edit distance between correct and error strings for
each task and list length. Predictions are from the encoding decrease �
serial order decrease (ED�SOD) model. Error bars are standard errors of
the mean.
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more likely than omission errors at the earlier serial positions but
the pattern reversed at later serial positions, where omissions were
more likely than order errors.

The predicted proportions show a broadly similar pattern,
with error proportions increasing from typing to serial recall to
whole report, increasing with list length, and increasing with
serial position. There were more order errors than omissions in
typing. In serial recall and whole report, order errors were more
frequent than omission errors at the early serial positions, but
the pattern reversed at later serial positions. There were some
systematic differences. The model underestimated the propor-
tion of intrusion errors, especially at longer list lengths, and it
did not show the reduction in omission error proportion for the
last item on the list. The mean correlation across participants
was .8081 (.0563) and the mean rmsd across participants was
.1043 (.0222). Note that the model captured the ratio between
order and omission errors and how it changed with serial
position (see Figure 11).

Error ratio. Page and Norris (1998) proposed the error
ratio as a critical test of serial order theories. It is the ratio of
a subset of order errors to a subset of omission errors. It is
calculated on trials in which participants skip one item in the
sequence (e.g., recalling abd . . . given list abcdef), counting the
frequencies with which the subsequent response is a transposi-
tion (abdc . . .) or fill-in error versus an omission (abdef . . .) or
in-fill error, and taking the ratio of transpositions to omissions.
Error ratios in serial recall tasks are typically greater than 1.0,
reflecting a propensity to make transposition errors—to “fill in”
the empty space. They are often described as “around 2.0” but
there is great variability across participants (Farrell, Hurlstone,
& Lewandowsky, 2013; Surprenant, Kelley, Farley, & Neath,
2005).

Page and Norris (1998) argued that the observed error ratios
falsified simple chaining theories, because chaining theories can
only move forward in the list. Having recalled abd, the only
response associated with d is e, so the error will become an
omission. By contrast, the error ratio uniquely supported their
primacy model, in which serial order is controlled by a gradient of
activation across the list, decreasing from the first position to the
last. The item with the highest activation is retrieved and then
suppressed so the item with the next highest activation can be
retrieved. Normally, the item with the next highest activation is the
next item in the list. However, when participants report abd . . . for
abcdef, d is suppressed, and c has higher activation than e (because
it occurs earlier in the list), so c is selected and the error will
become a transposition.

Theories of serial recall developed after Page and Norris
(1998) generally predict error ratios greater than 1.0, but the
predictions generally rely on some ancillary mechanisms be-
yond the core serial order mechanism to produce the effect
(Botvinick & Plaut, 2006; Farrell & Lewandowsky, 2002; Hen-
son, 1998b). Evolving context models generally predict an
equal tendency to move forward or backward in the list as the
similarity function decreases symmetrically around the correct
position (Equation 6; Howard & Kahana, 2002; Murdock,
1997), so something like a primacy gradient has to be added to
break the symmetry in favor of earlier list positions. Thus, the
error ratio may not be as diagnostic theoretically as Page and
Norris suggested.

Observed and predicted proportions of transpositions and omis-
sions were calculated by finding the first error in a list and
determining whether it was a skipped letter (an omission followed
by the item following the omitted item; given abcded, abd would
count but abe or abx would not). The proportions of first error

Figure 11. Error types in Experiment 1: Proportions of observed and predicted order, intrusion, and omission
errors as a function of task, list length, and serial position. Predictions are from the encoding decrease � serial
order decrease (ED�SOD) model. Error bars are standard errors of the mean.
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trials that resulted in transposition and omission errors were cal-
culated for each participant and each simulation. The mean ob-
served and predicted probabilities for each task are plotted as a
function of list length in Figure 12.

The observed data were typical of the serial recall literature and
extend the findings to whole report and copy typing. Averaged
across tasks and list length, all 24 participants showed more
transpositions than omissions. The predicted data showed the
opposite pattern. Omissions were more frequent than transpositions
for all 24 participants. The average error ratio was 3.8012 (2.7197) for
the observed data and .5776 (.0762) in the predicted data. I calculated
the correlation and rmsd between observed and predicted error ratios
in 3 	 3 matrices defined by task and list length for each participant.
The mean correlation was .3355 (.4500) and the mean rmsd was
2.4518 (1.1962), reflecting a poor fit.

I was surprised by the asymmetry in favor of omissions because
I thought the similarity gradient was symmetrical (Equation 6), so
I examined it more closely. The dot products after a correct
response and an initial omission error are plotted in Figure 13 for
the third position in the string. The plot for correct responses is
symmetrical, following Equation 6, but the plot for initial omis-
sions is asymmetrical, favoring later responses. The asymmetry
can be understood by considering the set of context vectors in
Table 1, which show the correct encoding of abcdef. A participant
who recalled abd . . . would have the following current context
vector after updating:

4 � � �� · �2 � · � 0 � 0 0 �3�

The dot products between 4= and stored contexts 3, 4, and 5 are:

dot(4 � , 3) � �2 · �3 � �2 · � � �5

dot(4 � , 4) � �2 · �4 � �2 · �2 � �6

dot(4 � , 5) � �2 · �5 � �2 · �3 � �2 � �7

The dot product for position 4 is smaller than the dot product for
position 3 without any response suppression:

dot(4 � , 4) � � · dot(4 � , 3)

The dot product for position 5 is larger than the dot product for
position 3, producing the asymmetry:

dot�4 � , 5	 � �2 · dot(4 � , 3) � �2

� (1 � �2) · dot(4 � , 3) � �2

� dot(4 � , 3) � �2 � �2 · dot(4 � , 3)

Thus, CRU predicts an asymmetry in favor of later positions
following an initial omission. For CRU to predict the observed
error ratio, this asymmetry must be reversed with something like a
primacy gradient.

I explored one way to introduce a primacy gradient in CRU by
assuming that the effective retrieval cue is a proportional mixture
of the initial list cue (which produces a primacy gradient) and the
current context. The bottom panel of Figure 13 shows how the
asymmetry in the dot products is affected by varying the contri-
bution of the list cue versus the current context (by varying
P(List)). The top right panel shows how the probability of trans-
positions and omissions and the error ratio change as P(List) is
varied in simulations of CRU. The error ratio is 1.0 when
P(List) � .1210 and 2.0 when P(List) � .2839. Thus, in principle,
CRU could account for the observed error ratios.

To determine whether this modification of CRU could account
for the observed error ratios, I fit a version of the ED�SOD model
in which there was a separate P(List) parameter for each task.
Because P(List) affected retrieval and not encoding, and because
encoding and retrieval parameters were the same whether or not
the other varied, I fixed the encoding parameters to the best-fitting
values from the ED�SOD fits. Thus, there were seven free pa-
rameters and four fixed parameters for a total of 11 parameters.
Across participants, the mean likelihood (3727.88 
 1224.16) was
not much different from the mean likelihood from the ED�SOD

Figure 12. Error ratio components in Experiment 1: Proportions of ob-
served and predicted transposition and omission errors following an initial
skipped letter as a function of task and word length. The error ratio
(fill-in/in-fill) is the ratio of transpositions to omissions. Predictions are
from the encoding decrease � serial order decrease (ED�SOD) model.
Error bars are standard errors of the mean.

Figure 13. Dot products and error ratios. Top left: Dot products for
correct responses (abc in gray) and skipped letter responses (ac . . . in
black) showing symmetry for correct responses and asymmetry for errors.
Bottom right: The components of the mixture model include the initial
context and the current context, which are weighted by P(List) and 1 �
P(List), respectively, to produce a retrieval cue. Bottom left: Dot products
for skipped letter errors with different values of P(List).
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fits (3728.46 
 1224.32) but BIC was larger for the modified
model in all 24 participants (mean BIC � 7494.67 
 2448.31,
t[23] � 17.3333), indicating that the modification did not improve
the fit overall.

The mean �Max, �DecType, �DecRecall, and �DecReport parameters
across participants were .5760, .9984, .9252, and .9058, respec-
tively, close to the values from the ED�SOD fits in Table 4. By
contrast, the mean P(List) parameters were .0003, .0085, and .0069
for copy typing, serial recall, and whole report, respectively. All
values were close to 0, at which point the model is equivalent to
the ED�SOD model. The near-zero values were well below the
values required for an error ratio above 1.0 (see Figure 13).
Although in principle, adding the list cue allows CRU to predict
the observed error ratios, in practice, fitting CRU to the entire data
set did not favor this addition. Thus, the present version of CRU
does not account for the error ratio. Interestingly, the model did a
good job of accounting for the relative proportions of transposi-
tions (order errors) and omissions when the errors were defined
more inclusively to include all such errors, not just the ones that
follow skipped-letter errors (see Error Types above).

Discussion

The empirical goal of the experiment was to compare serial
order phenomena in perception, memory, and action to determine
whether they result from the same mechanism acting under differ-
ent constraints. The results were similar across tasks, differing
quantitatively but not qualitatively (Figures 6–12), which is con-
sistent with a single mechanism account. The theoretical goal was
to ask whether a computational implementation of a single mech-
anism (CRU) could account for the quantitative differences be-
tween tasks in terms of meaningful variations in its parameters.
CRU’s ED�SOD model predictions agreed well with the observed
data in six different summary measures (list accuracy, serial po-
sition effects, transposition gradients, contiguity effects, error
magnitudes, and error types). CRU mispredicted the error ratio.
Like other chaining models, it could produce error ratios greater
than 1.0 but the parameters values it required did not fit the rest of
the data (also see Solway, Murdock, & Kahana, 2012).

The model fits compared variants of CRU in which encoding (g)
and serial retrieval (�) parameters were fixed or allowed to vary
between tasks. The model comparisons indicated that better fits
were obtained when g or � were allowed to vary either individu-
ally or jointly. The ED�SOD model, which fit best for all 24
participants, allowed g and � to decrease at differential rates across
serial position for different tasks. There was almost no decrease in
the typing task, consistent with previous CRU fits to skilled typing
(Logan, 2018), a stronger decrease in serial recall, and the stron-
gest decrease in whole report.

The theoretically important manipulation across tasks was list
length. Participants generally did worse with longer lists and CRU
largely accounted for these effects without having to add or adjust
parameters. The same parameters were used regardless of list
length. In the decrease models g and � reach lower values at the
end of longer lists but only because same decrease propagates to
more items (g5–1 � g6–1 � g7–1). Thus, CRU predicts list length
effects without any special assumptions. Longer lists provide more
opportunity for decrease and more opportunity for errors. Those
factors seem sufficient to explain list length effects without invok-

ing assumptions about capacity limitations or limited numbers of
slots.

