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The stop-signal task has been used to study normal cognitive control and clinical dysfunction. Its utility
is derived from a race model that accounts for performance and provides an estimate of the time it takes
to stop a movement. This model posits a race between go and stop processes with stochastically
independent finish times. However, neurophysiological studies demonstrate that the neural correlates of
the go and stop processes produce movements through a network of interacting neurons. The juxtapo-
sition of the computational model with the neural data exposes a paradox—how can a network of
interacting units produce behavior that appears to be the outcome of an independent race? The authors
report how a simple, competitive network can solve this paradox and provide an account of what is
measured by stop-signal reaction time.
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The task of cognitive neuroscience is to bring behavioral and
physiological data together to explain how mental computations
are implemented in the brain. This task is difficult when behavioral
and physiological data appear to contradict each other. In these
situations, a new theory is required to resolve the contradiction.
This article reports results from an endeavor to resolve a paradox
in the behavioral and physiological analyses of the stop-signal
task. For over 20 years, behavioral data have been modeled suc-
cessfully in terms of a race between two independent processes
that respond to the stop signal and the go signal (Logan & Cowan,
1984). However, the neural systems that control movements com-
prise layers of inhibitory interactions between neurons that imple-
ment movement inhibition and movement initiation (reviewed by
Munoz & Schall, 2003). These two facts present a paradox: How
can interacting neurons produce behavior that appears to be the
outcome of independent processes? We present a new theory of

performance in the stop-signal task—the interactive race model—
which assumes that the stop and go processes are independent for
most of their latent periods. After this latent period, a second stage
occurs in which the stop process interacts strongly and briefly to
interrupt the go process. The theory resolves the paradox and
unifies behavioral and physiological perspectives on stop-signal
task performance. More generally, our work illustrates a novel
approach to bringing neurophysiological data to bear on quantita-
tive computational model testing.

The Stop-Signal Task

The stop-signal task investigates the control of thought and
action by probing subjects’ ability to withhold a planned move-
ment in response to an infrequent countermanding signal (see
Figure 1a; e.g., Lappin & Eriksen, 1966; Logan, 1994; Logan &
Cowan, 1984). Subjects are instructed to make a response as
quickly as possible to a go signal (no-stop-signal trial). On a
minority of trials, a stop signal is presented and subjects have to
inhibit the previously planned response (stop-signal trial). Sub-
jects’ ability to inhibit the response is probabilistic due to vari-
ability in reaction times (RTs) of the stop and go processes and
depends on the interval between the go-signal and stop-signal
presentation, referred to as the stop-signal delay (SSD). A trial is
labeled signal inhibit (or cancelled) if the subject inhibits the
response that would have been produced otherwise. A trial is
labeled as signal respond (or noncancelled) if the subject is unable
to inhibit the response. Typically, as SSD increases, subjects’
ability to inhibit the response decreases, so the probability of
signal-respond trials increases. Plotting the probability of respond-
ing given a stop signal against SSD is described as the inhibition
function and is illustrated in Figure 1. In addition to the inhibition
function, other dependent measures include RTs on trials with no
stop signal and RTs on trials in which a response was made despite
the stop signal (i.e., the signal-respond trials).
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This task has been used extensively to study executive con-
trol and flexibility in behavior. Numerous experimental manip-
ulations of the stop-signal task have yielded very similar re-
sults, demonstrating the generality of the task as an empirical
model of self-control. For example, stop signals have ranged
from visual (e.g., Lappin & Eriksen, 1966) to auditory (e.g.,
Logan, 1981; Logan, Cowan, & Davis, 1984; Osman, Korn-
blum, & Meyer, 1986, 1990) to tactile (e.g., Akerfelt, Colonius,
& Diederich, 2005). Visual stop signals have been presented
centrally or peripherally (e.g., Asrress & Carpenter, 2001; Ca-
bel, Armstrong, Reingold, & Munoz, 2000). Responses have
included key presses (e.g., Logan et al., 1984; Osman et al.,

1986, 1990), typing responses (e.g., Logan, 1982), speech out-
put (e.g., Ladefoged, Silverstein, & Papcun, 1973), arm move-
ments (e.g., McGarry, Chua, & Franks, 2003; Slater-Hammel,
1960), hand squeezes (e.g., De Jong, Coles, & Logan, 1995; De
Jong, Coles, Logan, & Gratton, 1990), hand movements (e.g.,
Boucher, Stuphorn, Logan, Schall, & Palmeri, in press), eye
movements (e.g., Hanes & Carpenter, 1999; Logan & Irwin,
2000), and eye– head gaze shifts (e.g., Corneil & Elsley, 2005).
Performance in this task has been investigated also in macaque
monkeys (e.g., Hanes & Schall, 1995; Kornylo, Dill, Saenz, &
Krauzlis, 2003) and rats (e.g., Eagle & Robbins, 2003; Feola, de
Wit, & Richards, 2000).

Figure 1. Saccade countermanding task. a: On no-stop-signal trials, monkeys were rewarded for shifting gaze
to an eccentric visual target that appeared when the fixation point disappeared. On stop-signal trials, the fixation
point reappeared after a variable delay following target presentation. Monkeys were positively reinforced if they
inhibited the saccade when the stop signal appeared, but they produced signal-respond errors especially after
longer stop-signal delays (SSDs). b: Race model outcome when rtgo � rtstop � SSD, resulting in a signal-inhibit
trial (top panel), and when rtgo � rtstop � SSD, resulting in a signal-respond trial (bottom panel). Above each
graph is a timeline marking the onset and offset of the fixation (F) and target (T). c: An idealized inhibition
function plotting the proportion of signal-respond trials as a function of SSD. D� and D� indicate the proportion
of signal-respond trials at SSDs of 100 ms and 150 ms, respectively. d: Schematic illustrating how stop-signal
reaction time (SSRT) is calculated at two different SSDs by the integration method. See the text for details.
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Performance on the stop-signal task is qualitatively indistin-
guishable across all these stimulus modalities, effectors, and spe-
cies. This generality implies that a unified account is possible.
Such an account is provided by a race model, which assumes that
performance is the outcome of a race between a go process
responsible for initiating the movement and a stop process respon-
sible for inhibiting the movement (Logan & Cowan, 1984; see also
Becker & Jürgens, 1979; Lisberger, Fuchs, King, & Evinger, 1975;
Logan, 1981; Olman, 1973). Since its mathematically explicit
formulation over 20 years ago, this model has been tested exten-
sively (e.g., Band, van der Molen, & Logan, 2003; Colonius, 1990;
Colonius, Ozyurt, & Arndt, 2001; De Jong et al., 1990), and no
major alternative theory has been proposed.

According to the race model, behavior is governed by the finish
times of the go and stop processes on a given trial, indicated by rtgo

and rtstop, respectively. A response is initiated if rtgo � rtstop �
SSD; a response is inhibited if rtgo � rtstop � SSD (see Figure 1b).
Because the finish times for the go and stop processes are random
variables (RTgo and RTstop, respectively), inhibition is probabilis-
tic, which gives rise to the inhibition function (see Figure 1c).
(Note that we use the lowercase rt to refer to an RT on a particular
trial and the uppercase RT to refer to the distribution of RTs.) This
race model formulation can account for the distribution of signal-
respond RTs by relating the proportion of signal-respond trials at
each SSD (inhibition function) to the distribution of RT on trials
with no stop signal in the following manner. When no stop signal
is presented, the full RTgo distribution is produced. When a stop
signal occurs, only a fraction of the RTgo distribution is produced
because only the fastest RTs can escape inhibition. Said another
way, only trials with a fast rtgo can finish before rtstop � SSD. As
SSD increases, the proportion of longer latency trials that can
escape inhibition increases because more time can elapse before
the stop process finishes (see Figure 1d). The RTs of signal-
respond trials share a common minimum, because the fastest
samples from the RTgo distribution will always be produced re-
gardless of SSD. However, the RTs of signal-respond trials will
exhibit increasing maxima as SSD increases because the slowest
samples from the RTgo distribution will be produced only at the

longer SSDs. Figure 2b plots signal-respond RT distributions from
a saccade stop-signal task as cumulative distribution functions.
One can see how the signal-respond RT distributions exhibit a
diverging pattern with the rightmost (i.e., slowest) distribution
representing the no-stop-signal RTs and the leftmost (i.e., fastest)
distribution representing the signal-respond RTs at the shortest
SSD.

Beyond articulating an account of the functional mechanism
responsible for performance, the race model provides a means for
estimating the time needed to inhibit a response, referred to as the
stop-signal reaction time (SSRT; Logan & Cowan, 1984). This is
important because the response to the stop signal is not directly
observable. If rtstop � SSD � rtgo, there is no overt response for
which latency can be measured. If rtstop � SSD � rtgo, a response
occurs, and we know that rtstop � SSD must have been longer than
the latency of that response—however, we do not know how much
longer. The race model provides several methods for estimating
SSRT from the inhibition function and the no-stop-signal RT
distribution (Colonius, 1990; De Jong et al, 1990; Logan &
Cowan, 1984). The simplest method of estimating SSRT assumes
that SSRT is a constant. The method is illustrated in Figure 1d. The
finishing time of the stop process divides the no-stop-signal RT
distribution into two parts, one in which rtgo is less than SSD �
SSRT and one in which rtgo is greater than SSD � SSRT. The area
under the no-stop-signal RT distribution corresponding to the first
part equals the proportion of signal-respond trials at that SSD, and
the area under the no-stop-signal RT distribution corresponding to
the second part equals the proportion of signal-inhibit trials at that
SSD. Thus, SSRT is estimated by finding the point that divides the
no-stop-signal RT distribution into these two parts and subtracting
SSD. Other methods of estimating SSRT do not assume that SSRT
is constant (Colonius, 1990; De Jong et al., 1990; Logan & Cowan,
1984), but mathematical analysis (Logan & Cowan, 1984) and
computer simulation (Band et al., 2003; De Jong et al. 1990) have
shown that the assumption of constant SSRT does not bias the
estimation substantially.

