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M Abstract Formal theories of attention based on similarity-choice theory and
signal-detection theory are reviewed to document cumulative progress in theoreti-
cal understanding of attention from the 1950s to the present. Theories based on these
models have been developed to account for a wide variety of attentional phenomena, in-
cluding attention to dimensions, attention to objects, and executive control. The review
describes the classical similarity-choice and signal-detection theories and relates them
to current theories of categorization, Garner tasks, visual search, cuing procedures,
task switching, and strategy choice.
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INTRODUCTION

Since the beginning of the cognitive revolution in the 1950s, attention has been a
central topic in experimental psychology. In recent years, research on attention has
been extended to neuroscience, in studies of humans and monkeys, and to clinical
science, in studies of psychopathology. A cynic might argue that the history of
research on attention has been a series of unrelated fashions and fads, focusing
on different experimental paradigms. In the 1950s and 1960s, the focus was on
selective listening. In the 1970s, it was automaticity and dual-task performance. In
the 1980s, it was visual search, negative priming, and cuing. In the 1990s, it was
the psychological refractory period and the attentional blink. Since the turn of the
century, the focus has been on task switching. A cynic might argue that this constant
shifting from topic to topic has led to little cumulative progress in our theoretical
understanding of attentional phenomena. An optimist might argue that there has
been substantial cumulative progress from the 1950s to the present at a deeper level
of theory that integrates and explains the relations between the various empirical
phenomena. I am an optimist and my purpose in writing this chapter is to document
that cumulative progress by reviewing recent developments in formal theories of
attention (for earlier reviews of formal theories of attention, see Bundesen 1996
and Swets 1984; for an earlier argument for cumulative progress in studies of
attention, see Posner 1982).

The review will be organized around two “families” of theory that derive from
seminal work in the 1950s. One class of theory adapts concepts from Shepard’s
work on similarity scaling and Luce’s work on choice to problems of attention.
The other class adapts concepts from Green’s, Tanner’s, and Swets’s work on
signal-detection theory to problems of attention. The two classes of theory are
families in two senses. First, they represent successive generations of theory, with
each new theory building on an ancestral theory by elaborating its assumptions
or adding new assumptions and by extending its domain of applicability to new
problems not addressed by the ancestor. Second, theories within each family share
acommon formal structure—similarity-choice theory or signal-detection theory—
that is analogous to the genetic endowment shared by members of a family. These
familial features-—the successive elaboration of a powerful mathematical structure
across several generations of theory—provide the basis for cumulative progress in
understanding attention.

My goal in writing this review is to document cumulative progress and to
show relations between formal theories of attention. In meeting this goal, I will
ignore much of the recent progress in empirical studies of attention and much of
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CUMULATIVE PROGRESS IN ATTENTION 209

the informal theorizing that accompanies it, hoping that other reviews, past and
future, will cover these. My focus on similarity-choice theory and signal-detection
theory necessarily excludes other work on formal models of attention, particularly
connectionist models. The theories I do cover represent ideas that have been at the
core of theoretical psychology since the beginning of the cognitive revolution, and
I think it is worthwhile emphasizing their longstanding contributions to the field.

The review begins with a brief overview of similarity-choice theory and signal-
detection theory that points out similarities and differences between them and de-
scribes conditions under which they are mathematically equivalent. The remainder
of the review is organized around three main topics: (a) attention to dimensions,
which includes subsections on categorization and the tasks introduced by Garner to
study dimensional attention; (b) attention to objects, which includes subsections
on visual search and cuing tasks; and (c) executive control of attention, which
includes strategies and task switching.

SIMILARITY-CHOICE THEORY

Shepard-Luce Choice Rule

The initial work on similarity-choice theory was done by Shepard (1957) and
Luce (1959, 1963). The main goal of similarity-choice theory was to predict choice
probabilities from estimates of similarity and bias. According to the theory, the pro-
bability of choosing response i given stimulus x is given by the Shepard-Luce choice

rule:
. n(x,)Bi
Pl e 1
e > nCx, B ®
je

where n(x, i) is the similarity between object x and a representation of response
category i and B; is the subject’s bias for giving response i in the choice situation.
The probability of choosing response i for object x increases with the similarity
between x and i and with the bias for i. The probability of choosing i given x
decreases with the similarity between x and the other responses j in the response
set R.

Classical similarity-choice theory assumes that objects and categories can be
represented as points in multidimensional space and similarity is an exponential
function of distance in that space (Shepard 1987). Thus,

n(x, i) = exp[—s - dxil,

where s is a sensitivity parameter reflecting the steepness of the generalization
gradient and d,; is the distance between x and i in the multidimensional space:

i !
dy= (Z |uth — u,-hr) : @)
h=1
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Distance between points is computed by calculating the distance between them
along each of the H dimensions in the multidimensional space, raising the dimen-
sional distances to the rth power, summing them over dimensions, and taking the
rth root of the sum. The parameter r determines the distance metric. If » = 1, the
distance metric is city-block; if » = 2, the distance metric is Euclidean.

Reaction Time and Response Selection

Similarity-choice theory predicts choice probabilities but not reaction times.
Marley & Colonius (1992) and Bundesen (1993) showed that, under very general
conditions, independent race models predict the same choice probabilities as the
similarity-choice model. That is, for a given similarity-choice model, it is possible
to construct an independent race model that gives exactly the same choice probabil-
ities. Independent race models use time to choose among competing alternatives:
The first alternative to finish is chosen. The equivalence of similarity-choice mod-
els and race models adds a temporal dimension to similarity-choice models and
allows them to predict reaction time as well as response probability.

Bundesen (1990) interpreted his theory of visual attention as a race model, in
which each categorization of each object raced against the other. He interpreted the
elements of the choice equation [e.g., 1(x, i)8,] as rate parameters for exponential
distributions. The finishing time for the winner of a race between exponential
distributions is itself exponentially distributed with a rate parameter that is the
sum of the rate parameters for the individual exponential distributions in the race.
The mean finishing time for an exponential distribution is simply the reciprocal of
the rate parameter. The mean finishing time for a race involving R categorizations
of a single object is

1
/(TP
2 n(x, j)B;

JER

3

which is 1 over the denominator of Equation 1. Equation 1 provides the choice
probabilities and Equation 3 provides the time to make the choice.

The simple race model expressed in Equations 1 and 3 cannot deal with conflict
situations, such as the Stroop (1935) task or the Eriksen & Eriksen (1974) flanker
task, in which prepotent responses compete with the required response (Palmeri
1997). The race model predicts that conflict will create difficulty, but it places the
effect of difficulty in the wrong dependent variable. The prepotent response likely
will be chosen first, so conflict will appear in error rate. The finishing time of the
first response determines reaction time, so conflict either will produce no cost in
reaction time or it will speed up reaction time. The data show a different pattern:
Conflict slows reaction time but has little effect on error rate.