Experiment 2: Within-List Repetitions in Whole
Report, Serial Recall, and Copy Typing

The second experiment compared serial order effects in percep-
tion, memory, and action using six-letter lists and manipulating
within-list repetition (abcbef). Within-list repetitions challenge
serial order models based on chaining, activation gradients, and
successor inhibition (Lashley, 1951). In strict chaining models in
which each item is associated only with its successor, within-list
repetitions create loops in the chain: given abcbef, b is associated
with both c and e so the response following the repeated item is
likely to be an error. Within-list repetitions create problems for
models that represent order as a gradient of activation across items
(Page & Norris, 1998) because repeated items disrupt the gradient:
given abcbef, b is likely to have the highest activation and so is
likely to be chosen first. Within-list repetitions also create prob-
lems for successor inhibition models in which each item inhibits
every item that follows it, creating a gradient of activation that
declines over serial position (Bryden, 1967; Estes, 1972; Rumel-
hart & Norman, 1982). Within-list repetitions have more activation
and so disrupt the pattern of inhibition across the list. CRU can
handle within-list repetitions without crashing (Logan, 2018). It
remains to be seen whether it accounts for more subtle effects of
within-list repetition.

Within-list repetitions challenge theories of memory and per-
ception. Ranschburg (1902) showed that the second of two re-
peated items within a list is recalled less accurately than control
items in the same serial positions if the lag between repetitions is
greater than 0. Lag 0 repetitions are usually recalled better than
control items. This Ranschburg effect has been replicated many
times (Henson, 1998a; Jahnke, 1969). The impairment for the
second item at lags � 0 is often attributed to response suppression,
which makes a previously retrieved item less available. The benefit
for lag 0 is often attributed to noticing immediate repetitions and
tagging them as repetitions (Henson, 1998a). CRU handles within-
list repetitions without either of these accounts. It remains to be
seen how well it accounts for the Ranschburg effect and its
modulation across tasks.

Kanwisher (1987) showed a deficit in reporting the second of
two repeated items within a stream of rapid serial visual presen-
tations, which has also replicated many times in different formats,
including simultaneous presentations (also see Bjork & Murray,
1977; Santee & Egeth, 1980). She attributed this repetition blind-
ness to perceptual processes involved in individuating types and
tokens and found considerable support for that hypothesis, al-
though there is some evidence for a retrieval effect (Fagot &
Pashler, 1995). CRU handles repetition blindness and the Ransch-
burg effect in the same way, as described below. It remains to be
seen whether CRU can account for within-list repetition effects in
the three tasks without adding assumptions about perceptual inter-
ference.

CRU represents all letters, repeated or unique, with a localist
code, setting the element in the input vector that represents the
letter to 1 and setting all other elements to 0. When a letter is
repeated, the same element is set to 1. The input vector is added to
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Figure 14. Context Retrieval and Updating model (CRU) context element values and dot products as a function
of serial position for unique strings (top) and strings with repeated letters with lag 0–3 between repetitions
(below). The repeated letter is represented by a dashed line in the left and right columns.
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the current context using updating equations 3 and 4, reproduced
here for convenience:

� � �1 � �2�(rN · cN)2 � 1� � �(rN · cN)

� � �1 � �2

If the input letter is unique, there is no overlap between the
input vector and the current context vector, so Equation 4
applies. If the input letter was presented earlier in the list, CRU
sets the same element in the input vector to 1, and so the input
vector overlaps with the current context vector. Equation 3
compensates for the overlap by reducing � in proportion to the
dot product between the input vector and the context vector,
normalizing the length of the updated context vector to 1.0
(Howard & Kahana, 2002). Figure 14 illustrates the effects of
repeating letters at different lags on the representations of
elements in the context vectors (left two panels) and on the dot
products between stored context vectors (right panel). Repeti-
tion dramatically increases the element value for the repeated
item, and that affects the other elements through the normal-
ization process (Equation 3). Repetition changes the similarity
structure: Items following the repetition compete less with
items preceding the repetition and vice versa. Logan (2018)
showed that CRU can retrieve sequences accurately despite the
competition. It remains to be seen whether the nature of the
competition can account for Ranschburg effects in whole re-
port, serial recall, and copy typing tasks.

Experiment 2 asked the same empirical and theoretical ques-
tions as Experiment 1: Are the serial order phenomena in whole
report, serial recall, and copy typing manifestations of a single
serial order mechanism operating under different constraints? Ex-
periment 2 answered the questions in the same way: Versions of
CRU were fit to the data, the best-fitting model was selected with
BIC, and the best-fitting parameters were used to drive simulations
of the model to produce predictions for summary statistics (list
accuracy, serial position effects, transposition gradients, contiguity
effects, error magnitudes, error types, error ratios, and Ranschburg
effects).

Method

Participants. Twenty-four participants were recruited for
their self-professed ability to type 40 WPM. None had served in
Experiment 1. Eight identified as male, 15 as female, and one as
“gender.” Their mean speed on the typing test was 76.74 WPM
(21.03). Their mean accuracy was 93.66% (2.77).

Apparatus and stimuli. The apparatus, computer displays,
and keyboards were the same as in Experiment 1. All lists were
six letters in length. They were selected randomly from all 26
letters of the alphabet. There were 576 lists, 192 for each task.
In each task, 96 lists contained no repetitions (unique lists) and
96 contained a single repeated item, selected at random. The
number of letters intervening between repeated items (the lag)
was 0, 1, 2, or 3, with 24 lists at each lag. Repeated items
appeared in all possible positions in the list with equal fre-
quency for lags 1, 2, and 3. For lag 0, four positions were tested
five times and one (randomly selected) position was tested four
times.

Procedure. Lists with unique and repeated items were mixed
randomly. Otherwise, the procedure was the same as in Experi-
ment 1.

Results

Model fits.
Nondecrease models. I fit the same four nondecrease models

to the sequences of about 3456 responses generated by each
participant individually, allowing g or � or both to vary between
tasks. Measures of goodness of fit and best-fitting parameters are
presented in Table 6 and model comparisons are presented in
Table 7. For all 24 participants, fits were better than baseline when
either g or � were allowed to vary between tasks and best when
both were allowed to vary. The best fits were obtained with the
E�SO model. Again, the estimates of � were the same whether or
not g varied between tasks, and the estimates of g were the same
whether or not � varied between tasks. Both g and � varied
meaningfully between tasks, decreasing from typing to serial recall
to whole report, reflecting the effect of limiting exposure duration.

Decrease models. I fit the same three decrease models to each
participant’s data, allowing gDecrease or �Decrease or both to vary
between tasks, and comparing them to the nondecrease baseline
model as before. Measures of goodness of fit and best-fitting
parameters are presented in Table 8 and model comparisons are
presented in Table 9. The parameter values and measures of
goodness of fit for each participant for the best-fitting ED�SOD
model appear in Table A2.

For all 24 participants, fits were better than baseline when either
gDecrease or �Decrease was allowed to vary between tasks, and best
when both were allowed to vary. The best fits were obtained with
the ED�SOD model. Again, estimates of �Decrease were the same
whether or not gDecrease varied between tasks, and estimates of
gDecrease were the same whether or not �Decrease varied between

Table 6
Experiment 2 Nondecrease Models: Measures of Goodness of Fit and Best-Fitting Parameter
Values for Baseline (B), Encoding (E), Serial Order (SO), and Encoding � Serial Order
(E�SO) Models in Experiment 2

Measure Likelihood BIC gType gRecall gReport �Type �Recall �Report

Base 3334.05 6675.17 .2724 .4959
Encoding 3240.77 6495.69 .3435 .2862 .2372 .4961
Serial order 3238.56 6491.28 .2724 .5861 .4934 .4500
E�SO 3145.41 6312.04 .3433 .2865 .2402 .5866 .4934 .4500

Note. BIC � Bayesian information criterion.
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tasks. As before, both gDecrease and �Decrease decreased across
tasks from typing to serial recall to whole report, accounting for
differences between tasks with meaningful variation in parameters.

As in Experiment 1, the decrease models fit better than the
nondecrease models. ED fit better than E in 24 participants (BIC
difference � 253.38, t[23] � 9.04). SOD only fit better than SO in
15 participants (BIC difference � 10.87, t[23] � 1.17). ED�SOD
fit better than E�SO in 22 participants (BIC difference � 216.03,
t[23] � 7.64). Thus, decrease of g and � over serial position seems
to be necessary to produce good fits.

Model predictions. As before, model predictions were gen-
erated for each participant by running a simulation of CRU on the
same lists the participant experienced using the participant’s best-
fitting parameters from the best-fitting ED�SOD model.

List accuracy. The mean observed and predicted probabilities
of reporting the entire list correctly are plotted as a function of task
and lag between repetitions in Figure 15. As before, observed list
accuracy decreased from copy typing to serial recall to whole
report. For all three tasks, observed list accuracy was highest with
lag 0 between repetitions (i.e., with doubled letters). Observed list
accuracy was lower for lags 1–3 than for unique lists for whole
report but not much different for serial recall and copy typing.
Predicted list accuracy underestimated observed accuracy. It cap-
tured the differences between tasks but missed the effects of lag.
The mean correlation between observed and predicted values
across the 24 participants was .8891 (.1498) and the mean rmsd
was .2542 (.0525), reflecting the poor fit.

Serial position effects. The mean observed and predicted se-
rial position effects across participants are plotted for lists con-
taining unique and repeated items in Figure 16. The observed serial
position effects were much like the observed effects with list
length 6 in Experiment 1. Accuracy was high for the first serial
position in all three tasks and then declined at different rates. The
decline was least for copy typing, intermediate for serial recall, and
most for whole report. There was a recency effect for the last item

in serial recall and whole report but not for copy typing. The
predicted serial position curves captured the fanning out from a
common beginning at the first serial position, but underestimated
accuracy overall and did not capture the trend toward recency in
the serial recall and whole report data. A larger g or � or both
for the last position may accommodate this effect. Across partic-
ipants, the mean correlation between observed and predicted val-
ues was .8996 (.0502) and the mean rmsd was 0.0811 (.0389),
reflecting a decent fit.

Transposition gradients. The mean observed and predicted
transposition gradients across participants are plotted for unique
and repeated lists in Figure 17. The observed gradients for unique
lists show the same peak at 0 that declines from copy typing to
serial recall to whole report that was observed in Experiment 1.
The gradients are negatively asymmetric, reflecting the tendency
for errors to occur near the end of the list, so transpositions must
come from earlier positions. The observed gradients for repeated
lists are similar except for a tendency to recall items from posi-
tions �2 and �3. The predicted transposition matrices show very
similar effects. The mean correlation between observed and pre-
dicted values was .9839 (.0091) and the mean rmsd was .0617
(.0147), reflecting a good fit.