Measures of SSRT have been used extensively as indices of
self-control across a variety of domains including human devel-

Figure 2. Observed behavioral data. a: Proportion of signal-respond trials as a function of stop-signal delay
(SSD), that is, the inhibition function. b: Cumulative distribution of response times from no-stop-signal (black
line) and signal-respond trials at different SSDs (lighter gray lines for progressively earlier SSDs).
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opment (e.g., Bedard et al., 2002; Ridderinkhof, Band, & Logan,
1999; Williams, Ponesse, Schachar, Logan, & Tannock, 1999),
aging (e.g., Kramer, Humphrey, Larish, Logan, & Strayer, 1994),
and individual differences (e.g., Logan, Schachar, & Tannock,
1997; Miyake et al., 2000). Psychiatrists and clinical psychologists
have used SSRT to assess deficits in cognitive control due to brain
damage (Dimitrov et al., 2003), diseases of the brain such as
Parkinson’s disease (Gauggel, Rieger, & Feghoff, 2004), and
psychopathologies such as schizophrenia (Badcock, Michie, John-
son, & Combrinck, 2002; Carter et al., 2003). SSRT measures have
been particularly useful in understanding attention-deficit/
hyperactivity disorder (ADHD; see Nigg, 2001, for review). Many
studies have shown that SSRT is slower in children with ADHD
than in psychiatric and nonpsychiatric control children (Armstrong
& Munoz, 2003; Oosterlaan, Logan, & Sergeant, 1998; Schachar
& Logan, 1990; Schachar, Mota, Logan, Tannock, & Klim, 2000;
Schachar, Tannock, & Logan, 1993). Indeed, some researchers
have suggested inhibitory control as the core deficit in ADHD; the
other deficits being a consequence of a fundamental deficiency in
inhibitory control (Barkley, 1997). SSRT is useful in clinical
applications because it is a single datum that measures the inhib-
itory ability of a subject. SSRT can be correlated with measures of
other abilities or used to distinguish the abilities of one group from
those of another. All of this research rests on the validity of SSRT
as a measure of inhibitory processing, which, in turn, relies on the
validity of the race model. The race model’s assumption that the
stop and go processes are independent is critical. As documented
below, certain forms of neural interaction may challenge the in-
dependence assumption in ways that could invalidate SSRT as a
measure of inhibitory control. Thus, a major purpose of this article
is to assess the validity of the race model and measures of SSRT
that are derived from it.

Neural Correlates of Stopping

To make progress in linking cognitive processes with neuro-
physiology, researchers must identify the population of neurons
that carry out a particular cognitive process. This mapping has
been referred to as a linking proposition, and the population of
neurons instantiating the linking proposition has been referred to
as a bridge locus (Brindley, 1970; Schall, 2004; Teller, 1984;
Teller & Pugh, 1983). Recent research using a saccade stop-signal
task has identified a plausible bridge locus for the go and stop
processes of the race model in particular neurons in the frontal eye
fields (Hanes, Patterson, & Schall, 1998) and superior colliculus
(Paré & Hanes, 2003), two structures responsible for saccadic
preparation and generation. We identify the stop process with
fixation cells and the go process with movement cells in frontal
eye fields and superior colliculus.

Studies of the mechanisms controlling the initiation of visually
guided saccades afford several advantages because so much is
known about the neural processes producing saccadic eye move-
ments (e.g., Carpenter, 1991; Girard & Berthoz, 2005; Munoz &
Schall, 2003; Wurtz & Goldberg, 1989). Saccades are produced by
a pulse of force that rapidly rotates the eyes followed by a step of
force appropriate to resist the elastic forces of the orbit and
maintain eccentric gaze. This pattern of force is exerted on the eyes
by muscles innervated by neurons in the brainstem (Scudder,
Kaneko, & Fuchs, 2002; Sparks, 2002; see Figure 3). Burst neu-

rons innervate the extraocular motor neurons to provide the high-
frequency burst of spikes necessary to produce saccadic eye move-
ments. Different groups of burst neurons that discharge for
saccades in different directions innervate different motor neurons

Figure 3. Saccade generator network. Saccades are controlled by a distrib-
uted network encompassing the frontal eye field, the basal ganglia including
the substantia nigra, the superior colliculus, and circuits in the brainstem.
Gaze-shifting and gaze-holding neurons are modulated concurrently through-
out this network. Movement neurons (MN, blue) and fixation neurons (FN,
red) are modulated reciprocally in the frontal eye field, substantia nigra, and
superior colliculus. When the balance of activation of these neurons tips from
gaze holding to gaze shifting, the omnipause neurons (OPN) in the brainstem
are turned off, releasing inhibition on the burst neurons (BN) that activate the
motor neurons (MN) that cause the extraocular muscles to contract rapidly to
produce the saccade. The pattern of feedforward connectivity is illustrated on
the left. The brainstem is innervated by the superior colliculus and less strongly
by the frontal eye field to activate long-lead burst neurons (LLBN) and inhibit
the omnipause neurons. The superior colliculus is inhibited by the substantia
nigra. The inhibition from the substantia nigra is released through inhibition
from the caudate nucleus (CN) that is activated by the frontal eye field. sp/s �
spikes per second. Adapted from “Concurrent, Distributed Control of Saccade
Initiation in the Frontal Eye Field and Superior Colliculus,” by D. P. Munoz
and J. D. Schall, 2003, In The Superior Colliculus: New Approaches for
Studying Sensorimotor Integration (p. 177), New York: CRC Press. Copyright
2003 by CRC Press. Adapted with permission.
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that in turn innervate different muscles. The burst neurons are
subject to potent monosynaptic inhibition from omnipause neu-
rons. Omnipause neurons discharge tonically during fixation. Im-
mediately prior to initiation of a saccade in any direction, omni-
pause neurons cease discharging, releasing the inhibition on the
appropriate pools of burst neurons to produce the burst in the
motor neurons necessary to shift gaze in the desired direction.
Upon completion of the saccade, omnipause neurons reactivate to
reinstate inhibition on the burst neurons. Omnipause neurons are
not modulated during the �100-ms period before saccade initia-
tion when preparatory processes that affect RTs occur (Everling,
Paré, Dorris, & Munoz, 1998).

The neural events preceding activation of the brainstem saccade
generator occur in a circuit distributed through particular areas of
the frontal lobe (e.g., Bruce & Goldberg 1985; reviewed by Schall,
1997), the basal ganglia (e.g., Hikosaka & Wurtz, 1983a, 1983b,
1983c; reviewed by Hikosaka, Takikawa, & Kawagoe, 2000),
cerebellum (e.g., Kase, Miller, & Noda, 1980; reviewed by Thier,
Dicke, Haas, Thielert, & Catz, 2002), and superior colliculus
(Schiller & Körner, 1971; Sparks, 1975; Wurtz & Goldberg, 1972;
reviewed by Munoz, Dorris, Paré, & Everling, 2000; Munoz &
Schall, 2003; see Figure 3). This circuit conveys to the brainstem
saccade generator signals controlling where and when to shift
gaze. The superior colliculus is organized in a topographic map of
saccade direction and amplitude. The frontal eye field has a
rougher map of saccade amplitude, and the frontal eye field and
superior colliculus are connected topographically. Thus, the direc-
tion and amplitude of the saccade produced is dictated by the
location in the map of the active population of neurons. However,
neurons in frontal eye field and superior colliculus have broad
movement fields, so many neurons contribute to the generation of
any saccade by pooling activity through vector averaging.

The stop-signal task is ideal for investigating the neural control
of movement initiation because it specifies the criteria a neuron
must meet to be identified as contributing to controlling saccade
initiation. First, the activity in trials when a saccade is made
(no-stop-signal or signal-respond trials) must be different from that
in trials when no saccade is made (signal-inhibit trials). Second, in
stop-signal trials, the activity should begin along the trajectory that
would lead to saccade initiation, but on presentation of the stop
signal, the activity must be modulated away from that trajectory,
and this modulation must occur within the SSRT. Neurons with
movement-related and fixation-related activity in frontal eye field
and superior colliculus satisfy both of these requirements (Hanes et
al., 1998; Paré & Hanes, 2003). On signal-respond trials, the neural
activity of movement and fixation neurons is indistinguishable
from that observed in no-stop-signal trials (see Figure 4a). On
signal-inhibit trials, the activity of movement neurons initially
increases, but following presentation of the stop signal, the activity
rapidly decreases within SSRT (see Figure 4b). Because the move-
ment neuron does not reach threshold, no saccade is made. Fixa-
tion neuron activity exhibits the complementary pattern of modu-
lation (see Figures 4c and 4d). Note that the time of modulation of
movement- and fixation-related activity on signal-inhibit trials
occurs within the SSRT, confirming the primary role of movement
and fixation neurons in controlling the initiation of saccades.

The identification of the go process with the activity of long-
lead presaccadic movement-related neurons in the frontal eye field,
caudate nucleus, superior colliculus, and brainstem seems evident

and justified. The go process cannot be identified with the activity
of motor neurons or the burst neurons in the brainstem because the
modulation of these neurons occurs during the ballistic period of
movement production, during which the saccade cannot be inhib-
ited. Numerous studies have demonstrated that a progressive com-
mitment to saccade initiation occurs with growing activation of the
long-lead movement neurons in frontal eye field (Hanes et al.,
1998; Hanes & Schall, 1996), caudate nucleus (Lauwereyns, Wa-
tanabe, Coe, & Hikosaka, 2002), superior colliculus (Dorris &
Munoz, 1998; Paré & Hanes, 2003), and brainstem (Kaneko,
2006). In fact, saccades are initiated when the activity of move-
ment neurons reaches a fixed threshold, so the speed of growth of
long-lead presaccadic movement neuron activity is a strong pre-
dictor of saccade initiation time (Dorris & Munoz, 1998; Hanes &
Schall, 1996). Finally, when saccades are withheld during this
saccade countermanding task, movement neurons with activity that
had been growing toward the threshold exhibit a reduction of
discharge rate within SSRT (Hanes et al. 1998; Paré & Hanes,
2003; see Figure 4b).

