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Experts act without thinking because their skill is hierarchical. A single conscious thought automatically
produces a series of lower-level actions without top-down monitoring. This article presents a theory that
explains how automatic control is possible in skilled typing, where thinking of a word automatically produces
arapid series of keystrokes. The theory assumes that keystrokes are selected by a context retrieval process that
matches the current context to stored contexts and retrieves the key associated with the best match. The current
context is generated by the typist’s own actions. It represents the goal (“type DOG”) and the motor commands
for the keys struck so far. Top-down control is necessary to start typing. It sets the goal in the current context,
which initiates the retrieval and updating processes, which continue without top-down control until the word
is finished. The theory explains phenomena of hierarchical control in skilled typing, including differential
loads on higher and lower levels of processing, the importance of words, and poor explicit knowledge of key
locations and finger-to-key mappings. The theory is evaluated by fitting it to error corpora from 24 skilled
typists and predicting error probabilities, magnitudes, and patterns. Some of the fits are quite good. The theory
has implications beyond typing. It argues that control can be automatic and shows how it is possible. The
theory extends to other sequential skills, like texting or playing music. It provides new insights into
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How Experts Act Without Thinking

mechanisms of serial order in typing, speaking, and serial recall.
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Expertise is a paradox: Experts outperform novices but think
less about what they do. How can less thinking produce better
performance? The standard resolution from studies of skill acqui-
sition and automaticity is that learning mechanisms reduce the
number of things to think about (Anderson, 1982; Fitts & Posner,
1967; Logan, 1988). Chunking reduces several objects to a single
representation in perception and in working memory. Memory for
solutions reduces the number of steps required to solve a problem,
sometimes to a single step. Learning mechanisms improve perfor-
mance through some form of strengthening of associations or
connections, speeding response time and increasing accuracy, so
experts perform better than novices. The standard resolution ac-
counts for a lot of data, especially on cognitive skills expressed in
reaction time (RT) tasks, but it cannot account for skills in which
the number of steps cannot be reduced. Skilled and novice typists
must type all of the letters in each word. Skilled and novice
musicians must play all the notes on the score. Skilled and novice
dancers must execute the same series of steps. In these cases,
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experts outperform novices and do so without thinking. How can
experts go through the same steps but think less? Another standard
resolution is to propose hierarchical control, in which central
processes do the thinking and subordinate processes do the acting
(Logan & Crump, 2011; Miller, Galanter, & Pribram, 1960).
Novices use central processes to control their performance, think-
ing through each step. Experts use subordinate processes to control
their performance, reducing the number of central processing steps
to one. Their central processes think less because subordinate
processes take over the task of choosing and sequencing responses.
However, this resolution of the paradox is incomplete. It claims
that skilled performance is controlled hierarchically, but it does not
say what is controlled or how subordinate processes control it.
The goal of this article is to provide a theory of automatic
control in expert typewriting that resolves the paradox of expertise,
saying what subordinate processes control (the order of keystrokes
and the fingers used to strike them) and how they exert control
(through context retrieval and updating). The theory explains con-
trol as memory retrieval, incorporating aspects of Logan’s (1988)
instance theory, Howard and Kahana’s (2002) temporal context
model, and Rosenbaum and colleagues’ theory of motor memory
(Rosenbaum, Loukopoulos, Meulenbroek, Vaughan, & Engel-
brecht, 1995; Rosenbaum, Meulenbroek, Vaughan, & Jansen,
2001). The theory is a computational model implemented in a
computer simulation that takes words as input and gives sequences
of keystrokes as output. I evaluate the theory by comparing it with
a list of desiderata and fitting it to corpora of errors generated by
skilled typists to predict frequencies, magnitudes, and patterns of
errors. The theory addresses typing but it would be straightforward
to extend it to other sequential skills, like playing music or danc-
ing. The theory has implications for theories of skill, automaticity,
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and expertise, and for theories of serial order in language, learning,
and memory.

Why Typing?

I focus on typing because it is socially relevant. Typing pervades
modern culture as the primary means of interfacing with comput-
ers and the Internet. A United Nations census in 2015 found that
48% of households worldwide had computers (82% in developed
countries) and 52% of households worldwide had Internet access
(84% in developed countries; http://www.itu.int/en/ITU-D/Statis
tics/Pages/stat/devault.aspx). People spend a lot of time typing.
They invest years in honing their skills and spend hours each day
at the keyboard. College students typically have 10 years of typing
experience and spend 4-5 hours per day at their computers (Logan
& Crump, 2011).

The ubiquity of typing makes it easy to access highly skilled
typists. Most college students are expert typists. Typically, college
students in our samples type 70—80 words per minute (WPM;
Crump & Logan, 2013; Logan & Crump, 2011), comparable with
the professional typists studied in the last century (Salthouse,
1986). There is more diversity among modern typists. Many of
them achieve high speeds with nonstandard typing styles (e.g.,
two-finger typing), which are often acquired before formal training
begins (Feit, Weir, & Oulasvirta, 2016; Logan, Ulrich, & Lindsey,
2016; Rieger, 2007).

Typing is important theoretically. It is a paradigm case of
sequential skills, stripped down to the basics. It challenges typists
with the core computational problems that must be solved in all
sequential skills: choosing the next target (key) to act on and
choosing an effector (finger) to execute the action. Typing in-
volves fewer targets (26 keys) and simpler movements (finger
flexion and extension; wrist rotation) than many skills, simplifying
the behavior and consequently, simplifying the chain of inference
from core mechanisms to behavior. A theory of serial order and
finger choice in skilled typing should generalize directly to other
skills. My goal is to present such a theory at a level of abstraction
that facilitates generalization.

Typing research has been guided by many theories. Some the-
ories are qualitative, distinguishing stages (Salthouse, 1986) or
levels of processing (Logan & Crump, 2011; Shaffer, 1976). Some
address specific issues, like timing (Heath & Willcox, 1990; Stern-
berg, Knoll, & Turock, 1990; Viviani & Laissard, 1996). John
(1996) and Wu and Lui (2008) presented engineering models of
the human operator in typing, which assign durations to specific
processes but do not explain how the processes perform their
computations. In particular, they do not address serial order. The
most comprehensive theory of typing is still Rumelhart and Nor-
man’s (1982) model, which proposed parallel distributed interac-
tions among schemas for words, letters, hands, and fingers that
drive the fingers to key locations on the keyboard in specific
sequences. The model accounts for many error and timing phe-
nomena. Unfortunately, important details of the model, like acti-
vation equations and connection weights, were not reported in the
paper so it is not possible to test the model without reinventing it.
That was part of the impetus for developing a new model. My
model focuses on automatic control of serial order and finger
choice. Later in the article, I consider how to extend it to account
for timing (Toward a Theory of Typing) and I compare it with
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Rumelhart and Norman’s model (Double Letter Errors in Error
Patterns).

Automatic Control of Skilled Typing

Typing is hierarchical in several respects. The content we type
is hierarchical. Typing expresses language, and language is struc-
tured hierarchically. Ideas are expressed in sentences, sentences
are made of words, and words are made of letters. The goal
structure in typing is also hierarchical: type this sentence, type
these words, type these letters. The question is whether the pro-
cessing structure mirrors these hierarchies. There may be many
levels in the processing structure, but there is broad agreement on
a hierarchical relationship between word and letter processing in
skilled typists (Fendrick, 1937; Rumelhart & Norman, 1982; Sal-
thouse, 1986; Shaffer, 1976; Sternberg et al., 1990). Logan and
Crump (2011) characterize this processing hierarchy as two nested
feedback loops, an outer loop that begins with ideas and intentions
and produces a string of words to be typed, and an inner loop that
begins with a word to be typed and produces a sequence of
keystrokes. The outer loop is a central process in Fodor’s (1983)
sense, taking many inputs and serving many purposes. The inner
loop is a module, taking only words or letters as input, giving only
keystrokes as output, and serving the one purpose of producing a
correct series of keystrokes.

I present a theory of automatic control of typing that specifies
the memory representations and the control processes in the inner
loop. It assumes the inner loop retrieves the locations of the keys
to be struck and the fingers used to strike each key, and it assumes
the retrieval process is instigated by the intention to type a word
and proceeds automatically without top-down control until the
word is typed. Evidence supporting these assumptions is reviewed
below.

Words Control Expert Typing

We all begin as hunt-and-peck typists, consciously breaking
words into letters, searching for each letter on the keyboard, and
choosing a finger to strike it with. These processes occupy working
memory while the motor system deals with one keystroke at a time
(see Figure 1). Once we acquire expertise, we can type by thinking
of a word and letting the inner loop do the rest. The division of
labor shifts from working memory to the motor system, reducing
the working memory load to a single word to be typed while
increasing the load on the motor system from one keystroke to
several (see Figure 1). Thus, expert typists think less but do more.

Evidence for this workload shift comes from studies that com-
pare typing words and nonwords. Nonwords push skilled typists
back on the learning curve by removing their ability to use a single
chunk to type several letters. Thus, words represent skilled typing
and nonwords represent novice typing. Many studies have found
that words are typed much faster than nonwords (Salthouse, 1986;
Yamaguchi & Logan, 2014b, 2016). Structures larger than words
have little impact. Scrambling the order of words in a sentence
does not slow typing speed, but scrambling the letters in a word
has dramatic effects (Fendrick, 1937; Hershman & Hillix, 1965).
Nonwords impose a larger working memory load than words
(Yamaguchi & Logan, 2014b) and activate fewer characters in
parallel in the motor system (Behmer & Crump, 2017; Crump &
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Figure 1. Typing under top-down control (left) and automatic control (right). Top-down control occurs
primarily in working memory, where words are broken down into letters, the location of each letter on the
keyboard is identified, and a finger to strike the key with is chosen. Top-down control places high demands on
working memory and low demands on the motor system. Automatic control occurs primarily in the motor
system, instigated by the presence of a word to be typed in working memory. Key and finger selection are done
in the motor system. Automatic control places low demands on working memory and high demands on the motor

system.

Logan, 2010b; also see Logan, 2003; Logan, Miller, & Strayer,
2011; Rieger, 2007; Rieger & Rieger, 2004).

Typing Skill Is Specific

Typing skill is largely specific to the words we know. This is
evident in the common finding that skilled typists type words
faster than nonwords. General skills should apply to all letter
strings but typists express their skill only with familiar ones. Our
experiments on learning always show an advantage of practiced
over novel strings, for both words and nonwords (Crump & Logan,
2010a; Yamaguchi & Logan, 2014a, 2016). Sometimes there are
advantages for repeating constituents of practiced strings, such as
bigrams, but there is always an additional advantage for repeating
the whole string.

The specificity is important practically because it lets us ma-
nipulate the level of automaticity within a skilled typist. It is
important theoretically because it suggests that typing relies on a
large vocabulary of learned sequences. A model of skilled typing
must have the capacity to represent many sequences and it must
specify the mechanism by which they are learned.

Experts Know Little About Keys and the Fingers That
Strike Them

Skilled typists have poor explicit knowledge of the locations of
the keys on the keyboard. Their explicit recall and recognition of
absolute and relative key locations is much less accurate than their
typing (Liu, Crump, & Logan, 2010; Snyder, Ashitaka, Shimada,

Ulrich, & Logan, 2014). Their knowledge of key locations must be
implicit in the motor system.

Skilled typists have poor explicit knowledge of which finger or
hand types which letter. Logan and Crump (2009) had skilled
typists type paragraphs striking only the keys they would strike
with their right (or left) hand and omitting the others. Their typing
slowed from 80 WPM using both hands to 14 WPM using one
hand, and their error rate increased from 6% to 30% (also see
Snyder & Logan, 2013). Knowledge of the mapping of fingers to
keys must be implicit in the motor system.

Desiderata

These results suggest a list of desiderata for a model of skilled
typing. Skilled typing must be instigated by a single word in the
outer loop. Skilled typists must have large vocabularies of words
they can type. The inner loop must know key locations and
finger-to-key mappings because the outer loop does not. The inner
loop must be able to retrieve keystrokes in correct serial order with
no top-down intervention. The model I present fulfills these de-
siderata.

A Model of Automatic Control

I propose a theory of Context Retrieval and Updating in skilled
typing (CRU) that provides a computational model of automatic
control in the inner loop. CRU takes words from the outer loop as
input and produces sequences of keystrokes as output. CRU places
little constraint on outer loop processing. The outer loop must
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provide words to type, which can come from any source. Given a
word, CRU (1) instigates a context retrieval process that retrieves
a key location, (2) instigates a finger retrieval process that retrieves
the finger associated with the location, and (3) launches a move-
ment that strikes the key with that finger. The motor command
issued in (2) is used to update the context (1), which retrieves
another key and finger (2), which launches a movement (3) and
updates the context again. Stages (1), (2), and (3) iterate until a
space bar response is retrieved, which signals the outer loop to
provide a new word to type. Outer loop control is exerted before
the first keystroke and after the last one. Typing is automatic in
that no top-down control is required to choose and sequence
keystrokes (Tzelgov, 1997, 1999). Typing is driven by the contexts
it creates with its own actions.

Many approaches to typing distinguish between stages that
select and execute keystrokes (Salthouse, 1986). The distinction
between selecting keys and selecting fingers is less common. I
believe it is justified by the ontology of typing. We all begin by
hunting for keys and pecking at them, and this goal structure may
translate directly to a processing structure. It is also justified by
recent studies of nonstandard typists, who often use more than one
finger to strike the same key (Feit et al., 2016; Logan et al., 2016).
For them, choice of key does not determine choice of finger.
Typing errors also support the distinction between choosing keys
and fingers. In the corpora of errors I analyze later, 56% of the
letters that were struck erroneously were other letters from the
word to be typed, suggesting a context retrieval error, and 23% of
the errors were struck adjacent to the correct key, suggesting a
finger retrieval error (also see F. A. Logan, 1999; MacNeilage,
1964).

Context Retrieval and Updating

CRU selects key locations with a context retrieval process that
compares the current context to a large set of stored contexts and
retrieves the letter associated with the one that is most similar (see
Figure 2). The context is updated after each retrieval by adding a
representation of the chosen letter to the current context (Howard
& Kahana, 2002). The updated context matches a different stored
context and so retrieves a different letter. This process iterates until
a space bar response is retrieved, whereupon CRU sends a signal
to the outer loop indicating the word has been typed and waits for
the next word.

Representing words, word commands, and letter commands.
Contexts are represented as vectors that are weighted sums of
vectors representing word commands and letter commands. Each
word and letter command is represented as a single vector with
1032 elements. All elements are set to zero except the one that
represents the word or letter, which is set to 1. Thus, the length of
each word and letter command vector (sum of squared element
values) is 1. CRU assumes sparse, localist representations for word
and letter commands, in that each one is represented by a single
element in a 1032 element vector. There are 26 different letter
command vectors plus a vector for the space bar, and up to 1000
different word command vectors, though I use many fewer in
simulating and fitting the model.