Contiguity effects. The mean observed and predicted lag
CRPs across participants for unique and repeated lists in each task
are plotted in Figure 18. The lag CRPs for unique lists replicate
Experiment 1. They peaked at lag � 1, reflecting a strong tendency
to move forward through the list, and the peak decreased from
copy typing to serial recall to whole report. The lag CRPs for lists
with repeated items were similar, though the peaks were lower and
the lower tail was thicker. The predicted lag CRPs captured these
effects well. The mean correlation between observed and predicted
values across participants was .9950 (.0039) and the mean rmsd
was .0324 (.0086), reflecting an excellent fit.

Error magnitude. The mean observed and predicted distribu-
tions of Damerau distance across participants for unique and

Table 7
Experiment 2 Nondecrease Models: Model Comparisons Assessed by Differences in BIC Scores, Number of Participants Showing the
Difference, and t Tests of the Difference in Experiment 2

Measure Base – E Base – SO Base – E�SO E – SO SO – E�SO E – E�SO

BIC difference 179.48 183.89 188.64 4.41 179.24 95.36
N different 24 24 24 13 24 24
t(23) 5.669 7.787 4.060 0.142 5.655 4.034

Note. Base � baseline model; BIC � Bayesian information criterion; E � encoding model; SO � serial order model; E�SO � encoding � serial order
model.

Table 8
Experiment 2 Decrease Models: Measures of Goodness of Fit and Best-Fitting Parameter Values for Baseline (B), Encoding
Decrease (ED), Serial Order Decrease (SOD), and Encoding Decrease � Serial Order Decrease (ED�SOD) Models in Experiment 2

Measure Likelihood BIC gMax gDType gDRecall gDReport �Max �DType �DRecall �DReport

Baseline 3334.05 6675.17 .2724 1.0000 .4959 1.0000
ED 3112.31 6242.32 .3609 .9808 .9244 .8647 .4981 1.0000
SOD 3231.36 6480.41 .2725 1.0000 .5582 .9995 .9647 .9350
ED�SOD 3033.85 6096.01 .3609 .9813 .9244 .8648 .5586 .9995 .9645 .9348

Note. BIC � Bayesian information criterion. Parameter values of 1.0000 were fixed, not fitted.
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repeated lists in each task are plotted in Figure 19. The distribu-
tions are very similar to the distributions from six-letter lists in
Experiment 1 (see Figure 10). Copy typing peaked sharply at
distance � 1, reflecting a strong tendency to recover from errors
(Logan, 2018). Serial recall also peaked at distance � 1 but
declined much more gradually. Whole report peaked at distance �
1 and distance � 2 and declined even more gradually, reflecting

the preponderance of errors. There was little difference between
the observed functions for unique and repeated lists and little
difference between predicted and observed distributions. The mean
correlation across participants was .9562 (.0392) and the mean
rmsd was .0614 (.0175), reflecting a good fit.

Error type. The mean predicted and observed proportions of
omission, order, and intrusion errors across participants for unique
and repeated lists in each task are plotted as a function of serial
position in Figure 20. The observed functions for unique lists show
an increase in all error types with serial position with reduced
growth for the last position. All error types increased with task,
from copy typing to serial recall to whole report. The observed
functions for repeated lists were similar except that omission errors
were less frequent in repeated lists. Observed and predicted func-
tions both showed more order errors than omission errors at early
serial positions and a reversal at the later serial positions. The
average correlation between observed and predicted values was

Table 9
Experiment 2 Decrease Models: Model Comparisons Assessed by Differences in BIC Scores, Number of Participants Showing the
Difference, and t Tests of the Difference in Experiment 2

Measure B – ED B – SOD B – ED�SOD SOD – ED SOD – ED�SOD ED – ED�SOD

BIC difference 432.85 194.76 579.16 238.10 384.40 146.30
N different 24 24 24 21 24 24
t(23) 7.535 8.586 8.548 6.521 6.521 6.520

Note. Base � baseline model; BIC � Bayesian information criterion; ED � encoding decrease model; SOD � serial order decrease model; ED�SOD �
encoding decrease � serial order decrease model.

Figure 15. List accuracy in Experiment 2: Observed and predicted prob-
abilities of reporting the whole string correctly as a function of task and lag
between repetitions. Unq � unique. Predictions are from the encoding
decrease � serial order decrease (ED�SOD) model. Error bars are stan-
dard errors of the mean.

Figure 16. Serial position effects in Experiment 2: Observed and pre-
dicted probabilities of responding with the correct item in the correct
position for typing, serial recall, and whole report tasks for lists with
repeated and unique letters. Predictions are from the encoding decrease �
serial order decrease (ED�SOD) model. Error bars are standard errors of
the mean.
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.7704 (.0775) and the average rmsd was .0832 (.0224), reflecting
CRU’s ability to capture the general trends while missing the
details.

Error ratio. The mean observed and predicted proportions of
omissions and transpositions following a skipped item—the com-
ponents of the error ratio—are plotted in Figure 21. In the observed
data, transpositions were more frequent than omissions, producing
error ratios �1.0 for all 24 participants. In the predicted data,
transpositions were less frequent than omissions, producing error
ratios �1.0 for all 24 participants. The average error ratio was
2.6330 (1.2638) for the observed data and .5787 (.0776) in the
predicted data. I calculated the correlation and rmsd between
observed and predicted error ratios in 3 	 2 matrices defined by
task and unique versus repeated for each participant. The mean
correlation was �.1400 (.4924) and the mean rmsd was 2.7109
(1.7780), reflecting a poor fit.

As in Experiment 1, I fit a modified model in which the retrieval
cue was a mixture of the initial list context and the current context
(see Figure 13). The model did not fit well. The likelihood was
larger (3120.79 
 918.32) than the likelihood of the ED�SOD
model and BIC was larger (6280.51 
 1836.63, t(23) � 13.7162)
in all 24 participants.

The mean �Max, �DecType, �DecRecall, and �DecReport parameters
across participants were .5569, .9987, .9576, and .9277, respec-
tively, close to the values from the ED�SOD fits in Table 8.
The mean P(List) parameters were .0001, .0059, and .0047 for
copy typing, serial recall, and whole report, respectively. When
P(List) � 0, the modified model reduces to the ED�SOD model.
Thus, CRU fails to account for the error ratio data, though it
accounted for the relation between transposition errors and omis-

sion errors defined more broadly to include more than errors
following skipped-letter errors (see Error Types above).

Ranschburg effects. The Ranschburg effect has two compo-
nents: an advantage for both the first and second presentations for
immediate repetitions (lag 0) and a disadvantage for the second
presentation (but not the first) as other items intervene between
repetitions (lags 1, 2 and 3). The components are calculated as
difference scores, subtracting accuracy on control items from
unique lists from accuracy on repeated items. The control items are
selected to match the serial positions of the first and second
presentations, which differ from each other (the second presenta-
tion is always later in the list) and differ with lag (at lag 0, the first
item can appear in positions 1–5; at lag 3, the first item can only
appear in positions 1–2). I calculated these differences for each
participant. The means across participants appear in the top row of
Figure 22.

The observed data showed Ranschburg effects that differed
between tasks. The serial recall and whole report tasks showed
typical effects. There was an advantage for first and second pre-
sentations at lag 0 and a disadvantage for second presentations at
lags greater than 0, which was bigger for whole report than for
serial recall. By contrast, copy typing showed neither effect very
strongly. These findings replicated across participants. Table 10
shows the number of participants showing each component in each
task. Most participants (�20) showed the lag 0 advantage and the
lag � 0 disadvantage in serial recall and whole report, but the
numbers showing the components in copy typing were closer to
chance.

The bottom row of Figure 22 shows the Ranschburg effects
predicted by the best-fitting ED�SOD model. CRU captured the
basic shape—an advantage for lag 0 for both responses and a

Figure 17. Transposition gradients in Experiment 2: Observed and pre-
dicted probabilities of reporting items in the correct position (0), positions
before (negative values), and positions after (positive values). Predictions
are from the encoding decrease � serial order decrease (ED�SOD) model.
Error bars are standard errors of the mean.

Figure 18. Contiguity effects in Experiment 2: Observed and predicted
lag conditional recall probabilities as a function of task for unique and
repeated lists. Predictions are from the encoding decrease � serial order
decrease (ED�SOD) model. Error bars are standard errors of the mean.
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disadvantage for lags � 0 for second presentations—but it greatly
underestimated the magnitude of the disadvantage and failed to
capture the observed differences between tasks. The mean corre-
lation across participants between observed and predicted values
was .5305 (.1275). The mean rmsd was .0857 (.0169). The poor fit
seriously challenges CRU’s ability to account for within-list rep-
etitions, so I tried some modifications to see whether I could obtain
a better fit.

Ranschburg mechanisms. Most theories of the Ranschburg
effect propose special mechanisms to explain each component.
There are three different explanations of the deficit for second
presentations at lags greater than 0: Perception accounts attribute
it to misperception of the second item (Bjork & Murray, 1977;
Kanwisher, 1987; Santee & Egeth, 1980). Some memory studies
rule out this possibility by having participants say the items out
loud as they are presented (Jahnke, 1969) but it is a viable account
of disadvantages with brief simultaneous presentations (Bjork &
Murray, 1977; Santee & Egeth, 1980). Memory accounts attribute
the deficit to weakened memory representations (Jahnke, 1969),
although this can be ruled out to some extent by evidence of an
advantage for within-list repetitions in recognition tasks, indicating
that both items must be represented (Wolf & Jahnke, 1968).
Decision accounts attribute the deficit to response suppression:
Responses to items are suppressed after they are made, so the
response to a repeated item will be less available the second time
it is presented (Henson, 1998a; Jahnke, 1969). Response suppres-
sion is a popular assumption in models of serial recall as a way of
preventing response repetitions in lists that do not contain repeated
items (Farrell & Lewandowsky, 2012).