For saccade initiation to be cancelled, the go process must be
interrupted by the stop process. Therefore, the stop process for
saccade countermanding with a foveal stop signal must be identi-
fied with the activity of neurons that can inhibit the activity of
long-lead presaccadic movement neurons. As illustrated in Fig-
ure 3, many studies have provided evidence for neurons with
activity reciprocal to movement neurons that can inhibit movement
neurons; these neurons are referred to collectively as fixation
neurons. The stop process cannot be identified with the activity of
omnipause neurons in the brainstem because these neurons are
modulated only during the ballistic period of movement produc-
tion, during which the saccade cannot be inhibited; in fact, accord-
ing to all current models of saccade generation, the ballistic phase
of saccade production starts only when omnipause neurons turn
off. Fixation neurons and omnipause neurons are functionally
distinct. In particular, fixation neurons exhibit modulation of ac-
tivity as much as 100 ms before saccade initiation that may or may
not result in saccade initiation; omnipause neurons modulate only
�10 ms before saccade initiation, with a saccade initiated each
time the omnipause neurons turn off (e.g., Everling et al., 1998).
Many studies have demonstrated, before saccade initiation, a grad-
ual reduction of activation of fixation neurons in frontal eye field
(Hanes et al., 1998; Segraves & Goldberg, 1987), substantia nigra
(e.g., Hikosaka & Wurtz, 1983c), and superior colliculus (Dorris,
Paré, & Munoz, 1997; Everling et al., 1998; Munoz & Wurtz,
1993a; Paré & Hanes, 2003). Finally, when saccades are withheld
in this saccade countermanding task, recordings of single-unit
activity demonstrate that fixation neurons with activity that had
been reduced during preparation for saccade initiation exhibit an
increased discharge rate within SSRT (see Figure 4d; Hanes et al.,
1998; Paré & Hanes, 2003).

The reciprocity of the activation of movement and fixation
neurons naturally suggests the hypothesis that they are in a mutu-
ally inhibitory relationship, and evidence consistent with this has
been obtained. It must be emphasized that effectively all of the
experiments performed to date have addressed the question of how
saccades or eye–head gaze shifts are terminated, which is not
necessarily the same as how saccades or gaze shifts are prevented
from being initiated (reviewed by Guitton, Bergeron, & Choi,
2004; Sparks, 2002). Electrical stimulation of the rostral superior
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colliculus, where fixation cells are concentrated, stops eye–head
gaze shifts in cats (Paré & Guitton, 1998) and saccades in monkeys
(Gandhi & Keller, 1999). This influence could be exerted through
more than one circuit. First, fixation neurons could prevent gaze
saccades through projections to omnipause neurons that inhibit the
saccade generator (e.g., Buttner-Ennever, Horn, Henn, & Cohen,
1999; Takahashi, Sugiuchi, Izawa, & Shinoda, 2005; Yoshida,
Iwamoto, Chimoto, & Shimazu, 2001). Second, fixation neurons
could inhibit movement neurons elsewhere in the superior collicu-
lus (Munoz & Istvan, 1998; Takahashi et al., 2005). However, it

must be acknowledged that the evidence is not decisive in support
of the hypothesis that the movement neurons in the superior
colliculus are gated by fixation neurons. For example, the move-
ment neuron bursts tend to end just before or at the end of gaze
shifts (Freedman & Sparks, 1997; Waitzman, Ma, Optican, &
Wurtz, 1991), but fixation neurons exhibit peak activity �50 ms
after gaze shifts (Choi & Guitton, 2006; Everling et al., 1998;
Munoz & Wurtz, 1993a). Furthermore, experimental deactivation
of the rostral superior colliculus results in excessive saccade ini-
tiation, but the saccades do stop (Munoz & Wurtz, 1993b). The

Figure 4. Movement and fixation neuron activity during saccade countermanding. One stop-signal delay (SSD)
is displayed, although the neural profiles at all SSDs are similar. a: Average normalized activity from 12 frontal
eye field movement neurons from Monkey A on signal-respond trials (thick dashed line, N � 43) and
latency-matched no-stop-signal trials (thin line, N � 399). The activity was not significantly different. The solid
vertical line marks stop-signal presentation time. The dotted vertical line indicates stop-signal reaction time
determined from the performance while the neural activity was monitored. b: Average normalized activity from
12 frontal eye field movement neurons on signal-inhibit trials (thick line, N � 121) and latency-matched
no-stop-signal trials (thin line, N � 477). The activity was significantly different; the growth of movement-
related activity was interrupted immediately before the stop-signal reaction time, marked by the downward
arrow. This time is referred to as the cancel time. c: Average normalized activity from 6 frontal eye field fixation
neurons from Monkeys A and C on signal-respond trials (thick dashed line, N � 40) and latency-matched
no-stop-signal trials (thin line, N � 6). The activity was not significantly different. d: Average normalized
activity from 11 frontal eye field fixation neurons from Monkeys A and C on signal-inhibit trials (thick line, N �
18) and latency-matched no-stop-signal trials (thin line, N � 111). The activity was significantly different; the
growth of fixation-related activity increased immediately before the stop-signal reaction time.
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body of evidence suggests that fixation neurons may not contribute
to controlling saccade execution, but they are necessary for con-
trolling saccade initiation, which is, by definition, just what the
stop process is supposed to do. The evidentiary and conceptual
gaps that prevent a more definite conclusion that the stop process
corresponds to the activity of gaze-holding fixation neurons high-
light the need for and guide the focus of further neuroanatomical
and neurophysiological research to map these circuits.

Models of Saccade Production and RT

Sophisticated models of saccade generation have been formu-
lated (for a review, see Girard & Berthoz, 2005). Models of the
brainstem circuits that generate saccades include a trigger signal
that releases the inhibition of omnipause neurons on burst neurons
to initiate saccades, but these models do not specify any charac-
teristics of the trigger signal. The input to the brainstem arrives
from the superior colliculus and frontal eye field. Models of
superior colliculus contribution to saccade preparation and gener-
ation have also been formulated that address several issues beyond
the scope of this article (reviewed by Girard & Berthoz, 2005). For
our purposes, we note that lateral inhibition is a central character-
istic of many models of saccade production (Arai, Keller, &
Edelman, 1994; Bozis & Moschovakis, 1998; Das, Gandhi, &
Keller, 1995; van Opstal & van Gisbergen, 1989). The model of
Trappenberg, Dorris, Klein, and Munoz (2001) implemented short-
range excitation and long-range inhibition across the map of sac-
cades in the superior colliculus to account for the systematic
variation of saccade initiation times in different conditions. Sac-
cade initiation time is influenced in this model by the balance of
inhibition between fixation and movement neurons. For example,
the model produces the reduction of saccade latency consequent to
removal of a fixation point (gap effect) by reduced activation of
fixation neurons leading to reduced inhibition of movement neu-
rons, allowing them to trigger the saccade sooner. However, a
recent comprehensive review of saccade models concluded that the
dynamics of these lateral interactions required more study to
resolve the diverse and in some cases contradictory results (Girard
& Berthoz, 2005).

Models that include cortical and basal ganglia circuits imple-
ment gating of saccade initiation by selective disinhibition of the
superior colliculus. This disinhibition has been conceived of
mainly in terms of target selection or working memory (e.g., J. W.
Brown, Bullock, & Grossberg, 2004; Dominey & Arbib, 1992;
Dominey, Arbib, & Joseph, 1995). In the model of J. W. Brown et
al. (2004), the indirect pathway through the basal ganglia imple-
ments a trainable stopping process used when a delay intervenes
before a saccade. This stopping process operates by increasing the
activity in the subthalamic nucleus that produces additional acti-
vation of the substantia nigra pars reticulata, thus increasing the
inhibition on the saccade production circuit. Only a few models of
saccade production have incorporated elements of frontal eye field
functional organization (J. W. Brown et al., 2004; Mitchell &
Zipser, 2003). These models use a fixation signal to specify the
timing of saccade initiation.

A significant shortcoming of all of these models is the lack of
stochastic elements capable of accounting for the range of saccade
latencies. Without stochastic elements, none of the aforementioned
models can account for performance in the stop-signal task. This is

the central concern of our work, which seeks to build a bridge
between neural network models of saccade generation formulated
at a circuit level and cognitive models of decision making formu-
lated at a computational level (e.g., S. Brown & Heathcote, 2005;
Carpenter & Williams, 1995; Link, 1975; Nosofsky & Palmeri,
1997; Ratcliff, 1978; Usher & McClelland, 2001). Properly for-
mulated, such a model can help translate more concretely between
neural circuit level models of saccade production and higher level
models of eye movement production during tasks such as reading
(e.g., Engbert, Nuthmann, Richter, & Kliegl, 2005; McDonald,
Carpenter, & Shillcock, 2005; Reichle, Rayner, & Pollatsek,
2003).

A Paradox Motivating the Interactive Race Model

The identification of the go and stop processes with movement
and fixation neurons exposes a paradox. Given the overwhelming
evidence indicating that saccades are produced by a network of
mutually inhibitory gaze-shifting and gaze-holding neurons, how
can such interacting neural units produce behavior that appears to
be the outcome of a race between processes with independent
finishing times? This paradox must be resolved because the valid-
ity of SSRT as a measure of cognitive control derives entirely from
the validity of the independent race model.

The independent race model is almost universally accepted in
the literature on stop-signal studies. If the basic assumption of
independence is false, then this entire body of work may require
reinterpretation. In particular, the validity of estimates of SSRT
relies on the assumption that the stop process has a specific
duration that can be measured through application of the race
model to behavior. The duration of the stop process is the SSRT.
If the activity of movement-related and fixation-related neurons
instantiates the go and stop processes and these neurons interact
over an extended period of time, then the stop process would not
have a definite finishing time and so could not be described validly
in terms of an RT measure like SSRT. If SSRT is not a valid
measure of inhibitory control, then the utility of the stop-signal
paradigm in studying clinical disorders and development, as well
as normal movement preparation and control, would be called into
question. Thus, an important outcome of this work is to establish
a solid foundation for the measurement and interpretation of SSRT
by obtaining a more secure understanding of how movement
preparation is interrupted.

It is critical to note that the independent race model is concerned
exclusively with the finish times of the go and stop processes. The
race model makes no assumptions about the processes by which
the RTs are generated beyond assuming they are stochastically
independent. This has been regarded as a virtue because it makes
the race model applicable to any distribution of stop and go times,
provided they are stochastically independent (Logan & Cowan,
1984). This study is concerned with only how the finish times of
the go and stop processes can be generated in the neural circuit
producing saccadic eye movements.