CRU receives word command vectors from the outer loop,
which initiate retrieval. CRU receives letter command vectors as
output from the retrieval process. Letter commands are passed to
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the finger selection process to generate keystrokes and copies of
letter commands are used to update the current context. Thus, the
current context represents the word command and the letter com-
mands issued so far. Context updating is like efference copy (Von
Holst & Mittelstaedt, 1950) and forward modeling (Wolpert &
Flanagan, 2001) in that copies of motor commands are used in
computations that determine behavioral choices.

CRU assumes that words are represented as collections of
context vectors that share a common word command. There are no
associations between the context vectors that represent a word and
no higher-order representations that link, bind, or chunk them
together. They are linked by similarity instead of association.
Stored context vectors are accessed in parallel, and the ease of
access depends on similarity, not association.

Current context and context updating. CRU chooses letter
commands by matching a representation of the current context to
all stored representations of past contexts in parallel (Logan,
1988). The letter command associated with the best-matching
context is retrieved, sent to the key selection process, and added to
the current context using an updating rule from Howard and
Kahana (2002):

cnew:B'r+p'cold (1)

where ¢, is the updated context vector, r is the retrieved letter
command vector, ¢4 is the previous context vector, (3 is the
weight given to new information, and

0=V + B coa)’ — 11) = B+ o)

is the weight given to old information. The value of p is chosen to
normalize ¢, so its length equals 1. This normalization is essential
in modeling serial order. The r - ¢, term is the dot product of the
letter command vector and the context vector, which represents
the correlation between them. If a new letter command is added to the
current context, it shares no elements with the context, so the dot
product is 0 and p = V1—f?

Figure 2 illustrates the evolution of the current context in the
course of typing the word ‘DOG.’ Panel A illustrates it symboli-
cally to express the basic ideas. Panel B illustrates it numerically,
to show the calculations from the model. Typing begins when the
outer loop sends a representation of ‘DOG’ to be typed. CRU has
the intention to type ‘DOG’ but has not typed anything yet. The
current context c¢ is initialized with the vector representing ‘DOG’
in which one word command element is set to 1 and all of the letter
command elements are set to 0. CRU compares the current context
with all the stored contexts in memory in parallel, and retrieves a
vector representing the letter ‘D.” This vector is a letter command
that is sent to the finger selection process and copied back into the
current context through Equation 1. The letter command vector is
multiplied by 3, the current context vector is multiplied by p, and
the two are added together. The result is an updated current context
in which CRU intends to type ‘DOG’ and has typed ‘D.” The new
current context matches a different stored context and retrieves
‘0,” which is sent to finger selection and used to update the current
context. The updated context retrieves ‘G,” which changes the
context again, so the space bar response is retrieved and CRU tells
the outer loop it finished the word.

Serial order is controlled by the evolution of the current context
and the changing similarities to stored contexts. CRU is driven by
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Figure 2. Evolution of the current context over time while typing ‘DOG.” Red arrows represent the sequence
of events. Panel A represents the context vectors symbolically to facilitate understanding. Panel B represents the
context vectors numerically, as in the model. Top-down input from the outer loop (‘DOG’) sets the current
context to the word to be typed (left vector in A; top left vector in B). The current context retrieves ‘D’ (symbol
in A; bottom left vector in B), which is sent to the finger selection process and copied back into the current
context. It is multiplied by f and added to p times the current context, producing an updated current context
vector (second vector in A; second from left in top row in B). The new context retrieves a different letter. This
process repeats until the space bar response is retrieved, which is sent to the outer loop to indicate that typing

is done.
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the contexts it generates with its own behavior. Many models of
serial order assume retrieval is driven by context. CRU is different
in assuming that the context is self-generated (also see Howard &
Kahana, 2002; Lohnas, Polyn, & Kahana, 2015; Polyn, Norman, &
Kahana, 2009).

Stored contexts, similarity, and context retrieval. CRU as-
sumes that the current context vectors are associated with the letter
commands they retrieve and are stored in long-term memory in the
motor system. The idea that responses are associated with the
contexts in which they are chosen is common in theories of skill
acquisition (e.g., Logan, 1988). CRU’s context retrieval process
generates a potential set of instances—a set of current contexts—
each time it types a word. Thus, skilled typists have a large number
of stored contexts representing a large vocabulary of words ac-
quired over 10 or more years of experience (Logan & Crump,
2011). There is a memory representation for each context vector
involved in typing a word, so there are N + 1 context vectors for
an N-letter word.

The stored contexts and associated letter commands for typing
‘DOG’ are illustrated symbolically in the top panel of Figure 3 and
numerically (as in the model) in the top panel of Figure 4. The
ordering in the figures is only for graphical convenience. The
memory representations are stored and retrieved independently,
and retrieval is parallel. Stored context vectors are not associated
with each other and letter commands are not associated with each
other. The only associations are between context vectors and letter
commands (the arrows in the figures), which represent CRU’s
knowledge of key locations in the inner loop (Liu, Crump, &
Logan, 2010; Snyder et al., 2014). Thus, the sequence of CRU’s
choices depends more on similarity than association.

The context retrieval process is depicted in the middle panels of
Figures 3 and 4. These examples represent beginning to type the
word DOG. The current context contains the word to be typed and
no copies of letter commands. The current context is matched to
each of the stored contexts independently and in parallel. Similar-
ity drives retrieval. Stored contexts compete for retrieval in pro-
portion to their similarity to the current context. With sparse
representations like CRU’s, similarity is determined approximately
by feature overlap. Two vectors are compared, and a point is taken
away for each mismatching feature. This can be seen in the middle
panel of Figure 3, in which the current context is compared with
each of the stored contexts for typing ‘DOG.” The model uses the
dot product between vectors as a measure of similarity. Formally,
the dot product between two vectors ¢, and ¢y is the sum of the
products of corresponding elements:

N
dot product = 2 c,(0) X cp(i).

The middle panel of Figure 4 illustrates how the dot product is
calculated. The bottom panels of Figures 3 and 4 show the values
of the dot product between the current context representing the
intention to type DOG without having typed anything and the
stored contexts for typing DOG. Similarity is high for the stored
context representing the first letter of the word and declines
progressively for subsequent letters.

Figure 5 shows the similarities between all the stored contexts
for typing DOGS, coded by color. For example, the blue line in the
graph represents the similarity of the middle context (intend to
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Figure 3. Symbolic representation of stored contexts (top), matching the
current context to the stored contexts (middle), and the similarity of the
current context to each stored context (bottom).

type DOGS; D and O typed) to all other contexts. It shows a
symmetric gradient of similarity that decreases with distance from
the middle context. The steepness of the gradient depends on the
value of 3 in the updating equation (Equation 1). It is steeper for
higher values of 3, which represent greater emphasis on the new
keystroke and less emphasis on past keystrokes (see Figure 6).

Figure 5 illustrates the competition for retrieval in each context.
Imagine that the blue context is the current context that is matched
to all the stored contexts. The blue line shows the dot products
between the blue context and all the others, which represent
strength with which each context competes for retrieval. The blue
context is the strongest competitor, but green and magenta contexts
also compete strongly, as they are quite similar to the blue context.
The red context competes less strongly, as it is less similar to the
blue context.
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Figure 4. Numerical representation (used in the model) of stored contexts
(top), matching the current context to the stored contexts (middle), and the
similarity of the current context to each stored context (bottom).

Choice. The choice process is modeled as a race between N
stochastic accumulators, one for each stored context in long-term
memory (Logan, Van Zandt, Verbruggen, & Wagenmakers, 2014).
Each runner is modeled as a diffusion to a single threshold. Its
finishing time distribution is the Wald, which has two parameters:
drift rate v and threshold 0. Its probability density function is

Aty = 0(21Tt3)_'/zexp|:—%(vt - 9)2]. @)

The runners race independently, so the finishing time distribu-
tion for the winner i is

N
fa, i) = ﬁ(t)l;[_ [1-F®] ©)
J#Fi

and the probability of i winning is

PGi) = [ fit.i) dr. @)
0
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Figure 5. Similarities of each stored context to every other stored context
(symbolically on the left; numerically on the right). Colors in the graph
correspond to colors in the stored contexts. The blue line represents the
similarity of the blue context (intend to type DOGS, have typed D and O)
to all other contexts. Similarity is graded around the best-matching context.

The finishing time distribution for a race between diffusions is
given by substituting the Wald distribution for the generic distri-
butions in Equation 3:

N
ft,i)= 9,-(21Tt3)"/zexp[7%(v,-t - e,-)] X H [1—d@ 2wt —0))

JE
— exp2v,0)P(—1" (vt — 6))] ©)

where @ is the cumulative normal distribution. Equation 5 is a
likelihood function, which I used to fit the model to empirical data.
The model predicts speed and accuracy, like contemporary models
of response time (Ratcliff & Smith, 2004; Teodorescu & Usher,
2013). I used it to estimate the likelihood of correct and error
keystrokes in a corpus of typing errors.
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Figure 6. The effect of weighting the present (manipulating ) on the
similarity gradient in the context retrieval process.
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The drift rates v in Equation 5 are not free parameters. They are
determined by the similarities between the current context and the
N stored contexts, represented as the dot products between current
and stored context vectors (see Figure 5). The context updating
parameter 3 affects the steepness of the gradient around the
best-matching context but it does not change the ordering of the
similarities (see Figure 6). The similarities exert strong constraints
on the model’s predictions.

Word and letter contexts. Word and letter contexts play
different roles in the model. The word context lets CRU focus

LOGAN

on the stored contexts it needs to type the word, and the letter
context determines the order in which CRU retrieves them. This
is illustrated in Figure 7, which depicts stored contexts for
typing MEAL, MEAT, REAL, and LAME (symbolically in the
top panel; numerically in the middle panel) and the dot products
between the contexts for typing MEAL and all the other con-
texts (bottom panel), which represent the competition for re-
trieval.

Figure 7 shows how the word command selects appropriate
contexts. The first three letter commands for MEAL and MEAT
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Figure 7. Stored context vectors for typing MEAL, MEAT, REAL, and LAME (symbolic in the top panel and
numeric in the middle panel) and dot products between the stored context vectors for MEAL and all the stored
contexts in memory (bottom panel). Dot products are higher for contexts that represent MEAL than for contexts
that represent other words. Dot products are higher for letters in the same order and position as MEAL (MEAT,
REAL) than for letters in a different order and different positions (LAME).
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are the same but the dot products are much higher for the contexts
for typing the intended MEAL than for the contexts for typing the
unintended MEAT. The word contexts for MEAL and MEAT are
different, and that reduces the similarity between their stored
context vectors. The red line shows the similarity of the first
context in typing MEAL to all the other stored contexts. MEAL is
represented in the word context and there are no letters in the
motor context. Similarity is high for stored contexts that contain
MEAL in their word contexts and zero for all other contexts, as
there is no overlap in word or motor contexts. Other contexts that
contain letter commands as well as the word command produce
higher dot products in other words, but the dot product for the first
context is always zero because the first context contains only a
word command and no letter commands, and the word command
is different from all other word commands.

CRU assumes the similarity between stored contexts representing
different words is determined by the overlap in letter commands. The
dot product between contexts representing words that contain differ-
ent letters is zero, which essentially removes those contexts from the
retrieval competition. When a letter is typed, its letter command
becomes part of the current context and influences all subsequent
retrieval attempts. Letters that appear in the same order in different
words may facilitate retrieval of the intended letter. A current context
containing the intention to type MEAL and the letter command for M
is most similar to the context associated with E in the intended word
MEAL and the unintended word MEAT. Erroneous retrieval of E
from MEAT would produce the correct response for typing MEAL.
The current context after typing M and E is most similar to the
contexts associated with A in MEAL, MEAT, and REAL. This
facilitation might be lost when the same letters appear in different
orders in different words (compare MEAL and LAME). However, the
word context gives a strong advantage to letters in the intended word,
diminishing these effects. Exploratory simulations with the best-
fitting parameters from the fits reported later show no effect of letters
in unintended words.

The word context facilitates typing by adding dimensions that
distinguish intended motor sequences from similar unintended
ones (Logan, 2002). Unwanted sequences are not suppressed.
Differences in the word context make them less similar, so they are
less likely to be selected. The word context allows the model to
represent large vocabularies of words and reliably select the ones
that the outer loop intends, like skilled typists.

Finger Selection

Context retrieval provides the location of the key to be struck.
Finger selection chooses a finger and the posture required to strike
the key (Rosenbaum et al., 1995, 2001), after which a stereotyped
movement is launched (Flanders & Soechting, 1992; Soechting &
Flanders, 1992). I assume that the retrieved location serves as a cue
to retrieve the finger and posture. I assume that fingers and
postures are associated with locations in accord with frequency of
use. Standard typists will have one finger associated with each
location. Nonstandard typists may have two or more (Feit et al.,
2016; Logan et al., 2016). Fingers and postures can be selected by
other means, such as visual guidance in hunt-and-peck typing, but
I assume skilled typists rely on memory retrieval. The memory
traces that support retrieval represent CRU’s knowledge of which

fingers strike which keys in the inner loop (Logan & Crump, 2009;
Snyder & Logan, 2013).

Finger selection is implemented as a race between 26 X M
diffusions following Equations 2-5, where M is the number of
fingers a typist uses. M = 8 for standard typists, M < 8 for
nonstandard typists, and M = 2 (thumbs) for texting on smart
phones. The drift rate in each diffusion depends on the strength of
association A;; between the finger and the location and the strength
of activation of the location L,. I assume that location is repre-
sented as a spatial gradient that peaks at the center of a key and
decreases exponentially with distance (Logan, 1999; Shepard,
1987; see Figure 7). The strength of activation L, for location i is

L; = exp(—S-d;) (6)

where S is a sensitivity parameter and d;; is the Euclidean distance
from the center of location i and the center of the retrieved location
Jj provided by context retrieval. Drift rate v;, for finger k at location
i is the product of association strength A;, and location activation:
Vir = Ly D
The model assumes equal association strengths between stan-
dardly mapped fingers and keys in skilled typists, so drift rate
depends only on distance and sensitivity. Figure 8 shows a gradient
of activation along the home row when the target key is G. The
steepness of the gradient depends on the sensitivity parameter S.
The gradient allows the model to make errors adjacent to the
intended key, which occur frequently in typing. Interestingly, CRU
predicts that these errors will be struck with the finger appropriate
to the key. Adjacent errors are not mis-aimed movements. They
are mis-selected finger postures. Video analyses of skilled typists
show that adjacent errors are often made with an appropriate
finger, as CRU predicts (Grudin, 1983).