I implemented perception, memory, and decision accounts of
the Ranschburg effect in CRU’s ED�SOD model by allowing

perceptual, memorial, and decisional parameters to change for
second presentations of within-list repetitions. The perception
model decreased the encoding sensitivity parameter g for second
presentations, making letters more confusable and less likely to be
encoded correctly. The reduction in g was implemented with a
parameter gRed that multiplies the current value of g, so g becomes
g · gRed. The memory model decreased � in serial order encoding
and retrieval of second presentations, making them less likely to be
retrieved accurately. The reduction in � was implemented with a
parameter �Red that is subtracted from �, so � becomes � � �Red,
constrained so � � 0. The decision model implemented response
suppression: It increased the threshold � in the decision process
(Equation 9), making previous responses less competitive in the
race between diffusions. The increase in � was achieved with a
parameter �Inc that is added to �, so � becomes � � �Inc. As in
previous fits, the baseline threshold � was fixed at 200 for all tasks
and conditions. The memory model added �inc to the baseline
threshold of 200. To capture the improved performance at lag 0, I
did not apply these adjustments following the first presentation in
immediate repetitions.

I ran exploratory simulations and found that each model could
produce the observed pattern of the observed Ranschburg effect if
the parameters varied between tasks. For the perception model, a
monotonic reduction in gRed from copy typing to serial recall to
whole report produced the desired gradation across tasks. For the
memory model and the decision model, monotonic increases in
�Red and �Inc across typing, recall, and report tasks produced the
desired gradation.

Next, I fitted the three models to the data from all 24 participants
individually to obtain the best-fitting parameters. To reduce the
time it took to fit the models, I took advantage of the relative
independence of encoding and memory updating parameters and
fixed the parameters whose values were not adjusted when items
repeated to the best-fitting values from the ED�SOD model.
When fitting the perception model, which reduces g, I fixed the �
parameters at their best-fitting values. When fitting the memory
model, which reduces �, I fixed the g parameters at their best-
fitting values. When fitting the decision model, which increases �
in the serial order retrieval process, I fixed the g parameters at their
best-fitting values. I counted both the fixed and free parameters in
calculating the BIC penalty term. The perception, memory, and
threshold models each had 11 parameters.

The likelihoods, BIC scores and best-fitting parameters for the
perception, memory, and decision models are presented in Table
11. For the perception model, the gMax, gDecType, gDecRecall, and
gDecReport parameters were similar to the values in the ED�SOD
fits (see Table 7) and the gRedType, gRedRecall, and gRedReport pa-
rameters decreased monotonically, as in the exploratory simula-
tions that produced the Ranschburg effect. For the memory model,
the �Max, �DecType, �DecRecall, and �DecReport parameters were
close to the ED�SOD fits, but the �RedType, �RedRecall, and
�RedReport parameters were close to the minimum value of 0, at
which the model is no different from the ED�SOD model. For the
threshold model, the �Max, �DecType, �DecRecall, and �DecReport

parameters were close to the previous values, but the �IncType,
�IncRecall, and �IncReport parameters decreased monotonically from
copy typing to serial recall to whole report instead of increasing
monotonically, though the differences were small. To determine
whether the differences mattered, I fit a version of the threshold

Figure 19. Error magnitudes in Experiment 2: Observed and predicted
distributions of Damerau edit distance between correct and error strings for
unique and repeated lists in each task. Predictions are from the encoding
decrease � serial order decrease (ED�SOD) model. Error bars are stan-
dard errors of the mean.
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model in which there was only one value of �Inc for all three tasks.
The likelihood, BIC, and best-fitting parameters for this single
threshold model are also presented in Table 11.

Model comparisons are presented in Table 12. The perception
model fit better than the ED�SOD model in eight participants and
the BIC difference was essentially 0. The memory model fit worse
than the ED�SOD model in all 24 participants, although the
likelihoods were very similar and the BIC difference was about
the same as the difference in the penalty term from adding the
three extra parameters. The threshold model with separate param-
eters for each task fit better than the ED�SOD model in all 24
participants and the BIC difference was substantial. The separate
threshold model fit better than the single threshold model in 19
participants, but the BIC difference was essentially 0. Variation in
the threshold increment between tasks does not seem necessary to
produce good fits. Overall, model selection based on BIC favors
the decision models, which implement response suppression.

The next step was to generate predictions for the Ranschburg
effect. I used the best-fitting parameters to simulate the perception,
memory, and decision models on the same lists as the participants

and scored the simulated data with the same routines used for the
real data. The predicted Ranschburg effects are presented in Figure
23. All models captured the advantage at lag 0 but overestimated
the magnitude for the typing task. The perception model captured
the decrease in accuracy at lags � 0 and the modulation across
tasks, though the predicted effects were somewhat smaller than the
observed effects (cf. Figure 22). The correlation between observed
and predicted values was .6035 (.1303) and the rmsd was .0791
(.0161).

The memory model estimates of �red were essentially 0, so it
makes the same predictions as the ED�SOD model, failing to
capture the magnitude of the deficit at lags � 0 and failing to
capture the modulation across tasks. The predictions of the
ED�SOD model are replotted in the middle panel of Figure 23 for
comparison. The correlation between observed and predicted val-
ues was .5304 (.1275) and the rmsd was .0857 (.0169).

The decision model predicted deficits for lags � 0 but failed to
capture the modulation across tasks. The predicted values did not
vary much between tasks and their variation was opposite to the
observed data, predicting greater deficits for typing than for serial

Figure 20. Error types in Experiment 2: Proportions of observed and predicted order, intrusion, and omission
errors for unique and repeated lists as a function of task and serial position. Predictions are from the encoding
decrease � serial order decrease (ED�SOD) model. Error bars are standard errors of the mean.
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recall and greater deficits for serial recall than for whole report.
The correlation between observed and predicted values was .4702
(.1296) and the rmsd was .0919 (.0135).

The Ranschburg effect correlations were higher for the percep-
tion model than for the memory model in 19 participants and
higher than the separate threshold model in 23 participants. Cor-
relations for the memory model were higher than the separate
threshold model in 19 participants. The rmsds for the perception
model were lower than the memory model in 19 participants and
lower than the separate threshold model in 23 participants. The

rmsds were lower for the memory model than for the separate
threshold model in 18 participants. Overall, the predictions support
the perception model over the others, suggesting that the Ransch-
burg effect results from a deficit in CRU’s item encoding process.

It is hard to reach strong conclusions from these results because
the fits and predictions favor different models. It occurred to me
that the better fits of the decision model might reflect the benefits
of increasing threshold on other aspects of performance besides
repeated items. The threshold increases after every response,
whether or not the item is repeated or the list contains repetitions.
Increasing the threshold reduces competition from previous items,
which may be beneficial, especially near the end of the list (Le-
wandowsky & Farrell, 2008). The perception model may have fit
worse because it lacked these other benefits.

I decided to compare perception and decision models on more
even ground, giving perceptual models the advantage of threshold
adjustment after every response. I compared four models formed
by factorially combining whether perceptual adjustment gRed and
threshold adjustment �Inc were fixed across tasks or allowed to
vary. To reduce the number of parameters to be fitted, I fixed the
gMax, gDec, �Max, and �Dec parameters to the best-fitting values
from the ED�SOD fits. The previous fits suggest they were
affected little by adjustment in gRed and �Inc (compare Tables 8 and
11). The likelihood, BIC, and best-fitting parameters for each
model are presented in Table 13. Model comparisons are presented
in Table 14.

All of the models fit about as well as the first version of the
decision model and they fit better than the ED�SOD model. I
attribute this to the benefit of adjusting thresholds after every
response. The differences between the BIC values were small but
they were consistent across participants. Compared with the base-
line model in which gRed and �Inc were fixed across tasks, the
majority of the participants were fit worse when �Inc was allowed
to vary between tasks, both by itself and in conjunction with
between-task variation in gRed. Compared with the baseline model,
varying gRed between tasks improved the fit for the majority of the
participants. The model in which only gRed varied between tasks fit
better than the model in which only �Inc varied between tasks.
Varying both gRed and �Inc between tasks produced worse fits than
the baseline model because the small improvement in likelihood
was outweighed by the bigger BIC penalty for the extra 4 param-
eters. By these criteria, the perception varied model would be
selected over the others. Given the small differences in BIC scores,
it may be safer to accept the null hypothesis.

Table 10
Number of Participants (of 24) Replicating Ranschburg
Components (Advantage for Lag 0; Disadvantage for Lag � 0)
for First and Second Presentations of the Repeated Item in
Each Task

Lag 0 advantage
Lag � 0

disadvantage

Presentation First Second First Second

Copy typing 16 17 12 10
Serial recall 21 22 11 20
Whole report 22 22 17 23

Figure 21. Error ratio components in Experiment 2: Proportions of ob-
served and predicted transposition and omission errors following an initial
omission for unique and repeated-item lists in each task. The error ratio
(fill-in/in-fill) is the ratio of transpositions to omissions. Predictions are
from the encoding decrease � serial order decrease (ED�SOD) model.
Error bars are standard errors of the mean.

Figure 22. Ranschburg effects in Experiment 2: Observed and predicted
differences between first and second repeated items and control items from
corresponding serial positions as a function of task and lag. Predictions are
from the encoding decrease � serial order decrease (ED�SOD) model.
Error bars are standard errors of the mean.
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I calculated predictions as before, simulating each model with
the best-fitting parameters for each participant and calculating the
seven summary statistics. The predicted Ranschburg effects for
each model are plotted in Figure 24. The correlations and rmsds
between observed and predicted values for each model are pre-
sented in Table 15. The four models make the same predictions for
the first presentation of the repeated item. They differ in their
predictions for the second presentation. Models in which g was
allowed to vary produced higher correlations and smaller rmsds
than models in which g was fixed, but models in which � was
allowed to vary produced lower correlations and larger rmsds than
models in which � was fixed. This can be seen in Figure 24: The
predictions of models with g varied, presented in bottom two plots
on the left, show the same modulation across tasks as the observed
Ranschburg effect. The predictions of models with g fixed, pre-
sented in the top two plots on the left, do not show the modulation.
Varying � did not produce the desired modulation across tasks.

The models made very similar predictions for the other sum-
mary statistics. The mean correlations and rmsds across partici-
pants for each model are presented in Figure 25, except for the
error ratios. Apart from the Ranschburg effects, there are few
differences between the models. This follows because every model
used the same gMax, gDec, �Max, and �Dec parameters that produce
these effects.

In this set of models, the model that made the best predictions
was the same as the model that produced the best BIC scores.
The Ranschburg effect seems to be accounted for best by a
model that assumes variation in perceptual confusability (gRed)
across tasks but no variation in decision threshold adjustment
(�Inc) across tasks. Putting the models on an even ground by
allowing them all to benefit from threshold adjustment seems to
have resolved the ambiguity in the initial explorations of the
Ranschburg effect.