We created a simple network consisting of two noisy accumu-
lators identified as a go unit and a stop unit. We contrasted the
performance of an independent race model in which the go and
stop units raced to a fixed threshold (see Figure 5a) with the
performance of an interactive race model in which the go and stop
units interacted through inhibitory connections (see Figure 6a). We
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Figure 5. Independent race model. Simulated stop-signal trials were classified as signal respond if the go unit
reached threshold before the stop unit and as signal inhibit if the stop unit reached threshold before the go unit.
One stop-signal delay (SSD) is displayed, although the activation functions at all SSDs are similar. a:
Independent race model architecture. b: Thirty trials of simulated go (green) and stop (red) unit activation with
an SSD of 117 ms (solid vertical line); thick lines are mean activation functions, and the threshold is the dashed
horizontal line. The vertical dotted line marks stop-signal reaction time (SSRT). c: Observed (gray line) and
simulated (black line) inhibition functions. d: Observed (thin lines) and simulated (thick lines) reaction time
distributions from no-stop-signal (black line) and signal-respond trials with progressively longer SSDs (pro-
gressively darker gray lines). As expected, the independent race model simulated performance very well. e:
Average normalized go unit (green) and stop unit (red) activation functions on signal-respond (thick dashed line)
and latency-matched no-stop-signal trials (thin solid line). Stop-signal presentation is indicated by the solid
vertical line; SSRT is indicated by the dotted vertical line. f: Average normalized go unit (green) and stop unit
(red) activation functions on signal-inhibit (thick solid line) and latency-matched no-stop-signal trials (thin solid
line) with stop-signal presentation and SSRT indicated. On simulated signal-inhibit trials, the go unit reaches
threshold because nothing interrupts it.
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Figure 6. Interactive race model. Simulated stop-signal trials were classified as signal respond if the go unit
reached threshold and as signal inhibit if the stop unit prevented the go unit from reaching threshold. a:
Interactive race model architecture. b: Thirty trials of simulated go (green) and stop (red) unit activation with a
stop-signal delay (SSD) of 117 ms (solid vertical line); thick lines are mean activation functions, and the
threshold is the dashed horizontal line. The vertical dotted line marks stop-signal reaction time (SSRT). c:
Observed (gray line) and simulated (black line) inhibition functions. d: Observed (thin lines) and simulated (thick
lines) reaction time distributions from no-stop-signal (black line) and signal-respond trials with progressively
longer SSDs (progressively darker gray lines). e: Average normalized go unit (green) and stop unit (red)
activation functions on signal-respond (thick dashed line) and latency-matched no-stop-signal trials (thin solid
line). Stop-signal presentation is indicated by the solid vertical line; SSRT is indicated by the dotted vertical line.
f: Average normalized go unit (green) and stop unit (red) activation functions on signal-inhibit (thick solid line)
and latency-matched no-stop-signal trials (thin solid lines) with stop-signal presentation and SSRT indicated.
Note the absence of go unit modulation on signal-respond trials and the pronounced modulation of the go unit
before SSRT on signal-inhibit trials.
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first found the best quantitative fit of the alternative model archi-
tectures to behavioral data; these data were collected from ma-
caque monkeys performing a saccade stop-signal task while neu-
rophysiological data were collected from the frontal eye field
(Hanes et al., 1998). We then assessed the correspondence of the
go unit activation in the models with the pattern of movement-
related neural activation; these neurophysiological recordings were
made at the same time as the behavioral data were collected on
which the models were optimized. We also assessed the corre-
spondence of the stop unit activation in the models with the pattern
of fixation-related activation. However, for this comparison we
included fixation-related neurons recorded in the superior collicu-
lus during a saccade stop-signal task (Paré & Hanes, 2003) be-
cause, being rare, the number of fixation-related neurons in the
frontal eye fields was too small for meaningful analysis. In other
words, the models were fit to the behavioral data, and then the
activation of the go and stop model units was compared with the
patterns of activity of movement and fixation neurons. The activity
of purely visually responsive neurons was not incorporated into
this model analysis because those neurons in frontal eye field and
superior colliculus do not influence saccade initiation (Hanes et al.,
1998; Paré & Hanes, 2003).

This approach was taken for two reasons. First, prior research
has shown that the race model provides excellent quantitative
accounts of behavioral data. Any new model motivated by neuro-
physiology must fit the behavioral data as well as the race model
irrespective of its account of neural data. Second, fitting the
models to only the behavioral data allowed us to assess how well
they predict important aspects of the underlying neurophysiology
rather than simply fitting the neurophysiology with additional free
parameters. Thus, the activity of movement and fixation neurons
served as logically converging evidence for selecting among com-
peting models.

To satisfy the behavioral constraints, a viable network architec-
ture must account for the RT distributions in no-stop-signal and
signal-respond trials and for the proportion of signal-respond trials
at each SSD (see Figures 2a and 2b). Consequently, a successful
architecture must produce simulated data yielding an SSRT that is
indistinguishable from that derived from the observed data. To
satisfy the neural constraint, the average activation of the units in
the network must correspond qualitatively and quantitatively to the
pattern of activity of neurons that were recorded as the behavioral
data were being collected (see Figure 4). Qualitatively, a success-
ful model must produce go unit activation accumulating to reach
threshold on trials in which a saccade is made in no-stop-signal or
signal-respond trials and a decrease in activation after an initial
accumulation when saccades are inhibited on signal-inhibit trials.
Conversely, stop unit activation must remain off when saccades
are made in no-stop-signal trials or signal-respond trials and be-
come activated when saccades are withheld on signal-inhibit trials.
Quantitatively, the time of this modulation relative to SSRT,
referred to as cancel time, must fall within the range of such times
obtained from neurons in the frontal eye field and superior col-
liculus. For movement-related neurons, the average cancel time
measured was 8.5 ms before SSRT in the frontal eye field (Hanes
et al., 1998) and 10 ms before SSRT in the superior colliculus
(Paré & Hanes, 2003). For fixation-related neurons, the average
cancel time was 0.2 ms after SSRT (not significantly different

from 0) in the frontal eye field (Hanes et al., 1998) and 13 ms
before SSRT in the superior colliculus (Paré & Hanes, 2003).

Behavior, Neurophysiology, and Computational Modeling

Behavioral Measures

The data fit by the model were collected in the first neurophys-
iological study using the stop-signal task (Hanes et al., 1998).
These data were collected from the frontal eye field, but qualita-
tively and in important respects quantitatively identical data have
been obtained in a subsequent study of the superior colliculus
(Paré & Hanes, 2003). Two monkeys were trained in a saccade
stop-signal task for the frontal eye field study. Each trial began
with the presentation of a central fixation spot. After a variable
delay, the fixation point was extinguished and a target appeared
either within a neuron’s receptive field or opposite that location.
Monkeys were rewarded if they shifted gaze to the target location.
On a fraction of trials (average of 29% for Monkey C and 25% for
Monkey A), the fixation point reilluminated, and monkeys were
rewarded for maintaining fixation. The interval between fixation
point disappearance and reappearance was the SSD.

The behavioral data fit by the model constitute a select subset of
all the data reported in Hanes et al. (1998). The following inclusion
criteria were applied: (a) The behavioral data were collected while
a clear movement-related neuron was recorded, (b) the inhibition
function included at least three SSDs and spanned from less than
0.2 at the shortest SSD to more than 0.7 at the longest SSD, and (c)
more than 100 trials were collected at each SSD. Adopting these
strict criteria ensured the consistency but reduced the quantity of
data, so we combined neural and behavioral data across sessions
and neurons to obtain a sufficiently large data set to evaluate
competing models. The activity of fixation cells recorded in the
frontal eye field and superior colliculus during other sessions with
comparable performance was also compared with the model unit
activation.

On the basis of these criteria, we culled 1,976 trials from 5
movement neurons for Monkey C and 2,075 trials from 12 move-
ment neurons for Monkey A. Although the number of neurons may
seem small, the number of trials is more important because model
parameters are optimized on the basis of the behavioral data and
not the neural data. SSDs were 69, 117, 169, and 217 ms for
Monkey C and 84, 101, 134, 184, 201, and 234 ms for Monkey A.
The data fit by the models were the RT distributions for no-stop-
signal trials, the RT distributions for signal-respond trials at each
SSD, and the inhibition function (i.e., the proportion of signal-
respond trials at each SSD; see Figure 2).

We calculated the SSRT for each monkey separately using the
integration method (Logan, 1994; Logan & Cowan, 1984). For
each SSD, SSRT was defined as the RT at which the integral of the
no-stop-signal RT distribution equaled the proportion of signal-
respond trials at that SSD minus the SSD. SSRT was then averaged
over SSD for each monkey. In the data set fit by the model, SSRTs
were 71 ms and 94 ms for Monkeys A and C, respectively.

Neurophysiological Measures

Neural activation functions were derived from spike trains that
were converted to spike density functions as described previously
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(Hanes et al., 1998). It is important to note that we are not fitting
the fine-scale fluctuations of neural activity; rather, we are assess-
ing qualitatively the pattern of modulation and quantitatively the
time of the major modulations in the different types of trials. This
approach is based on the premise that a population of neurons with
a specific function respond in generally the same way, but each
neuron in that population has idiosyncrasies probably derived from
incidental variation in local circuit connectivity (e.g., Marder &
Goaillard, 2006). For example, all movement-related neurons in-
crease their activity before a movement, but one neuron may have
a stronger burst while another may grow at a steady rate. To
average across neurons, we first normalized the spike density
function of each neuron by dividing its activity by the peak firing
rate in the interval from 20 ms before to 50 ms after saccade
initiation on no-stop-signal trials. Go unit activation was compared
with movement neuron activity. Stop unit activation was compared
with fixation neuron activity.

For both neurons and model units, activation on signal-inhibit or
signal-respond trials was compared with the activity of a subset of
latency-matched no-stop-signal trials. No-stop-signal trials with
rt � SSD � SSRT were compared with signal-inhibit trials,
because according to the race model, the saccade would have been
inhibited had the stop signal been presented. No-stop-signal trials
with rt � SSD � SSRT were compared with signal-respond trials,
because according to the race model, the saccade would have been
initiated even if the stop signal had occurred.