Evaluating the Model

CRU fulfills the desiderata for a model of automatic control:
Typing is instigated by a single word from the outer loop, which
sets the word command in the current context and begins matching
the current context to stored contexts. The word command pro-
vides a common thread that links the required letter commands
through similarity and allows the model to type large vocabularies
of words. The context retrieval process knows key locations and
the finger selection process knows finger-to-key mappings. The
context updating process and the similarities among stored con-
texts allow the model to retrieve keystrokes in correct serial order
without top-down control. The spatial gradient in retrieved loca-
tions allows the model to make errors on keys adjacent to intended
ones.

CRU is implemented as a computer simulation that takes arbi-
trary word lists or texts as input and gives sequences of keystrokes
for each word as output. The simulation begins by training the
model on a corpus of words, establishing a set of stored contexts
for each of the words. This involves running each word through the
context updating process to generate a set of contexts to store and
associating the contexts with the corresponding letter commands.
CRU does not model the learning process, though learning is
fertile ground for theoretical development. For convenience, CRU
adopts the heuristic assumption that learning is complete after one
pass through the corpus.
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Figure 8. Representation of locations in the finger choice process peaks at the center of the intended key and
decreases exponentially with Euclidean distance from that key (L; = exp[—S - d;;]). The graph shows the effect
of the sensitivity parameter S on the steepness of the gradient around G across the home row of the keyboard.

The simulation types each word by forming an initial context
that represents the intention to type a word, instigating context
retrieval, choosing a letter command and using it to select a finger
and update the current context. The process iterates on its own with
no top-down monitoring until it retrieves the space bar command,
which signals the outer loop that typing is finished. With appro-
priate parameters, the simulation types with high accuracy without
top-down control. Thus, CRU demonstrates automatic control
(Tzelgov, 1997, 1999). The question is whether it does so in the
same manner as skilled typists.

I evaluated CRU by fitting it to error corpora and testing its
predictions about error frequencies, magnitudes, and patterns. I
used Equations 2-7 to estimate the likelihood of each keystroke in
a corpus and maximized the likelihood for each corpus. CRU gives
higher likelihoods for correct responses than for errors, but it gives
higher likelihoods for some errors than for others (e.g., adjacent vs.
nonadjacent transpositions), so CRU will fit better when typists
make errors it predicts. After the fitting, I simulated the model for
each typist using their best-fitting parameters to generate a set of
predicted errors and I calculated summary statistics for the pre-
dicted and observed errors for each typist. To test predictions about

serial order, I calculated transposition gradients to show the ten-
dency to type keystrokes in nearby positions and lag conditional
recall probability functions to show the tendency to type succes-
sive letters consecutively. To compare the magnitudes of errors
and assess recovery from errors, I calculated Levenshtein (1966)
and Damerau (1964) distances between correct and error strings
for typists and the model. To compare the types of errors, I
categorized human and model errors using model-based and tra-
ditional taxonomies. I compared CRU’s account of doubled letter
errors (MMET for MEET) with Rumelhart and Norman’s (1982).

CRU predicts the accuracy and latency of individual keystrokes.
The summary statistics reflect emergent properties of the model
that depend on the similarity structures in the stored contexts and
the spatial constraints of the keyboard. The summary statistics are
parameter-free predictions of the model in that they require no
further parameter estimation or adjustment. The model was fit to
individual keystrokes, not the summary statistics. The best-fitting
parameters were not adjusted to fit the summary statistics. The
best-fitting parameters drove a simulation that produced sequences
of correct and error keystrokes, and the summary statistics were
calculations on the simulated sequences with no further parameter
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estimation. Thus, all the predictions for each typist are based on
the same single set of parameters. The same calculations were
performed on each typist’s sequences of correct and error key-
strokes to provide the observed summary statistics.

I focused the model evaluation on accuracy because errors are
diagnostic of the control system, and my main goal is to test CRU
as a model of automatic control. CRU predicts error frequencies,
magnitudes, and patterns, and those predictions must be tested.
These summary statistics provide critical tests of theories of serial
order (e.g., Dell, 1986; Dell, Burger, & Svec, 1997; Hurlstone,
Hitch, & Baddeley, 2014; Lewandowsky & Farrell, 2008; Mac-
Neilage, 1964; Rumelhart & Norman, 1982). CRU predicts latency
as well as probability. I report latency results and model predic-
tions later (see Toward a Theory of Typing and Keystroke Timing
below).

The Error Corpora

To generate sets of errors for analysis, I had 24 skilled typists
type one of four short paragraphs on the many merits of border
collies 20 times. The paragraphs were 106, 113, 107, and 108
words long. The mean WPM and error rate across typists are
plotted for each repetition in Figure 9. Mean WPM, error rate, and
other measures for each typist are presented in Table 1. The details
of the method and the paragraphs can be found in Appendix A.
Mean typing speed was 81.9 WPM. It increased slightly over
repetitions, from 79 to 85 WPM, F(19, 437) = 3.14, MSE = 15.25,
p < .01, which amounts to an 11-ms reduction in interkeystroke
interval. Mean error rate was 7.3% and was relatively stable over
repetitions, F(19, 437) = 1.07, MSE = 6.76, p = .38. Assuming
independent keystrokes and 5 letters per word, this corresponds to
an error rate of 1.5% for each keystroke (i.e., Py, = P% so Py =
P> and error rate = 1 — P). Skilled typists retrieve keystrokes
very accurately.

On average, typists typed 117 words erroneously over the 20
presentations. I reduced the set of error words for each typist by (a)
including only 3-8 letter words, which were most frequent in the
texts and in the language, (b) excluding repetitions of the same

=©-WPM <=@=Error Rate

90 - 10
o
g ©
@ 85 - Q
5 =
c [
s e &
—
Esof o
—
L w
5 -
(o] [J]
=75 E
2 O

70 T T T T 0

0 5 10 15 20

Paragraph Repetition

Figure 9. Words per minute and percentage of error per word for the 20
repetitions of paragraph typing averaged over 24 skilled typists. Error bars
are standard errors of the mean.

error to focus on unique errors, and (c) including only words with
single errors and transpositions (77% of the errors in the corpora)
because the source of a single error is easy to identify but the
sources of multiple errors are not. This reduction resulted in a set
of words with unique errors for each typist (see Table 1) with an
average of 67.8 unique error words (= 339 keystrokes) per typist.
I fitted CRU to the unique error words for each typist.

Fitting the Model

I fit CRU to each typist’s corpus of unique error words with
maximum likelihood estimation. I fit individual keystrokes, calcu-
lating the likelihood of context retrieval and finger retrieval for
each keystroke in each erroneously typed word (Kragel, Morton, &
Polyn, 2015; Morton & Polyn, 2016). To do so, the fitting routine
used Equation 1 to build a set of context vectors for typing the
word correctly with 3 as a free parameter. Then it stepped through
the erroneous word, building the current context with Equation 1
using the same value of (3.

First, the fitting routine calculated the likelihood of retrieving
the correct or erroneous letter, P,. It computed the dot product
between the current context in the erroneous word and each stored
context for that word to get drift rates, and used Equations 4 and
5 to compute the likelihood for the key that was struck. Letters in
the correct position got the highest likelihood. Letters (errors) from
within the word got lower likelihood (see Figure 5), and letters
from outside the word got zero likelihood.

Second, the fitting routine calculated the likelihood of retrieving
the finger, P, given the letter command from context retrieval. I
assumed the finger was chosen correctly (P, = 1) if the context
retrieval chose a wrong letter from the same the word. If the error
was not from the word, I assumed context retrieval chose the right
letter (P, = 1) but letter retrieval failed (P, < 1). In this case, the
fitting routine calculated the distance between the correct letter and
each letter on the keyboard to generate drift rates with Equation 6,
and then calculated the likelihood of the erroneous letter given the
drift rates using Equations 4 and 5. I excluded locations more than
4 cm from the correct location (3—4 key widths) because they
likely came from other sources, like misaligning the fingers on the
keyboard, and so were outside the scope of the model. Within the
4-cm window, the model produces higher likelihoods for locations
nearer to the correct one (see Figure 8).

The model assumes context retrieval and finger selection are
stochastically independent sequential stages, so the probability of
typing a given keystroke P is the product of the probabilities of
the stages: P = P, - P,. The model assumes that successive
keystrokes are chosen independently, so the probability of typing
a sequence of keystrokes is the product of the probabilities of
typing each of the constituent keystrokes. For an N letter word,
Py, = Py, - P> . .. Pgy. This probability represents the likelihood
of the sequence of correct and erroneous keystrokes in the erro-
neously typed word. The likelihood of typing all the erroneous
words is the product of these likelihoods for each word. For M
erroneous words, Pszopence = Pwi + Pwaz - - - Pyy, The likeli-
hood for erroneous words does not reflect the occasions on which
typists typed the words correctly. To compensate for this I calcu-
lated the likelihood for typing the error word correctly and multi-
plied it by a number representing the ratio of correct to error words
(see Appendix B). I multiplied the likelihood for the correct word
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Table 1

Speed, Error Rate, Total and Unique Errors, Best Fitting Parameters, and Goodness of Fit

Typist Text WPM Percent error Total errors Unique errors B S —Log likelihood
1 5 63.9 6.35 158 68 5411 .1839 905.6
2 8 87.3 8.18 103 65 5573 2232 719.0
3 [§ 81.9 6.81 112 73 5254 .1943 2181.0
4 7 72.1 6.84 107 63 .5445 1818 973.9
5 7 85.9 7.13 85 53 .5509 .2082 1096.5
6 5 78.6 6.98 113 67 542 .2001 944.8
7 [§ 90.1 8.01 146 87 5435 .1878 11944
8 8 83.8 7.01 184 113 5234 1787 1631.1
9 8 72.0 7.51 91 61 .5507 204 813.6
10 6 93.6 7.57 145 84 5383 2077 1183.4
11 7 84.4 6.41 201 104 5183 1754 1704.3
12 5 98.3 8.38 68 44 .566 .1976 592.6
13 7 92.3 7.48 91 44 .5506 2103 597.0
14 6 76.3 7.26 88 61 5279 .1943 2071.6
15 8 53.7 7.57 212 90 5261 .1706 1193.1
16 5 78.9 7.04 103 56 .5442 1897 907.7
17 7 103.1 7.93 137 70 5423 .1844 1163.6
18 6 96.0 7.17 23 12 .6826 .238 377.0
19 8 90.1 7.25 61 40 .563 2157 656.5
20 5 84.9 6.84 71 42 514 .1996 1773.3
21 8 61.9 6.35 136 82 5251 .1798 1786.3
22 5 78.9 8.18 132 72 5214 1821 17249
23 7 96.6 6.81 71 45 .5695 .1947 616.4
24 6 61.4 6.84 245 132 5296 .1934 1461.8
Mean 81.6 7.29 117 67.8 5457 .1956 1177.9
SD 12.8 .033 52.3 26.0 .0330 .0160 506.2
Note. 'WPM = words per minute.

by the likelihood for the error word. The fitting routine calculated
logs of the likelihoods, summed them over stages, keystrokes, and
correct and error words, and minimized the negative sum of the log
likelihoods using Simplex (Matlab’s fminsearch). The details of
the fitting procedure are given in Appendix B. Thus, the model
was fit to an average of 67.8 error words (=~ 339 keystrokes) and
4527.8 correct words per typist.

Two parameters were allowed to vary in the model fits: the 3
parameter in context retrieval and the S parameter in finger selec-
tion. These parameters modify the steepness of the temporal and
spatial gradients, respectively (see Figures 6 and 8), and so were
the most important theoretically. To avoid parameter tradeoffs, the
thresholds for the two stages were fixed at values that produced good
accuracy in exploratory simulations (500 for context retrieval; 200 for
finger selection). The drift coefficient, which measures the standard
deviation of within-trial noise in the diffusions, was fixed at 1.0
following convention, and so disappeared from the equations. The
drift rates were not free parameters. They were determined by the
similarity structure in the stored contexts and by the spatial structure
of the keyboard. The 3 and S parameters modulated the steepness of
the gradients but did not change the rank ordering of the drift rates.
Thus, the model was strongly constrained.

I fit CRU to each of the 24 typists individually. Each fit took
about 2 hours and converged after 50—60 iterations. The best
fitting B and S parameters and the minimum negative log likeli-
hood for each typist are presented in Table 1.

Generating Predictions

To generate predictions for each typist, I simulated the model
using each typist’s best-fitting 3 and S parameters. Each simula-

tion used a list of the unique 3-8 letter words in the paragraph the
typist typed (59, 65, 53, and 47 words for lists 5, 6, 7, and 8,
respectively), so CRU and the typists were tested on the same
words. The simulation generated a set of stored contexts that
included each of the words on the list and then simulated typing
each word 1000 times.

The simulation of each word began by setting the element
representing the word command to 1 in the current context and
setting other elements to zero. This initial current context was
compared to each of the stored contexts, generating a dot product
that represents the drift rate of the diffusion process for that
context. The drift rates and threshold were used to generate a set
of retrieval times by sampling from Wald distributions (Equation
2). The key associated with the context with the shortest retrieval
time was chosen whether it was correct or erroneous, passed to the
finger selection process, and copied into the current context vector.
The response was represented as a vector with 1 in the position
corresponding to the letter and O elsewhere. It was combined with
the current context vector using Equation 1. The updated current
context was compared with stored contexts and retrieved the next
key to be struck. This process repeated without any external
(top-down) control until the space bar response was retrieved,
indicating the end of the word, or 20 characters had been retrieved
(maximum word length = 8 characters). The program always
terminated with a space bar response before typing 20 characters.

This part of the simulation reflects the model acting without
thinking. It sequences keystrokes driven only by the similarity
relations among current and stored contexts. Setting the word
command in the initial context vector is all that is required to
initiate the process.
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The chosen key was then used to drive the finger selection
process. The simulation calculated the distance between the chosen
key and the 26 keys on the keyboard to generate activations for
each location (L, in Equation 6). The simulation assumed standard
mapping, so the associative strengths A;, in Equation 7 were set to
1 for the standardly mapped finger and O otherwise. Drift rates for
each finger and location (Equation 7) were used to generate 26
samples from Wald distributions, and the finger and location with
the minimum retrieval time, whether correct or erroneous, was
selected as the keystroke for the current context.

On average, CRU simulated 56,000 words per typist, taking
about 2 hours for each of the 24 typists. Errors occurred in 4132.4
(SD = 1394.8) words. Excluding repetitions and including only
single errors and transpositions (Damerau distance = 1) reduced
the number errors per typist to 793.4. These errors were used to
generate predictions for summary statistics.

