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Abstract

In the stop-signal paradigm, subjects perform a standard two-choice reaction task in which,

occasionally and unpredictably, a stop-signal is presented requiring the inhibition of the re-

sponse to the choice signal. The stop-signal paradigm has been successfully applied to assess

the ability to inhibit under a wide range of experimental conditions and in various populations.

The current study presents a set of evidence-based guidelines for using the stop-signal para-

digm. The evidence was derived from a series of simulations aimed at (a) examining the effects

of experimental design features on inhibition indices, and (b) testing the assumptions of the

horse-race model that underlies the stop-signal paradigm. The simulations indicate that, under

most conditions, the latency, but not variability, of response inhibition can be reliably estimated.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inhibitory control is an indispensable concept for explaining behavioral flexibility

(for a review, see Logan & Cowan, 1984). Everyday activities such as driving and
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sports would be impossible without the ability to dynamically adjust one’s actions to

the changing demands of the environment. Complete suppression of a pending re-

sponse is one of the best-defined varieties of inhibitory control. The stop-signal para-

digm provides tools for examining this relatively simple type of control (i.e., its

success, duration, and variability). The stop-signal paradigm consists of a reaction
time (RT) task in which the occasional presentation of a stop signal indicates that

the pending response should be cancelled. The probability of stopping can be manip-

ulated by the timing of the stop signal vis-�aa-vis the reaction signal. This paradigm
provides a way to test everyday requirements such as the abortion of actions (e.g.,

to countermand the impulse to start driving if the wrong traffic light turns green)

or replacement of action (e.g., to replace the first utterance that comes to mind after

hurting oneself by a more acceptable word) in an elementary form that is suited

for the controlled laboratory environment (Lappin & Eriksen, 1966; Logan, 1994;
Logan & Burkell, 1986; Logan & Cowan, 1984).

A quantitative interpretation of the performance on a stop-signal task is enabled

by the horse-race model, which asserts that the stopping and reaction processes com-

pete for the first finishing time (see Logan & Cowan, 1984, for an analytic approach).

If stopping processes finish before the reaction processes the response is inhibited.

Otherwise, the response escapes from inhibitory control. Given a small set of as-

sumptions, it is possible to calculate the time required for stopping the response; that

is, the stop-signal reaction time (SSRT). It appears that the horse-race model de-
scribes empirical data quite well (for a review Logan, 1994). Thus, the stop-signal

paradigm has been successfully applied to examine inhibitory control under a variety

of experimental conditions. For example, the SSRT of young adults is close to 200

ms when they try to interrupt continuous actions such as typing (Logan, 1982), over-

learned responses, such as speaking (Ladefoged, Silverstein, & Papcun, 1973), or

incompatible responses (Logan, 1981). The similarity of stop results has been inter-

preted as support for a model with one stopping mechanism that can be used to stop

a variety of actions (see Logan, 1994).
An extensive review of the stopping literature is beyond the scope of the current

study. Here it suffices to say that the stop-signal paradigm is used in human subjects

but also in monkeys (Hanes, Patterson, & Schall, 1998). Stopping is examined in

children (Band, van der Molen, Overtoom, & Verbaten, 2000; Ridderinkhof, Band,

& Logan, 1999; Schachar & Logan, 1990) and in older adults (Kramer, Humphrey,

Larish, Logan, & Strayer, 1994; for a life-span study see Williams, Ponesse, Scha-

char, Logan, & Tannock, 1999). The stop-signal paradigm is used to examine defi-

ciencies in inhibitory control in clinical groups, including ADHD children
(Jennings, van der Molen, Pelham, Brock, & Hoza, 1997; Nigg, 1999; Oosterlaan

& Sergeant, 1995; Schachar & Logan, 1990; Schachar, Mota, Logan, Tannock, &

Klim, 2000; for reviews of ADHD studies with the stop-signal paradigm see Nigg,

2001, Oosterlaan, Logan, & Sergeant, 1998).

The stop-signal paradigm is used in pharmacological studies examining the effects

of methylphenidate (Tannock, Schachar, Carr, Chajczyk, & Logan, 1989) or alcohol

(Mulvihill, Skilling, & Vogel-Sprott, 1997). Finally, investigators used the stop-signal

paradigm to assess inhibitory control as reflected by single cell brain activity (Hanes
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et al., 1998) or brain potentials (De Jong, Coles, & Logan, 1995, 1990; van Boxtel,

van der Molen, Jennings, & Brunia, 2001). Likewise, investigators examined the tem-

poral dynamics of stopping motor responses at more peripheral levels by recording

heart rate changes (Jennings, van der Molen, Brock, & Somsen, 1992) or muscle ac-

tivation (McGarry & Franks, 1997). For a review of psychophysiological studies of
inhibitory control using the stop-signal paradigm, the interested reader is referred to

Band and van Boxtel (1999).