To account for conflict situations, Logan (1996) and Nosofsky & Palmeri
(1997a) added response selection processes to the basic similarity-choice model.
The response selection processes accumulate evidence provided by the similarity-
choice model. The race is run repeatedly and each categorization that comes out of
the race is added to an accumulator for one response or another. In Logan’s (1996)
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CUMULATIVE PROGRESS IN ATTENTION 211

counter model, a response is selected when one of the accumulators reaches an
absolute threshold (i.e., when it accumulates K categorizations). In Nosofsky &
Palmeri’s (1997a) exemplar-based random walk model, a response is selected when
one of the accumulators reaches a relative threshold (i.e., when it accumulates K
more categorizations than any other accumulator). The exemplar-based random
walk model is particularly powerful. It is related formally to Ratcliff’s (1978;
Ratcliff et al. 1999) diffusion model, which is the most powerful model of reaction
time available today. The diffusion model is a generalization of the random walk
model, in which time and evidence are both continuous variables. It accounts for
response probabilities and distributions of reaction times for correct and incorrect
responses in terms of a small number of parameters. It provides estimates of the
rate at which information accumulates (drift rate) but it does not explain why the
rates take on different values in different conditions. An important contribution
of the exemplar-based random walk model is to provide a theoretical account of
variation in drift rate between conditions.

Cumulative Developments

Elements of similarity-choice theory have been used pervasively throughout cog-
nitive psychology. The Shepard-Luce choice rule is used to predict choice prob-
abilities in a variety of theories. Two major families of theory represent cumu-
lative development, one addressing categorization and one addressing attention.
The categorization family began with Medin & Schaffer’s (1978) context model
of classification, which used the Shepard-Luce choice rule to predict classifica-
tion probabilities. Nosofsky’s (1984, 1986, 1988) generalized context model ex-
tended Medin & Schaffer’s model to include the similarity assumptions inherent
in the choice rule. Kruschke (1992) added learning assumptions to Nosofsky’s
model, and Lamberts (2000) extended the assumptions about similarity to allow
dynamic changes in similarity within the course of a single experimental trial.
Nosofsky & Palmeri (1997a) combined Nosofsky’s model with Logan’s (1988)
instance theory of automaticity to create the exemplar-based random walk model.
The attention family began with Bundesen’s (1987) fixed capacity independent
race model, which Bundesen (1990) extended to the theory of visual attention.
Logan (1996) added a perceptual front end to Bundesen’s theory and Logan &
Gordon (2001) extended that theory to dual-task performance and executive con-
trol. Logan (2002) combined the two families in a single instance theory of attention
and memory that includes each of the ancestral theories as a special case.

SIGNAL-DETECTION THEORY

Sensitivity, Bias, and Similarity

Signal-detection theory was developed in the 1950s and 1960s by Tanner & Swets
(1954) and Green & Swets (1966), among others. It had antecedents in Thurstone’s
(1927) work on comparative judgment. Whereas Thurstone was interested in
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developing psychophysical scales from comparative judgments, the main goal
of signal-detection theory was to separate sensitivity from bias in a variety of per-
ceptual discriminations. A key concept in signal-detection theory is the idea of
internal noise: Variance in perceptual representations will cause similar stimuli to
have overlapping representations. The classic signal-detection situation is a yes-
no discrimination task, in which subjects must determine whether a stimulus—
a signal—has been presented. The subject gets a single sample from the per-
ceptual system and compares it to a decision criterion, deciding “yes” if the
sample exceeds the criterion and “no” if it does not. The overlap of the dis-
tributions for signal (technically, signal plus noise) and no signal (noise) de-
termines the subjects’ sensitivity. The greater the overlap, the lower the sen-
sitivity. The position of the decision criterion on the decision axis reflects the
subject’s response bias. A low criterion reflects a bias for saying “yes” and a
high criterion reflects a bias for saying “no.” The probability of a correct “yes”
response—a hit—is proportional to the area of the signal-plus-noise distribution
that exceeds the criterion, and the probability of an erroneous “yes” response—a
false alarm—is proportional to the area of the noise distribution that exceeds the
criterion.

Over the years, signal-detection theory has been used in many ways in many
different applications. Often, it is used to generate dependent measures that separate
sensitivity and bias (d' and B, respectively) without much theoretical commitment
to the underlying processes. However, it has also become the core of several
theories of memory, attention, and categorization, providing a language in which
to articulate these more complex processes. Classical signal detection, applied to
yes-no discrimination tasks, assumes univariate normal distributions with equal
variance for signal-plus-noise and noise distributions, though other distributions
and other assumptions about variance have been investigated thoroughly (e.g.,
Green & Swets 1966, Wickens 2002). Many of the applications to more complex
processes assume normal distributions and several assume multivariate normal
distributions. The general recognition theory of Ashby and his colleagues is a
notable example (e.g., Ashby & Lee 1991, Ashby & Maddox 1993, Ashby &
Perrin 1988, Ashby & Townsend 1986).

Signal-detection theory assumes that objects are represented as distributions
in multidimensional space. As with similarity-choice theory, similarity can be in-
terpreted as distance between objects in the multidimensional space. Distance is
stochastic, however, because objects are represented as distributions, not points.
Ashby & Perrin (1988) interpreted similarity in terms of overlap between distri-
butions. Objects that are more similar are represented by distributions that overlap
more; objects that are less similar are represented by distributions that overlap
less. In the special case of multivariate normal distributions with equal variances
and covariances, similarities calculated from overlap of distributions are equiva-
lent to similarities calculated from distances between points (i.e., the means of the
distributions; Ashby & Maddox 1993, Nosofsky 1992).
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Reaction Time and Response Selection

Classical signal-detection approaches deal primarily with situations in which stim-
uli are weak or confusable, so accuracy is the primary dependent measure. In order
to apply signal-detection theory to phenomena of attention, researchers often trans-
form situations that are usually studied with reaction time methods into situations
that can be studied with accuracy, by limiting exposure duration or masking the
stimuli (e.g., Palmer 1994). Another approach is to assume that reaction time is pro-
portional to the distance from the percept to the criterion. For example, Maddox &
Ashby (1996) tested two assumptions about the relation between reaction time and
distance, an exponential function

RT =aexp PP + ¢, “4)
following Murdock (1985), and a power function
RT =aD7? +o, )

where D is the distance between the percept and the decision boundary and « and
B are constants and c is an intercept parameter. In their theory, response selection
depends on the region the percept falls in (i.e., where it falls with respect to the
decision boundaries) and reaction time depends on the distance from the percept
to the decision boundary. This approach seems more descriptive than explanatory
because no process interpretation is given for the relation between reaction time
and distance. Recently, Ashby (2000) developed a stochastic version of general
recognition theory that drives a multivariate diffusion process. This model is related
to Ratcliff’s (1978; Ratcliff et al. 1999) diffusion model and it provides a process
interpretation of the relation between reaction time and distance from the percept
to the boundary.

Cumulative Developments

Signal-detection theory may be even more pervasive than similarity-choice theory.
It appears in many theories of perception, attention, memory, and categorization.
There have been several different threads of cumulative development, but they
have not yet been woven together in a single fabric, as Logan (2002) did with
similarity-choice theory approaches to attention and categorization. The impres-
sive cumulative developments from signal-detection theory include (a) the work
of Sperling and his colleagues on focusing and switching attention (e.g., Reeves &
Sperling 1986, Shih & Sperling 2002, Sperling & Reeves 1980, Sperling &
Weichselgartner 1995); (b) the general recognition theory developed by Ashby
and colleagues to account for identification and categorization (e.g., Ashby & Lee
1991, Ashby & Maddox 1993, Ashby & Perrin 1988, Ashby & Townsend 1986);
(c) the work of Dosher & Lu on cuing and focusing attention (Dosher & Lu 2000a,b,
Lu & Dosher 1998); and (d) the work of Palmer and colleagues on visual search
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(e.g., Eckstein et al. 2000; Palmer 1994, 1998; Palmer et al. 1993). It would be
very interesting to see a formal integration of these different theories, but that must
await future research.