Parameter Recovery

I conducted a parameter recovery study to determine how ac-
curately the fitting routine estimated the 3 and S parameters. I
fitted the model to the predicted errors produced in the simulations
described above and compared best-fitting parameters to the pa-
rameters I used to generate the predicted errors. For each simulated
typist, I reduced the set of total error words to a set of unique single
or transposition errors, and then I randomly sampled the same
number of errors from the unique set that I fitted for that typist
(Table 1 column 6). I used the same sample size in recovery as in
the initial fitting to see how good parameter recovery was in this
data set. Larger sample sizes would likely show better recovery
(White, Servant, & Logan, 2017) but would take a long time.
Fitting the simulated data with the initial sample sizes took about
1.5 hours for each of the 24 typists. Broader ranges of parameter
values might also show better recovery. I restricted the ranges to
those found in my sample of 24 skilled typists.

Figure 10 plots the initial and recovered values for the 3 and §
parameters. Initial and recovered 3 parameters correlated 0.589,
which is good but not perfect. Removing the rightmost point in the
figure as an outlier (typist 18 who had only 12 unique errors)
reduced the correlation to 0.576. Recovery was better for the S
parameter. The correlation between initial and recovered parame-
ters was 0.814. Given the small sample sizes, I find these results
encouraging.

Overall Accuracy

The overall error rate for the simulation (7.3% = 2.3%) was the
same as the overall error rate for the typists (7.3% * 3.3%). The
correlation between observed and predicted values was 0.586 (see
Figure 11). The predictions were based on variations in drift rate,
produced by manipulating 3 and S. Typists may differ in threshold
as well. Estimating threshold and drift rate may improve the
correlation.

Serial Order: Transposition Gradients

Theories of serial order in serial recall tasks like digit span
predict the probability with which an item from a given position in
the list is reported in each possible position in the list. These
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Figure 10. Fitted and recovered 3 (top panel) and S parameters (bottom
panel). Each point represents one of 24 typists.

probabilities are often shown as transposition gradients, which
plot the probability that each letter is recalled in each position
(Estes, 1972). In empirical transposition gradients, items are more
likely to be recalled in positions adjacent to the correct position
than in more remote positions. This locality constraint is a bench-
mark prediction that all theories of serial recall must address
(Henson, Norris, Page, & Baddeley, 1996; Lewandowsky & Far-
rell, 2008).
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Figure 11. Predicting differences between typists: Correlation between
error rates observed in typists and error rates produced by simulations with
typists’ best fitting parameters. Each point represents one of 24 typists.

To determine how well CRU predicts this benchmark in typing,
I compared transposition gradients for observed and predicted
typing performance. I calculated the transposition gradients for
each typist’s observed and simulated error corpus. I used the entire
error corpus, including words with multiple errors. I focused on 5-
to 8-letter words because they were as long as the lists typically
studied in serial recall. I ignored correctly typed words in my
calculations, which results in an underestimation of the probability
of typing a letter in its correct position and an overestimation of the
probability of typing a letter in another position. However, ob-
served and predicted gradients are affected in the same way, so
focusing on erroneous words will not bias the comparison between
them. Excluding correctly typed words makes the trends easier to
see.

I calculated transposition gradients for each word length sepa-
rately and found they were very similar, so I collapsed across word
length. The mean transposition gradients for observed and pre-
dicted typing performance are presented in Figure 12. The root
mean squared deviation (rmsd) between the 64 observed and
predicted proportions in the figure is rmsd = .064. The correlation
r = .960. The fit is quite good given that only two parameters ({3
and S§) were varied to fit individual keystrokes and no further
parameters were adjusted to predict the transposition gradients.

Both the observed data and the simulated data show the locality
constraint. Averaged over letters and positions in the word, the
proportion of letters typed in correct, adjacent (*=1), and remote
(>=1) positions were 0.589, 0.220, and 0.008 in the observed data
and 0.632, 0.192, and 0.013 in the simulated data. Figure 12 shows
the fits were good for the middle letters in the word (4—6). CRU
overpredicted the early letters (1-3) and underpredicted the later
ones (7-8). In the observed data, the tendency to recall adjacent

letters increased across letters in the word, broadening the trans-
position gradient. CRU captured this pattern in the data.

CRU’s ability to predict transposition gradients that exhibit the
locality constraint stems from the similarity structure in its stored
contexts. Temporally adjacent contexts are more similar than tem-
porally remote contexts, and so are more likely to be retrieved in
error. This can be seen in the plots of dot products against position
in the word in Figure 5. Adjacent dot products are higher than
remote dot products. Higher dot products result in higher retrieval
probabilities.

Serial Position Curves

Theories of serial and free recall address serial position curves,
which plot the probability of recalling an item in its correct
position. This information is contained in the transposition gradi-
ent, when item position equals reported position. I plotted ob-
served and predicted serial position curves for typing in Figure 13.
Again, the estimates include only words with errors. Including
words typed correctly would increase the probabilities by the same
amount for observed and predicted data. Both show a reduction in
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Figure 12. Observed and predicted transposition gradients, which plot
the probability that a letter from the word is typed in each position in the
word. Points are observed data. Lines are model predictions. Each panel
represents a different letter from the word (1st-8th). Error bars are standard
errors of the mean.
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Figure 13. Observed and predicted serial position curves, which plot the
probability that a letter is typed in its correct position in the word. Error
bars are standard errors of the mean.

accuracy over serial position, as is typical of serial recall. The
predicted curve overestimates the early serial positions and under-
estimates the later ones, like the transposition gradients.

It is interesting that CRU predicts a serial position curve with a
strong primacy effect because there is nothing built into it to
produce primacy. By contrast, many models of serial recall have to
build in special mechanisms to account for primacy (for a review,
see Lewandowsky & Farrell, 2008). I suspect the steepness of the
serial position curve may be an artifact of the scoring method,
which may be more appropriate for errors in serial recall than for
errors in typing. Insertions (adding a letter, as in DIOGS for
DOGS) and omissions (deleting a letter, as in DGS for DOGS) are
common errors in typing but rare in serial recall. Often, partici-
pants in serial recall experiments are allowed to say “blank™ or
leave a position unfilled if they cannot remember an item, so
subsequent items may be recalled in their correct serial positions.
When typists make insertion and omission errors, every letter after
the first error is scored as incorrect because it occurs one position
later (insertions) or one position earlier (omissions) than it should
have. This reduction in accuracy will affect the later part of the list
more than the earlier part, producing the steep serial position
curves in the observed and predicted typing data. The scoring
artifact may also produce the broadening of the transposition
gradient for later letters in the word (see Figure 12).

Serial Order: Lag Conditional Recall
Probability Functions

Theories of free recall address the order in which items are
recalled by evaluating lag conditional recall probability functions,
which plot the probability of recalling an item from position N =
M given that the item in position N was recalled (Howard &
Kahana, 2002; Lohnas et al., 2015; Polyn et al., 2009). If items are
recalled in order, then N + 1 is the most likely transition. There is
a tendency to recall items in order in free recall. The tendency
should be much stronger in serial recall and typing.

I calculated lag conditional recall probability functions for each
typist’s observed and simulated error corpus. I used the entire error

corpus including words with multiple errors and I focused on 5-8
letter words to have a range of =4 lags. As before, I ignored words
typed correctly, which would have a probability of 1 for lag N +
1 and a probability of O at all other lags. Excluding them under-
estimates the value for lag N + 1 and overestimates the value for
other lags, but does not bias the comparison between observed and
predicted functions. I calculated lag conditional recall probability
functions separately for each typist and each word length. The
functions for different word lengths were very similar, so I col-
lapsed across word length. The means across typists for observed
and predicted functions are plotted in Figure 14.

As in free recall, the lag conditional recall probability functions
for typing are strongly asymmetrical. The probability of typing
letter N + 1 after typing letter N is much higher than the proba-
bility of typing letter N — 1. This reflects the high level of
accuracy in skilled typing. Letters tend to be typed in order. The
model’s predictions show the same asymmetrical pattern as the
observed data. The rmsd between the 9 observed and predicted
points in Figure 14 is 0.046 and the correlation is » = .983. The fit
is good given that only two parameters (3 and S) were varied to fit
individual keystrokes and no further parameters were adjusted to
predict the lag conditional recall probability functions.

In CRU, the asymmetrical lag conditional recall probability
functions result from the associations between contexts and key
locations (see Figure 2). Each context is associated with the key
that follows it, so letter NV is likely to be followed by letter N + 1.
Observed and predicted functions also show a locality constraint,
in that near lags (= 1) have higher probability than far lags (>=*1).
This follows from the similarity structure in the stored contexts,
where adjacent contexts are more similar than remote ones. CRU
predicts a higher probability of immediate repetition (lag 0) than
the observed data. This may suggest a tendency to inhibit the key
that was just struck, which is a common feature in models of serial
order but not implemented in CRU (see Response Suppression in
the General Discussion).
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Figure 14. Observed and predicted lag conditional recall functions,
which plot the probability of typing a letter M steps before or after typing
letter N, where M ranges from —4 to + 4. Points are observed data. Lines
are model predictions. Error bars are standard deviations.
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Error Magnitude and Recovery From Errors

To estimate the magnitudes of the errors, I calculated edit
distance between erroneous and correct strings. Edit distance is the
number of editing operations (changes) required to transform one
string into another. Hamming distance allows substitution as the only
editing operation (Hamming, 1950). Elements of strings either match
or mismatch. Hamming distance is essentially the strict scoring
method used to calculate serial position curves. It does not capture the
similarities between strings with insertions and deletions (DIOGS or
DGS for DOGS). Levenshtein distance includes insertion and deletion
as well as substitution (Levenshtein, 1966). Damerau distance in-
cludes transposition (DGOS for DOGS) as well as insertion, deletion,
and substitution (Damerau, 1964). A transposition requires two steps
in Levenshtein distance (two substitutions) but only one (transposi-
tion) in Damerau distance.

I calculated Levenshtein and Damerau distances for each typ-
ist’s observed and simulated error corpus using Matlab algorithms
provided by Schauerte and Fink (2010). The means across typists
are plotted in Figure 15. Observed and predicted functions have
similar shapes for both distance measures, peaking at distance = 1
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Figure 15. Predicted and observed distributions of Levenshtein and Dam-
erau distances between correct and error responses. Error bars are standard
deviations.

LOGAN

and declining exponentially as distance increases. The fit between
observed and predicted was better for Damerau distance (rmsd =
0.057, r = .992) than for Levenshtein distance (rmsd = 0.119, r =
.922) because the model underpredicts the number of transposition
errors (see below). Again, the distances were not fitted directly but
were measured from simulations using the best fitting parameters
from fits to individual keystrokes.

It is significant that the modal error distance was 1 for observed
and predicted errors. The observed results indicate that typists
usually made one error and recovered from it, finishing the rest of
the word correctly. This might suggest that typists monitor their
typing closely, engaging top-down control processes to detect and
recover from errors (Crump & Logan, 2013; Logan & Crump,
2010). However, the model predictions show the same modal error
distance of 1, recovering from errors with no top-down control.
CRU recovers from errors because the similarity structure in the
stored contexts exerts strong constraints on keystroke selection.
Errors add noise to the context retrieval process but not enough to
prevent retrieval of the correct response. According to CRU,
experts type automatically without having to think about recover-
ing from errors (Tzelgov, 1997, 1999).

Figure 16 illustrates how similarity allows automatic recovery
from errors. Panel A shows dot products after typing DG (error)
when intending to type DOGS. The highest dot product is for S,
producing the appropriate continuation of the string following G.
The second highest dot product is for O, producing the transposi-
tion DGO. Panel B shows dot products after recovering from the
omission and typing DGS. The highest dot product is for typing the
space bar to end the word, which is the appropriate continuation of
the string following GS. Panel C shows dot products after making
a transposition error and typing DGO. The highest dot product is
for S, which would complete the string. Panel D shows dot
products after making a substitution error and typing DI. The black
line shows the case in which the substitution is copied into the
current context (when it is a context retrieval error). The most
likely continuation is DIO, which is the letter that follows D in the
correct sequence. The dashed gray line shows the case in which the
substitution is not copied into the current context (when it is a
finger selection error). The letter I has been typed but O is copied
into the current context, so the most likely continuation is DOG.

In all cases, recovery from the error is the most likely outcome.
CRU is robust to errors because the similarities among the stored
contexts exert strong constraints on the choice of letters. CRU
recovers from errors automatically without any special mecha-
nisms or top-down control (Tzelgov, 1997, 1999). I discuss how it
might be extended to address explicit error detection and correc-
tion below (Top-Down Control).

Error Patterns

Model based error categories. Errors invite taxonomies. My
theory provides a taxonomy for errors based on the source of the
error in the model. It predicts two main categories of errors: Errors
from the same word are produced by context retrieval; Errors from
neighboring keys are produced by finger selection. Combining
these error categories factorially produces four categories. I cate-
gorized each typist’s observed and predicted errors in terms of this
taxonomy, focusing on single and transposition errors (Damerau
distance = 1) in 3- to 8-letter words. Neighboring keys were
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Figure 16. Recovery from errors. Panel A: Dot products for different positions in the word after typing DO
(correct) or DG (error). Panel B: Dot products after typing DOG (correct) and DGS (omission error). Panel C:
Dot products after typing DOG (correct) and DGO (transposition error). Panel D: Dot products after typing DI
(substitution error that is included in the updated context) and DO (substitution error that is not included in the
updated context). Black lines represent dot products after an error (typing DG when intending to type DOGS).
Gray dashed lines represent dot products after a correct response (typing DO when intending to type DOGS).
Letters in the legend represent the letters typed so far. The letters next to the data points represent choices of the

next letter (DGS™ represents typing S after DG).

defined as those horizontally, vertically, or diagonally adjacent to
the intended key. The number of neighboring keys ranged from 2
(P) to 8 (e.g., G) with an average of 5.3. The mean error propor-
tions across typists are presented in Figure 17.
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Figure 17. Observed and predicted proportions of total errors from words
or neighboring keys. Error bars are standard deviations.

The distributions of observed and predicted error proportions
were similar with some notable differences. CRU produced many
fewer errors that were not in the word and not neighbors than
typists did, but this was by design. CRU can only produce non-
neighbor errors if a remote key wins the finger selection race, and
this rarely happens (see Figure 8). I assume that typists produce
non-neighbor errors with mechanisms outside the scope of the
model (e.g., misaligning their fingers with the keyboard). Like the
typists, CRU produced more errors “in word” than “not in word,”
reflecting the balance between 3 in context retrieval and S in finger
selection. Again, the parameters were chosen to maximize the
likelihood of individual keystrokes, not error categories. The fit
may be improved by adjusting parameters.