Logan (1994) presented a nontechnical introduction to the use of the stop-signal

paradigm. Following a description of the basics of the stop-signal paradigm, he fo-

cused on a variety of important design issues, including stop-signal probability and

the setting of stop-signal delays vis-�aa-vis the onset of the reaction signal. Most im-
portantly, he provided procedures for obtaining various indices of stopping using

the horse-race model, and a convenient test for assessing a major assumption under-
lying the horse race model (i.e., the assumption that go and stop processes are inde-

pendent). The primary aim of the current study is to extend Logan’s (1994)

presentation and the guidelines that were derived from it by examining how the horse

race model fares under sub-optimal conditions. This is an important issue when ex-

perimental design, for whatever reason, does not allow for great trial numbers (e.g.,

in clinical, developmental or pharmacological studies). A series of simulation studies

were performed to examine how stopping indices are affected when the conditions

for obtaining these indices are less than optimal. Thus the simulations addressed:
(a) various procedures for setting stop-signal delay, (b) the distributions of stop

and go latencies, (c) variability of the stop process, and (d) violations of indepen-

dence assumption underlying the horse-race model. The outcomes of the simulations

were used to derive a set of guidelines for the proper use of the stop-signal paradigm,

including some recommendations for experimental design and economy.

2. The stop-signal paradigm

The stop-signal paradigm comes in many varieties (see Logan, 1994) but in all ver-

sions subjects perform on a primary reaction task requiring a speeded response and a

secondary stop task requiring the inhibition of the speeded response. Usually, the

primary (go) task is a visual choice RT task. On a proportion of trials, an auditory

(stop) signal follows the onset of the visual reaction signal with a fixed or variable

stimulus–onset asynchrony (SOA). The stop signal instructs the subject to refrain

from responding to the go signal, if possible. The remaining trials are nonsignal tri-
als, on which subjects should respond as they would on a regular RT task. A low

proportion of stop signals (e.g., 25%) is usually chosen to avoid unwanted strategies

such as delaying the response to the go signal in order to increase the probability of

successful inhibits. For each SOA, a probability of responding is obtained given a

stop signal (response rate, RR, a value between 0 and 1).

Fig. 1 illustrates how variations of SOA, the duration of go processes, and SSRT

affect RR. The finishing time of stopping on trial k (SOAk þ SSRTk) is plotted rel-

ative to the distribution of go RTs. Note that RR (the part of the distribution to
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the left of the finish line) increases when mean RT is shorter, or SOA and/or SSRT

are longer. The stop-signal paradigm generates two important indices for evaluating

inhibitory control and one criterion for evaluating the validity of the horse-race

model. First, the horse-race model allows for estimating stop latency. Secondly,
the slope of the function describing the relation between RR and SOA, coined the

‘inhibition function’, is assumed to provide an estimate of the variability of stopping.

In addition, the stop-signal paradigm allows for a test of the independence assump-

tion underlying the horse-race model. The two indices for evaluating inhibitory con-

trol and the validity criterion are detailed in the sections below.

2.1. Stop latency

Five methods have been proposed to estimate stop latency (SSRTin). These meth-

ods require different assumptions and different input information. The methods are

summarized in Table 1 and the details of how to calculate SSRT according to each

method are provided in Appendix A. The basic idea is that SSRT consists of the time

between the start and finish of the stop processes (Logan, 1981). The SOA marks the

start, and the finish time can be derived from the RR on signal trials and the RT dis-

tribution on nonsignal trials. Under the assumption that go processes are the same

on signal and nonsignal trials, the nonsignal RT distribution can be treated as the
underlying distribution of go-processes on signal trials. Fig. 1 illustrates that this dis-

tribution is dissected by the finishing time of stop processes. Go processes that finish

before the stop processes lead to an overt response, so the upper limit of responses

that escape inhibition equals the finishing time of stop processes. If we assume a con-

stant SSRTin (and consequently a constant finish time), this upper limit can be de-

rived from the RR. If RR ¼ x, at a given SOA, the stop processes must have
finished at point x of the rank-ordered go RTs. For example, if stop signals at

SOA ¼ 220 ms result in RR ¼ 0:45, and the 45th percentile RT of nonsignal trials

Fig. 1. An illustration of the horse-race model of response inhibition by means of the density function of

the duration of go-processes. The stop-signal is presented after a SOA relative to the go-signal. The stop-

processes finish after the SSRT relative to the stop-signal onset. When the SSRT is assumed to be constant,

this finishing time intersects the density function of go-RT. Responses from the left part of the go-RT den-

sity function are too fast to be inhibited whereas responses from the right part are stopped correctly. Thus,

the finishing time of the stop-process divides the go-RT density function into the RR and the inhibition

rate. See the text for details.
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is 410 ms, then the observed SSRT (SSRTobs) is 410� 220 ¼ 190 ms for this partic-
ular SOA.