ATTENTION TO DIMENSIONS: CATEGORIZATION

Attention researchers do not discuss categorization much, but the concept of at-
tention to dimensions plays an important role in categorization research. Early
rule-based theories of categorization assumed that subjects attended to dimen-
sions relevant to categorization and ignored other dimensions (e.g., Bruner et al.
1956). In many experiments, the primary task was to discover which dimensions
were relevant (Trabasso & Bower 1968). More recent similarity-based theories
of categorization also consider attention to dimensions to be an important pro-
cess in categorization, including similarity-choice theories and signal-detection
theories.

Similarity-Choice Theory

Luce (1963) and others applied the choice rule to a variety of choice tasks that
usually involved choosing a single response to a single stimulus (for a review, see
Luce 1977). Nosofsky (1984, 1986, 1988) applied the choice rule to categorization,
on the assumption that categories were represented as collections of instances. In
Nosofsky’s generalized context model, the probability of choosing category i for
object x was directly related to the sum of the similarities between object x and the
various instances of category i the subject had encountered, and inversely related
to the sum of the similarities between object x and the various instances of the
categories in the response set R. That is,

Ni
Z n(-xy im).Bi
Pilx) = —"= ; ©6)
Z Z Tl(x, ]m)ﬂj
JERm=1

where N; is the number of instances in category i.

An important contribution of the generalized context model was to relate choice
probabilities in identification tasks to choice probabilities in categorization tasks.
Shepard et al. (1961) applied Equations 1 and 2 to identification probabilities,
extracted estimates of the similarities, and used them in Equations 1 and 6 to
predict categorization probabilities. This attempt was a famous failure, which led
Shepard et al. to conclude that the principles that governed identification were
separate from the principles that governed categorization. Nosofsky (1984, 1986,
1988) noted that subjects might attend to the dimensions of the stimuli differently
in identification and categorization. He rewrote Equation 2 to include a parameter,
wy, that represents the attention given to dimension h:
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1

r

H
dyi = (Z wp |[Upx — uhi|r) ] @)
h=1

Nosofsky allowed the attention weight, wy, to take on different values in iden-
tification and categorization and succeeded where Shepard et al. had failed: He
was able to predict categorization probabilities from identification probabilities
and vice versa. Categorization and identification could be explained by the same
principles—those underlying similarity-choice theory.

Nosofsky (1984, 1986, 1988) assumed that subjects chose attention weights that
optimized performance. Kruschke (1992) extended the generalized context model
to include a connectionist model that learned attention weights. Consequently,
Kruschke’s model provides a better account of category learning than the gener-
alized context model (Nosofsky et al. 1994, Nosofsky & Palmeri 1996).

The idea of dimensional attention weights is very powerful. Nosofsky et al.
(1994) extended it to account for rule-based categorization. In their view, a rule
amounts to exclusive attention to a single dimension. Johansen & Palmeri (2002)
modeled the transition from rule-based categorization to instance-based catego-
rization in terms of a shift from attending exclusively to one dimension to dis-
tributing attention across dimensions.

Nosofsky & Palmeri’s (1997a) exemplar-based random walk model extends the
generalized context model to account for reaction time phenomena as well as for
choice probabilities. The random walk allows the exemplar-based random walk
model to respond more deterministically than the generalized context model and
provides a process interpretation for extensions to the generalized context model
that allows it to respond deterministically. Moreover, the random walk process
coupled with the idea that learning involves accumulating instances allows the
exemplar-based random walk model to account for the effects of frequency of
presentation on categorization performance. Nosofsky & Patmeri (1997b) showed
that subjects responded faster to the more frequently presented of two stimuli that
were equally distant from the decision bound (also see Verguts et al. 2003).

Signal-Detection Theory

General recognition theory accounts for categorization in terms of decision bounds
that divide multidimensional space into regions corresponding to each category.
A stimulus is classified according to the region in which it falls (e.g., Ashby &
Lee 1991, Ashby & Maddox 1993). Ashby & Lee (1991) applied general recog-
nition theory to similarity ratings and identification probabilities and then to the
identification and categorization data of Nosofsky (1986). They found that gen-
eral recognition theory fit Nosofsky’s data better than the generalized context
model. Moreover, general recognition theory fit the identification and categoriza-
tion data without assuming a different distribution of attention weights in the two
tasks. However, it did require different decision bounds and different assumptions
about perceptual independence and perceptual separability. Maddox et al. (1998)
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extended general recognition theory to account for reaction time distributions in
perceptual categorization tasks. Recently, Maddox et al. (2002) extended general
recognition theory to include a perceptual attention component that affects the vari-
ance of the multivariate distributions as well as a decisional attention component
represented by decision bounds (cf. Bundesen 1990).

In the domain of categorization, general recognition theory competes fiercely
with the generalized context model and the exemplar-based random walk model.
Each theory provides an impressively exact account of an impressive amount of
data. Indeed, the predictions of the two theories are often very similar to each
other, despite fundamental differences in the underlying assumptions about the
representations and processes used to perform the tasks. Ashby & Maddox (1993)
and Nosofsky (1992) have shown conditions under which they are formally equiv-
alent and make exactly the same predictions. It would be interesting to see the
same effort extended to compare signal-detection and similarity-choice theories
of other aspects of attention.

ATTENTION TO DIMENSIONS: GARNER TASKS

Attention to dimensions was investigated most thoroughly by Garner and his col-
leagues (see, e.g., Garner 1974). Prominent among their experiments is a filtering
task that examines subjects’ ability to disregard variation in irrelevant dimensions.
For example, subjects may judge the height of rectangles while attempting to ig-
nore their width. Two major phenomena must be explained: Garner interference
and redundancy gains. Garner interference is measured by comparing a baseline
task with a filtering task. In the baseline task, the relevant dimension varies but
the irrelevant dimension is held constant (e.g., judging whether wide rectangles
are tall or short). In the filtering task, the two dimensions vary independently (e.g.,
tall rectangles are wide and narrow; short rectangles are wide and narrow). If sub-
jects are able to filter out variation in the irrelevant dimension, there should be no
difference between baseline and filtering conditions—there will be no Gamer in-
terference. If subjects are not able to filter out variation in the irrelevant dimension,
reaction time will be longer in the filtering task than in the baseline task—there
will be Garner interference. Many studies have found that the presence or absence
of Garner interference depends on the relation between the dimensions. If the di-
mensions are separable, like hue and height or brightness and width, then there is
no Garner interference. If the dimensions are integral, like hue and brightness or
height and width, then there is Garner interference.

Redundancy gain is observed by comparing correlated and orthogonal filtering
tasks (Garner 1974). In a correlated task, both dimensions vary but their values are
correlated (e.g., tall rectangles are wide; short rectangles are narrow), whereas in
an orthogonal task, the two dimensions vary independently (e.g., tall rectangles are
wide and narrow; so are short rectangles). A redundancy gain is observed if subjects
are faster with the correlated task than with the orthogonal task. Again, whether
redundancy gains are observed depends on the relation between the dimensions.
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CUMULATIVE PROGRESS IN ATTENTION 217

Separable dimensions usually show no redundancy gain; integral dimensions show
strong redundancy gains.