Traditional error categories. Studies of serial order often
distinguish between omissions (typing DG for DOG), transposi-
tions (typing DGO for DOG), insertions (typing DIOG for DOG),
and substitutions (typing DLG for DOG; see Dell, 1986; Norman,
1981; F.A Logan, 1999; Reason, 1990; Salthouse, 1986). I cate-
gorized the errors in each typist’s observed and simulated corpus
in terms of this taxonomy, restricting my analysis to 3- to 8-letter
words with single errors or transpositions (i.e., errors with Dam-
erau distance = 1). I categorized errors with the algorithm in Table
2, which uses the lengths of the correct and error strings and the
Damerau and Levenshtein distance between them. The algorithm
agrees almost perfectly with human categorization of these errors.
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Table 2
Rules for Categorizing Single Errors and Transpositions

IF Damerau = 1 THEN
IF Elength < Clength THEN Omission
IF Elength > Clength THEN Insertion
IF Elength = Clength AND Levenshtein = Damerau THEN
Substitution
IF Elength = Clength AND Levenshtein = Damerau + 1 THEN
Transposition
END

Note. Errors with Damerau distance = 1; Damerau = Damerau distance;
Levenshtein = Levenshtein distance; Elength = Length of error string;
Clength = Length of correct word.

The mean observed and predicted proportions of omission,
transposition, insertion, and substitution errors are presented in
Figure 18. Like the typists, CRU produced errors of each type.
CRU overestimated the proportion of omission errors and under-
estimated the proportion of transposition errors. It may be possible
to improve the fits by adjusting parameters. For example, decreas-
ing 3 to give more weight to the past will increase the frequency
of transposition errors (see Figure 6). However, the model was not
fitted to distributions of errors directly. The parameters were
chosen to maximize the likelihood of individual keystrokes.

Traditional error categories are defined by happens after the
error instead of what causes it. Omissions and transpositions both
start by skipping a letter (typing DG for DOGS). They are classi-
fied as omissions if the letter following the error continues the
sequence (DGS) and transpositions if the letter following the error
is the omitted letter (DGO). The factors that cause the initial error
may be the same. The differences may emerge only in the process
of recovering from errors. In CRU, omissions and transpositions
have the same cause. They are retrieved by the same current
context (DG) with probabilities that depend on similarities to
stored contexts (see Figure 16A—16C).

Substitutions and insertions both start by typing a letter that does
not belong in that place in the word (Figure 16D). They are
classified as substitutions if the error string is as long as the correct

0.6 r=.494, rmsd = .148

0.5

0.4 - —

0.3 O Observed
E Predicted

0.2 -

Proportion of Total Errors

Omit Transpose Insert Substitute
Figure 18. Observed and predicted proportions of total errors in tradi-

tional error categories. Error bars are standard deviations.

string and as insertions if the error string is longer (see Table 2).
In CRU, substitutions are likely to occur when the erroneous letter
is not copied into the current context, as in adjacent neighbor errors
made in finger selection. Context retrieval “thinks” the correct
letter has been typed and so selects the next one in the sequence
(Figure 16D, dashed gray line). Insertions are likely to occur when
the erroneous letter is copied into the current context, as in a
context retrieval error. It adds noise to context retrieval, but the
letter following the preomission letter is chosen most often (Figure
16D, black line). Consistent with this prediction, 62.4% of substi-
tutions were adjacent neighbors but only 43.6% of insertions were.

Double letter errors. Following Lashley (1951), Rumelhart
and Norman (1982) drew attention to double letter errors (WEEL
for WELL), which they viewed as a critical test of their theory.
They assumed typing is controlled by interactive activation in a set
of schemas. A word schema activates letter schemas, which acti-
vate motor schemas that specify hand, finger, and movement (see
Figure 19). The motor schemas feed activation back to the letter
schemas. Serial order is controlled by successor inhibition, imple-
mented as inhibitory connections between letter schemas. Each
schema inhibits every schema that follows it, which produces a
gradient of activation that favors the earliest schema in the se-
quence (Bryden, 1967; Estes, 1972). When a keystroke is exe-
cuted, the schema for the letter is inhibited so the next letter in the
sequence can win the competition.

Rumelhart and Norman (1982) assumed a “pure type” represen-
tation, in which there is one schema for each letter, so the model can
only represent unique sequences of letters. Words with repeated
letters (METE) are planned up to the repeated letter (MET—E). The
repeated letters are planned separately. Doubled letters (MEET) are
represented by attaching a “double” schema to the schema for the
doubled letter (M E-double T). Sometimes the double schema is
applied to the wrong letter, producing a double error (MMET for
MEET). Rumelhart and Norman found double errors in a corpus of
errors and interpreted them as support for their theory.

The “double schema” hypothesis predicts double errors in words
with doubled letters (MEET) because the doubled letters activate the

Word:

Letter:

Finger:

Response System

Figure 19. The Rumelhart and Norman (1982) model of typing. Solid
lines and arrows represent activation. Dashed lines and dots represent
inhibition. DOGS is activated in the word level. Activation spreads to the
letter level, from the letter level to the finger level, and from the finger
level back to the letter level. Each letter inhibits every letter that follows it,
producing a gradient of activation that sequences responses.
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double schema, which is attached to the wrong letter. Words with
unique letters (MEAT) or repeated letters (METE) should not produce
double errors because there are no doubled letters to activate the
double schema. I tested this prediction in the error corpora from the 24
typists, counting the frequencies of double letter errors in words with
unique, repeated, and doubled letters. On average, typists made 4.96
(8D = 3.68) double letter errors, which is 4.24% of their total errors.
I calculated the proportions of double letter errors that came from
unique, repeated, and doubled letter words. The average proportions
across typists are plotted in Figure 20.

Contrary to Rumelhart and Norman’s (1982) prediction, double
letter errors were least likely in doubled letter words and most
likely in unique letter words, where the double schema should not
have been activated. However, unique letter words were more
common than doubled letter words in the corpus so there were
more opportunities for errors. The relative frequencies from the
corpus are plotted as the lightest bars in Figure 20. The observed
proportion for doubled letter words was higher than the proportion
in the corpus, and the observed proportion for unique letter words
was lower than in the corpus. This may suggest that the double
schema may have been activated more often in doubled letter
words than in unique words.

CRU requires no special mechanism to type doubled or repeated
letters. Each letter command is represented the same way whether
or not it is repeated, as a unit vector with 1 in the element
corresponding to the letter and O in all other elements. The letter
commands are used to update the current context following Equa-
tion 1. Contexts with doubled letters are built by adding two
vectors that represent the same letter command to the current
context. Contexts with repeated letters are built by adding the
second vector with some lag. The resulting similarities among
contexts in words with unique, repeated, and doubled letters are
plotted in Figure 21. Similarity is highest for the letter that is most
appropriate for the context even in words with doubled letters, so
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Figure 20. Proportions of double errors from words with unique
(MEAT), repeated (METE), and doubled (MEET) letters. The lightest bars
represent the relative frequencies of unique, repeated, and doubled letter
words in the corpus. The intermediate gray bars represent the observed
proportions of doubled errors averaged over typists. The dark gray bars
represent the predicted proportions of doubled errors from the simulation,
averaged over typists. Error bars are standard errors of the mean.
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Figure 21. Similarities among stored contexts for words with unique
(MEAT), repeated (METE), and doubled (MEET) letters. The points above
each letter represent the competition.

CRU types the correct sequence most often. Adding two copies of
the same letter command distorts the similarities and increases
competition among contexts in double and repeated letter words,
but the correct sequence is most likely nevertheless. Equation 1
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blends successive contexts so that the context for the first letter
in a double is different from the context for the second (M vs. ME
in MEET). The same is true for repeated letters (M vs. MET in
METE). Thus, each letter has a unique context even when letters
are doubled or repeated.

CRU makes quantitative predictions about the relative frequen-
cies of double letter errors in words with unique, repeated, and
doubled letters. These predictions are summary statistics calcu-
lated on the simulated error corpora for each typist. They were not
fit directly. I calculated the frequencies of double letter errors in
the simulated error corpus for each typist, computed proportions,
and plotted the averages across typists in Figure 22. The propor-
tions predicted by the model are very close to the observed
proportions, showing the same ordering of conditions. Thus, CRU
accounts for double letter errors without a double schema. The
double schema is not necessary.

CRU makes quantitative predictions for overall error rate for
words with unique, repeated, and doubled letters. Those predic-
tions are plotted along with the observed values in Figure 22. CRU
underpredicts error rate for unique letter words and overpredicts
error rate for doubled letters, showing substantial effects of word
type whereas the observed data show small effects. It may be
possible to improve the fit by increasing 3 to steepen the similarity
gradients. 3 was not adjusted to fit these error proportions. It may
also be possible to improve the fit by allowing repeated and
doubled letter words to have higher thresholds than unique letter
words. Future research will determine whether changes in 3 and
threshold can reduce the differences between unique, repeated and
doubled letter words.

Toward a Theory of Typing

The goal of this article is to develop and test a theory of
automatic control in skilled typing. I focused on serial order and
finger choice because they are the things that must be controlled
automatically. CRU is a model of automatic control, but it is not
yet a complete theory of typing. It does not address keystroke
timing, which provides much of the data a theory of typing must
account for, and it does not address top-down control, other than

r=.306, rmsd = .040
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Figure 22.  Observed and predicted error proportions for words with unique,
repeated, and doubled letters. Error bars are standard errors of the mean.

saying what is required to start typing a word and what signals the
end of a word. Here I suggest ways to extend CRU to become a
complete theory of typing.

Keystroke Timing

Distributions of interkeystroke intervals. Equation 5 pre-
dicts latency as well as probability. In principle, it could be used to
fit distributions of interkeystroke intervals. However, fitting dis-
tributions is impractical. Interkeystroke interval is the sum of the
durations of context retrieval, finger retrieval, and movement, so
its distribution is the convolution of three distributions, one for
each component. Specifically, the distribution would be the con-
volution of Equation 5 for context retrieval, Equation 5 for finger
retrieval, and an unknown distribution of movement times. Even
without movement times, it would be difficult to isolate the pa-
rameters for context retrieval and finger retrieval in the convolu-
tion, separately identifying drift rates and thresholds for each
stage. Models of responses time distributions assume a single
decision stage (e.g., Ratcliff & Smith, 2004; Teodorescu & Usher,
2013). No one has tried to fit distributions of two successive
(serial) decision stages. That is an important goal for future re-
search.

Moreover, movement times would likely dominate the con-
volved distributions. Movement times are typically longer than
interkeystroke intervals (Flanders & Soechting, 1992; Soechting &
Flanders, 1992) and movement-related factors have large effects
on keystroke timing (Salthouse, 1986). Systematic and random
variability would have to be separated, ideally with a model. That
too is an important goal for future research.

Variability in interkeystroke interval. In its current form,
the model underpredicts variance in interkeystroke interval. I sim-
ulated typing of all 3- to 8-letter words in all four paragraphs using
the best fitting parameters (3 = .5457 and § = .1956) and found
a mean and standard deviation of 700 and 26 for correct responses
and 717 and 33 for errors (units are arbitrary). The coefficient of
variation (standard deviation divided by the mean) was 0.037 for
correct responses and 0.046 for errors.

In the observed data, mean and standard deviation of interkey-
stroke intervals were 144 ms and 96 ms, respectively. The coef-
ficient of variation is 0.667, which is much larger than in the
model. The observed data contain systematic and random motor
variance. Interkeystroke interval varied systematically with move-
ment distance. It was 148, 146, and 189 ms for top, home, and
bottom row keys, respectively. Interkeystroke interval also varied
systematically with the transition between fingers required for
successive keystrokes. Between-hand transitions (129 ms) were
faster than same-hand transitions (154 ms). Same key transitions
were slower (162 ms), and same finger transitions were slowest
(196 ms; also see Salthouse, 1986).

To separate systematic and random variability, I sorted inter-
keystroke intervals by transitions between successive letters and
calculated means and standard deviations for each transition (see
Appendix C, Tables C1-C3). With the systematic motor variance
removed, the mean interkeystroke interval was 146 ms and the
mean standard deviation was 49, for a mean coefficient of varia-
tion of 0.333, reducing the original value by half. The coefficient
of variation for same key transitions (repeated keystrokes), which
should have the smallest motor variability, was only 32/162 =
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0.195. (Coefticients of variation for same-finger, same-hand, and
different-hand transitions were 0.215, 0.316, and 0.396, respec-
tively.) The smallest coefficient of variation, for typing P twice,
was 15/154 = 0.097. Compared with these values, the model
values (0.037 and 0.046) may not be inordinately small.

Central tendency in interkeystroke interval. CRU provides
four ways to account for central tendencies of keystroke timing
effects: Changes in drift rate, changes in threshold, competition
from letters in other words or locations, and learning. In the current
version, the maximum drift rate is fixed at 1, which is the normal-
ized length of context vectors, so predicted retrieval time is ap-
proximately threshold/1. The drift rate could be scaled into the
range of observed interkeystroke intervals. Threshold could be
raised or lowered to manage the speed—accuracy trade-off or to
anticipate difficult or easy retrievals (Yamaguchi, Crump, & Lo-
gan, 2013). CRU already includes the possibility of interference
from other words (see Figure 7). The current version assumes the
diffusions race independently, so the effect appears in accuracy
rather than timing. It may be possible to implement competition
within an independent race architecture by dividing each drift rate
by the sum of the drift rates (Teodorescu & Usher, 2013), which
could be interpreted as reflecting inhibition (Lo & Wang, 2006) or
capacity limitations (Logan, 2002). CRU provisionally assumes per-
fect learning, which is unlikely. Given the instance-like nature of
stored context representations and their associations to responses,
storing instances would be a natural way to represent learning (Logan,
1988).

Words versus nonwords. CRU predicts that nonwords will
be typed more slowly than words (Fendrick, 1937; Hershman &
Hillix, 1965; Salthouse, 1986; Yamaguchi & Logan, 2014b, 2016).
Unfamiliar nonwords must be typed one letter at a time with serial
order controlled in the outer loop. CRU would represent each letter
with two stored contexts, one to initiate typing (“Type A” and
“motor blank” retrieves “A”) and one to indicate typing is finished
(“Type A” and “motor A” retrieves “space”). Thus, typing an
N-letter nonword requires 2N retrieval operations, whereas typing
an N-letter word only requires N + 1 retrieval operations. Alter-
natively, the outer loop may rely on visual feedback from the
screen or fingers as a signal to initiate the next keystroke. In this
case, nonwords would be typed more slowly because the time to
process sensory feedback is longer than interkeystroke interval
(Lashley, 1951). CRU does not yet explain why nonwords that
resemble words are typed faster than random strings of letters or
how new words are learned. These are important questions for
future research.