SSRTobs usually decreases with SOA (Logan, 1981; Logan & Cowan, 1984); so one

SSRTobs is insufficient information to estimate SSRTin reliably. A method for obtain-

ing a reliable estimate of a single SSRT was introduced by Slater-Hammel (1960). It

involves selecting the central SOA, which yields RR ¼ 0:5, and thus represents the sit-
uation where the race between response and inhibition processes ends in a tie. Logan,
Schachar, and Tannock (1997) demonstrated that, at the central SOA, the SSRTobs
(SSRTcentr) is a reliable estimate of the overall speed of inhibition. The go-RT distri-

bution that is used for estimating SSRTcentr has the highest density around the 50th

percentile, and this density enhances the resolution for calculating SSRT.

Another procedure to obtain a reliable estimate of SSRT is using summary scores

(see Appendices). These scores constitute single SSRT measures across SOAs, and

thus overcome the SOA bias of SSRTobs (cf. Logan & Cowan, 1984). One such sum-

mary measure is the average of SSRTobs or SSRTav. Other measures consist of the
difference between the mean SOA and mean RT (SSRTmean), and the difference be-

tween the median SOA and median RT (SSRTmed). Finally, Colonius (1990) showed

how the entire distribution of SSRTin can be estimated from stop-signal observa-

tions. The median of this distribution can be seen as another summary SSRT mea-

sure (SSRTp50) (see also De Jong et al., 1990). In addition, this method can be used to

estimate the variability in SSRTin by using the inter-quartile distance; that is, the dis-

tance between the 25th and 75th percentile of the estimated SSRT distribution

(SSRTp75 � SSRTp25).

Table 1

The acronyms of inhibition measures are identical to the ones used in the text

Measures Explanations

SSRTin Input SSRT or internal SSRT; the true SSRT

SSRTobs Observed SSRT per SOA, not corrected for SOA effects on SSRT

Summary SSRT Single SSRT measures independent of SOA that are used to correct for SOA effects

on SSRTobs. These summary SSRT measures include:

SSRTmean Difference between the mean of the inhibition function and mean RT

SSRTmed Difference between the median of the inhibition function and the median RT

SSRTcentr Observed SSRT for the SOA where pðRespÞ ¼ 0:5
SSRTav Average of all the observed SSRTs that corresponded to 0:15 < pðRespÞ < 0:85
SSRTp50 The 50th percentile score of the SSRT distribution as estimated by the Colonius

(1990) method

RR Response rate; the proportion of stop-signal trials on which responses are given (i.e.,

failed inhibits)

RFT Relative finishing time ¼ RT� SOA� SSRTav
ZRFT Z-transformed RFT ¼ ðRT� SOA� SSRTavÞ=SDRT

The ZRFT score replaces SOA in a corrected inhibition function

Observed RT Mean of stop-signal response RT

Predicted RT Mean of the fastest responses in the nonsignal RT distributions that should

correspond to the observed RT

Population SD Standard deviation of a score (RT or SSRTin) in a virtual population

See Appendix A for details of how SSRT measures were calculated.
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2.2. Inhibition function

Mean: The inhibition function (see Fig. 2A, for an example) is affected by mean

RT and mean SSRTin (Logan & Cowan, 1984). For example, an increase of mean

RT by 40 ms implies that the inhibition function will shift 40 ms to the right, all other
things being equal. For a comparison between conditions, inhibition functions can

be transformed into relative finishing times (RFT) by expressing SOA as a latency

relative to the finish of response and inhibition processes ðRFT ¼ mean RT)
SOA� SSRTavÞ. Different RFT-transformed inhibition functions should have the
same mean on the horizontal axis, but may differ in slope.

Slope: The slope of the inhibition function [calculated as d(RR)/d(SOA), and

therefore expressed in units 1/s] contains information about the variability of stop

and go processes. The slope can be corrected for the standard deviation (SD) of
go RT by a Z-transformation of the RFTðZRFT ¼ ½mean RT� SOA� SSRTav�=
SDRTÞ. The ZRFT value is expressed in unit-less numbers distributed around zero.
The ZRFT slope (see Fig. 2B, for an example) can be calculated by a linear regres-

sion through the data points where the function is close to linear, such as the range of

RR between 0.15 and 0.85. This slope [calculated as d(RR)/d(ZRFT), and therefore

lacking a unit] is thought to reflect trial-by-trial differences in the stop processes (Lo-

gan, Cowan, & Davis, 1984; Oosterlaan & Sergeant, 1995; Schachar & Logan, 1990;

Schachar, Tannock, & Logan, 1993; Schachar, Tannock, Marriott, & Logan, 1995;
Tannock et al., 1989; Tannock, Schachar, & Logan, 1995).