Discussion

For the most part, Experiment 2 replicated the findings of
Experiment 1. The observed results were much like the ob-
served results for list length of six in Experiment 1. As in
Experiment 1, the best-fitting ED�SOD model required de-
crease in both encoding sensitivity g and serial retrieval �
across serial position that increased from copy typing to serial
recall to whole report. Parameters varied meaningfully across
tasks, with lower values associated with poorer performance.
Model predictions were similar to Experiment 1. Transposition
gradients, contiguity effects, and Damerau distances were pre-
dicted very accurately, whereas list accuracy, serial position
effects, and error types were predicted less accurately, and error

Table 11
Experiment 2 Ranschburg Models: Measures of Goodness of Fit and Best-Fitting Parameter Values for Perception (Reduces g),
Memory (Reduces �), and Decision Models (Increases �), Including Separate Thresholds for Each Task and a Single Threshold for
All Three Tasks

Perception model

Likelihood BIC gMax gDecType gDecRecall gDecReport gRedType gRedRecall gRedReport

3029.26 6097.44 .3603 .9818 .9276 .8690 .9689 .8983 .8004

Memory model

Likelihood BIC �Max �DecType �DecRecall �DecReport �RedType �RedRecall �RedType

3033.62 6106.15 .5590 .9996 .9644 .9346 .0013 .0005 .0020

Decision model – Separate thresholds

Likelihood BIC �Max �DecType �DecRecall �DecReport �IncType �IncRecall �IncReport

2977.98 5994.87 .5334 .9994 .9673 .9385 10.03 8.10 7.67

Decision model – Single threshold

Likelihood BIC �Max �DecType �DecRecall �DecReport �Inc

2981.10 5994.05 .5346 .9998 .9661 .9374 8.13

Note. BIC � Bayesian information criterion.

Table 12
Experiment 2 Ranschburg Models: Model Comparisons Assessed by Differences in BIC Scores,
Number of Participants Showing the Difference, and t Tests of the Difference in Experiment 2

Measure ED�SOD – P ED�SOD – M ED�SOD – T3 T1 – T3

BIC difference �1.43 �10.14 101.14 0.82
N � 0 8 0 24 19
t(23) 0.984 24.484 12.802 0.472

Note. BIC � Bayesian information criterion; ED�SOD � encoding decrease � serial order decrease model;
P � perception model (reduces g); M � memory model (reduces �); T3 � Threshold model (increases �) with
separate thresholds for each task; T1 � Threshold model with the same threshold for all tasks.
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ratios were mispredicted. Overall, the observed results are
consistent with the hypothesis that serial order phenomena in all
three tasks are reflections of the same underlying process. The
model fitting generally supports CRU but found difficulty ac-
counting for the error ratio.

The main purpose of Experiment 2 was to manipulate within-list
repetitions, which challenge theories of serial order (Lashley,
1951), memory (Ranschburg, 1902), and perception (Kanwisher,
1987). The observed results showed Ranschburg effects that in-
creased from copy typing to serial recall to whole report. The
effects with copy typing were small and inconsistent across par-
ticipants, which might suggest there is no Ranschburg effect in
typing. The best-fitting ED�SOD model underpredicted the mag-
nitude of the observed Ranschburg effects and failed to capture the
differences between tasks (see Figure 21), so I tried three modifi-
cations to CRU based on interpretations of Ranschburg and repe-
tition blindness effects in the literature. The perception model
decreased g (Bjork & Murray, 1977; Kanwisher, 1987; Santee &
Egeth, 1980), the memory model decreased � (Jahnke, 1969), and
the decision model increased � (Henson, 1998a) for the second
presentation of the repeated item. Ultimately, the data were fit best
by a combination of the perception and decision models, in which
gRed varied between tasks but �Inc was fixed across tasks. The
perception component accounted for the variation in the Ransch-
burg effect across tasks. The fits were far from perfect, which
invites further exploration of the perception model and its alter-
natives.

General Discussion

Are serial order phenomena in perception, memory, and action
manifestations of a single underlying mechanism? Are serial order
phenomena the same in whole report, serial recall, and copy typing
tasks? Can a single theory account for serial order phenomena in
all three tasks with meaningful variation in its parameters? For the
first two questions, the data suggest a clear “yes.” In both exper-
iments, the seven summary statistics (list accuracy, serial position,
transposition gradient, lag CRP, error magnitude, error type, and
error ratio) were similar across the three tasks, differing quantita-
tively rather than qualitatively. In Experiment 1, list length de-
creased performance in a similar manner in all three tasks. In
Experiment 2, repeating items within lists produced a Ranschburg
effect in serial recall and whole report but not in copy typing.
These similarities encourage further investigation of empirical
parallels between perception, memory, and action to identify other
commonalities and differences.

The answer to the theoretical question is promising but less
clear. In both experiments, the best-fitting model was the
ED�SOD model, which assumed that encoding sensitivity (g) and
the balance between new and old information in serial retrieval (�)
decreased more across serial position in whole report than in serial

Table 13
Experiment 2 Perception and Decision Ranschburg Models: Measures of Goodness of Fit and
Best-Fitting Parameter Values for Models in Which Perception (g) and Decision (�) Are Fixed
(F) or Varied (V) Between Tasks

Measure Likelihood BIC gDecTyp gDecRec gDecRep �incTyp �incRec �incRep

gF� F 2987.81 6003.92 0.9034 6.86
gF� V 2985.17 6005.73 0.9034 8.25 6.81 6.72
gV� F 2986.00 5999.61 0.9712 0.9091 0.8135 6.86
gV� V 2983.37 6009.20 0.9712 0.9091 0.8135 8.25 6.81 6.72

Note. BIC � Bayesian information criterion.

Figure 23. Predicted Ranschburg effects in Experiment 2: Predicted
differences between first and second repeated items and control items from
corresponding serial positions as a function of task and lag for the encoding
adjustment model (g), the memory adjustment model (�), and the threshold
adjustment model (�) averaged over participants. Error bars are standard
errors of the mean.
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recall and more in serial recall than in copy typing. The results
replicated well across participants. Across the two experiments, 48
of 48 participants were fit better by the ED�SOD model than the
baseline model and 48 were fit better by the ED�SOD model than
the next best competitor (Tables 4 and 8). However, the model
could not account for error ratios.

A model that unifies serial order phenomena in perception,
memory, and action must fit the data for each task well and must
fit as well as or better than competing models. The model fits and
predictions address the first criterion. Comparisons with compet-
ing models await future research. The mean correlations and rmsds
(across participants) between the observed summary statistics and
the ED�SOD model predictions are presented in Table 16 for each
task in each experiment (excluding error ratio). The correlations
were somewhat lower for typing than for serial recall and whole
report, likely because the effects were smaller in typing in some
measures, reducing correlation by restricting the range. The rmsds
are not affected by range and were about the same for all three
tasks. Thus, the CRU ED�SOD model predicts each task
(roughly) equally well, fulfilling the first criterion. However, the
model predicted error ratios that were opposite to the observed
ones and failed to capture the recency effect in serial recall and
whole report serial position curves. Other supplementary assump-
tions may allow CRU to predict error ratios and recency. Success-
ful prediction would allow CRU to be considered a viable model
of serial order that could be compared with existing models built
on different assumptions.

The model was tested in two experiments that manipulated
important variables in the serial order literature: list length and
within-list repetitions. The CRU ED�SOD model accounted for
list length effects well, predicting their effects on all of the sum-
mary statistics without changing any parameters to accommodate
list length. List length effects occurred because longer lists provide
more competition in encoding and retrieval, more opportunities for
error, and more updating steps in which g and � decrease. List

Table 14
Experiment 2 Perception and Decision Ranschburg Models: Model Comparisons Assessed by Mean BIC Differences Across
Participants, the Number (N) of Participants Showing a Positive BIC Difference, and a t Test Comparing the BIC Difference With 0

Measure gF�F – gF�V gF�F – gV�F gF�F – gV�V gF�V – gV�F gF�V – gV�V gV�F – gV�V

BIC difference �1.81 4.31 �5.28 6.12 �3.47 �9.59
N � 0 5 24 4 23 4 1
t(23) �1.277 6.489 �3.116 4.294 �5.218 �6.765

Note. BIC � Bayesian information criterion; g � perceptual adjustment; � � decision (threshold) adjustment; F � fixed; V � varied.

Table 15
Experiment 2 Perception and Decision Ranschburg Models:
Correlations and rmsd Between Model Predictions and
Observed Ranschburg Effects

Measure Overall Resp 1 Resp 2

Correlation
gF�F 0.5087 0.4519 0.6232
gF�V 0.4841 0.4562 0.5618
gV�F 0.5456 0.4514 0.6782
gV�V 0.5241 0.4510 0.6324

rmsd
gF�F 0.0897 0.0686 0.1051
gF�V 0.0922 0.0684 0.1094
gV�F 0.0875 0.0686 0.1013
gV�V 0.0900 0.0687 0.1054

Note. g � perceptual adjustment; � � threshold adjustment; F � fixed;
V � varied.

Figure 24. Predicted Ranschburg effects in Experiment 2: Predicted
differences between first and second repeated items and control items from
corresponding serial positions as a function of task and lag for the factorial
combination of encoding adjustment (g) and threshold adjustment (�)
versus fixed (F) and varied (V) values across tasks, averaged over partic-
ipants. Error bars are standard errors of the mean.
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length effects reflect interference (Endress & Szabó, 2017; Ober-
auer & Lin, 2017) rather than fixed resources or fixed numbers of
slots. In this respect, CRU is like models of serial recall (Burgess
& Hitch, 1999; Farrell, 2012; Henson, 1998b; Lewandowsky &
Farrell, 2008; Page & Norris, 1998), which also eschew assump-
tions about capacity or slot limitations.

The CRU ED�SOD model could not account for within-list
repetitions without adding special mechanisms that reduced per-
ceptual sensitivity differentially across tasks and increased deci-
sion thresholds after every response. The differential perceptual
sensitivity accounted for the variation in Ranschburg effects across
tasks and the threshold increase improved performance more gen-

erally. The extended model captured important aspects of the
Ranschburg effect but left substantial room for improvement.
Thus, CRU’s account of the Ranschburg effect should be viewed
as tentative.

Theory Development or Kludges?

CRU is built from core assumptions about the representations of
items and contexts, associations between items and contexts, and
the evolution of context through updating. These assumptions are
expressed in three parameters, encoding sensitivity g, context
updating �, and decision threshold �, whose interactions are ex-

Figure 25. Predicted summary statistics in Experiment 2: Mean correlations and root mean squared deviations
(rmsd) between observed and predicted summary statistics for the for the factorial combination of encoding
adjustment (g) and threshold adjustment (�) versus fixed (F) and varied (V) values across tasks, averaged over
participants. Error bars are standard errors of the mean.