Initial latency. Figure 23 plots interkeystroke interval as a
function of position in the word for 3—7 letter words in the corpora.
First letter keystrokes were 57 ms longer than the mean interkey-
stroke interval for subsequent keystrokes, F(1, 23) = 10.39, p <
.001, MSE = 377.0, n,% = 0.856. CRU predicts that the first
keystroke will take longer than subsequent keystrokes because it
includes the time for top-down processes to generate a word to be
typed and initialize the current context with a word command that
represents the word. In discrete typing tasks, in which typists have
to type single words presented one at a time, first keystroke latency
includes perceiving the word and retrieving lexical information
about it as well as the time to select keys and fingers. In continuous
typing, the outer loop has to select the word to type next before
selecting keys and fingers. CRU does not model those outer loop
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Figure 23.  Mean interkeystroke interval for correctly typed 3- to 7-letter

words as a function of position in the word. Error bars are standard errors
of the mean.

processes, so it cannot predict their duration precisely. However, it
must take time to generate a word command vector from a lexical
representation of the word in the outer loop, so first letters should
have longer latencies (Logan & Gordon, 2001).

Planning time. Motor planning is reflected in the effect of
sequence length on the time to initiate a sequence of movements,
in which longer sequences take longer to initiate (Henry & Rogers,
1960; Rosenbaum, Kenny, & Derr, 1983). Similar sequence-length
effects have been observed in typing (Sternberg, Monsell, Knoll, &
Wright, 1978). CRU does not predict planning time effects, as it
assumes no advance planning, and words of all lengths are repre-
sented as single-element vectors. CRU models experts typing
familiar words. Studies showing planning time effects use unfa-
miliar materials (nonwords in Sternberg et al., 1978) and low
levels of practice, compared with the years of experience of skilled
typists. Yamaguchi and Logan found stronger sequence length
effects for typing nonwords than for typing words in both initial
latency and interkeystroke interval (Yamaguchi & Logan, 2014b,
2016; Yamaguchi, Logan, & Li, 2013), suggesting that unfamiliar
materials require planning but familiar materials do not.

The present data, plotted in Figure 23, show a 6-ms/letter
increase in first-keystroke latency with word length, suggesting a
planning effect in skilled typists. However, interkeystroke inter-
vals for subsequent keystrokes show the same 6 ms/letter increase,
which suggests an effect on typing the whole word instead of an
effect on planning. Indeed, word length was negatively correlated
with word frequency in the copora. The mean Kucera and Francis
(1967) frequencies were 14587, 1865, 605, 135, and 56 per million
for 3- to 7-letter words, respectively. Experiments on discrete
typing with frequency controlled show smaller word length effects,
particularly for keystrokes beyond the first (Yamaguchi & Logan,
2014b, 2016; Yamaguchi et al., 2013).

Slow errors. CRU predicts errors will be slower than correct
keystrokes. In the simulations described above, errors took 717
arbitrary units while correct responses took 700. This is a general
property of race models of choice, unless there is substantial
between-trial variability in threshold or starting point (Logan et al.,
2014; Ratcliff & Smith, 2004; Teodorescu & Usher, 2013). The
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drift rate for correct responses is higher than the drift rate for
errors, so errors will be slower than correct responses. This can be
seen in the plots of the dot products for adjacent contexts (see
Figure 5). The dot products for errors are always lower than the dot
products for correct responses, so errors should be slower than
correct responses. This prediction is confirmed in published data:
errors are usually slower than correct keystrokes (Crump & Logan,
2013; Logan & Crump, 2010; Salthouse, 1984; Yamaguchi et al.,
2013).

Post error slowing. CRU predicts a modest amount of pos-
terror slowing. Typists often slow dramatically after errors, by as
much as 150 ms (Logan & Crump, 2010; Salthouse & Saults,
1987). Much of the slowing is strategic. Typists stop slowing after
errors when speed is stressed (Yamaguchi et al., 2013). The
experimenter’s instruction not to correct errors may produce slow-
ing, as typists must inhibit their automatic tendency to do so
(Crump & Logan, 2013). CRU predicts posterror slowing because
the posterror context includes the error and so does not match any
of the correct stored contexts exactly. Thus, drift rates will be
lower following errors. This can be seen in the posterror dot
products in Figure 16. The posterror dot products are about as large
as the dot products that produced errors, and so should produce
about the same modest slowing as errors do.

Word and bigram frequency. Words and letter sequences
that occur more frequently in the language are typed faster (Salt-
house, 1986). CRU may already have the capacity to predict
bigram frequency effects. The motor part of the stored context
vectors represents the letters in the words on which CRU was
trained. Letter sequences that occur in more words will be repre-
sented more often in the set of stored context vectors, as there is
one context for each letter in each word (plus one for the space
bar). Frequent motor contexts increase the number of racing dif-
fusions that produce the same response—CRU may retrieve the
right letter from another word with the same letter sequence—and
that will speed retrieval time (Logan, 1988). Word frequency
effects could be accounted for similarly, by repeating words in the
training corpus in proportion to their frequency in the language, as
is done in models of reading. The more runners in the race, the
faster the retrieval (Logan, 1988).

Top-Down Control

CRU models automatic control in the inner loop. A complete
theory of typing must address control in the outer loop, saying
what it controls and how it does so. Some of that control may be
automatic. Typing is an expression of language and there are many
automatisms in comprehending and producing language. Some
control may be less automatic, adapting to special circumstances
and novel goals (Logan, 2017).

The outer loop controls parameters of the inner loop, like the
threshold in the racing diffusions (Logan & Gordon, 2001). Typ-
ists adjust their typing rate in response to speed-accuracy instruc-
tions (Yamaguchi et al., 2013) and changes in feedback (Snyder,
Logan, & Yamaguchi, 2015). The outer and inner loops rely on
different feedback. The outer loop monitors visual feedback—the
letters echoed on the screen (Logan & Crump, 2010). The inner
loop monitors haptic and kinesthetic feedback—the feel of the
keys as they are struck (Crump & Logan, 2010c). A complete
theory of typing must specify the processes that use this feedback
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to initiate these changes. CRU provides a theory of the inner loop,
on which these higher-level processes may be grounded (Logan &
Gordon, 2001).

Punctuation and capitalization. CRU models typing strings
of lower-case words separated by spaces. Punctuation and capital-
ization require departures from this habitual typing mode to insert
changes dictated by sentence and phrase structures. One way to
deal with them is through top-down control. To capitalize “most,”
the outer loop might send a single letter command for typing
“capital m,” and let CRU carry on from there. “Capital m” might
be represented by setting two elements in the letter command
vector, one representing “m” as in lower case typing and one
representing the shift key. This context would match the initial
context of “most” except for the shift key, so it should trigger
retrieval of the rest of the letters in sequence.

Top-down control of punctuation is more of a challenge. Punc-
tuation comes at the ends of words, and CRU signals the ends of
words by striking the space bar and sending a copy of the motor
command to the outer loop. The outer loop could monitor the
keystrokes in words it intended to punctuate, and insert the punc-
tuation mark at the right point, but monitoring individual key-
strokes slows typing substantially (Logan & Crump, 2009; Snyder
& Logan, 2013). Alternatively, the outer loop could inhibit the
space bar command and insert a command for the punctuation.
This would be hard to do reactively, because interkeystroke inter-
vals are often around 150 ms (Salthouse, 1986) and RTs to stop
signals (like the command for the space bar) are longer than that in
skilled typists (Logan, 1982; Salthouse, 1984). The outer loop
could do it proactively, substituting the punctuation mark for the
space bar, but typing is much slower when typists substitute letters
(Yamaguchi & Logan, 2014a).

In principle, CRU could model automatic punctuation and cap-
italization in the inner loop by assuming a different word repre-
sentation and a different set of stored contexts for capitalized and
lower case words and for words followed by spaces and words
followed by punctuation. This would require twice as many stored
contexts to represent capitals and six times as many stored contexts
to represent punctuation (i.e., .7 .7 “77 7« “I”). It may be
possible to reduce this number by developing CRU’s assumptions
about similarities among word commands. CRU’s word com-
mands are orthogonal (dot product = 0) because each word is
represented by a different single element (see Figure 7). Word
commands for capitalized and punctuated words might overlap
with word commands for lower case versions and take advantage
of their structure. So might word commands for inflections

“move,” “moved,” “moving”’). Overlap with word contexts might
also explain why word-like nonwords are typed faster than random
strings of letters. Exploring the similarity structure of word repre-
sentations is an important topic for future research.

Error detection and correction. CRU models how typists
recover from errors. It does not model how they detect and correct
them. Typists detect errors in different ways. Explicit error detec-
tion depends on the information echoed on the screen (Logan &
Crump, 2010). Typists explicitly detect ~90% of their errors when
their typing is echoed on the screen and ~60% when it is not
(Snyder et al., 2015). Thus, visual feedback is important but haptic
and kinesthetic feedback are also important. Some components of
error detection may be automatic. Seeing an incorrect letter on the
screen may automatically trigger a backspace response (Crump &
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Logan, 2013), but the number of backspaces depends on the
location of the error and how the typist decides to correct it (going
back to the error vs. retyping the whole word). Intervals between
backspaces increase before the correction, and the first two inter-
keystroke intervals of the correction are elevated (Crump & Logan,
2013), suggesting a top-down intervention (Yamaguchi & Logan,
2014a).

Correction would seem to require top-down control. Retyping
the word would require reinstating the initial word command and
letting CRU take over. Starting the correction at the error would
require establishing the prior motor contexts somehow before
CRU could take over. The outer loop might issue one or two letter
commands to get the sequence started, as CRU depends more
heavily on the most recent keystrokes. Developing a theory of
top-down control is an important priority. CRU provides a model
of the inner loop on which the theory may be grounded.

General Discussion

How do experts act without thinking? How can experts do more
but think less than novices? My resolution to the paradox of
expertise is the CRU theory of automatic control, which says what
the inner loop controls (key choice, finger selection, serial order)
and how it exerts control (context retrieval and updating). The
theory fleshes out the idea that expert control is hierarchical, with
one thought in the outer loop producing many actions in the inner
loop. CRU assumes that one word from the outer loop instigates a
series of key and finger retrievals by setting the initial context,
which then evolves without top-down control until the word is
finished (see Figure 2). Control is automatic in that it occurs
without top-down monitoring (Tzelgov, 1997, 1999).

CRU accounts for the phenomena of automatic control. It pre-
dicts a lower load in working memory and a higher load in the
motor system for skilled typing (see Figure 1). Skilled typists have
one word active in working memory (Yamaguchi & Logan, 2014b)
and that activates several letters in the motor system (Behmer &
Crump, 2017; Crump & Logan, 2010b). CRU predicts the impor-
tance of words in skilled typing. Stored contexts are built around
words. The word command is common to all the stored contexts
that express the word and selectively activates those contexts (see
Figure 7). CRU has the capacity to represent large numbers of
words. The simulations of the 24 typists used 47-65 words and
could handle much larger vocabularies. CRU puts knowledge of
key locations and finger-to-key mappings in the inner loop, in
context retrieval and finger selection, respectively. It predicts that
skilled typing can occur without top-down knowledge of key
locations and finger mappings.

I evaluated the model by fitting it to error corpora from 24
skilled typists and predicting error frequencies, magnitudes, and
patterns. The fits maximized the likelihood of single keystrokes in
the error corpus using two free parameters (3 and S). I generated
predictions by simulating the model with the best fitting parame-
ters and calculating summary statistics. For each typist, one set of
parameters generated all of the predicted summary statistics with-
out further adjustment (see Figures 12-15, 17, 18, 29, 22). In each
case, CRU showed the same qualitative trends as typists and often
fit the data quantitatively.

Implications for Theories of Automaticity, Skill, and
Hierarchical Control

Automatic control. Perhaps CRU’s strongest implication is its
fundamental assumption that automatic processing is controlled. I
have argued for automatic control since the 1980s (Logan, 1985,
1988; also see Tzelgov, 1997, 1999), but CRU makes the idea explicit
computationally and algorithmically (Marr, 1982). Automatic control
runs against the grain of much research on automaticity. Seminal
theories like Shiffrin and Schneider’s (1977) and Jacoby’s (1991)
contrast automatic and controlled processing as if they were oppo-
sites. Studies of Stroop, flanker, and priming effects often pit auto-
matic processes against controlled processes. More recent research on
task switching often focuses on overcoming automatic tendencies to
use prior task sets (Vandierendonck, Liefooghe, & Verbruggen,
2010). Automatic and controlled processing became System 1 and
System 2 in judgment and decision making research, where many
studies pit System 1 against System 2 (Kahneman, 2011). Con-
flicts between automatic and controlled processing provide crucial
data that any theory of automaticity must account for, but they
draw attention away from situations in which automaticity and
control go hand in hand, as in the many skills we rely on in daily
life. Theories that explain how to overcome automatic processes
do not necessarily explain how to harness them to fulfill intentions
and they do not explain how that control can be automatic. Auto-
matic control is a problem the field must solve. CRU offers one
solution. I hope that many more will follow.

How is typing automatic? CRU has implications for how
automaticity should be assessed. It recommends assessment by
identifying the mechanism (Logan, 1988) over assessment of em-
pirical properties (Logan, 1985; Moors & De Houwer, 2006).
Typing is clearly automatic from the mechanistic perspective.
CRU types automatically because typing is based on memory
retrieval (context retrieval) rather than algorithmic outer-loop
computation (hunting and pecking; Logan, 1988). CRU types
automatically because its memory mechanisms choose correct
sequences of keystrokes without top-down monitoring and control
(Tzelgov, 1997, 1999). If CRU fits the data, then typing is auto-
matic in these senses. The fit can be assessed from other aspects of
behavior (e.g., sequences of keystrokes, transposition gradients,
etc.), so the reasoning is not circular.

Typing is less clearly automatic from the perspective of its
empirical properties. Consider three major properties of automa-
ticity: speed, effortlessness, and autonomy (Logan, 1985; Moors &
De Houwer, 2006). Typing meets the speed criterion because it is
very fast. Effortlessness is less clear. Measured as dual task inter-
ference, typing is both effortless and effortful. Shaffer (1975)
found little interference between typing visual text and shadowing
auditory sequences, suggesting typing is effortless. Yamaguchi
and Logan (2014b, 2016) found less interference with a concurrent
memory load when typing words than nonwords, suggesting
skilled typing is less effortful than unskilled typing. Yamaguchi et
al. (2013) used the psychological refractory period procedure to
control timing more precisely and found substantial dual task
interference between typing and a concurrent tone discrimination
task. This suggests typing is effortful.