Garner’s research poses three key questions for formal theories to answer:
What causes Garner interference? What causes redundancy gain? And what does
it mean for dimensions to be separable or integral? Models based on similarity-
choice theory and models based on signal-detection theory have answered these
questions.

Similarity-Choice Theory

Nosofsky & Palmeri’s (1997a) exemplar-based random walk model accounts for
the difference between separable and integral dimensions in terms of the distance
metric (i.e., the parameter » in Equations 2 and 7). If r = 1, the distance metric
is city block and the dimensions are separable. Changing the distance on one
dimension has no effect on the distance on the other dimension, so the dimensions
can be processed independently without one intruding on the other. If r = 2, the
distance metric is Euclidean and the dimensions are integral. Changing the distance
on one dimension also changes the distance between the objects, so variation in
the irrelevant dimension intrudes on judgments of the relevant dimension.

The exemplar-based random walk model accounts for Garner’s results with
separable dimensions in terms of attention weights. With separable dimensions,
all of the attention weight can be given to the relevant dimension, so the irrelevant
dimension has no influence. This distribution of attention weight stretches the
relevant dimension and collapses the irrelevant dimension. Consequently, there
is no difference between baseline and filtering tasks and no difference between
orthogonal and correlated filtering tasks.

The exemplar-based random walk model accounts for Garner’s results with
integral dimensions in terms of differential repetition effects and differential con-
fusions between stimuli. The baseline condition involves fewer stimuli than the
filtering condition. In typical experiments, the baseline condition involves only two
stimuli whereas the filtering condition involves four. Thus, stimuli and responses
are more likely to repeat in the baseline condition, and repetition of stimuli and
responses reduces reaction time (Nosofsky & Palmeri 1997a).

The different numbers of stimuli in the baseline and filtering tasks also creates
differential confusions between stimuli. Consider a baseline condition in which
subjects judge the height of narrow rectangles and a filtering condition in which
they judge the height of wide and narrow rectangles. Imagine the subject is pre-
sented with a tall narrow rectangle. In the baseline condition, there is only one
stimulus to be confused with the target—the short narrow rectangle. In the filter-
ing condition, however, there are two stimuli to be confused with the target—the
short narrow rectangle and the short wide rectangle. Consequently, the probability
of choosing the target will be lower in the filtering condition and this will slow the
random walk. The lower the choice probability, the slower the rate at which target
categorizations accumulate. Moreover, the lower the choice probability, the more
incorrect categorizations will accumulate in the other counter. The exemplar-based
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random walk model chooses a response when one counter has K more categoriza-
tions than any other, so the greater the number of categorizations in the incorrect
counter, the greater the number of correct categorizations that must be accumu-
lated. Nosofsky & Palmeri (1997a, 1997b) predict the data quantitatively.

The exemplar-based random walk model accounts for the difference between
correlated and orthogonal filtering tasks in terms of differential repetition and dif-
ferential distance between the alternatives. As with the baseline-filtering contrast,
the contrast between correlated and orthogonal filtering tasks involves different
numbers of stimuli. In a typical design, the correlated condition involves two stim-
uli whereas the orthogonal condition involves four. As with the baseline-filtering
contrast, there are more opportunities for stimulus-response repetitions in the cor-
related condition than in the orthogonal condition, and this differential facilitation
from repetition accounts for some of the difference in reaction time (Nosofsky &
Palmeri 1997a).

The difference in distance between alternatives can be seen by imagining a set
of four stimuli that vary on two dimensions arrayed as a square in multidimensional
space. The orthogonal task requires subjects to discriminate the left two stimuli
from the right two stimuli. The correlated task requires subjects to discriminate the
bottom left stimulus from the top right stimulus. Imagine the bottom left stimulus
has been presented. In the orthogonal task, the nearest (most confusable) alternative
is the bottom right stimulus. In the correlated task, the nearest alternative is the top
right stimulus. The bottom right stimulus is closer to the target than the top right
stimulus, so choice probability will be lower, and reaction time will be longer.
Nosofsky & Palmeri (1997a) predicted this difference quantitatively. Nosofsky &
Palmeri (1997b) extended these predictions to reaction time distributions.

Signal-Detection Theory

In general recognition theory, the concepts of integrality and separability are
closely tied to the concepts of perceptual and decisional independence (Ashby &
Maddox 1994, Ashby & Townsend 1986). The theory distinguishes between per-
ceptual separability and decisional separability. Consider a set of four stimuli
produced by factorially combining two levels of two components, A and B. Per-
ceptual separability holds if the perceptual effects of one stimulus component are
independent of the perceptual effects of another. This can be assessed by com-
paring the marginal distributions of perceptual effects, gaipi(x) and gaip(x), for
level i of component A at levels 1 and 2 of component B. Perceptual separability
holds if ga;g1(x) = gaipa(x) fori = 1 and 2. Perceptual separability is violated if
gAiB1(X) # gaipa(x) for i = 1 and 2. Ashby & Maddox (1994) consider two cases in
which perceptual separability can be violated: mean shift integrality and variance
shift integrality. In mean shift integrality, the mean of the distribution of perceptual
effects for one level of one component is different from the mean of the distribu-
tion of perceptual effects for the other level (i.e., the distributions have the same
shape but the means are shifted relative to each other). In variance shift integrality,
the means of the distributions are the same but the variances are different. Both
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mean-shift integrality and variance-shift integrality will produce violations of per-
ceptual separability.

Decisional separability occurs if the decision about one component is unaffected
by the perceptual effect of the other component. This occurs when the decision
boundaries are parallel to the coordinate axes of the multidimensional space. Per-
ceptual independence is assessed from the covariance between the distributions
of perceptual effects in multidimensional space. Perceptual independence holds if
the covariances are zero (for a complete discussion of independence, see Ashby &
Townsend 1986).

The results in Garner’s tasks are predicted from these assumptions about sep-
arability and integrality and from the idea that reaction time is proportional to
the distance between the percept and the decision bound (Equations 4 and 5). If
perceptual and decisional separability hold, then the percepts will be the same
distance from the decision bound in the baseline and filtering tasks—there will be
no Garner interference. If perceptual separability fails and decisional separabil-
ity holds, then some percepts will be closer to the decision bound in the filtering
condition than in the baseline condition, resulting in slower reaction times. In this
way, general recognition theory predicts Garner interference with (perceptually)
integral dimensions.

In orthogonal and correlated filtering tasks, the percepts will be the same dis-
tance from the decision bound if perceptual and decisional separability hold—there
will be no redundancy gain. Maddox & Ashby (1996) noted that the optimal deci-
sion bounds were not orthogonal to the coordinate axes in the correlated filtering
task (e.g., when the mean of one distribution is in the top left and the mean of the
other is in the bottom right). With this configuration of distributions, the optimal
decision bound is a diagonal line (going from the top right to the bottom left). This
decision bound is optimal in the sense that it maximizes the distance between the
percept and the decision bound, and that will speed reaction time. Consequently,
Maddox & Ashby (1996) predicted redundancy gains with perceptually separable
stimuli in the correlated filtering task, and they found them. In terms of their theory,
they predicted that the correlated task would violate decisional separability.