Table 16
Correlations and Root Mean–Squared Deviations (rmsd) Between Observed and ED�SOD Predicted Summary Statistics for Each
Task in Experiments 1 and 2 Averaged Over Participants

Experiment
List

accuracy
Serial

position
Transpose
gradient Lag CRP

Damerau
distance

Error
type M

Experiment 1 correlations
Type 0.6024 0.6615 0.9931 0.9989 0.9613 0.4537 0.7785
Recall 0.9793 0.8572 0.9693 0.9821 0.9019 0.7104 0.9000
Report 0.9371 0.9374 0.9528 0.9780 0.9019 0.7956 0.9171

Experiment 2 correlations
Type �0.0078 0.6850 0.9904 0.9985 0.9777 0.5431 0.6978
Recall 0.3242 0.8703 0.9817 0.9947 0.9423 0.7486 0.8103
Report 0.6397 0.9414 0.9778 0.9901 0.9358 0.7621 0.8745

Experiment 1 rmsd
Type 0.1932 0.1190 0.0487 0.0208 0.0729 0.0622 0.0861
Recall 0.2330 0.1794 0.0756 0.0533 0.0758 0.1086 0.1210
Report 0.1204 0.1362 0.0787 0.0395 0.0641 0.1269 0.0943

Experiment 2 rmsd
Type 0.2826 0.1492 0.0605 0.0289 0.0697 0.0725 0.1106
Recall 0.2898 0.1529 0.0633 0.0358 0.0572 0.0763 0.1126
Report 0.1417 0.1298 0.0586 0.0307 0.0508 0.0957 0.0846

Note. CRP � conditional recall probability; ED � encoding decrease model; SOD � serial order decrease model; Type � copy typing; Recall � serial
recall; Report � whole report.
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pressed in Equations 1–10. Fitting CRU to experimental data
requires ancillary assumptions about how these parameters vary
across conditions. Ideally, the ancillary assumptions can be justi-
fied theoretically as predictions from a model, as a theory of
attention might explain the decrease of g across serial position.
Often, the justification is weaker and the ancillary assumptions are
explorations of possibilities rather than deductions from first prin-
ciples. In the worst cases, ancillary assumptions are made to fit the
data without much justification. While the other cases may be
viewed as theory development, the worst cases are kludges—
patches on a weak theory—and should be avoided.

The first assumption in fitting CRU to the data is that differences
between tasks might be expressed as differences in g and � (� was
fixed at 200). This is justified by the architecture of the model:
changing g and � are the only ways to change accuracy. The factorial
design that allowed g or � or both or neither to vary between tasks
was planned a priori to assess the necessity and sufficiency of varia-
tion in g and � to account for the data (Shen & Ma, 2019). Modelers
often use nested factorial model comparisons to understand which
aspects of the model account for which effects.

The decrease in g and � across serial position is less principled. The
data required small differences between tasks for the first serial
position that grew progressively over serial position. One possibility
would be to allow different values of g and � for each serial position
and let the data say how they should change. This would require
estimating 18 parameters on average (six for each task) compared
with six for the nondecrease models and eight for the decrease
models. Eighteen parameters would greatly increase the time required
for model fitting, so I opted for the decrease expressed in Equations
11 and 12 to reduce the number of parameters. I chose the specific
form of decrease without exploring many alternatives. Equations 11
and 12 produce a monotonic decrease, and I thought that would be
sufficient. I have no theoretical commitment to the form of the
decrease. The fits to the serial position curves suggest that g and �
might increase for the last serial position to capture recency in serial
recall and whole report, which may be justified as an edge effect (no
competition from following items).

I view the decrease parameters as placeholders for future theo-
ries that explain the decrease. The reduction in g might be ex-
plained by Bundesen’s (1990) theory of visual attention, which
was developed to explain whole report and partial report (Shibuya
& Bundesen, 1988). It could also be explained by serial scanning
in which the number of items scanned varies from trial to trial
(Davis, 2010; Heron, 1957; Mewhort et al., 1969). The memory
literature offers several explanations of the reduction in �. Many
theories of serial and free recall propose some kind of primacy
advantage that is explained as extra attention, extra rehearsal,
growing interference, or simply postulated without interpretation
(for a review, see Lewandowsky & Farrell, 2008). Interfacing
CRU with theories of attention and memory is an important goal
for future research.

The extensions of CRU to account for the Ranschburg effect
were made to accommodate the data, given the failure of the
ED�SOD model to account for it. However, the extensions ex-
pressed existing positions in the literature (e.g., Henson, 1998a;
Jahnke, 1969; Kanwisher, 1987), which mapped naturally onto
CRU’s existing parameters. The perception model changed g, the
memory model changed �, and the decision model changed �.
Thus, the extensions increased the number of values of g, �, and

� required to fit the data but did not require new parameters (the
adjustment parameters produced new values of g, �, and �). The
extensions do require more assumptions about the executive pro-
cesses that change g, �, and � (Logan & Gordon, 2001), which are
implicit in my implementation of the models (and implicit in the
existing positions in the literature). Specifying these processes will
be difficult because they require the model to know whether the
next item to be encoded will be a repetition before implementing
the adjustments of g, �, and �. Most models of serial recall assume
response suppression is obligatory and automatic. Immediate rep-
etitions would require control strategies to overcome suppression.
Perhaps changes in g could result from perceptual interactions
between dependent input channels (Bjork & Murray, 1977; Santee
& Egeth, 1980) without executive control. I have assumed inde-
pendent input channels for analytic convenience. An interactive
channels model seems worth exploring.

Relations to Other Theories

Theories of serial order take one of three approaches to represen-
tation of order: item coding, position coding, and noisy coding. Item
coding theories represent order in terms of associations between items
(Abrahamse, Jiménez, Verwey, & Clegg, 2010; Ebenholtz, 1963;
Ebbinghaus, 1885; Grainger & van Heuven, 2004; Helie, Roeder,
Vucovich, Rünger, & Ashby, 2015; Hull, 1943; Lewandowsky &
Murdock, 1989; Murdock, 1995; Solway et al., 2012; Whitney, 2001).
Chaining theories are the simplest versions of item coding: each item
is associated with its successor. Position coding theories represent
order in terms of associations between items and codes that represent
positions in the list or string (Brown et al., 2000; Burgess & Hitch,
1999; Davis, 2010; Farrell & Lewandowsky, 2002; Fischer-Baum,
Charny, & McCloskey, 2011; Henson, 1998b; Ladd & Woodworth,
1911; Lewandowsky & Farrell, 2008; Tolman, 1948; Young, 1961).
The position codes may be distances from the start and end of the list
or contexts that are independent of the list items and evolve over the
presentation of the list. Noisy coding theories represent order in terms
of position codes that are inherently uncertain and so are distributed
across time or space (Estes, 1972; Gomez et al., 2008; Lee & Estes,
1977, 1981; Ratcliff, 1981). The distributions for adjacent positions
overlap more than the distribution for remote positions, and that
accounts for a surprising amount of data (also see Compton & Logan,
1993, 1999; Logan, 1996; Logan & Bundesen, 1996).

CRU and its ancestors assume that items are associated with
contexts, but the contexts are made of fading representations of
items that were previously encoded or retrieved. Consequently,
CRU is more closely aligned with item coding theories than with
position or noisy coding theories. Lashley (1951) raised objections
to simple chaining theories, which subsequent item coding theories
have overcome by assuming remote forward and backward asso-
ciations. CRU’s evolving context mimics remote associations, in
that more remote items are represented more weakly in the current
context than more recent items. CRU implements a kind of
behavioral chaining, in which the current response becomes
part of the context that retrieves the next response. The current
context controls retrieval in the same way working memory
contents control the sequence of actions in production system
models (Anderson, 2013; Newell, 1990). When a production
fires, its action changes working memory, which changes the
conditions productions must match to fire on the next cycle.
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Thus, the chains in CRU are not the classic chains of Ebbing-
haus (1885) and others. CRU’s chains are built on information
and similarity rather than association.

CRU in perception. Sperling’s (1960) whole report task and
the research that followed it involved horizontal strings of letters
(Mewhort et al., 1969; Rumelhart, 1970). Modern studies of whole
report use circular or random displays and are more concerned
with capacity than order of report (Adam, Vogel, & Awh, 2017;
Shibuya & Bundesen, 1988). Most of the current theories of serial
order in perception address reading, describing the processes by
which people form representations that bind letter identity and
order and match them to representations of words. Early models
used slots (McClelland & Rumelhart, 1981) or combinations of
letters (Seidenberg & McClelland, 1989), but these models were
rejected because they cannot handle transpositions and other errors
(Grainger, 2018). Current models use position coding (Davis,
2010; Houghton, 2018), noisy coding (Gomez et al., 2008), and
item coding (Grainger & Van Heuven, 2004; Whitney, 2001) and
account for a complex array of data.

CRU has implications for theories of orthographic processing
that address the binding of position and identity information in
the first stages of reading. These theories assume that the bound
representation is compared with lexical representations to iden-
tify words. CRU does not address that comparison, but its
context representations contain information that could be used
for that purpose. The comparison process could be based on
CRU representations: The set of context representations for a
presented letter string could be compared with sets of context
representations for words. Alternatively, computations on the
context representations may produce the codes that other the-
ories use to compare with lexical representations. Figure 26
illustrates how CRU context vectors can support open bigram
coding (Grainger & Van Heuven, 2004; Whitney, 2001) and
position coding (Houghton, 2018).

Open bigram theories represent order in terms of ordered
pairs of adjacent and nonadjacent (hence open) letters (Grainger
& Van Heuven, 2004; Whitney, 2001). Thus, cat is represented
as c_a, c_t, and a_t. CRU’s stored contexts contain information
about pairs of letters and their order that can be used to extract
open bigrams. Each stored context contains representations of
previous items whose values decrease with each successive
update. The values within each context specify the order of the
letters: the weaker letter came before the stronger letter. Figure
26 illustrates the open bigrams that can be extracted in this way
from the context vectors representing DIET. Alternatively, open
bigrams may be extracted from the sums of element values
across contexts. Earlier letters appear in more contexts than
later letters, so their sums are larger: the letter with the larger
sum came before the letter with the smaller sum. The rightmost
column of Figure 26 illustrates the open bigrams that can be
extracted in this way from EDIT, TIED, TIDE, and DIET. The
sums of element values across contexts may also be interpreted
as position codes. The order of the sums indicates the order of
the letters in the string, like position codes (Houghton, 2018).
The graph in the bottom of Figure 26 plots the sums for each
letter in EDIT, TIED, TIDE, and DIET. Thus, CRU may serve
as the front end to models of orthographic processing. Of
course, it needs to pass benchmark tests before it can be
considered a competitor (e.g., Grainger, 2018).