For the go unit, as for movement neurons, cancel time was
defined as the time at which activation on signal-inhibit trials
significantly diverged from the activation on no-stop-signal trials
relative to SSRT. This required measuring the difference between
the time-varying activation in these two trial types. In the original
neurophysiological study, a particular measurement procedure and
criterion were used that afforded the necessary balance between
sensitivity and robustness (Hanes et al., 1998; see also Paré &
Hanes, 2003). To provide comparable measurements for this study,
we used the same procedure and criterion. Specifically, cancel
time was defined as the instant the difference in the activation on
signal-inhibit and latency-matched no-stop-signal trials became
significant, that is, exceeded the largest difference expected by
chance. The baseline distribution of differences expected by
chance was measured in the period before any modulation was
possible, that is, from 600 ms before target onset to SSD for the
neural data and the time between the start of the go unit activation
and the start of the stop unit activation for the model. The criterion
for a significant departure from random variation was when the
difference first surpassed 2 SD of the baseline difference provided
the difference surpassed 6 SD within the next 50 ms.

Analyses of neural data show an effect of noise on estimates of
cancel time: the noisier the activation functions, the later the time
of the difference measured by the statistical criteria (Hanes et al.,
1998). The model unit activation functions have considerably less
variability than neural spike density functions because of the
tremendously large number of trials that are simulated to generate
stable model predictions. Consequently, we subsampled the acti-
vation of the go and stop units in a manner comparable to the
sampling of neural activity in the physiology experiments via the
following procedure. We simulated the model with 20–50 trials at
each SSD to mimic the number of trials typically obtained in the
physiology experiments. We then calculated the average activation

functions of the simulated trials and determined the time of mod-
ulation at each SSD for the go unit (see Figure 7a). Cancel time
was the difference between the time of modulation of the go unit
and SSRT, with negative and positive differences measuring times
before or after SSRT, respectively. We repeated this procedure 500
times and calculated the average cancel time at each SSD as the
measure of the go unit cancel time; this was then statistically
comparable to the physiological data.

Because activation in the stop unit remained at zero until SSD �
Dstop (the stop unit delay), the criteria used for determining the
cancel time of the go unit were not appropriate because there was
no noise in the activation.1 Therefore, we calculated the time at
which the t value of the stop unit activation became significantly
greater than zero. To do this, we successively entered the stop unit
activation into a t test with df � N � 1, where N was equal to the
number of units entered into the t test. Cancel time was determined
by the time at which it became significant at the p � .05 level,
provided the difference remained significant for at least 50 ms.

Model Specifics

The independent race model is concerned with the finish times
of the go and stop processes and does not specify the way in which
the finish times are achieved. Here, we extend the race model by
formally describing the processes by which the finish times arise.
Our approach was to analyze the performance of a family of
simple networks consisting of a go unit and a stop unit that are
each noisy accumulators. These accumulators race toward a com-
mon threshold. Depending on the network architecture, rules about
which unit reached its threshold first determine whether a stop-
signal trial is signal inhibit or signal respond. Our main compar-
ison was between models with independent versus interactive
network architectures. In the independent model, the activation of
one unit has no effect on the activation of the second unit. This
model architecture is one particular instantiation of the indepen-
dent race model of Logan and Cowan (1984; see also Hanes &
Carpenter, 1999). We chose this instantiation because it allows a
direct comparison with the interactive race model in which the go
and stop units are mutually inhibitory.

1 Gaze-holding neurons are characterized by higher discharge rates
during periods of visual fixation, hence the name fixation neurons. This
attribute was not included in our modeling efforts, which focused on
understanding how a stop process can interrupt a go process. Every model
has boundaries, and we are confident that these efforts could be extended
to account for the activity of fixation neurons during fixation given prior
work demonstrating conditions for stability of mutual inhibitory networks
(e.g., Machens, Romo, & Brody, 2005; Wong & Wang, 2006). In order to
directly compare the interactive race model with the independent model,
we attempted to keep everything about those two models as equivalent as
possible. Indeed, this is a recommended practice in computational model
comparison. If the competing models differ along a large number of
dimensions, it is difficult to determine which aspects of competing models
are responsible for the success or failure of a model. By keeping the
competitors as comparable as possible, we are able to explain why the
interactive race model provides a better account of both neurophysiology
and behavior than the independent race model. A more thoroughly fleshed
out neural instantiation of the interactive race model would need to include
a number of details that we did not include in our modeling efforts.
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Formally, the go and stop units accumulate activation according
to the following stochastic differential equations (Usher & Mc-
Clelland, 2001):

dago(t) �
dt

	
[
go � k � ago(t)��stop � astop(t)] � �dt

	
�go; (1)

dastop(t) �
dt

	
[
stop � k � astop(t) � �go � ago(t)] � �dt

	
�stop. (2)

These equations specify the change in unit activation (dago and
dastop) within a time step dt (note that dt/	 was set equal to 1). The
mean growth rates of the go and stop units are given by the 
go and

stop parameters, respectively. � is a Gaussian noise term with a
mean of zero and a variance of go

2 or stop
2 . The leakage param-

eter, k, prevents the activation from increasing without bound. Our
initial investigation determined that the leakage term could be set
to zero. However, we discuss a version of the model with leakage
but with no inhibition below.

The key element of the interactive race model was the amount
of inhibition between the go and stop units specified by the �
parameters. �go specifies the inhibition of the go unit on the stop
unit, and �stop specifies the inhibition of the stop unit on the go
unit. The amounts of inhibition depend on the instantaneous acti-
vation levels (ago or astop), causing a unit with a low activation to
have a small inhibitory effect on the other unit. Together, these
parameters specify the increment of activation on each time step
toward a response threshold. The response threshold was fixed at
1,000 for both units, but other values produce the same results
because the other parameters scale accordingly. The activations
were rectified to be greater than zero as specified in the model of
Usher and McClelland (2001).

Other parameters in the models capture the times for other
stages of processing. Stimulus encoding that occurs before go unit
and stop unit activation was instantiated as a constant delay be-
tween stimulus presentation and activation in the go unit and
between stop-signal presentation and activation in the stop unit.

Figure 7. Cancel time. a: One run of the simulation with fewer trials to mimic the number of trials recorded
for a typical neuron. Average normalized go unit (green) and stop unit (red) activation on signal-inhibit (thick
solid line) and latency-matched no-stop-signal trials (thin solid lines) with stop-signal delay (SSD) and
stop-signal reaction time (SSRT) indicated. Cancel time is indicated by the downward arrow. b: Probability
distribution of cancel times of the go unit in the optimized interactive race model (N � 10) compared with the
probability distributions of cancel times measured for movement-related neurons in frontal eye field (N � 119)
and superior colliculus (N � 92). c: Probability distribution of cancel times of the stop unit in the optimized
interactive race model (N � 10) compared with the probability distributions of cancel times measured for
movement-related neurons in frontal eye field (N � 8) and superior colliculus (N � 46).
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Thus, each model unit activation is set to zero until stimulus
encoding is complete. The stop unit delay (Dstop) is a free param-
eter of the model. We chose to constrain the go unit delay (Dgo)
separately for each monkey on the basis of the average time at
which the sample of movement neurons began to increase dis-
charge rate in response to target presentation. We wanted to
compare go unit activity with movement neuron activity to eval-
uate the neural predictions of the models, so it was necessary for
the activation to start at times that were constrained by the neural
data. The average was derived from the activity of 10 trials, sorted
by RT to control for RT-dependent differences in activation
growth, aligned on target presentation (Hanes & Schall, 1996). For
this study, the beginning of activation was the latest time meeting
the following criteria: (a) Spike density values increased signifi-
cantly according to a Spearman correlation over an interval rang-
ing from �20 ms to 20 ms, (b) the spike density at that time was
less than the midpoint between the baseline and the threshold
measured in the interval 200 ms before target onset, and (c) the
correlation remained nonsignificant for 200 ms before the time. In
this way, Dgo values were set to 80 ms and 35 ms for Monkeys A
and C, respectively. Finally, we assumed a ballistic interval of 10
ms preceding the eye movement after the go unit accumulated
activation to its threshold (goballistic). This estimate corresponds to
the time prior to a saccade during which the omnipause neurons
cease firing and thus allows the eyes to move (e.g., Everling et al.,
1998; Scudder et al., 2002). The time between the onset of acti-
vation of the go unit and that activation hitting threshold is defined
as goRT. Consequently, the simulated go unit finish time for each
trial (rtgo) is equal to Dgo � goRT � goballistic.

We formulated independent and interactive models within the
above general architecture. By constraining particular parameters,
we defined special cases that could be compared quantitatively
with a more general model using hierarchical model testing tech-
niques. In particular, the presence or absence of inhibition between
the go and stop units created models with two distinct architec-
tures. In the independent race architecture (see Figure 5a), inhibi-
tion between the go and stop units was absent (�go � �stop � 0),
so the outcome of a trial was dictated by a simple race of the go
and stop units to their respective thresholds. If the go unit reached
threshold first so that rtgo � rtstop � SSD, then a signal-respond
trial was produced; if the stop unit reached threshold first so that
rtstop � SSD � rtgo, then a signal-inhibit trial occurred.

In the interactive race architecture (see Figure 6a), the stop and
go units were mutually inhibitory, so a signal-respond trial oc-
curred if the go unit reached threshold, and a signal-inhibit trial
occurred if the stop unit prevented the go unit from reaching
threshold. Models with alternative architectures were assessed on
their ability to satisfy the converging constraints of accounting for
the essential characteristics of both behavioral and neural data
obtained from monkeys performing the saccade stop-signal task
(Hanes et al., 1998; Paré & Hanes, 2003).2

Models were fit quantitatively to the behavioral data with a
search routine that found parameters that optimized the fit between
model predictions and observed data. Following recommendations
by Ratcliff and Tuerlinckx (2002), we optimized the fit of each
model to the behavioral data by minimizing a Pearson chi-square
statistic,

�2 � �
i

�
j

(oij � pij)
2

pij
. (3)

The first summation over i indexes the various SSD conditions and
the no-stop-signal condition. Within each condition, a particular
observation or prediction can fall into one of several bins. The oij

and pij tally the number of observations and predictions that fall in
each bin, respectively, where each bin is indexed by j. On no-stop-
signal trials, an observation could fall into one of five RT bins
(quintiles) in the RT distribution; a model prediction could also fall
into one of those same bins. On stop-signal trials, for each SSD, an
observation could fall either into one of five RT bins on signal-
respond trials or into an inhibition bin on signal-inhibit trials;
similarly, a model prediction could also fall into one of those same
bins. If there were fewer than 40 RTs observed in a distribution at
a particular SSD, then the entire distribution was considered a
single bin, which effectively counted only the number of signal-
respond versus signal-inhibit trials. We chose this particular fit
statistic because it allowed us to fit quantitatively and simulta-
neously both the RT distributions on no-stop-signal and signal-
respond trials and the proportion of signal-inhibit trials that make
up the inhibition function.