ATTENTION TO OBJECTS: VISUAL SEARCH

Identification and categorization tasks represent a universe in which there is only
one object. The real world and many attention tasks represent a universe in which
there are several objects, and choosing an object to respond to is a significant
problem. For the past 20 years, much research has been done on visual search tasks,
in which subjects are faced with a display of many objects and must decide whether
the display contains a target object. The main independent variable is display size—
the number of objects in the display—and the main dependent variable is a measure
of search efficiency—the extent to which reaction time or accuracy or both are
affected by variation in the number of objects in the display. If search is efficient,
reaction time and accuracy are largely unaffected by the number of objects in the
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display. If search is inefficient, reaction time and accuracy are strongly affected by
the number of objects in the display. Much of the research has focused on factors
that determine search efficiency and a number of alternative hypotheses have been
proposed, some of which are informal and some of which are formal. Similarity-
choice theory and signal-detection theory have been applied to these problems,
suggesting their own hypotheses about the determinants of search efficiency.

Similarity-Choice Theory

The main contribution of Bundesen’s (1990) theory of visual attention was an
application of similarity-choice theory to the problem of object selection. His
initial work focused primarily on partial report tasks (Sperling 1960), in which
subjects are presented with several stimuli and are required to identify some of
them. In partial report tasks, the objects to be identified typically share a property
or set of properties that are independent of the properties relevant to identification.
For example, subjects might be shown a display of red and black letters and
asked to report the red ones. This kind of object selection was called stimulus set
(Broadbent 1971), input selection (Treisman 1969), and filtering (Kahneman &
Treisman 1984) in classical theories of attention.

In the theory of visual attention, objects are assigned attentional weights, and
the probability of selecting an object increases with the attentional weight on the
object. For a display of objects that are homogeneous (in the sense of Bundesen
1990, p. 524) the probability that object x is the first object selected is given:
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where n(x, k) is the extent to which object x has the property k in the stimulus
set S (the set of target-defining properties), and D is the set of objects that are
displayed on a given trial. The parameter 7 reflects the priority given to objects
with property k. It has the same effect as the bias parameter in the Shepard-Luce
choice rule but it is represented by a different symbol because it has a different
function: 7 reflects the priority given to objects in the stimulus set, whereas S
reflects the bias given to different categories in the response set. In the language of
classical theories of attention, 7 reflects stimulus set or input selection, whereas
B reflects response set (Broadbent 1971) or analyzer selection (Treisman 1969).

Changing priority changes the distribution of attention across the objects in the
display. Objects whose properties are in the stimulus set S get more attention than
objects whose properties are not in the stimulus set. By Equation 8, the P, (z) values
sum to 1.0 across the display, so increasing the priority of one object necessarily
decreases the priority of the others. This constraint limits the theory of visual
attention’s processing capacity (Bundesen 1990, Logan 2002).

Bundesen (1990) combined stimulus set and response set multiplicatively, in
order to account for stimulus selection and response selection (for an explanation of
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the multiplicative combination, see Logan 2002). In the theory of visual attention,
the probability of choosing object x and identifying it as a member of category i
is given by:

n(x, i)B; Pr(x)
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Bundesen (1990) applied this equation to partial and whole report tasks and
extended it to a variety of attention tasks, including efficient and inefficient visual
search.

EFFICIENT AND INEFFICIENT SEARCH The results from similarity-choice theories
are generally consistent with more qualitative models (Treisman & Gelade 1980)
or simulation models (Cave & Wolfe 1990, Wolfe 1994) that assume that effi-
cient search is done in parallel and inefficient search is done in series. Bundesen
(1990) modeled Treisman & Gelade’s (1980) feature search task, in which a tar-
get differs from a set of homogeneous distractors in terms of a single feature
(e.g., a red target among green distractors). If the target is not similar to the dis-
tractors, this task yields very efficient search. Bundesen modeled target-present
responses as a race between alternatives. The distractors are not very similar to
the target, so they intrude little on the race and reaction time is largely indepen-
dent of the number of distractors. He modeled target-absent responses in terms
of a deadline. The model responded “absent” if a target was not found by the
time the deadline expired. However, Chun & Wolfe (1996) suggest that tempo-
ral deadlines may not be the best way to terminate search on target-absent trials.
Logan (2002) extended the theory of visual attention to include the similarity as-
sumptions of the generalized context model and the exemplar-based random walk
model. He noted that subjects can vary attention weights (see Equation 7) in fea-
ture search tasks to increase the distance between the targets and the distractors in
multidimensional similarity space, which increases choice probability and speeds
reaction time.

Bricolo et al. (2002) provided serial and parallel models of inefficient search
tasks, inspired by the theory of visual attention, that address changes in reaction
time distributions as a function of the number of objects in the display (display
size) and serial position effects on mean reaction time. The results of the display
size experiment showed that the minimum of the reaction time distribution in-
creased with display size for both target-present and target-absent responses but
the increase was much larger for target-absent responses. This result was predicted
by a serial self-terminating model and by a parallel self-terminating model with
fixed capacity that is reallocated after each object is finished processing. The re-
sults of the serial position experiment showed an increase in reaction time with
serial position, which could be predicted by a serial self-terminating model and by
a parallel self-terminating model with fixed capacity that is not reallocated after
each object is finished processing. The same serial model could account for both
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sets of results, but different parallel models were required for the two experiments,
so Bricolo et al. (2002) favored the serial model.

Logan (2002) noted that subjects could not vary attention weights to optimize
performance in many tasks that yield inefficient search. In conjunction search tasks,
in which the target shares one feature with half of the distractors and another feature
with the other half of the distractors, varying attention weight to move one of the
distractors further away from the target moves the other distractor closer to the
target, resulting in no net gain in discriminability. Logan (1996) provided decision
rules for conjunction search tasks and noted that they predicted faster decisions
for targets that differed from distractors on two features (triple conjunctions) than
for targets that differed from distractors on one feature (double conjunctions; see
Wolfe et al. 1989).

DISTANCE AND GROUPING BY PROXIMITY A common finding in a variety of at-
tention tasks is that performance is affected by the proximity of the objects. Nearby
distractors impair target performance more than distant distractors (e.g., Eriksen &
Eriksen 1974). Grouping by proximity is powerful and can have strong effects
on performance. Targets that are grouped together with distractors are harder to
find. Targets that are isolated from distractors are easier to find (e.g., Banks &
Prinzmetal 1976). Bundesen’s (1990) theory of visual attention cannot account
for these effects. It assumes all objects in the display are processed in paralle]
and their processing rates are the same regardless of their spatial arrangement.
Logan (1996) extended the theory of visual attention to account for the effects of
proximity and grouping by proximity, adding Van Oeffelen & Vos’s (1982, 1983)
COntour DEtector (CODE) theory of perceptual grouping by proximity as a “front
end” to produce the CODE theory of visual attention.