CRU in memory. Although early theories of serial recall
explored noisy coding (Estes, 1972; Lee & Estes, 1977, 1981),
chaining (Lewandowsky & Li, 1994; Lewandowsky & Murdock,
1989; Murdock, 1995), and activation (Page & Norris, 1998), more
recent theories have converged on position coding (Brown et al.,
2000; Burgess & Hitch, 1999; Farrell, 2012; Farrell & Le-
wandowsky, 2002; Henson, 1998b; Lewandowsky & Farrell,
2008; Shiffrin & Cook, 1978), and chaining is generally viewed as
beyond consideration (Henson et al., 1996). CRU is an outlier,
representing order in terms of associations between items and
contexts made from fading representations of past items, and
implementing a kind of behavioral chaining in which each item
that is retrieved becomes part of the context that retrieves the next
item. Its fits to benchmark phenomena suggest it may be a viable
theory of serial recall, but the existing models fit the benchmark
phenomena as well and they account for many phenomena CRU
has not addressed. The fits suggest CRU has promise but substan-
tial work will be required to realize that promise.

Following Conrad (1964), much of the work on serial recall has
focused on the acoustic or articulatory confusability of the items,
finding consistent effects of manipulating confusability within and
between lists (Hurlstone, Hitch, & Baddeley, 2014). Several the-
ories account for these effects with two stage models, in which one
stage represents serial order and the other generates responses
from the retrieved items (Burgess & Hitch, 1999; Henson, 1998b;
Page & Norris, 1998). Confusability effects occur in the second
stage (but see Farrell & Lewandowsky, 2002; Lewandowsky &
Farrell, 2008). CRU includes these two stages and attributes con-
fusability among items to the second stage. Logan (2018) included
this second stage in a model of skilled typing to account for errors
that involved striking keys adjacent to the correct key. Responses
were points in the two-dimensional plane of the keyboard and
confusions were based on distance (Equation 1). This idea could be
generalized to multidimensional representations of response alter-
natives, like phonological codes for spoken words or letter names.

In principle, CRU should extend beyond serial recall to other
memory tasks, like recognition and free recall. CRU may be
viewed as an extension of TCM (Howard & Kahana, 2002) and its
descendants (Lohnas et al., 2015; Polyn et al., 2009; Talmi et al.,
2019), which already address a broad range of phenomena in free
recall. CRU’s core assumptions about context updating say how
representations are formed and those representations should be
useful in other tasks. Extending CRU to other memory tasks is an
important goal for future research.

CRU in action. In action tasks, CRU may be viewed as an
alternative to strict chaining theories (Abrahamse et al., 2010;
Helie et al., 2015). CRU may also be viewed as an extension of
strict chaining theories that allows more than the most recent item
to contribute to retrieval of the next and uses similarity rather than
association to guide retrieval. CRU may provide new insights into
speech (Dell, Burger, & Svec, 1997) and musical performance
(Palmer & Pfordresher, 2003).

Expertise

CRU was inspired by my instance theory of automatization
(Logan, 1988) as much as by TCM (Howard & Kahana, 2002), so
I believe it extends naturally to skill acquisition and expertise. I
have been exploring the possibility of storing traces of the current
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contexts CRU generates when encoding and reporting a list and
allowing all the stored traces of the same current context to race at
retrieval. Simulations show a power function speedup in response
time that is modulated by the probability of storing an instance.
Further exploration of learning is an important goal for future
research.

CRU was intended as a general model of serial order in percep-
tion, memory, and action with the idea that the same serial order
process was engaged in all three domains. It is possible that a
general model may only apply to novice performance with unfa-
miliar materials. The experiments used novel random letter strings
that had to be encoded, remembered, and reported letter by letter

Figure 26. Extraction of open bigrams and position codes from Context Retrieval and Updating model (CRU)
representations. Open bigrams based on the sum of element (letter) values are in the leftmost column. Open
bigrams for DIET are given under the table for DIET. Position codes based on sums of element values are plotted
in the graph at the bottom.
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because there was no higher-level structure to connect them.
Expert processing of familiar letter strings (words) may not require
such a general model. Much of the work on serial order in
perception is aimed at understanding reading, where an ordered
representation of letters is matched to lexical representations of
single words to identify the word. Serial order is encoded but not
retrieved. Once the word is identified, subsequent processes can
access it without considering the letters. Similarly, skilled typing is
driven by the word to be typed, not the letters that make it up.
Serial order is retrieved but not encoded. The word is the initial cue
for retrieving the letters (Logan, 2018; Yamaguchi & Logan,
2014). Thus, skilled typing might involve two serial order pro-
cesses, a perceptual process that encodes letter order and allows
the word to be identified, and a motor process that retrieves letters
given a word. It may be faster and more accurate to use the word
representation to communicate between perception and action than
to use a sequence of letter representations.

The idea that skilled performance may involve separate serial
order processes for perception and action and none for memory
challenges the idea that CRU or any other model can account for
perception, memory, and action with a single mechanism. Perhaps
serial order is controlled differently in experts and novices. Nov-
ices dealing with unfamiliar materials may rely on a single version
of CRU that controls serial order of individual items in perception,
memory, and action. The idea that novice performance is governed
by domain general processes has precedents in the literature (An-
derson, 1982; Logan, 1988). Experts may develop domain-specific
processes to exploit the structure of the specific tasks they perform
and the materials specific to the domain. Although the same
version of CRU may not be running in the perceptual system and
the motor system, it is possible that the serial order mechanisms in
each domain are structured like CRU. They may be built by
context updating and retrieval, like the domain general mecha-
nism. Thus, CRU may be a single metatheory that accounts for
serial order in perception, memory, and action, though different
versions CRU are implemented in different domains.

Control Processes

Atkinson and Shiffrin (1968) argued that memory theories
should explain the control processes that operate on memory and
not just the representations and storage systems. My longstanding
interest in control processes leads me to emphasize this aspect of
theory more than most (Logan, 2017). From this perspective, the
simplicity of CRU’s control processes is an important virtue. CRU
is driven by an initial command to report or recall, which is set in
the list or word part of the current context vector, then the current
context vector is compared with stored contexts to retrieve the first
item, which then updates the context and retrieves the next item,
until the last item is retrieved. Control is required at the beginning
to initiate retrieval and at the end to determine what to do next, but
the retrieval process proceeds automatically and runs on to com-
pletion without top down control. Indeed, this feature of CRU
makes it an appropriate model of automatic control, explaining
how skilled typists type without thinking (Logan, 2018).

I think the simple control process that guides retrieval in CRU
can also work in other chaining theories. The representations of the
items control serial order, so the control process is specified by the
associations or similarity relations between the items. Noisy cod-

ing and position coding theories generally assume that the control
system steps through position codes in order without making
mistakes. Errors come from confusing items that are associated
with similar position codes. Often, the serial order process is not
specified in detail. Some refer to a successor inhibition process for
choosing the next item (e.g., Estes, 1972) but many are mute on the
subject. Specifying the serial order process in greater detail would
improve the theories and give a clearer idea of the demands they
place on control processes.

Conclusions

The data and modeling suggest a tentative positive answer to the
question, do serial order phenomena in perception, memory, and
action result from a single underlying mechanism. Empirically, the
data from the three tasks showed similar effects that increased in
magnitude from typing to serial recall to whole report. Theoreti-
cally, CRU was able to fit most of the data from the three tasks
with meaningful variation in its parameters, though it had some
notable difficulties. This encourages further research on the ques-
tion of how serial order phenomena are related to gather new data
and test alternative models as well as developing CRU to connect
it with theories of attention and other memory tasks.
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Appendix A

Modeling Procedures

All data, model fits, and analyses and all programs for fitting,
simulation, and analysis are available on the Open Science Frame-
work at osf.io/f98kt.

Fitting the Models

Models were fit to the data with the fmincon routine in Matlab,
which allows parameters to be constrained within specified ranges
(usually 0–1). Fitting each model involved comparing the ob-
served sequences participants produced to the presented se-
quences, and calculating the probability of encoding and retrieving
each of the letters in the participant’s report. On each trial, a set of
stored contexts was created for the correct string and the evolution
of the current context was determined by the participant’s re-
sponses. If the participant made an error, that erroneous response
was added to the current context and compared with the stored
contexts, to calculate the likelihood of that error given the correct
stored contexts. For correct responses, the probability of encoding
was set equal to the integral of Equation 10 with the drift rate equal
to 1 (distance � 0 and exp[�0] � 1). The probability of correct
retrieval was set equal to the integral of Equation 9 with drift rate
equal to the dot product between the correct item and the reported
item equal to 1, as the current context matches the stored context
exactly. For error responses, the fitting program identified the error
as an order error (the erroneous item was in the string but not in
the retrieved position) or an intrusion error (the erroneous item
was not in the string). The probability of an order error was
calculated by setting the drift rate equal to the dot product
between the current context containing erroneous item and
stored context representing the item in the correct position. I
assumed that items that produced order errors were encoded
correctly. The probability of an encoding error was calculated
by setting the drift rate equal to exp(�g · distance), where

distance is the euclidean distance between the error letter and
the correct letter. If an item was encoded incorrectly, I assumed
it became part of the stored context for encoding the item and
was retrieved correctly in order. The probability of encoding
and the probability of retrieving were converted to logs and
summed over stages (encoding, serial retrieval), items within a
list, and lists to produce the overall negative log likelihood,
which fmincon minimized. Each participant was fit separately
and independently.

The fits took between 2 and 4 hr per participant, so I used the
same set of starting values for the parameters for all participants.
In the nondecrease models, the starting value for � was .5 and the
starting value for g was .2. In the decrease models, the starting
values for �Max and gMax were both .5 and the starting values for
�Decrease and gDecrease were both .9. The best-fitting parameters
and measures of goodness of fit for the best-fitting ED�SOD
model are presented in Table A1 for Experiment 1 and in Table A2
for Experiment 2.

Simulating the Models

The models were simulated using the best-fitting parameters for
each participant. The program stepped through the 576 trials a
participant performed, encoding and retrieving each item in each
list. A set of correct stored contexts was generated for each list,
and the current context evolved by adding what was retrieved on
step N to the current context for step N � 1. Each list was
simulated 1,000 times, producing 576,000 trials for analysis. Sum-
mary statistics (list accuracy, serial position effects, transposition
gradients, contiguity effects, error magnitude, and error type) were
calculated for the simulated data using the same routines I applied
to the actual data.