Fig. 2. Illustration of the standard (panel A) and corrected inhibition functions (panel B). Note that some

inhibition functions show inhibition rate as the dependent variable, and that inhibition rate ¼ ð1�RRÞ.
Both inhibition rate and RR are values without units between zero and 1. The ZRFT correction is a trans-

formation of the standard inhibition function, calculated with the values mean RT ¼ 500 ms, SSRTav and
SDRT ¼ 100 ms. In the calculation of ZRFT, ms units are canceled out. See the text for details.
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2.3. Validity criterion

The stop-signal paradigm yields RTs for trials without stop signals (nonsignal tri-

als) and RTs for trials with stop signals (stop-signal respond trials). It is assumed

that the part of the go RT distribution to the left of the finish line (see Fig. 1) cor-
responds to the RTs observed on signal-respond trials. It then follows that the mean

of the left part of the go RT distribution (predicted RT) is equal to the mean signal-

respond RT distribution (observed RT). The difference between observed RT vs. pre-

dicted RT is used to test the independence assumption of the horse-race model. In

some studies small differences were found between observed RT vs. predicted RT

suggesting little violation of stochastic independence between stop and go processes

(cf. De Jong et al., 1990; Jennings et al., 1992; Logan & Cowan, 1984). Other studies,

however, reported sizable differences challenging the independence assumption un-
derlying the horse-race model (Van Boxtel et al., 2001; van den Wildenberg, van

der Molen, & Logan, in press).

3. Simulations

Logan (1994) provided a cookbook for researchers using the stop-signal paradigm

for evaluating inhibitory control. The cookbook’s recipes were based on a review of
stop-signal paradigm studies and the formal analysis of the horse-race model re-

ported previously (Logan & Cowan, 1984). The recipes serve the experimenter well

who presents the stop-signal paradigm to young adults who are willing and able to

perform on many trials. They may work less well, however, for experimenters who

are focusing on deficiencies in inhibitory control in a-typical populations or under

sub-optimal conditions. Under those circumstances there are many factors present-

ing a challenge to the horse-race model. Previously, De Jong et al. (1990) addressed

two of those challenges (i.e., violation of the constant SSRT and independence as-
sumptions underlying the horse-race model) by performing Monte Carlo simula-

tions. The major goal of the current study was extending the work done by De

Jong et al. (1990) by performing a series of simulation studies focusing on a variety

of inhibition parameters and on different procedures for setting stop-signal delay.

The simulation studies examined the dynamics of the horse-race model and the inhi-

bition indices derived from it. Statistical and power issues were addressed also as

within-subject variance and measurement error may affect the reliability of inhibition

indices and the probability of detecting between-subjects differences in inhibitory
ability. Before turning to the specific issues, the methods will be described that were

used to run the simulations. 1

1 The C source code of the simulations is available at http://fsw.leidenuniv.nl/www/w3_func/band/

Research/horserace/horserace.html.
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3.1. Methods

Performance on the stop-signal task was simulated based on the horse-race model

with randomization and regression procedures derived from Press, Flannery, Teu-

kolsky, and Vetterling (1986). The basic principle for implementation of the horse-
race model was that if ðSOAk þ SSRTkÞ < RTk, the response is correctly withheld

whereas a response is executed when ðSOAk þ SSRTkÞPRTk. Under some param-

eter values, the model did not conform to the horse-race model, as described by

Logan and co-workers (Logan, 1994; Logan & Cowan, 1984), because violations

of its assumptions were object of investigation. Furthermore, a failure of triggering

inhibitory processes was implemented by letting the primary task win the race on a

subset of signal trials, regardless of SOAk, SSRTk and RTk, as if stop processes were

not executed at all.
RTk and SSRTk were sampled at random from a normal (Gaussian) or an ex-

Gaussian distribution. An ex-Gaussian distribution is a convolution of a Gaussian

and an exponential distribution. Ex-Gaussian distributions are known to give a

good fit of empirical choice-RT data (Ratcliff, 1979; Ratcliff & Murdock, 1976).