The use of a chi-square statistic allowed us to evaluate statisti-
cally the fits of special cases of models with particular parameters
constrained using the logic of hierarchical model testing. Testing
special cases allowed us to evaluate rigorously what aspects of a
model are necessary to account for the observations and how
different parameter settings trade off against one another. For
example, we could set a parameter to zero or set a parameter equal
to another parameter. In both cases, we have constrained one
parameter of the more general model. If �general

2 is the fit of the
general model with N parameters and �special

2 is the fit of a special
case with N � M parameters (where M is the number of con-
strained parameters), then the special case is judged to fit signif-
icantly worse than the general model if the difference in chi-
squares (�general

2 � �special
2 ) is greater than the critical chi-square

with M degrees of freedom at a .05 alpha level. Statistical model
comparison techniques such as this are now regularly used to
evaluate cognitive models (Ratcliff & Tuerlinckx, 2002).

Model parameters were optimized by minimizing chi-square
using the subplex algorithm (Rowan, 1990), a more efficient
variant of the Nelder–Mead simplex method (Nelder & Mead,
1965) that is well suited for optimizing stochastic models (Bogacz
& Cohen, 2002). With stochastic simulation models, hill-climbing
algorithms such as subplex can often settle in a local minimum
rather than the global minimum. This was mitigated by starting the
hill-climbing algorithm at a minimum of 40 different starting
points for each model fit conducted.3

2 Working simulations of the independent race model and the interactive
race model can be found at http://www.psy.vanderbilt.edu/faculty/palmeri/
psyrev07_model/model.m

3 Given the time-intensive nature of these parameter optimizations, the
simulations were run on a near-supercomputer computing cluster supported
by the Vanderbilt Advanced Center for Computing for Research and
Education.
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Modeling Results

We first evaluate the ability of the independent race architecture
to account for the observed data. It is necessary to establish the
baseline performance of this architecture to relate our findings to
the large literature applying the abstract independent race model to
behavior obtained in the stop-signal task (Band et al., 2003; Logan,
1994). Furthermore, viable alternative model architectures must
account for the behavioral data at least as well as the independent
race model because this race model has been tested extensively
and has demonstrated consistent success in describing counter-
manding behavior for over 20 years.

The independent race architecture predicted very well the inhi-
bition function and the RT distributions on no-stop-signal and
signal-respond trials (see Figures 5c and 5d). The SSRT, best-
fitting parameters, and chi-square goodness of fit for the indepen-
dent architecture are given in Table 1. In particular, note how each
predicted RT distribution shares a common minimum and how the
maximum RT increases with increasing SSD, as was observed in
the behavioral data. This fanning pattern of RT distributions is a
characteristic feature of RT data in the stop-signal task (e.g.,
Osman et al., 1986). In addition, the independent race model was

able to account for the SSRT. Although this model accounted for
the behavioral data quite well, it failed altogether in accounting for
the neural data. This architecture cannot account for the modula-
tion of movement-related neurons because nothing interrupts the
go unit on stop-signal trials in which the stop unit reaches thresh-
old first, that is, signal-inhibit trials (see Figures 5b and 5f). In
signal-inhibit trials, the go unit reaches the threshold, albeit after
the stop process. Mechanistically, if the go unit reaches its thresh-
old, a saccade must be initiated, but neither human nor monkey
subjects make such erroneous saccades on signal-inhibit trials. Of
course, in its original formulation, the race model stated that if the
stop process finished first, the trial was classified as signal inhibit
because the go process was not permitted to finish, but this
formalism did not specify a mechanism. The goal of our modeling
effort was to determine a mechanism that could shut off the go
process so that it does not reach threshold on signal-inhibit trials
but preserve the essential characteristics of stop-signal task per-
formance.

One way to turn off the go process is to make the stop unit
inhibit the go unit. Thus, the interactive race architecture is defined
by mutual inhibition between the go and stop units that allows the

Table 1
Best-Fitting Model Parameters for Monkeys A and C

Parameter Independent Interactive Dstop � 0 
stop � 
go �stop � �go

�stop � �go,

stop � 
go

Monkey A


go 5.09 5.08 5.18 5.08 5.14 2.26
go 26.38 26.24 26.42 26.24 26.27 31.82

stop 50.24 5.07 25.96 5.08 33.68 2.26
stop 40.17 26.34 21.30 26.24 40.47 31.82
�go 0.000 0.005 0.000 0.005 0.024 0.009
�stop 0.000 0.111 0.003 0.113 0.024 0.009
Dstop 51 51 0 51 51 51
�2 128.80 120.94 150.61 120.99 125.60 2684.90
Avg go cancel time (ms) — �20 �28 �20 �18 �111
Avg stop cancel time (ms) — �31 �81 �31 �33 �189
Stopinterrupt (ms) — 23 63 23 27 112
SSRTmodel (ms) 80 82 76 82 81 234

Monkey C


go 4.64 4.63 4.59 4.63 4.60 1.16
go 20.26 20.43 21.11 20.42 20.55 48.55

stop 17.67 4.62 10.14 4.63 29.73 1.16
stop 15.58 20.41 14.95 20.42 23.11 48.55
�go 0.000 0.010 0.013 0.010 0.023 12.586
�stop 0.000 0.434 0.029 0.435 0.023 12.586
Dstop 29 67 0 67 62 31
�2 57.24 50.64 139.97 50.65 53.56 1690.70
Avg go cancel time (ms) — �10 �44 �10 �2 �15
Avg stop cancel time (ms) — �19 �89 �19 �32 �162
Stopinterrupt (ms) — 21 49 21 38 169
SSRTmodel (ms) 97 94 91 93 95 219

Note. Chi-square values measure the goodness of fit between the simulated and observed reaction time (RT) distributions on no-stop-signal trials, RT
distributions on signal-respond trials at each stop-signal delay (SSD), and proportion of signal-inhibit trials (one-inhibition function) at each SSD. The go
and stop cancel times are the times relative to stop-signal RT (SSRT) at which the go or stop activation functions on signal-inhibit and latency-matched
no-stop-signal trials become significantly different. Stopinterrupt is the time interval between the start of the stop process (SSD � Dstop) and the time it takes
to cancel the movement, the cancel time. Cancel time and Stopinterrupt were averaged across SSDs. Note that there are no cancel times or Stopinterrupt values
for the independent model because nothing interrupts the go unit in this model to produce these values. SSRTmodel is calculated by the integration method.
Values in boldface type indicate constrained parameters (see the text for more details).
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inhibition from the stop unit to prevent the go unit from reaching
threshold and triggering a movement on signal-inhibit trials. We
found that with suitable parameters, the interactive race architec-
ture could account for the behavioral data just as well as the
independent race architecture (see Figure 6 and Table 1). As with
the independent architecture, the inhibition function, the fanning of
the RT distributions on no-stop-signal and signal-respond trials,
and the SSRTs are all well predicted. In contrast to the independent
race architecture, this interactive race architecture can account for
the pattern and timing of neural modulation. Specifically, go unit
activation reaches threshold on no-stop-signal trials and signal-
respond trials, but it is reduced substantially on signal-inhibit trials
before the behavioral measure of SSRT (see Figures 6e and 6f).
Thus, the activation of the go unit corresponds precisely to the
pattern of activation of movement neurons in frontal eye field
(Hanes et al., 1998) and superior colliculus (Paré & Hanes, 2003)
during this task (see Figure 4).

The reduction of activation in the go unit resulted from inhibi-
tion from the stop unit on the go unit (�stop). On these signal-
inhibit trials, the stop unit became active just before SSRT had
elapsed. The reduction of activation of the go unit did not happen
on signal-respond trials because the stop unit failed to become
active before the SSRT. This modulation of the stop unit before
SSRT on signal-inhibit trials, but not signal-respond trials, corre-
sponds to the modulation of fixation neurons in frontal eye field
(Hanes et al., 1998) and superior colliculus (Paré & Hanes, 2003;
see Figure 4). Thus, the interactive race architecture parameterized
to fit the performance accomplishes this with go and stop unit
activation having the presence and timing of modulation corre-
sponding to what has been observed in movement neurons and
fixation neurons.

This qualitative conclusion can be evaluated quantitatively by
examining the cancel time of the go and stop units—the time at
which modulation occurred on signal-inhibit trials. Analyses of
neural data show an effect of noise on estimates of cancel time: the
noisier the activation functions, the later the time of the difference
measured by the statistical criteria (Hanes et al., 1998). The model
unit activation functions have considerably less variability than
neural spike density functions owing to the tremendously large
number of trials that are simulated in order to generate stable
model predictions. This fact has implications for the calculation of
cancel time, so we first needed to subsample the activation of the
go and stop units in a manner comparable to the original sampling
of neural activity in the physiology experiments. We did so using
the following procedure: We simulated the model with a range of
20–50 trials at each SSD to mimic the number of trials typically
obtained in the single-cell physiology experiments that provided
our data. We then calculated the average activation functions of the
simulated trials and determined the time of modulation at each
SSD for the go and stop units (see Figure 7a). We calculated cancel
time as the difference between the time of modulation in the go
and stop units and SSRT; negative and positive cancel times are
instances in which the modulation occurred before or after SSRT,
respectively. We repeated this procedure 500 times and took the
average cancel time at each SSD to obtain an estimate of the go
unit and stop unit cancel time that was statistically comparable to
the physiological data. We found that the distribution of go unit
and stop unit cancel times derived from the interactive race archi-
tecture overlaps with the distribution of cancel times measured

from neurons in frontal eye field (Hanes et al., 1998) and superior
colliculus (Paré & Hanes, 2003; see Figures 7b and 7c). Thus,
quantitatively, the interactive race model yields a predicted distri-
bution of cancel times that are very similar to the observed distri-
bution of neural cancel times. The data from fixation neurons in
the superior colliculus are more reliable than those obtained from
frontal eye field.