(Appendices continue)
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(Appendices continue)

Table A1
Best-Fitting Parameter Values, Minimized Negative Log Likelihood, and BIC Scores for Each Participant for the Encoding Decrease
Plus Serial Order Decrease (ED�SOD) Model in Experiment 1

Participant �Max �DecType �DecRecall �DecReport gMax gDecType gDecRecall gDecReport Likelihood BIC

1 0.5705 1.0000 0.9461 0.9122 0.3607 0.9663 0.9035 0.8349 3279.93 6588.17
2 0.5551 1.0000 0.9236 0.9150 0.3907 0.9712 0.8503 0.7603 4585.09 9198.49
3 0.5892 0.9928 0.9225 0.8949 0.3852 0.9619 0.8940 0.8409 2891.98 5812.27
4 0.6144 1.0000 0.9470 0.8982 0.3505 1.0000 0.9446 0.8853 1985.86 4000.02
5 0.5844 0.9825 0.9235 0.9126 0.3313 0.9570 0.9422 0.8727 2197.65 4423.60
6 0.5661 1.0000 0.9110 0.9131 0.3714 0.9716 0.8572 0.8035 4136.25 8300.81
7 0.5638 1.0000 0.9120 0.9086 0.3450 0.9787 0.8934 0.8235 4440.89 8910.09
8 0.5759 1.0000 0.9107 0.8767 0.3531 0.9658 0.8764 0.8203 4638.98 9306.27
9 0.5834 1.0000 0.8999 0.9159 0.3843 0.9833 0.8362 0.7741 4200.87 8430.04

10 0.5532 1.0000 0.9236 0.8987 0.3243 0.9786 0.9060 0.8451 4288.77 8605.85
11 0.6089 1.0000 0.9199 0.9020 0.3664 0.9965 0.8851 0.8445 3432.79 6893.89
12 0.5799 1.0000 0.9609 0.8928 0.3329 0.9712 0.9443 0.8305 3917.41 7863.12
13 0.5568 1.0000 0.9085 0.8985 0.3699 0.9641 0.8893 0.8041 3794.57 7617.45
14 0.5579 1.0000 0.9036 0.8831 0.3426 0.9863 0.8971 0.8323 4266.39 8561.08
15 0.5860 1.0000 0.9223 0.9164 0.3937 0.9774 0.8804 0.8204 3307.51 6643.33
16 0.5639 1.0000 0.9243 0.9250 0.3836 0.9756 0.8535 0.8349 3610.7 7249.69
17 0.5934 1.0000 0.9275 0.9165 0.3351 0.9778 0.8878 0.8458 3871.13 7770.57
18 0.5354 1.0000 0.9094 0.8979 0.3671 0.9630 0.8747 0.8208 3869.51 7767.33
19 0.5881 1.0000 0.9002 0.8962 0.3772 0.9624 0.8398 0.7723 4652.23 9332.76
20 0.6394 0.9955 0.9453 0.9165 0.4265 0.9837 0.9142 0.8271 1843.13 3714.57
21 0.6071 1.0000 0.9612 0.9215 0.3805 0.9906 0.9315 0.8740 2099.87 4228.04
22 0.5108 1.0000 0.9134 0.9051 0.3172 1.0000 0.8627 0.8537 6676.46 13381.18
23 0.5206 1.0000 0.9228 0.8992 0.3274 1.0000 0.8625 0.7952 5871.33 11770.94
24 0.5821 1.0000 0.9606 0.9291 0.3511 0.9766 0.9240 0.8463 1623.64 3275.58
M 0.5744 0.9988 0.9250 0.9061 0.3612 0.9775 0.8896 0.8276 3728.46 7485.21
SD 0.0291 0.0039 0.0189 0.0129 0.0267 0.0130 0.0324 0.0313 1224.32 2448.63

Note. BIC � Bayesian information criterion.
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Table A2
Best-Fitting Parameter Values, Minimized Negative Log Likelihood, and BIC Scores for Each Participant for the Encoding Decrease
Plus Serial Order Decrease (ED�SOD) Model in Experiment 2

Participant �Max �DecType �DecRecall �DecReport gMax gDecType gDecRecall gDecReport Likelihood BIC

1 0.5718 0.9997 0.9673 0.9300 0.3758 1.0000 0.8870 0.8380 3169.46 6367.23
2 0.6013 0.9979 0.9807 0.9445 0.4083 0.9687 0.9560 0.8702 1705.51 3439.31
3 0.5454 0.9923 0.9626 0.9531 0.3066 0.9533 0.9556 0.8939 2555.88 5140.06
4 0.5716 1.0000 0.9838 0.9275 0.3526 1.0000 0.9407 0.8375 3021.26 6070.83
5 0.5548 1.0000 0.9659 0.9602 0.3268 0.9855 0.9298 0.8974 3091.18 6210.66
6 0.6040 1.0000 0.9560 0.9130 0.3685 1.0000 0.8635 0.7305 4081.27 8190.85
7 0.5926 1.0000 0.9422 0.8962 0.3430 0.9693 0.9400 0.8794 3105.55 6239.41
8 0.5427 1.0000 0.9622 0.9318 0.3751 0.9463 0.8697 0.7709 4407.43 8843.17
9 0.5837 1.0000 0.9420 0.9126 0.3419 0.9999 0.9346 0.8676 3247.73 6523.77

10 0.5197 1.0000 0.9365 0.9198 0.3252 0.9860 0.8855 0.8832 4392.26 8812.83
11 0.5430 0.9999 0.9799 0.9997 0.3709 0.9922 0.9688 0.9422 1738.90 3506.10
12 0.5167 1.0000 0.9594 0.9152 0.3669 0.9893 0.9051 0.8564 3833.64 7695.59
13 0.5959 1.0000 0.9874 0.9495 0.3827 0.9858 0.9943 0.9223 1342.40 2713.11
14 0.5495 1.0000 0.9811 0.9450 0.3766 0.9579 0.9306 0.8876 2604.41 5237.13
15 0.5303 1.0000 0.9756 0.9487 0.3433 0.9449 0.9181 0.8758 3875.36 7779.03
16 0.5755 0.9999 0.9701 0.9408 0.3667 0.9634 0.9695 0.8846 2271.18 4570.67
17 0.5387 1.0000 0.9240 0.9030 0.3111 1.0000 0.9089 0.8897 4263.29 8554.89
18 0.5767 1.0000 0.9615 0.9351 0.3540 1.0000 0.9483 0.9067 2237.30 4502.91
19 0.5643 1.0000 0.9855 0.9619 0.4081 1.0000 0.9105 0.8783 1908.26 3844.83
20 0.5719 1.0000 0.9767 0.9530 0.4019 0.9716 0.9151 0.8476 2409.74 4847.78
21 0.4968 1.0000 0.9679 0.9255 0.3420 0.9805 0.9127 0.8074 4447.47 8923.25
22 0.5726 1.0000 0.9330 0.8698 0.3739 1.0000 0.9184 0.8635 3140.96 6310.23
23 0.5625 1.0000 0.9657 0.9390 0.3668 0.9909 0.9082 0.8407 2988.79 6005.89
24 0.5237 0.9985 0.9805 0.9601 0.3737 0.9668 0.9145 0.8829 2973.27 5974.84
M 0.5586 0.9995 0.9645 0.9348 0.3609 0.9813 0.9244 0.8648 3033.85 6096.01
SD 0.0285 0.0016 0.0177 0.0264 0.0274 0.0186 0.0318 0.0458 917.57 1835.14
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Appendix B

Parameter Recovery

I performed a limited parameter recovery study to evaluate the
possible use of the model as a measurement tool. For each exper-
iment, I simulated CRU with the best-fitting parameters from the
(best fitting) ED�SOD model for each participant, running it
on the same 576 trials as the participant (one run of the
simulation per trial) to generate a sequence of about 3,456
responses. Then I fit the model to the simulated sequence to
estimate parameters, just as I fit the actual data. I compared the
parameters from fits to the data with parameters from fits to the
simulations across participants in each experiment, assessing
the agreement with correlation and rmsd. I analyzed the exper-
iments separately because their procedures were different (Ex-
periment 1 manipulated list length; Experiment 2 manipulated
within-list repetition). The same ED�SOD model is evaluated
in both experiments, so the two analyses are separate replica-
tions of parameter recovery for that model.

Figure B1 shows that the mean values from fits to the data and
the fits to the simulations were very close for all eight parameters
in each experiment. It also shows scatterplots for the eight param-
eters, with each parameter falling in an appropriate region of the
scale. Figure B2 shows scatterplots for each parameter separately,

focusing on a smaller range of values so the patterns can be seen
more clearly. The mean correlations and rmsds for each parameter
in each experiment are presented in Table B1.

In both experiments, the agreement between fits to the data and
fits to the simulations was reasonably good. The correlations in
Table B1 are respectable, and the parameters whose correlations
were low in Experiment 1 produced higher correlations in Exper-
iment 2 (�DReport and gDType). The rmsds were small. However, the
fits to the simulations underpredicted �Max and gMax from the fits
to the data. �DType and gDType clustered tightly at values near 1.0.
A broader range may give a clearer picture of their recovery. The
fits to the simulations overestimated gDType, gDRecall, and gDReport

from the fits to the data. These misfits were relatively small but
deserve further attention.

The parameter recovery study is limited in that it used a rela-
tively narrow range of parameter values (the range produced in fits
to participants’ data) and a relatively small number of simulations
(24 per experiment). However, it does assess the CRU’s ability to
recover parameters given the range of parameters and number of
participants one would see in a typical experiment and in the
present experiments.

(Appendices continue)
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(Appendices continue)

Figure B1. Top panels: Experiment 1. Bottom panels: Experiment 2. Left panels: Mean parameter values
across participants for fit to the data and fits to the simulation. Middle panels: Plots of the serial order parameters
(� . . .) from fits to the data versus fits to the simulations. Right panels: Plots of the perceptual encoding
parameters (g . . .) from fits to the data versus fits to the simulations.
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(Appendices continue)

Figure B2. Plots of parameters estimated from fits to the data versus fits to the simulations. The top eight
panels are from Experiment 1. The bottom eight panels are from Experiment 2. Each panel in the set of eight
for each experiment represents a different panel. Axis values are scaled to a common range of 0.20 to provide
more detail than is available in Figure B1.
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Table B1
Correlations and Root Mean–Squared Deviations (rmsd) Between Parameters Fitted to Participants’ Data and Parameters Fitted
to Simulations

Measure �Max �DType �DRecall �DReport gMax gDType gDRecall gDReport
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