Correlations between normally distributed RT and SSRTin were created by com-

bining one shared source of covariance with two unique sources of variance, for

RTk and SSRTk. For example, SSRTk ¼ mean SSRTin þ a unique deviation þ a
deviation shared with RTk, where each deviation is the product of the desired
SD and a random value chosen from a Z-distribution. This procedure could not

be used for establishing a correlation of SOA and SSRTin, because SOA was

not a random variable. As SOAk was not randomly determined, the correlation be-

tween SSRTin and SOA was established by basing SSRTk in part on SOAk �mean
SOA.

In order to evaluate within-group heterogeneity, population deviations were in-

troduced to modify single subject means of SSRTin and of RT. For example, for a

virtual subject the mean SSRTin and RT could be 241 and 512 ms, while the popu-
lation mean was 250 and 500 ms. Both population deviations were drawn from nor-

mal distributions.

The list of parameters of the race model is presented in Table 2 as well as the de-

fault values and the range of tested values. Default parameter values were based on

the literature, and the range of parameter values was selected to cover individual and

conditional differences. Simulations did not include different values of mean RT as

increasing mean RT by x ms, given a set of SOAs, is similar to decreasing mean

SSRTin or the SOAs by the same amount. Thus evaluating the effect of changes in
mean RT would therefore be redundant to the tests that are already reported here.

The default and range of parameter values that were used in the simulations corre-

spond well to the actual observations reported by Williams et al. (1999) in an exten-

sive life-span study of stop-signal performance. Thus the default SDRT of 100 ms and

a range between 25 and 200 ms is consistent with the values 79–205 ms reported by

Williams et al. In addition, the population SDs of RT sized 50 and 100 ms is consis-

tent with the 63–122 ms they reported. The SSRT with a mean of 250 and population

SD of 50 ms approximates the 198–274 ms and 63–76 ms that Williams et al.
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reported for SSRTmed. SDSSRT cannot be derived from the literature thus the default

setting was based on a typical SDRT in simple tasks of 50 ms (cf. De Jong et al., 1990;

Luce, 1986). Correlations of SSRTin to SOA and to RT were simulated across a wide

range because the true values cannot be derived from the literature. Likewise, the
failure to inhibit was simulated by using a minimum of 0.75 as the triggering rate

of inhibition.

There were three types of simulations using different numbers of trials and sub-

jects. The first type of simulation was for determining the asymptotic outcome of

the race. For every parameter value 500,000 nonsignal and 5 (SOA) � 250,000 sig-
nal trials were simulated, with the remaining parameters fixed at default values.

Note that the proportion of signal trials does not affect the asymptotic outcome.

The second type of simulations was done to calculate 95% confidence intervals ¼
3:92� standard error (SE). To calculate SE values reliably as a function of the
number of trials, 600 virtual subjects performed on each test with default param-

eter settings. These tests contained between 120 nonsignal þ 5 (SOA) � 10 signal
trials and 1200 nonsignalþ 5� 100 signal trials; while the ratio between nonsignal
and signal trials remained constant. A proportion of signal trials of 0.29, as used

here, is representative for the proportions used in the literature (a range 0.25 and

0.50, with a median close to 0.25). It should be noted that a different ratio between

the number of nonsignal trials and the number of signal trials per SOA marginally
modifies the SE values. Furthermore, the use of less than five SOAs will affect

some measures (e.g., SSRTav) more than others (e.g., SSRTcentr). The third type

of simulations was performed to estimate the number of subjects required for

reaching sufficient statistical power (1� b ¼ 0:8) for a t-test to detect effects of

varying size (cf. Cohen, 1992). For these simulations, the default settings were used

and the population SD parameters of RT and SSRT were both varied at two levels

(i.e., 50 and 100 ms, and 25 and 50 ms, respectively). More detailed information is

presented below, in the sections dealing with the pertinent issues addressed by the

Table 2

The parameters that were used in the simulations of the horse-race model

Parameter Explanation Default Minimum Maximum

Mean RT (ms) Mean go process RT 500 Fixed Fixed

SDRT (ms) Total SD RT 100 25 200

sRT (ms) SD of the exponential contribution to RT 60 0 90

Population SD of mean RTs 0 0 100

SSRTin (ms) Internal stop-signal reaction time 250 210 300

SDSSRT (ms) Total SD SSRTin 50 0 100

sSSRT (ms) SD of the exponential contribution to

SSRTin

20 0 40

Population SD of mean SSRTin 0 0 50

rðSOA;SSRTÞ Correlation SOA and SSRTin 0 �0.8 þ0.65
rðRT;SSRTÞ Correlation RT and SSRTin 0 �0.4 þ0.4
p(Trig) Proportion of trials with inhibition triggered 1.0 0.75 1.0
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simulations. The details of how confidence intervals and power are calculated can

be found in the Appendices.