The CODE theory assumes that the representation of object location is not a
point, but rather, is distributed over space (also see Ashby etal. 1996). The distribu-
tions representing nearby objects overlap substantially; distributions representing
distant objects overlap very little. According to CODE, the distributions add to-
gether to produce a CODE surface that looks something like a mountain range.
Grouping by proximity is determined by imposing a threshold on the CODE sur-
face (i.e., drawing a plane of a certain height across the CODE surface) to create
one or more above-threshold regions. The CODE theory claims that objects that
fall within the same above-threshold region are part of the same perceptual group.
CODE predicts subjects’ grouping by proximity very well in textbook demonstra-
tions (Van Qeffelen & Vos 1982, 1983) and reasonably well in random dot patterns
(Compton & Logan 1993, 1999).

The CODE theory of visual attention assumes that the theory of visual atten-
tion samples information from the perceptual groups defined by above-threshold
regions on the CODE surface. The probability that the theory of visual attention
will sample a given object is equal to the proportion of the area or volume of the
distribution of that object that falls within the sampled above-threshold region.
Objects whose centers fall within the region are likely to be sampled because the
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central parts of their distributions fall within the above-threshold region. Objects
whose centers fall outside the region (i.e., objects in different perceptual groups)
will also be sampled with a probability equal to the proportion of their distribution
that falls within the sampled above-threshold region, but that probability is lower
because only the tails of the object intrude in the sampled above-threshold region.
Moreover, the more distant the object, the smaller the proportion of its distribution
will fall within the sampled above-threshold region, so the smaller the impact it
will have on performance. Logan (1996) showed that these ideas accounted for dis-
tance and grouping by proximity effects in a variety of attention tasks, and Logan
& Bundesen (1996) showed they accounted for distance and grouping effects in
partial report tasks.

Signal-Detection Theory

Signal-detection approaches to search generally assume there are no perceptual
capacity limitations on search and interpret search efficiency in terms of the impact
of discriminability on a parallel decision process, inconsistent with feature inte-
gration theory (Treisman & Gelade 1980) and guided search (Cave & Wolfe 1990,
Wolfe 1994, Wolfe et al. 1989), and consistent with paralle]l models (Duncan
& Humphreys 1989, Heinke & Humphreys 2003, Humphreys & Miiller 1993).
Palmer and colleagues applied signal-detection theory to a variety of visual search
tasks, including those that produce efficient and inefficient search (Eckstein et al.
2000; Palmer 1994, 1998; Palmer et al. 1993). In their models, a decision process
takes a sample from each object in the display and decides “target present” if the
largest sample exceeds a criterion and “target absent” if it does not exceed the
criterion—that is, by applying a “max rule.” Display size effects occur because
of the max rule. On target-absent trials, the noise distribution is the distribution
of the maximum of the values sampled from N distractors, and the mean of this
distribution increases with N. On target-present trials, the signal-plus-noise dis-
tribution is the distribution of the maximum of N — 1 values sampled from the
distractors and one value sampled from the target. The mean of this distribution
also increases with N. The discriminability of these distributions of maxima de-
pends on the discriminability of a single target from a single distractor—that is, on
d'. The smaller the d' for a single discrimination, the greater the overlap between
the noise and signal-plus-noise distributions of maxima, and the overlap increases
as N increases. Thus, search tasks with hard discriminations produce large display
size effects (inefficient search) and search tasks with easy discriminations produce
small display size effects (efficient search). The same parallel decision process
is used for easy and hard search. The difference in search efficiency is produced
entirely by noise in the decision process.

Eckstein et al. (2000) extended the model to conjunction search tasks, in which
targets and distractors vary on several dimensions. In their model, information from
different dimensions is collapsed onto a single decision variable, which produces
distributions of maxima for target-present and target-absent trials. If there are f
relevant feature dimensions and the target differs from the distractors along r of
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them, then sensitivity for the conjunction discrimination, d’ f is
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where dj) is the sensitivity along each of the r dimensions, which is assumed to be
equal for each dimension. This model produces a good quantitative description of
the differences between feature, conjunction, and triple-conjunction conditions.

Geisler & Chou (1995) presented a signal-detection model of search perfor-
mance in which sensitivity varied with eccentricity. They presented displays of
single objects at known locations and measured subjects’ ability to discriminate
the target from the distractor. The known locations varied in eccentricity and dis-
crimination performance decreased as eccentricity increased. Then they presented
displays in which a target was or was not superimposed on a uniform texture made
from the distractor pattern and in which target location was unknown. Performance
on this task was completely predictable from the decline in discriminability with
eccentricity, which suggests there were no capacity limits. This conclusion may
be limited by presenting the distractors as a uniform field. The equivalence of
performance when location is known and unknown may be another example of
the general finding that search for a single target is not facilitated by knowledge
of target location (Shiu & Pashler 1994).

These signal-detection approaches to visual search are impressive, but the sit-
uations they model are different in important ways from the situations in which
visual search is usually studied. In all cases, the displays are presented briefly
so that accuracy is the main dependent measure. The brief displays prevent se-
quential sampling from the display, either with covert attention or with overt eye
movements. By contrast, typical search tasks present the display until the subject
responds, allowing plenty of time for sequential sampling. Eye movements and
covert shifts of attention may be important phenomena in visual search but these
signal-detection approaches ignore them. Perhaps it should not be surprising that
displays too brief to allow sequential sampling can be modeled with parallel pro-
cesses. More importantly, it is not clear how the models applied to brief displays
can be extended to account for reaction times with response-terminated displays.
That is an important direction for future research.

ATTENTION TO OBJECTS: CUING PROCEDURES

Attention to objects is often studied by presenting subjects with displays of multiple
objects and giving them cues that indicate the target’s location or some other salient
property. In some procedures, each object in the display is a potential target and
the cue indicates which object to judge or report (e.g., Eriksen & Hoffman 1972,
Sperling 1960). Consequently, subjects cannot respond to the target without first
responding to the cue. In other procedures, the target differs from the distractors
in some way and the cue merely indicates its position (e.g., Posner et al. 1980).
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In these cases, subjects can respond to the target without first responding to the
cue; nevertheless, the cue influences performance. Valid cues that indicate the
correct location of the target facilitate performance, speeding reaction time and
increasing accuracy. Invalid cues that indicate a location that does not contain the
target impair performance, slowing reaction time and decreasing accuracy.

Similarity-Choice Theory

Bundesen (1987, 1990) applied his theory of visual attention to a variety of partial
report tasks, including classical data from Sperling (1960). In his own experiments,
he varied exposure duration and the number of targets and distractors. In all cases,
the theory fit the data very well (also see Bundesen 2002, Logan & Bundesen
1996, Shibuya & Bundesen 1988). Recently, Duncan et al. (1999) used the theory
of visual attention to analyze partial and whole report performance in neglect
patients. In partial report, patients showed a bias against contralesional targets but
a preserved bilateral ability to prioritize targets. In whole report, they showed a
bilateral reduction in processing capacity, which suggests a bilateral component
to neglect.

Bundesen (1990, 1998) applied the theory of visual attention to the cuing effects
reported by Posner et al. (1980). The cue altered the priority (7 in Equation 8)
given to the cued location but had no effect on the bias (8 in Equation 9) given to
the target. Increasing priority increases the processing rate for the target on valid
cue trials, speeding reaction time. Because the P,(z) values are constrained to sum
to 1.0 across the display, increasing priority in an invalid location (on invalid cue
trials) necessarily decreases processing rate for the target and slows reaction time.