Model Exploration

The interactive race architecture prevails over the independent
race architecture in that it can account for both the behavioral and
the neural data. We wanted to test the boundary conditions of the
interactive model to understand better which aspects of the model
are necessary to account for the behavior and neurophysiology.
Hierarchical model testing showed that two features of the inter-
active architecture were necessary to account for both behavioral
and neural data. First, the interaction between the stop and go units
must occur well after presentation of the stop signal (Dstop ��0).
Second, the inhibition of the stop process on the go process must
be very potent. These requirements of the interactive race archi-
tecture are considered in turn.

First, to investigate the necessity of a delayed interaction, we set
Dstop � 0, activating the stop unit immediately with stop-signal
presentation, and allowed all other parameters to vary freely. With
Dstop � 0, the fit to the behavioral data was significantly worse
than that of the general interactive model for both monkeys ( ps �
.001; see Table 1). This occurred because, without a delay, the stop
unit interacts with the go unit for a prolonged period of time,
producing longer than observed simulated RTs on signal-respond
trials and a premature cancel time. Thus, in order for the interac-
tive race model to account for stop-signal performance, activation
of the stop unit must be delayed for a substantial amount of time
after the stop signal occurs (i.e., Dstop ��0).

The prolonged RTs are characteristic of violations of the inde-
pendence assumption of the race model (Band et al., 2003). Note,
however, that these violations appear uniformly across all SSDs,
whereas violations of the race model from observable data occur at
the shortest SSDs (Boucher et al., in press; Hanes & Carpenter,
1999; Özyurt, Colonius, & Arndt, 2003). Only a small number of
trials contribute to the mean RT at these short SSDs, and these
outlier signal-respond RTs are often much longer than an average
saccadic RT. We believe these responses occur on rare trials when
subjects successfully inhibit the movement and then after a typical
RT produce the movement anyway, so they are outside the race
model framework.

Second, to investigate the necessity of potent inhibition of the go
unit by the stop unit, we constrained either the growth rate such
that 
stop � 
go and stop � go or the inhibition such that �stop �
�go. We found a clear trade-off between 
stop, 
go and �stop, �go

(see Table 1). If 
stop � 
go, then the optimized � values were
always �stop ���go. If �stop � �go, then the optimized 
 values
were always 
stop ��
go. These results occurred because the
potency of the stop unit is a function of both the magnitude of the
inhibition of the stop unit on the go unit (�stop) and the rate of
growth of the stop unit (
stop, stop). To explore this trade-off, we
equated simultaneously the growth rate (
stop � 
go and stop �
go) and the inhibition (�stop � �go). This architecture fit the
observed data significantly worse than the general interactive
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model ( ps � .001). It failed because the trade-off between 
stop

and �stop could not occur. For example, if 
 and � were too high,
the go unit reached threshold too early before the stop unit,
resulting in premature RTs, and the inhibition of the go unit on the
stop unit was too potent for the stop unit to accumulate suffi-
ciently, resulting in a lack of sensitivity to SSD. Conversely, if 

and � were too low, the go unit reached threshold too late to
account for the RT data, and the stop unit was too weak to interrupt
the go unit sufficiently often enough. Thus, for the interactive race
model to account for stop-signal performance, the stop unit must
inhibit the go unit much more than vice versa.

General Discussion

This theoretical investigation furnishes a deeper understanding
of SSRT that justifies its use in clinical and developmental studies,
reveals a previously unappreciated characteristic of the neural
circuitry responsible for gaze control, and makes new predictions
about the stages of processing making up SSRT, which are ame-
nable to experimental manipulation. More generally, our work
exemplifies an approach to mapping cognitive processes onto
neural process through quantitative testing of stochastic models of
behavior constrained by the characteristics of the neural mecha-
nisms instantiating the cognitive process. This approach can
readily be used in other domains to assess competing models. We
consider each of these points in turn.

What Does SSRT Measure?

Using hierarchical model testing, we determined that the inter-
active race model alone could satisfy both behavioral and physi-
ological constraints if and only if stop unit inhibition was potent
and delayed. This result solves the paradox: Interacting neural
units can produce behavior that appears to be the outcome of a race
between independent processes because the processes remain in-
dependent for most of their duration. The stop process interacts
with the go process only for a very brief period of time. Thus, an
implication of the interactive race model is that stopping is a
multistage process consisting of an encoding stage during which
no interaction with response preparation occurs and a brief inter-
ruption stage during which response preparation is inhibited.

The duration of SSRT is occupied by the following events. First,
during stimulus encoding, the stop unit does not influence the go
unit, satisfying the independence premise of the original race
model. This interval, called Dstop, was between 51 and 67 ms, a
range that corresponds to the typical latency of visual responses in
frontal eye field and superior colliculus (e.g., Pouget, Emeric,
Stuphorn, Reis, & Schall, 2005); the standard deviation of this
latency is rather small, measured at 10–20 ms. Second, once
activated, the stop unit potently and rapidly inhibits the go unit.
This interval from activation of the stop unit (SSD � Dstop) until
interruption of go unit accumulation (cancel time) can be called
stopinterrupt. In the optimized interactive race model stopinterrupt

was 22 ms across SSDs and monkeys. Because this value approx-
imates synaptic integration time, stopinterrupt can be considered
effectively instantaneous. Finally, the race model calculation of
SSRT includes the ballistic interval preceding initiation of the
movement (Logan & Cowan, 1984), which we refer to as goballistic.
For saccade production, goballistic can be considered to be the time

at which inhibition of omnipause neurons on medium-lead burst
neurons is released; this time has been measured at �10 ms with
1-ms SD (e.g., Everling et al., 1998).

Thus, the SSRT measured using standard techniques is the sum
of these intervals:

SSRT � Dstop � stopinterrupt � goballistic. (4)

Goballistic is very brief, even approaching zero for some manual
responses (e.g., De Jong et al., 1990). Stopinterrupt is very brief,
because the inhibition of the stop unit on the go unit is very potent.
Thus, most of SSRT is occupied by Dstop, during which the go unit
is uninfluenced by the stop unit. Thus, the go and stop processes
are independent for most of their durations. Consequently, SSRT
estimates from the independent race model provide valid measures
of the process by which movement preparation is interrupted. This
justifies the use of SSRT to measure inhibitory ability in studies of
lifespan development, individual differences, and psychopathol-
ogy.

Possible Neural Mechanisms of Stopping

We have identified stop and go units with fixation and move-
ment neurons, respectively, in frontal eye fields and superior
colliculus. This bridging proposition is a strong claim that must be
defended against alternatives. On the computational side, Logan
and Cowan (1984) distinguished between two ways to stop an
action: by inhibiting it directly in the motor system or by removing
its input, which could involve deleting the goal of moving or
deleting the stimulus that drives the movement. Our interactive
race model instantiates the first alternative; fixation cells inhibit
movement cells in the motor system. The second alternative is
possible computationally; the interactive race model does not rule
it out. On the neural side, recent functional magnetic resonance
imaging studies have described a broad network of structures in
the brain that are involved in performing the stop-signal task with
saccades (Curtis, Cole, Rao, & D’Esposito, 2005) as well as with
manual responses (Aron & Poldrack, 2006; Li, Huang, Constable,
& Sinha 2006). There is significant activation outside the frontal
eye fields and superior colliculus, and it is logically possible that
stop and go units are located in these other structures. It is logically
possible that countermanding is accomplished by deleting or in-
hibiting the stimuli or the goals that drive the movement cells in
frontal eye fields and superior colliculus.

Some neurophysiological data challenge the idea that the inter-
action between stop and go units could occur between cells other
than movement and fixation neurons. The specific anatomical
inputs to movement and fixation neurons are not known, but the
most plausible possibility must be the visually responsive neurons
in the frontal eye field and superior colliculus as well as from other
areas in parietal and frontal cortex. The race between go and stop
processes cannot be instantiated by these other neurons because
most of the visual neurons in frontal eye field and superior col-
liculus do not modulate in stop-signal trials, and the few that do
modulate after SSRT (Hanes et al., 1998; Paré & Hanes, 2003).
Likewise, preliminary reports have shown that neurons in the
supplementary eye field (J. W. Brown, Stuphorn, & Schall, 2001;
Schall, Stuphorn, & Brown, 2002) and the lateral intraparietal area
(Brunamonti & Paré, 2005) do not modulate in stop-signal trials
either. Furthermore, the visual latencies of neurons in prefrontal
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cortex approach or exceed the 100 ms of the SSRT (reviewed by
Schall, 1991), so they cannot act in time to modulate the activity
of movement neurons. Finally, physiological data show that the
ballistic phase for saccadic eye movements is approximately 10
ms, which is the time required for movement processes in the
brainstem to operate. If the interaction of stop and go units was
prior to movement and fixation cells, the ballistic phase would
have to be longer than this 10-ms interval (i.e., the time required
to activate movement neurons would also contribute to the dura-
tion of the ballistic phase).

Although we believe the neurophysiological data are consistent
with our identification of stop and go units with fixation and
movement neurons, respectively, we tried to address the issue
computationally by developing models in which the interaction
between stop and go units operated on the inputs to fixation and
movement neurons. We assumed the go and stop processes rose to
a threshold, and when one of them reached it, the input to both
units was turned off. In one version of the model, noise turned off
with the input. In the other version of the model, noise remained on
continuously, as it had in our other models, even after the input
turned off. These models did not fit the behavioral data very well.
They accounted for the inhibition function and the go RTs on
no-stop-signal trials, but they produced signal-respond RTs that
were longer than the observed signal-respond RTs and even longer
than the predicted no-stop-signal RTs. Because there was no direct
inhibition between stop and go units to produce the modulation of
go unit activity on successful stop trials, a leakage parameter
greater than zero was included that served to bring the go unit
activation back to zero after the input was cut off. This produced
a modulation in go unit activation on successful stop trials, but the
modulation occurred after SSRT in both models (i.e., cancel time
was after SSRT). Thus, neither the computational analysis nor the
physiological data are consistent with the alternative hypothesis
that stop and go units can be identified with neurons that provide
inputs to fixation and movement cells in frontal eye fields and
superior colliculus.