4. Setting stop-signal delays

The selection of stop-signal delays, or the choice of how to manipulate SOA, is

based on three considerations: the inhibition index under study, the available time

for testing, and the anticipated strategy of the subjects. For a detailed discussion

of the various procedures for setting stop-signal delays, the interested reader is re-

ferred to Logan (1994).

It will be shown that for assessing SSRT, it suffices to use one well-chosen SOA.

For examining the slope of the inhibition function, however, it is necessary to manip-
ulate SOA along a considerable range. It should be noted, however, that testing time

is proportional to the numbers of SOA used to derive the inhibition function. To re-

duce time-on-task, investigators may increase stop-signal probability. The obvious

danger is that, as the proportion of stop signals increases, subjects tend to delay their

response to the primary signal (e.g. Logan, 1981; Logan & Burkell, 1986). Thus,

Logan (1994) recommended using 25% stop-signal trials as a compromise be-

tween sufficient trial numbers and the subjects’ slowing tendency. Furthermore, the

occurrence of stop signals should not be predictable. If the stop signal is always pre-
sented at a fixed SOA, the subject may increase primary task RT in an attempt at in-

creasing inhibition success (e.g., Lappin & Eriksen, 1966; Logan, 1981; Ollman,

1973).

One way to prevent unwanted strategies is to insert some early and late SOAs in

addition to the target SOA. Alternatively, SOAs are adjusted based on perfor-

mance on the immediately preceding trial block and experimenters continue to in-

struct the subject to give priority to the primary task. Finally, SOAs can be

adjusted dynamically based on the mean RT of immediately preceding trials or
RR. The simulation results of the former method, based on mean RT, were virtu-

ally similar to the findings obtained using a fixed SOA. Therefore, these results will

not be reported here but it should be noted that in the real world, mean RT based

SOAs and a fixed SOA may produce different findings due to subjects’ strategies.

The latter method, based on RR, will be referred to as RR tracking. Basically,

SOA is lengthened following successful inhibits and shortened following failed

inhibits. Different adjustment rules will yield different RRs (see Levitt, 1970).

For every adjustment rule, the actual SOA values can be averaged for calculating
inhibition scores.

4.1. Simulations

The five SOAs that were used in the simulations with the fixed-SOA procedure are

listed in Table 3. The SOAs also served as the starting values for the RR-tracking

procedure. The SOAs were adjusted after every presentation with different step sizes
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to obtain a range of RRs. 2 Mean SSRTin was varied to test the effect of SOA selec-

tion. SOAs were optimal for a SSRTin of 250 ms.

In Fig. 3 it can be seen that the fixed-SOA procedure yielded data from dissimilar
sections of the inhibition function, with some measurements close to RR ¼ 0 or 1. In
contrast, the RR-tracking procedure resulted in parallel sections of the inhibition

functions, for different levels of mean SSRTin. The inhibition functions of the RR-

tracking procedure were only moved to left or right and the RR values were equal.

This means that differences in SSRTin can be reliably detected without the confound-

ing influence of SOA on SSRTobs.

4.1.1. Inhibition function

The middle section of the inhibition function (e.g., 0:15 < RR < 0:85) can be ap-
proximated by a straight line. Outside this range, the slope of the inhibition function

is shallower due to ceiling and floor effects. The fact that the fixed-SOA procedure

yields measurements from dissimilar sections of the inhibition function carries the

risk that ceiling and floor effects affected the slope more for some levels of SSRTin
than for others. This problem does not apply to the RR-tracking procedure, because

it yields measurements only at the specified range of RR. 3

4.1.2. Stop-signal reaction time

It can be seen in Fig. 3B that SSRTobs decreased with SOA, in accordance with em-

pirical findings (e.g., Logan & Burkell, 1986). The most accurate estimate of SSRTin
was found at the central SOA. This SOA is selected automatically by the RR-tracking

2 RR tracking typically consists of adjusting SOA with a constant step size but different frequencies for

correct and failed inhibits. For example, if SOA increases following every correct inhibit and decreases

following every second failed inhibit, the asymptotic RR is 71% (Levitt, 1970; Osman, Kornblum, &

Meyer, 1986). The current simulations used the opposite procedure; i.e., a variable step size and a change

after each signal trial. This was done to obtain evenly distributed RR values within the most interesting

range of the inhibition function. There is no reason to believe that constant step size vs. a variable step size

will yield different outcomes.
3 Tannock et al. (1989) pointed to response omissions on nonsignal trials and proposed to correct

p(inhibit) using the formula: Corrected pðInhibitÞ ¼ ½Observed pðInhibitÞ � pðOmissionÞ�=½1� pðOmissionÞ�:
This correction will alter the slope of the inhibition function.