Logan (2002) extended Bundesen’s analysis, contrasting situations in which the
cue was necessary to specify the target (e.g., Eriksen & Hoffman 1972, Sperling
1960) and situations in which the target could be specified independent of the cue
(e.g., Posner et al. 1980). When the cue specifies the target, cuing can be accounted
for entirely in terms of priority (7 in Equation 8). However, when the target is
specified independent of the cue and the cue merely indicates its location, both
priority and bias (8 in Equation 9) contribute to the cuing effect. Thus, from the
perspective of the theory of visual attention, researchers interested in separating
priority from bias should study situations in which cues specify the target and
researchers interested in the interaction between priority and bias should study
situations in which the cue merely indicates the target’s location.

Signal-Detection Theory

Over the past 20 years, Sperling and colleagues have developed an episodic atten-
tion theory that accounts for performance in a variety of attention tasks (Reeves
& Sperling 1986, Shih & Sperling 2002, Sperling & Reeves 1980, Sperling &
Weichselgartner 1995). The most detailed applications of the theory have been
to situations that involve rapid serial visual presentation (RSVP) to measure the
reaction time of attention shifts, the discrete versus continuous nature of attention
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shifts, and the trajectory of attention through time and space. Spetling & Reeves
(1980) measured reaction time by presenting two RSVP streams. When subjects
detected a target in one of the streams, they were to shift attention to the other
stream and report the first item they could. The lag between the target in one stream
and the item reported in the other reflects the attention reaction time. Reeves &
Sperling (1986) elaborated the procedure and the theory, requiring subjects to re-
port as many items as they could from the second stream after detecting the target
in the first. They found that subjects had good information about item identity (up
to the limit of short-term memory) but poor information about the temporal order
in which the items appeared. They modeled performance in terms of an attention
gate that opened at the second stream some time after the target was detected in
the first stream. The attention gate took the form of a gamma function (the con-
volution of two exponentials), and the strength of the tendency to report an item
depended on the area it subtended under the gamma function. The values along
the abscissa were determined by the presentation rate of the items, and the values
along the ordinate were determined by the height of the gamma function. This
attention gating model provided an excellent account of the data.

Sperling & Weichselgartner (1995) extended the attention gating theory to cre-
ate the episodic theory of attention. In their theory, visual attention consists of
a series of discrete attention episodes. Each episode is characterized by a three-
dimensional distribution of attention that extends in time and space. A central con-
tribution of this theory was to model attention shifts as discrete shifts from one spa-
tial distribution to another, contrary to previous attempts to model attention shifts as
continuous movements of a “spotlight” across space. Sperling & Weichselgartner
(1995) fit their model to the data of several experiments that claimed to find ev-
idence of spatially continuous shifts of attention. They found that their model
accounted for the data very well without assuming a continuous shift.

Recently, Shih & Sperling (2002) extended the RSVP procedure and the model
further to measure the trajectory of attention through time and space. Their RSVP
procedure involves presenting successive displays of three rows of three items
and cuing subjects to report items from one of the rows with a tone that varied
in pitch (cf. Sperling 1960). They measured the trajectory of attention through
time by noting which displays the reported letters came from and they measured
the trajectory of attention through space by noting which rows the reported letters
came from. They also tested their subjects on partial report tasks in which the delay
of the cue and a poststimulus mask were varied and on whole report tasks in which
mask delay was varied, using the same model to account for performance on these
tasks and the RSVP task. They relate their theory to other procedures intended to
measure shifts of spatial attention and to other models of visual spatial attention,
such as Bundesen’s (1990) theory of visual attention.

On the one hand, the RSVP procedure used in these experiments is quite differ-
ent from most procedures used to measure cuing attention, so it is not immediately
clear how the results from this procedure relate to results from the other proce-
dures. Moreover, the model deals with accuracy of responding and it is not clear
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how it would deal with reaction time. On the other hand, Sperling and colleagues
have taken great pains to apply their model to other procedures, formally in some
cases and informally in others. The relations between the procedures can be seen
through the model. Indeed, the main purpose of theories and models is to show the
relations between disparate procedures.

Dosher & Lu (2000a,b; Lu & Dosher 1998) used a noisy perceptual template
model to investigate the costs and benefits of valid and invalid cues, using external
noise to distinguish among attention mechanisms. They added increasing amounts
of external noise (white Gaussian random noise) to a visual stimulus and observed
the effects on contrast thresholds. Typically, adding external noise has no effect
on contrast threshold as long as external noise is smaller than the internal noise
in the system. When external noise exceeds internal noise, contrast thresholds
increase approximately linearly with the amount of noise, when plotted in log-
log coordinates. Dosher & Lu distinguished three different attention mechanisms
that affected these log-log plots in different ways: “Signal enhancement” shows
an increased threshold for invalidly cued trials in the flat part of the log-log plot
where external noise is smaller than internal noise. “External noise exclusion”
shows an increased threshold for invalidly cued trials in the linear increasing part
of the log-log plot where external noise is larger than internal noise. “Internal noise
reduction” shows an increased threshold for invalidly cued trials throughout the
log-log plot (i.e., in both the flat and the linearly increasing parts of the function).
When there were only two locations, the pattern of performance was consistent
with signal enhancement (Lu & Dosher 1998, Lu et al. 2000). When there were
four or more locations, the pattern of performance was consistent with external
noise exclusion (Dosher & Lu 2000a,b).

Again, the procedure required to assess the effects of adding external noise
differs substantially from the usual procedures used to measure attention. It is not
clear how models of near-threshold performance would extend to reaction times to
stimuli that are exposed until the subject responds. These are important questions
for future research.

EXECUTIVE CONTROL OF ATTENTION

Executive control is the process by which the mind programs itself. It is involved in
understanding instructions, choosing among strategies, preparing and adopting a
task set, monitoring performance, and disengaging task sets. It is an important and
popular topic in cognitive science, neuroscience, clinical science, developmental
science, and the study of individual differences. Optimization of performance is
an important feature of executive control. Most theories assume optimality in one
way or another but leave the task of optimization to an omnipotent homunculus
that is outside the theory. A key idea in many studies of executive control is that
an executive process programs subordinate processes. As influential as that idea
is, it is empty without some specification of the subordinate process that says how

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



228 LOGAN

it can be programmed. Formal theories of attention provide this specification and
flesh out the idea.

Similarity-Choice Theory

Nosofsky (1984, 1986, 1988) assumed that attention weights were distributed
across dimensions to optimize performance. Indeed, the best-fitting attention
weights are often the ones that optimize performance. Kruschke (1992) replaced
Nosofsky’s homunculus with a connectionist module that learns to distribute atten-
tion weights across dimensions based on feedback during classification learning.
It accounts for asymptotic categorization performance as well as the generalized
context model and it provides a better account of classification learning (see, e.g.,
Nosofsky et al. 1994, Nosofsky & Palmeri 1996).