CRU makes sense of these results. The shadowing task and the
concurrent memory load interfere with outer loop processing, at
the level of words. Executing all the keystrokes takes time, so the



ted broadly.

publishers.

gical Association or one of its allied
1al user

This document is copyrighted by the American Psycholo

This article is intended solely for the personal use of

476 LOGAN

outer loop often has to wait until the current word is finished
before it sends the next one to the inner loop. This allows flexible
timing in the outer loop, which may help reduce interference with
shadowing (Broadbent, 1982; Pashler & Johnston, 1989). Typists
think in words, so words will interfere less with concurrent mem-
ory loads than letter strings of the same length (Yamaguchi &
Logan, 2014b, 2016). The psychological refractory period effect
may occur in the inner loop (Yamaguchi et al., 2013). Context
retrieval and key selection map conceptually onto decision and
response selection stages in models of dual-task performance
(Logan & Gordon, 2001; Meyer & Kieras, 1997; Pashler & John-
ston, 1989). Interference in those stages is very hard to eliminate
with practice.

The autonomy criterion is also unclear. Typing is autonomous in
that it can go on to completion without top down control (Zbrodoff
& Logan, 1986). Concurrent memory load studies support this
assertion (Yamaguchi & Logan, 2014b, 2016). But typing is not
autonomous in the sense that it is obligatory or ballistic. Skilled
typists can readily stop typing in midword in response to an error
(Crump & Logan, 2013) or a stop signal (Logan, 1982; Salthouse
& Saults, 1987). CRU makes sense of these results as well.
Usually, words will be typed to completion automatically, but
automatic control can be interrupted with a top down signal that
clears the word context or inhibits the growth of activation in the
racing diffusions (Boucher, Palmeri, Logan, & Schall, 2007; Lo-
gan, Yamaguchi, Schall, & Palmeri, 2015).

The larger point is the value of viewing automaticity as some-
thing to be explained and not as an explanation in itself (Reynolds
& Besner, 2006). To say that automatic processing is fast is not to
say why it is fast, and why is an important question.

Hierarchical skills. CRU should generalize to other hierarchical
skills in which one thought leads to many actions. CRU addresses a
computational problem that is common to many skills—selecting
targets for action, choosing effectors to act on the targets, and ordering
the series of choices. It provides an algorithm that solves the problem
using context retrieval and updating (Marr, 1982), which can be
applied to other domains in which actions create the context in
which subsequent actions are chosen. For example, CRU can
account for nonstandard typing by reducing the number of fingers
used (<8) and changing the mapping of fingers to keys. It could
account for texting by exchanging 8 fingers for 2 thumbs. It could
account for guitar playing by increasing the number of targets
(there are 120-144 notes on a guitar neck) and increasing the
number of postures for striking them. In each case, updating
current contexts with the latest motor command would change its
similarity to the stored contexts, and that could drive the required
sequence of retrievals.

The literature is divided on whether hierarchical structure in be-
havior should be modeled with hierarchical processes (Cooper &
Shallice, 2000; Rumelhart & Norman, 1982) or hierarchical represen-
tations with nonhierarchical processes (Botvinick & Plaut, 2004).
CRU takes both sides. CRU is a hierarchical process because it is
controlled by the outer loop. CRU also has hierarchical context
representations that are operated on by a nonhierarchical retrieval
process, based on matching (Figure 2C, 2D). The representation is
hierarchical because the word command is set in the context vector for
every keystroke in the word. This common element increases simi-
larity of contexts within the word and decreases similarity of contexts
from other words, which reduces intrusions and keeps CRU on track

(see Figure 7). Other models structure hierarchical representations
similarly, using common elements to connect separate representations
(Botvinick & Plaut, 2004; Farrell, 2012; Vousden, Brown, & Harley,
2000). In CRU, the structure is in the similarities, not in associations.
Processing is driven by information.

Plans, Programs, and Chunks

In the motor control literature, sequence production is often thought
to result from a plan or a program or a chunk that specifies the
sequence in advance and controls each of its steps (Diedrichsen &
Kornysheva, 2015; Keele, 1968; Keele, Ivry, Mayr, Hazeltine, &
Heuer, 2003; Rosenbaum, Inhoff, & Gordon, 1984; Schmidt, 1975).
CRU explains skilled sequence production without any of these
concepts. Sequences are not planned in advance. They are retrieved
on the fly. Sequences are not programmed. They are driven by the
contexts they create through their own actions. Sequences are not
bound with strong associations like chunks (Estes, 1972; Yamaguchi
& Logan, 2016). There are no associations between contexts and no
associations between key locations. There are only associations be-
tween contexts and key locations. The structure that drives the se-
quence and makes it coherent is in the similarities among the traces,
not in associations or preplanned steps. Plans, programs, and chunks
may be important in other motor acts, but they do not seem to be
necessary in skilled typing.

Plans may be important early in practice, when people are just
acquiring skill and do not yet have the knowledge to support
context retrieval. Programs may be important in crystallizing pro-
cedural knowledge at intermediate stages of practice, but they may
be supplanted later on by the looser and more flexible process of
context retrieval (Anderson, 1982; Fitts & Posner, 1967). Context
retrieval may only emerge after years of practice (but see Logan,
1988).

Serial Order

Chaining and position coding. The problem of serial order has
challenged theorists since the beginning of experimental psychology.
The dominant theoretical traditions were staked out early. Ebbinghaus
(1885) proposed an associative chaining mechanism, in which items
are associated with succeeding (and preceding) items. Serial order is
driven by the items that are retrieved: each retrieved item is the cue for
the next. Ladd and Woodworth (1911) proposed a position coding
mechanism, in which items are associated with position codes or
context representations but not with each other. Serial order is driven
by stepping through position codes: the item associated with each
code is retrieved, but the item is not the cue for the next retrieval.
Chaining and position coding were debated extensively in studies of
maze learning (Hull, 1932, 1934; Tolman, 1948) and serial learning
(Ebenholtz, 1963; Young, 1962).

The essential distinction between chaining and position coding lies
in their assumptions about associations. Chaining assumes associa-
tions between items. Position coding assumes associations between
items and position codes or items and contexts. CRU contains ele-
ments of both. Its associations between key locations and stored
contexts are like position coding. However, its contexts are made of
superimposed items (retrieved motor commands), so its associations
between items and contexts may also be thought of as associations
between items, like chaining (also see Howard & Kahana, 2002;
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Lohnas et al., 2015; Polyn et al., 2009; more generally, see Botvinick
& Plaut, 2006; Elman, 1990).

Lashley’s influence. In 1951, Lashley published a landmark
paper that shaped all subsequent work on serial order. He mounted
strong arguments against chaining theories, claiming that they could
not represent tasks like speaking, typing, or playing music, in which
a small set of elements repeat in many different orders. He argued
instead for hierarchical control, in which higher-level syntactic rep-
resentations specify the order in which lower-level representations are
executed. Many were convinced.

Lashley argued against behavioral chaining, in which the sensory
consequences of one action were the stimulus for the next action
(Hull, 1932, 1934), arguing that speaking, typing, and playing music
were too fast for that kind of control. Interkeystroke intervals were
shorter than sensory transmission times. Theorists overcame this
objection by proposing chains of motor commands, in which the
motor command for one action becomes the stimulus for the next (cf.
von Holst & Mittelstaedt, 1950; Wolpert & Flanagan, 2001). So does
CRU. The motor command for one keystroke becomes part of the
context that retrieves the next keystroke. This removes the time for
finger selection, movement, and processing sensory feedback from
the loop, speeding up cycle time substantially.

The evolution of the current context in CRU is very much like
behavioral chaining. It records the motor commands and their conse-
quences. Just as a rat faces a different context after turning left instead
of right, a typist (or CRU) faces a different context after typing F
instead of G. I am surprised at Lashley’s objection to this kind of
chaining, as his “principal thesis . . . [was] that the input is never into
a quiescent or static system, but always into a system which is already
actively excited and organized” (p. 112). In CRU, the typist’s own
actions are an important part of that organized activity. We create the
contexts we act in with our own actions.

Models of Serial Order

There are many models of serial order in studies of language,
memory, and sequence learning. Rather than compare CRU to each
one individually, I compare core features of the models, focusing on
how they represent serial order, initiate retrieval, choose a response,
and suppress retrieved responses.

Representation of serial order. Page and Norris (1998) pro-
posed a model of serial recall with no associations to items or
contexts. Instead, serial order is represented by the activation of items,
with earlier items more active than later ones. Retrieval involves
selecting the most active one and then suppressing it so the remaining
items can compete. However, activation cannot represent repeated
items, which occur often in typing, and activation has no long-term
memory, which is required to support skills.

Theories of sequence learning generally endorse chaining (Abra-
hamse, Jiménez, Verwey, & Clegg, 2010; Helie, Roeder, Vucovich,
Riinger, & Ashby, 2015; Keele et al., 2003). Participants typically
learn one repeating sequence, and associations between items may be
useful when a single sequence repeats. They are less useful when
there are several sequences made of the same items (Lashley, 1951;
see Figure 7).

Theories of speaking (Dell, 1986; MacKay, 1982; Vousden et
al., 2000), typing (Rumelhart & Norman, 1982), playing music
(Pfordresher, Palmer, & Jungers, 2007), and serial recall (Le-
wandowsky & Farrell, 2008) eschew chaining and endorse some

form of position coding that may include hierarchical representa-
tion. Theories of speaking assume items are bound to syntactically
ordered frames, which are independent of the items (Dell, 1986;
Dell et al., 1997; MacKay, 1982; Vousden et al., 2000).

Many theories of serial recall assume that items are associated
with contexts that are independent of the items. Henson et al.
(1996) assumed contexts were defined by the distance from the
beginning and end of the list. The same start and end markers are
used for each list, which would make it difficult to represent large
vocabularies. Estes (1955; Lee & Estes, 1981) assumed randomly
drifting context vectors, so different contexts could occur with
different lists. Burgess and Hitch (1999) assumed a time-varying
context signal. Brown, Preece, and Hulme (2000) assumed banks
of oscillators with different frequencies and defined context as the
state of the oscillators when an item is presented.

Contexts that are independent of the items they are associated with
may be good for remembering single presentations, but they are
problematic for skills. The random contexts that occur on one expres-
sion of the skill are unlikely to occur on the next expression. The scale
of contextual changes must change as performers acquire skill and
speed up. The resonant frequencies of oscillators must change.

Howard and Kahana (2002; Lohnas et al., 2015; Polyn et al., 2009)
developed models of serial order in free recall that rely on self-
generated contexts, which provided the inspiration for CRU (also see
Botvinick & Plaut, 2006; Elman, 1990). In their models, stored
contexts are built of the items participants experience, updating ac-
cording to Equation 1 with each new item. Retrieval occurs by
feeding retrieved items back into the current context, changing the
similarities between current and stored contexts. The same list appears
in the same context each time it is presented, supporting skill acqui-
sition, and different lists appear in different contexts, supporting large
vocabularies of skilled action sequences.

It is surprising that models of serial recall have not embraced
self-generated contexts. Many of them are built to model Baddeley’s
(1986) phonological loop (e.g., Burgess & Hitch, 1999), which rep-
resents items as motor commands for speaking. The current motor
command must be chosen in the context of prior motor commands.
That context might drive serial retrieval, as it does in CRU.

Initiating retrieval. CRU provides a new perspective on the
thorny problem of how retrieval is instigated. Somehow the initial
context has to be reestablished. It is not clear how this can happen
when contexts are independent of the items. CRU is built on the idea
that the initial context comes from the outer loop. It establishes a word
command in the current context vector, and that instigates retrieval.

Choosing an item. Mechanisms for choosing an item are de-
picted in Figure 24. Chaining models choose the next item by acti-
vating it. Successive items are connected by positive associations, and
activation flows along the chain. Chaining models have many prob-
lems (see above). Successor inhibition models (Bryden, 1967; Estes,
1972; Rumelhart & Norman, 1982) activate actions in parallel, but
each action inhibits its successor, producing a gradient of activation in
which earlier actions are more active than later ones. The item with
the highest activation is chosen. These models have problems with
repeated letters (see above). Competitive queuing models (Grossberg,
1978) activate items in parallel and make them compete in a winner-
take-all network in which each item inhibits every other item. A
filtering mechanism imposes a gradient of activation across the items
that biases the competition so the item with the highest activation is
chosen. Most theories of serial recall assume competitive queuing (see
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Lewandowsky & Farrell, 2008) but it is often implemented as an
approximation, using the Luce choice rule or softmax instead of
dynamically evolving mutual inhibition. It is not clear the inhibition is
necessary.

CRU assumes items are activated in parallel in proportion to their
similarity to the current context (see Figure 5). The next item is
chosen by a race among diffusions driven by the similarities. It is like
a competitive queuing model with an independent race instead of
mutual inhibition as the choice process. It is simpler than competitive
queuing computationally. The finishing time distribution is given in
Equation 5. The finishing time distribution for competitive queuing
has to be estimated by simulation (Usher & McClelland, 2001).
Theorists who are not committed to mutual inhibition in competitive
queuing might consider a race process instead.

Response suppression. Successor inhibition and competitive
queuing theories assume that the chosen item must be suppressed to
remove it from the competition (also see Page & Norris, 1998).
Otherwise, it would remain more highly activated than its competitors
and repeat endlessly. Suppression is often implemented as self-
inhibition, indicated by the red dotted lines in Figure 24. Most theories
of serial order assume the chosen item is suppressed (Dell et al., 1997;
Lewandowsky & Farrell, 2008; Rumelhart & Norman, 1982). CRU
does not. The chosen item changes the current context, and that
changes its similarities to the traces, so the chosen item is less likely
to be repeated (see Figure 2). CRU resets all accumulators to zero
after a choice is made (Logan & Gordon, 2001). This could be viewed
as response suppression, but it is applied to all responses, not just the
chosen one.

A recent study by Behmer and Crump (2017) suggests that there
may be no response suppression in skilled typing. They had typists
type continuous text and occasionally presented a probe letter to be
typed immediately. They probed letters 1-3 positions before and after
the next letter to be typed and found symmetrical priming for past and
future letters (see Figure 25). Had there been response suppression,
response times to probes that had just been typed (position —1) should
have been much slower than response times to probes that were just
about to be typed (position +1). These results support CRU’s as-
sumption that there is no response suppression.