Asymmetric Inhibition

As reviewed above, the critical neural events responsible for
saccade preparation occur in a distributed circuit including frontal
eye field, superior colliculus, basal ganglia, cerebellum, thalamus,
and brainstem. Saccade initiation is inhibited at several levels
including the omnipause neuron inhibition on the excitatory burst
neurons (Scudder, Fuchs, & Langer, 1988), inhibition within the
superior colliculus (Meredith & Ramoa, 1998; Munoz & Istvan,
1998; Munoz & Wurtz, 1993a, 1995), and tonic inhibition on the
superior colliculus from the substantia nigra pars reticulata, which
is itself inhibited before saccades by the oculomotor region of the
caudate nucleus (Hikosaka et al., 2000) that is innervated by
frontal eye field (Parthasarathy, Schall, & Graybiel, 1992). The
architecture of the interactive race model that fit behavior required
asymmetric inhibition between the go unit and the stop unit. We
believe this implies that during the period described by this model,
gaze-holding neurons inhibit gaze-shifting neurons much more
than vice versa. To our knowledge, this asymmetric inhibition has
not been described before or anticipated by previous physiological
or anatomical studies, so it is a novel prediction from our interac-
tive race model. It is certainly not an explicit feature of current

models of saccade generation (for a review, see Girard & Berthoz,
2005). Further neurophysiological and neuroanatomical studies are
necessary to identify how such an asymmetry can arise.

Stages of Stopping

A strong implication of the interactive race model is that SSRT
consists of an initial period during which no influence is exerted on
the go process followed by a subsequent, brief period of potent
interaction—if and only if the movement is inhibited. We refer to
the two stages as encoding and interruption. Although the RT
preceding overt movements has been regarded as consisting of
stages (e.g., Sternberg, 2001), most previous descriptions of SSRT
have not emphasized this characteristic (but see van den Wilden-
berg & van der Molen, 2004b).

Selective influence is one of the strongest lines of evidence for
stages of processing, and several studies have shown that certain
variables may selectively influence different stages of SSRT. Sev-
eral researchers manipulated the discriminability of the stop signal
and found variations in SSRT, suggesting selective influence on
the encoding stage (Asrress & Carpenter, 2001; Cabel et al., 2000;
Cavina-Pratessi, Bricolo, Prior, & Marzi, 2001; van den Wilden-
berg & van der Molen, 2004a). Other researchers found prolonged
SSRT in response-incompatible conditions of flanker and Stroop
tasks that require inhibition of prepotent responses, suggesting
selective influence on the interruption stage (Kramer et al., 1994;
Ridderinkhof et al., 1999; Verbruggen, Liefooghe, & Vandieren-
donck, 2004). Further research with our interactive race model is
necessary to assess the validity of these suggestions.

Stopping Eyes and Stopping Hands

We believe the results we have obtained generalize to stop-
signal conditions using other effectors, such as key presses4 or
vocalizations, and other stop-signal modalities, such as acoustic.
Several lines of evidence lead to this conclusion.

First, the quality of performance on the saccade stop-signal task
corresponds precisely to that on manual stop-signal tasks (e.g.,
Hanes & Schall, 1995; Logan & Irwin, 2000). We have investi-
gated performance of combined eye and hand stopping (Boucher et
al., in press). In a stop-signal task, subjects were instructed to
initiate but occasionally inhibit eye, hand, or eye � hand move-
ments in response to a color-coded foveal stop signal. Performance
on this task could be accounted for very well by the race model
because uncertainty in the mapping of stop signal onto effector did
not produce performance data qualitatively different from any
previous stop-signal study. Although SSRT was shorter for eye
movements than for hand movements, SSRT did not vary with
knowledge about which movement to cancel.

Second, the high-level control of saccades appears indistin-
guishable from the high-level control of manual movements. For
example, when subjects are asked to generate a sequence of

4 Manual stop-signal studies have provided evidence that these move-
ments can be produced with lower velocity or force or even interrupted
during execution (De Jong et al., 1990). In contrast, saccades produced in
the stop-signal task are not slower or hypometric (Hanes & Schall, 1995).
Such differences in effector will need to be recognized in generalizing this
model.
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saccades, the latency of the first saccade increases with the number
of movements in the sequence (Inhoff, 1986; Zingale & Kowler,
1987), following the same pattern observed for speech and typing
(Sternberg, Monselli, Knoll, & Wright, 1978). In addition, the
influence of foreperiod on RT is the same for movements of the
eyes (Findlay, 1981; Hanes, Tu, & Schall, 1992) as it is for
movements of the limbs (e.g., Niemi & Näätänen, 1981).

Third, forelimb movements are initiated when movement-
related activity in primary motor cortex reaches a threshold, and
variability in RT comes from variability in growth (Lecas, Requin,
Anger, & Vitton, 1986), as observed for saccades (Hanes & Schall,
1996). Similar evidence has been presented measuring the ampli-
tude of the lateralized readiness potential, a scalp potential con-
comitant of movement preparation (Gratton, Coles, Sirevaag, &
Eriksen, 1988).

Fourth, it is well known that the initiation of forelimb and other
skeletomotor movements is under inhibitory control primarily
through the internal segment of the globus pallidus of the basal
ganglia (e.g., Alexander, DeLong, & Strick, 1986). Unfortunately
to date, no single-unit recordings have been conducted in the
skeletal motor system in monkeys performing a manual stopping
task.

Neurally Constrained Cognitive Modeling

Our work exemplifies an emerging approach of mapping cog-
nitive processes onto neural processes through converging evi-
dence from formal models and neurophysiology (see also
Bundesen, Habekost, & Kyllingsbaek, 2005; Mazurek, Roitman,
Ditterich, & Shadlen, 2003; Ratcliff, Cherian, & Segraves, 2003).
This effort is distinct in several respects from other kinds or levels
of models. Some models are built from a reasonably complete
understanding of the details of the neural circuitry in a particular
brain region, such as models of the brainstem saccade generator
(e.g., Cannon & Robinson, 1985; Chun & Robinson, 1978; Scud-
der, 1988). Although these models provide detailed accounts of
neural properties, their scope is rather limited. Other models sim-
ulate circuits involving multiple brain areas engaged in more
complex behavior (e.g., J. W. Brown et al., 2004; Hamker, 2005;
Mitchell & Zipser, 2001; Optican, 1995; Quaia, Lefevre, & Opti-
can, 1999; Zipser & Andersen, 1988). Although models such as
this respect many neural details, they lack stochastic elements
capable of accounting for natural variability in performance. Fi-
nally, cognitive process models account for a broad range of
complex behaviors with no commitment to neural architecture
(e.g., S. Brown & Heathcote, 2005; Bundesen, 1990; Busemeyer &
Townsend, 1993; Carpenter & Williams, 1995; Hanes & Carpen-
ter, 1999; Link, 1975; Logan & Cowan, 1984; Logan & Gordon,
2001; Nosofsky & Palmeri, 1997; Ratcliff, 1978; Usher & Mc-
Clelland, 2001).

Establishing useful mapping between cognitive models and neu-
rophysiology is an essential next step for both fields. First, cog-
nitive models can tell neurophysiologists what neural events are
relevant to measure. For example, we mapped the activation of
model units onto specific neuron firing rates changing over time.
This is an explicit commitment to rate coding. We could have
attempted to map the model unit activation onto the temporal
pattern of action potentials or the information content of the spike
train, but the race model can be instantiated most simply in the

accumulator framework. Furthermore, the mapping between the
race model and neural processes was established most directly
through the timing of particular moments of strong neural modu-
lation. This focus on specific events in the firing-rate records
prevented overfitting the model to idiosyncrasies in the discharge
patterns of neurons. However, it is conceivable that the mapping of
neural events onto cognitive processes requires knowledge of the
membrane properties of neurons and the intrinsic dynamics of
complex neural circuits. In fact, natural bridges between models of
hundreds of integrate-and-fire neurons with realistic receptor
mechanisms and models of the form we used are being formulated
(e.g., Wong & Wang, 2006). Ultimately, if proper mappings can be
elucidated, then by articulating the computations performed, the
cognitive models provide explanations of what neurons do.

Second, neurophysiology can help distinguish between alterna-
tive cognitive models. Cognitive models are often faced with the
conundrum of model identifiability or model mimicry (e.g., Logan,
2004; Massaro, 1993). Several approaches to deal with this issue
have been proposed (e.g., Anderson, 1990; Myung, Pitt, & Kim,
2005; Oaksford & Chater, 1998; Shepard, 1994; Townsend &
Ashby, 1983), but we suggest that beyond these approaches, the
characteristics of neural activity can contribute decisively to re-
solving model mimicry (Hanes & Schall, 1996). Our work dem-
onstrates a case in which two models fit the behavioral data
equally well. Therefore, appealing to parsimony would have de-
manded exclusion of the more complex interactive race model in
favor of the simpler independent race model. However, mapping
the pattern of neural modulation onto the model activation required
the more complex model.

Conclusions

The goal of our research was to resolve a paradox in linking a
cognitive model of countermanding performance to the neurophys-
iological events that produce the behavior: How can an indepen-
dent race model account so well for behavior that is produced by
systems of interacting neurons? Our resolution of this paradox was
to propose an interactive race model, in which stop and go units are
independent for much of their duration, but the stop unit can
interrupt the go unit potently and briefly. The interactive race
model presented here is based on a linking proposition that iden-
tifies the formal go and stop processes for saccade preparation with
activation of movement and fixation neurons in the circuit that
includes the frontal eye field and superior colliculus that imple-
ments the operations required to perform the stop-signal task.
Through this linking proposition, the interactive race model ex-
plains what the neurons do and justifies the use of SSRT as a
measure of inhibitory control in cognitive psychology, lifespan
development, individual differences, and psychopathology. We
anticipate that a coordinated analysis of behavioral and neural data
with formal cognitive models to converge on underlying mecha-
nisms will be useful in other domains such as visual attention,
categorization, and executive control.
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Özyurt, J., Colonius, H., & Arndt, P. A. (2003). Countermanding saccades:
Evidence against independent processing of go and stop signals. Per-
ception & Psychophysics, 65, 420–428.
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