Logan & Gordon (2001) addressed the idea that an executive process programs a
subordinate by proposing a theory of executive control in which Bundesen’s (1990)
theory of visual attention and Nosofsky & Palmeri’s (1997a) exemplar-based ran-
dom walk model were the subordinates. In the theory of visual attention and the
exemplar-based random walk model, priority and bias parameters and the thresh-
old for the random walk are determined by the homunculus, whereas the similarity
parameters are determined by the quality of the stimulus information and the sub-
ject’s experience with the members of the relevant categories. The theory of visual
attention and the exemplar-based random walk model can be programmed-—set to
perform different tasks—by manipulating priority, bias, and threshold parameters.
In Logan & Gordon’s (2001) theory, a task set is a set of parameters that are suffi-
cient to cause the theory of visual attention and the exemplar-based random walk
model to perform particular tasks. Task sets are constructed by deriving param-
eters from propositional representations of the instructions in working memory.
Task sets are enabled by transmitting the parameters from working memory to
the place where the models reside in the processing system. Deriving the param-
eters in working memory is not sufficient to enable or change a task set. The task
set must also be instantiated in the theory of visual attention and the exemplar-
based random walk model. By analogy, having a program on disk is not sufficient
to make it run. It must be loaded into core memory before it can be executed.
Transmission of parameters takes time, and that time accounts for task-switching
costs.

Logan & Gordon (2001) applied their theory to a dual-task situation called the
psychological refractory period procedure, in which subjects must make separate
responses to two stimuli that appear close together in time. In principle, the theory
of visual attention and the exemplar-based random walk model could perform these
two tasks in parallel or in series, but Logan and Gordon showed through simulations
that performance was faster and more accurate if the models performed the tasks in
series. They were able to account for task-switching costs and backward crosstalk
from the second stimulus to the first with the model.

Logan & Bundesen (2003) extended the model to task-switching situations
in which a cue indicating which task to perform is presented before each target
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stimulus. They developed formal models that assumed that the time-course func-
tions reflect the cumulative distributions of finishing times for processes that en-
coded the cue and switched task sets (also see Sperling & Weichselgartner 1995).
Reaction time is slow when cue encoding and set switching have not finished and
fast when they have finished. Increasing the interval between the cue and the target
increases the probability that cue encoding and set switching are finished. Con-
sequently, reaction time decreases as cue-to-target interval increases. The mean
cue-encoding time and set-switching time can be estimated by fitting these models
to the time-course functions (also see Logan & Bundesen 1996).

Signal-Detection Theory

The idea of optimality has been a central tenet of signal-detection theory since the
1950s. It remains a central tenet in the general recognition theory (Ashby & Lee
1991, Ashby & Maddox 1993). Signal-detection theory was intended to describe
normative decision making under uncertainty by an ideal observer (Geisler 1989,
Green & Swets 1966). The B parameter in signal-detection theory, which reflects
the placement of the criterion on the decision axis, incorporates the values of correct
responses and errors as well as their probabilities. An ideal observer chooses a value
of B that maximizes gains and minimizes losses (Green & Swets 1966).

Perhaps the most thorough signal-detection analysis of optimality in attention
tasks was done by Sperling & Dosher (1986). They addressed single- and dual-task
performance with accuracy and reaction time as dependent measures, examining
tradeoffs between concurrent tasks and tradeoffs between speed and accuracy in
single tasks. A key concept in their analysis is the idea of a performance-operating
characteristic, which plots one measure of performance against another. In classical
signal-detection theory, a receiver-operating characteristic plots the probability of
hits against the probability of false alarms (Green & Swets 1966). In dual-task
studies, an attention-operating characteristic plots performance on one task against
performance on another (Sperling & Melchner 1978). Sperling & Dosher (1986)
defined a strategy as a choice of a point on a performance-operating characteristic
and they argued that choice of a strategy was determined by the expected utility
that could be gained at that point.

CONCLUSIONS

In the spirit of competitive hypothesis testing that is so pervasive in psychology, it
seems natural to ask, Which theory wins? That is a hard question to answer. It has
been clear from the beginning that similarity-choice theory and signal-detection
theory make very similar predictions (e.g., Broadbent 1971, Luce 1963). Recent
analyses have shown that under some assumptions, the theories mimic each other
exactly (Ashby & Maddox 1993, Nosofsky 1992). Moreover, the theories have
been applied to so many different domains that it is hard to evaluate the outcome
of a single battle in the context of such a large-scale war. Perhaps the theories should
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be evaluated in terms of other criteria, such as the explanations they provide for
attentional phenomena and the assumptions they require to do so.

My personal impression is that similarity-choice theories provide better expla-
nations. They provide processing interpretations of the phenomena that give insight
into the underlying computations. Bundesen (1990) describes object selection in
terms of competition instantiated as a race between perceptual objects. Nosofsky
(1984, 1986, 1988) describes classification in terms of a competition instantiated
as a race between memory traces. By contrast, signal-detection approaches seem
more descriptive than explanatory. I find it hard to imagine the processes under-
lying a decision that an object falls within a region of similarity space (but see
Ashby 2000). Perhaps my impression is due to differential familiarity—I have
spent many more hours thinking about how to interpret attentional phenomena in
terms of similarity-choice theory than in terms of signal-detection theory.

Similarity-choice theories and signal-detection theories differ fundamentally
in their assumptions about noise. Similarity-choice theories assume no noise in
perceptual representations; objects are represented as points in similarity space.
Signal-detection theories assume noisy representations; objects are represented as
distributions in similarity space. On the one hand, it seems reasonable to think
of representations of category exemplars as relatively noise free. Subjects often
examine exemplars at their leisure and have plenty of time to encode the nuances
of the stimuli. It seems less reasonable to think that the representations are so
noisy that their distributions overlap enough to cause frequent confusions. On the
other hand, it seems reasonable to think of representations of brief stimuli as noisy.
Indeed, it is hard to imagine how adding external noise to a weak stimulus would
produce the bilinearity that Dosher & Lu (2000a,b) observe in log-log plots if the
internal representation were not noisy. Similarity-choice theories may have a hard
time dealing with results from that procedure. Perhaps this issue can be resolved
by quantifying noise in neural representations of objects.

Similarity-choice theories and signal-detection theories both assume that ob-
jects can be represented as points or distributions in multidimensional similarity
space. This representation is limited. It is not clear how structured objects can be
represented as points or distributions. Moreover, the idea that similarity is propor-
tional to distance in multidimensional space is problematic. Tversky spent much
of his career challenging the metric assumptions of multidimensional similarity
models (e.g., Tversky 1977, Tversky & Gati 1982, Tversky & Hutchinson 1986).
Indeed, the similarity between structured objects may not be captured very well
by a multidimensional similarity space. Medin et al. (1993) showed that relational
measures of similarity may be more appropriate for such stimuli.

Ultimately, the most important question in evaluating similarity-choice and
signal-detection theories may be this: What are the alternatives? No other the-
ory of attention has a legacy as rich and as powerful as either of these theories.
Their mathematical structure allows strong inferences and precise predictions.
They make sense of diverse phenomena, bringing order to the fads and fashions
that dominate empirical research on attention. Theories that adopt more complex
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assumptions about object representations are much more specialized, and conse-
quently, lack the generality of similarity-choice and signal-detection approaches
(e.g., Heinke & Humphreys 2003, Humphreys & Miiller 1993). The theories re-
viewed here set a high standard for clarity, consistency, and longevity. They have
allowed cumulative progress in our understanding of attention over the last 50
years and they promise to increase our cumulative understanding for many years

to come. I am optimistic.
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