A. Chaining B. Successor Inhibition

C. Competitive Queuing

Context

Filter )
Retrieval

Figure 24. Chaining, successor inhibition, competitive queuing, and
CRU. Solid lines with arrows represent activation. Broken lines with dots
represent inhibition. Red broken lines with dots represent self-inhibition.
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Figure 25. Mean response times to probe letters presented while typing
continuous text, as a function of the position of the probe relative to the
next letter to be typed. Negative values represent letters that had been
typed. Positive values represent letters that have not yet been typed. The
symmetry of the function around 0 suggests there is no suppression of the
just-chosen letter. Data from Behmer and Crump (2017, Experiment 1).
Error bars are standard errors of the mean.

Conclusion

Experts act without thinking because they recruit automatic control
systems to take care of the details. I offered CRU as an example of an
automatic control system that lets typists think in words while it
chooses and sequences the required keystrokes. The key idea is that
control is driven by a self-generated context that records the sequence
of motor commands and the goal they were intended to achieve. We
create the contexts for our actions. The simulations and model fits
show that CRU is sufficient to explain automatic control. Future
research comparing it to alternatives will be required to determine
whether CRU is necessary as well as sufficient.
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Appendix A

Error Corpus Method

Typists

We recruited 24 typists from the Vanderbilt community, 18 of
whom identified as female, 5 as male, and 1 as gender fluid. Their
mean age was 22.7 (£SD = 3.3) years. Their mean typing expe-
rience was 13.6 (*3.4) years. All had formal training, averaging
20.3 (*£12.9) weeks. Nineteen identified as standard typists. Five
identified as nonstandard typists. Typing speed was no different
for standard (82.7 = 13.3 WPM) and nonstandard typists (78.9 =
11.6 WPM), replicating Feit et al. (2016) and Logan et al. (2016).

Procedure

The procedure was approved by Vanderbilt University’s Institu-
tional Review Board, assuring compliance with ethical standards.
Typists filled in consent forms, filled in a typing experience question-
naire, and indicated whether they used standard or nonstandard map-
ping, based on a picture of the hands and keyboard with the standard
mapping coded in color. Then they were tested in individual rooms.
The material to be typed was presented on a CRT attached to a PC.
Responses were registered on a standard QWERTY keyboard. Typ-
ists sat about 60 cm from the screen. The paragraph to be typed
appeared in 18 point font in the top portion of a 24.1 X 19.7 cm gray
box centered on the screen. The keystrokes typists typed were echoed
in the bottom portion of the box. The backspace key was disabled and
typists were told not to correct their errors.

Typists first saw the paragraph presented on the screen, and then
typed it as quickly and accurately as they could. When they
finished, they clicked on a “Next” button on the bottom of their
screen with a mouse, after which the screen cleared and the

paragraph to be typed was presented again. Typists were allowed
to take breaks between paragraphs. The computer did not begin
timing until typists struck the first key. Words per minute was
calculated by dividing the number of keystrokes by the time
between the first and last keystroke to get keystrokes per minute,
and then dividing by 5 to get words per minute. Keystrokes and
timing were recorded. Errors were identified offline.

Border Collie Texts

Paragraph 5. It is difficult to know how man ever managed
large flocks of sheep on the rough and hilly terrain of these areas
without the help of these wonderful dogs. The strains that proved most
adept at the specialized type of work required were highly prized and
selectively bred from. This produced the sort of collie we know today.
From looking at very old photographs, it is remarkable how little they
have changed in the last hundred years or so. It proves that the early
flockmasters knew well the type of dog that was built on the correct
lines for the job it was intended to do.

Paragraph 6. One other sphere where border collies are most
successful is in search and rescue. Dog handlers are required to go
out and look for missing climbers and walkers. A lot of these
people get lost in areas where sheep are grazed. Border collies
have to range well ahead of the handlers in order to cover the
maximum amount of ground, so they must be tested for their
trustworthiness with sheep before training starts. It does show what
an adaptable breed the border collie is, in that it can be taught to
ignore an animal that it has been specifically bred to herd. Border
collies are becoming more and more popular for this purpose.

(Appendices continue)
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Paragraph 7. A border collie from the correct source can be
a charming pet. However, dogs bred from a strong working line
can become very frustrated and destructive if they find themselves
in an environment where there is nothing for them to do. The job
is the border collie’s main reason for living. The desperate need to
work is slightly diluted in certain lines of border collies that are
bred for the show ring. It is important to remember that, although
a border collie is usually quite happy to be a loving pet, he will
need plenty of exercise, and preferably some occupation for his
very able brain.

Paragraph 8. Sheep dog trials are a stylized form of farm
work for the border collie. Most dogs that compete in trials do
so in addition to their daily work on the farm. It is rare that a
dog is kept exclusively for trials, as the border collie is too
useful to be kept for a special occasion. Most of the exercises
that a working dog performs on the trials field are slight
modifications of the jobs they perform every day of their
working lives, and most sheep farmers would be lost without
their dogs. Most trial winners more than earn their keep when
used on the daily farm work.

Appendix B

Fitting the Model

The model was fit to the data by calculating the probability that
each keystroke was struck by multiplying the probabilities of
context retrieval and finger selection (Kragel et al., 2015; Morton
& Polyn, 2016). The probability of context retrieval was calculated
in several steps beginning with the correct word and the erroneous
version of it. A set of stored N + 1 context vectors was generated
for the N letters in the correct word, and a set of M + 1 context
vectors was generated for the M letters in the erroneous word,
where M need not equal N. Each vector was made of 1032
elements, most of which were set to zero. The first 32 represented
the letters and the space bar, defined by subtracting 96 from their
ASCII codes. One element corresponded to each letter. The re-
maining 1000 represented words. Each word was represented by
setting a single element to 1 and the rest to 0, so different words
were represented by orthogonal vectors. The simulation that pro-
duced the predicted values held up to 500 different context vectors.

The fitting routine stepped through the letters in the erroneous
word, calculating the probability of choosing that letter given the
current context in effect at the time of retrieval. The probability
was calculated by calculating similarities (dot products) between
the current context vector and all stored vectors, which were used
as drift rates in Equation 5. The key that was struck became i in
Equation 5 and the other keys became j. The probabilities were
produced by numerically integrating Equation 5 from 0 to infinity
(i.e., Equation 4). To illustrate, consider Figures 4 and 5. The typist
intends to type DOG and has not typed any letters yet. The gradient
shows the drift rates for each letter in DOG. If the typist typed D,
then drift rate i in Equation 5 would be 1.0. However, if the typist
typed O erroneously, then the drift rate i in Equation 5 would be
.866. After integration, the probabilities are quite different.

The current context matches the stored contexts up to the first
error. If the error was made in the context retrieval process (i.e., if
the error was another letter from the same word), the error is
incorporated in the updated context (e.g., if the typist Types O
instead of D, then the motor context will contain O). If the error

was not from the word, it was not incorporated in the updated
context. The correct letter was included instead. I did this for two
reasons. First, I assume the current context contains copies of
motor commands for key locations, not records of the keys that
were actually struck. Updating motor commands is faster than
updating the actions that result from motor commands, and so is
more efficient. Second, I tried incorporating finger choice errors
into the current contexts and found that the model invariably typed
the letter it should have typed instead of the error (e.g., typing
DFOG after typing DF) as if the finger choice error added noise to
the current context and ran it through context retrieval again. These
errors are intrusions. Typists often make substitution errors (DFG
for DOG) instead of intrusions. I wanted to give the model the
capacity to make substitution errors.

The probability of selecting the finger associated with the key
was computed by calculating the distance between the correct key
and the typed key. If the key was correct, distance = 0 and L; =
1 (see Equation 6). If the key was not correct but the error was
another letter from the word, I assumed it was a context retrieval
error, so the key that was struck was the key that was intended, so
distance = 0 and L; = 1. If the erroneous key was not from the
word, I calculated distance between it and the correct key. If the
distance was less than 4 cm, I calculated the drift rate as L, =
exp(—S - d,). If the distance was greater than 4 cm, I assigned the key
a probability of 0.0000001 regardless of the parameter values (3 and
S), which removed its influence in the data fitting. I chose this distance
criterion because about half of the errors that are not from the word
come from adjacent positions, likely because of the spatial confusions
predicted by the model, but the other half come from more remote
positions and are caused by processes outside the model. People may
misalign their fingers with the keyboard, for example. According to
Equation 7, drift rate for finger retrieval v, is the product of L, and the
association strength of the finger A;,. In these fits, I assumed every
typist used standard mapping perfectly, so A;, = 1 for the standard
fingers and O for all other fingers.
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The error rates for words in the error corpora themselves
overestimate the error rates for words in paragraph typing
because the error corpora exclude the vast majority of the words
that were typed correctly. Given one error per 5-letter word,
error rate in the corpus would be about 20%, whereas error rate
for the paragraphs averaged 7.29%. To compensate for this, I
added likelihoods for typing the erroneous words correctly and
added them to the likelihoods for the error strings in the model
fitting. I estimated correct likelihoods by taking the maximum
probability for the keystrokes in the error string (to exclude the
error keystroke) and multiplied it by N*(pc'?)/(1 — pc'’®),

LOGAN

where N is the number of letters in the word and pc is the
proportion of words typed correctly in the paragraph. This ratio
gives the number of times the letters in word would have been
typed correctly.

I started each fit with the same starting values (3 = .5 and § =
.2) because it would take too long to run many fits with different
starting values (2 hours per fit). Explorations with the model
suggested the best fitting parameters did not depend much on the
starting values. In cases where the best fitting values were close to
the starting values, I reran the fits with different starting values and
they converged on the same best-fitting values.

Appendix C

Keystroke Timing

To separate systematic and random variance in keystroke timing, I calculated the mean and standard deviation of interkeystroke interval
for each transition between successive keystrokes in each corpus. The means over typists are displayed in Tables C1 (mean interkeystroke
interval), C2 (standard deviation), and C3 (number of observations per typist).

To assess the effect of word length on first and subsequent keystroke latencies, I calculated the mean interkeystroke interval for each
position in 3- to 7-letter words for each typist. The means across typists are displayed in Figure 23.

Table C1

The Average Mean Interkeystroke Intervals (IKSIs) in ms Across Typists as a Function of Sequence

Leter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 166 169 156 148 116 138 131 114 133 112 129 105 120 151 253 108 277
B 155 147 142 168 147 147

C 135 168 183 102 136 123 142 96 205 110

D 146 173 185 138 129 125 196 162

E 147 209 207 168 207 127 146 137 135 96 118 210 95 139 109 194 100 269 114

F 166 155 163 140 117 113 186 114

G 138 111 148 168 138

H 106 113 111 180 124 126 116 157

I 170 146 125 170 137 155 139 112 110 123 128 120 144 155
J 113

K 210 116 183 220 97 120

L 114 115 121 127 121 153 188 129 144 146 168 154 136

M 126 145 127 142 128 164 159 211

N 118 110 113 110 126 216 146 115 145 113 182

0 154 134 144 108 140 140 196 112 112 149 142 126 99 125 96 143 114

P 134 128 156 150 132 154 118 163 191 144

Q 135

R 142 244 194 104 223 223 134 122 135 122 160 102 160 177 163 195 165 115

S 255 126 195 117 130 114 111 136 173 134 133

T 148 133 106 104 125 119 179 113 155 332 168

U 118 129 152 124 101 160 189 186 145 102 118 119

v 156 129

w133 117 117 108 117

X 235 258 151

Y 97 207 138

z 178

Note.
column B row A contains the IKSI for typing B after A).

The columns represent IKSIs for typing the letter at the head of the column. The rows represent the letter that was typed before that letter (e.g.,
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Table C2
The Average Within-Typist Standard Deviations in ms as a Function of Sequence

Letter A B ¢ D E F G H I J K L M N O P Q R S T U V W X Y Z

Note. The columns represent IKSIs for typing the letter at the head of the column. The rows represent the letter that was typed before that letter (e.g.,
column B row A contains the standard deviation of IKSI for typing B after A).

Table C3

A 42 51 56 34 53 58 45 45 49 42 42 38 35 32 61 35 60
B 46 39 54 27 54 38
C 36 31 45 28 55 36 61 37 46 34
D 48 41 42 58 73 46 33 71
E 50 43 47 33 75 44 63 58 48 38 62 56 36 53 3l 35 33 76 43
F 64 39 47 61 51 41 9 42
G 41 34 59 25 44
H 52 54 61 43 50 45 35 43
I 85 47 46 90 45 40 43 37 59 51 54 50 52 68
J 29
K 115 39 40 69 33 36
- L 52 39 54 48 22 34 4 16 74 51 51 88 46
s M 42 45 68 36 39 84 52 48
£ 3 N 50 54 45 46 33 49 19 34 69 41 66
G S (¢} 47 47 66 28 54 60 30 26 27 23 70 58 52 40 26 50 57
s p 70 60 46 32 41 15 50 66 74 79
2 g Q 61
= g R 47 60 50 44 58 49 52 57 74 45 50 44 64 47 48 48 o4 46
= 3 S 55 53 49 51 53 39 50 60 40 53 46
= T 61 43 47 35 48 53 42 31 17 104 69
= 0 U 29 35 42 31 30 38 30 33 81 33 55 45
I A% 54 63
o = w 32 33 34 40 49
c 2 X 83 79 85
S o Y 26 100 39
£ z 52
Z
o0

The Average Frequency With Which Each Typist Experienced Each Transition in Words Typed Correctly

Leter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[}
= o
=) A 21 24 19 19 30 54 17 96 17 105 39 66 18 19 17 18 17
g B B 52 21 62 33 17 17
PR c 35 17 24 18 21 3316 69 36 17
Z 8 D 28 18 74 22 35 46 18 16
o 8 E 37 34 102 43 18 46 33 42 25 16 49 18 189 89 24 18 17 24 18
s % F 73 17 17 20 33 69 45 18
= G 45 27 18 26 24
g8 H 88 240 40 19 40 17 17 18
£ > I 66 16 48 16 17 35 34 108 31 35 26 26 27 24
=) J 18
23 K 15 37 25 15 54 17
83 L 27 24 52 92 18 72 35 16 74 26 16 17 46
23 M 41 17 43 26 65 16 17 36
g 2 N 19 72 34 66 36 15 17 24 15 27 15
£~ o) 18 22 24 19 46 19 50 34 46 19 35 191 49 23 39 24 44
3 = P 17 52 26 17 19 18 46 24 23 18
<3 Q 18
2 £ R 45 2475 172 27 18 42 48 18 72 19 61 10 28 46 28 24 24
E . S 18 46 18 27 24 17 35 22 51 84 17
£ T 43 43 275 27 16 27 49 18 19 15 24
U 16 17 18 18 23 36 16 27 18 15 39 17
A 72 48
w28 24 31 22 45
X 15 16 17
Y 18 17 37
Z 21

Note. Frequencies from words typed incorrectly are not included. The rows represent the letter that was typed before that letter (e.g., column B row A
contains the average frequency of typing B after A).
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