Table 3

SOA settings, adjustment rules and asymptotic RRs for default parameter levels

SOA level Starting value

(ms)

Adjustment of SOA Response rate

Signal-respond Signal-inhibit

A 150 �12 þ3 0.20

B 200 �10 þ5 0.33

C 250 �7 þ7 0.50

D 300 �5 þ10 0.67

E 350 �3 þ12 0.80

Note: These SOA values were used consistently for the fixed-SOA procedure, and served as the starting

values for SOAs in the RR-tracking procedure. In the RR-tracking procedure, SOAs were adjusted by the

indicated amounts (in ms) following each signal-respond or signal-inhibit trial.
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algorithm but needs to be estimated when the fixed-SOA procedure is used. Table 4

shows summary SSRT measures. SSRTav was accurate within 5 ms for all fixed-SOA

conditions, and accurate within 2 ms for all RR-tracking conditions. The SSRTmean
was not an accurate estimate of SSRTin when the fixed-SOA procedure was used.

SSRTmed was reliable for both SOA procedures, (note that the 50th percentile SSRTin
was 2 ms below the mean due to the positively skewed SSRTin distribution). Surpris-

ingly, SSRTp50 largely underestimated SSRTin for both SOA procedures.

4.1.3. Observed RT � predicted RT

The observed RT of signal responses was longer than predicted for all conditions,

in particular for early SOAs. For SOA ¼ 250 ms, the difference amounted to 4–11
ms. For early SOAs, the difference could be as high as 20 ms. For the fixed-SOA pro-

cedure, the difference increased if SSRT was faster than anticipated. Given that even

the idealized horse-race model may yield a mismatch of observed RT and predicted

RT, it seems that observed RT� predicted RT does not provide a valid criterion for
testing the independence assumption of the horse-race model. Below it will be dem-

onstrated that the mismatch between observed RT and predicted RT is caused pri-

marily by SSRT variability.

Fig. 3. The effect on inhibition measures of mean stop-signal RT, SOA, and the SOA-procedure, ex-

pressed in the inhibition function (panel A) and the SSRTobs function (panel B). While the RR-tracking

procedure ensures data points at the same levels of RR, the fixed-SOA procedure may yield RRs near

0 or 1, reducing the reliability of SSRT estimates.
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4.1.4. Reliability

The selection of SOA depends in part on the amount of time that an experiment is

allowed to last. Therefore, an important question is how many trials are required for

a reliable assessment of inhibition. Thus, the number of trials required for acceptable

confidence intervals were determined. It is shown in Fig. 4A, that for all single-SOA

measurements of RR, a confidence interval of RR amounting 0.02–0.05 was ob-

tained using 50–100 trials per SOA for the fixed-SOA procedure, and 30–50 trials

per SOA for the RR-tracking procedure. Clearly, using the RR-tracking procedure
is more efficient compared to fixed SOA settings.

The confidence interval for SSRTobs is depicted in Fig. 4B, as a function of SOA

and the number of stop trials. Around the central SOA, the confidence interval of

SSRTobs dropped to <20 ms with 30 trials per SOA and to <10 ms with 50 trials
per SOA. However, 40–70 trials per SOA were required to attain the same reliability

levels for noncentral SOAs. Thus, the SSRTobs at the central SOA was not only the

most accurate but also the most reliable estimate of SSRTin. The 95% confidence in-

terval of summary SSRTs was calculated as a function of the number of signal trials
and this relationship was reduced to the following regression equations (all

R2s > 0:99). This was done for the results of RR-tracking and the fixed-SOA proce-
dures. The difference between these two algorithms was minimal.

10 logð95% confidence interval SSRTavÞ ¼ 2:41� ð0:99� 10 log nÞ

10 logð95% confidence interval SSRTmedÞ ¼ 2:84� ð1:19� 10 log nÞ

For SSRTmean, only the RR-tracking data were regressed and yielded:

10 logð95% confidence interval SSRTmeanÞ ¼ 2:74� ð1:14� 10 log nÞ
It should be noted that the reliability is likely to decrease if less than five SOAs are

used. These equations imply that for a confidence interval of <5 or <10 ms one
needs 60 or 30 trials per SOA, respectively. With only the central SOA, the reliability

changed to

10 logð95% confidence interval SSRTcentrÞ ¼ 2:71� ð1:00� 10 log nÞ

Table 4

Summary stop-signal RT measures as a function of input SSRT and SOA procedure

Mean SSRTav SSRTmean SSRTmed SSRTp50

SSRTin RR-T Fix RR-T Fix RR-T Fix RR-T Fix

220 219 220 221 243 217 218 207 200

240 239 240 240 246 237 238 225 217

260 259 258 260 249 257 257 248 240

280 279 278 280 252 277 278 269 257

300 299 296 300 255 297 297 286 277

Note: RR-T: response-rate tracking procedure; Fix: fixed-SOA procedure; SSRT: stop-signal reaction time

in ms (see Appendix A for details).
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This means that, using a single SOA, SSRTcentr reached the same criterion using

100 or 50 signal trials, respectively. In contrast, SSRTp50 did not reach a confidence

interval <27 ms for the first 100 stop-signal trials per SOA.
Finally, the confidence interval of observed RT� predicted RT at the central

SOA decreased from 50 ms at n ¼ 10 to 5 ms at n ¼ 100.

4.1.5. Power

The number of subjects required to detect SSRTobs differences in a between-sub-
jects design is presented in Table 5. The number is based on 300 nonsignal trials and

100 stop-signal trials for the closest-to-central SOA, as a function of population SDs

of RT and SSRT. A large difference in SSRT (60 ms difference in SSRTcentr) can be

Fig. 4. The size of the 95% confidence interval of inhibition scores as a function of the number of stop-

trials per SOA, SOA, and the SOA-procedure. A smaller confidence interval reflects a more reliable mea-

surement. Confidence intervals of RR are fractions from the range between 0 and 1, which have no unit.

Confidence intervals of SSRTobs are fractions from the range of SSRTobs in ms. Panel A shows that the

RR-tracking procedure requires less signal trials than the fixed-SOA procedure for obtaining reliable

RR estimates. Panel B shows that SSRTobs is most reliable for the central SOA.
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shown with only 18 subjects or less. In contrast, a small difference (20 ms) requires at

least 50 subjects. In Table 6, it can be seen that, using more than one SOA, approx-

imately 40 subjects are required to obtain a difference of 20 ms, even for small

population SDs in RT and SSRT. Power was hardly affected by the number of

stop-signal trials per SOA (e.g. 70 vs. 40 trials). It appears that SSRTmean is more

sensitive to RT-variability whereas SSRTav and SSRTmed are more affected by

SSRTin-variability.

4.1.6. Interim conclusions

RR-tracking procedure has clear advantages over the fixed-SOA procedure (cf.

Logan et al., 1997). Because it equates RR, conditions are easier to compare and less

stop-signal trials are needed to obtain robust findings. Using fixed SOAs, some SOAs

yield RR outliers. This will reduce the slope of the inhibition function and thus lead

to incorrect conclusions about the variability of SSRT. Moreover, SOAs should be

distributed symmetrically around the central SOA and this is easier to accomplish
using the RR-tracking procedure.

The simulations showed considerable differences between SSRT measures.

SSRTobs can be used as a first approximation of SSRTAv, but it is not accurate as

long as RR does not equal 0.5. While SSRTcentr, SSRTav and SSRTmed are accurate

estimates of SSRTin, SSRTmean fails when the fixed-SOA procedure is used. Finally,

SSRTp50 is less accurate than other summary SSRT measures and it requires much

more trials.

The simulations indicate that the optimal design, in terms of trial numbers and
group sizes, depends on the inhibition measure of interest. If the interest is in the la-

tency of stopping, indexed by SSRT, and not in its variability, the experimenter is

advised to employ the RR-tracking procedure for obtaining SSRTcentr based on

300 nonsignal trials and 100 signal trials (approximately 20 min of testing time).

Using fixed SOAs, a similar accuracy of SSRTav can be obtained using 900 nonsig-

nal trials and 5� 60 signal trials (approximately 60 min of testing time).
Finally, it should be noted that the range of SSRTin values used here was not

meant to include the values observed in every possible population. For example, a

Table 5

Required sample size per group for a power of 0.8, as a function of heterogeneity for detecting differences

in observed SSRT, given 100 signal trials with the closest to central SOA (PSDRT ¼ 50, 100;
PSDSSRT ¼ 25, 50)

RR-tracking procedure Fixed SOA procedure

PSDRT 50 100 50 100

Effect size (ms) PSDSSRT 25 50 25 50 25 50 25 50

10 190 613 213 635 179 490 233 592

20 48 153 53 159 45 123 58 148

40 12 38 13 40 11 31 15 37

60 5 17 6 18 5 14 6 16

Note: PSD: population standard deviation (ms); SSRT: stop-signal reaction time in ms.
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Table 6

Required sample size per group for detecting differences (ms) in summary SSRTs with a power of 0.8, as a function of heterogeneity, SOA procedure, and

given 40 or 70 signal trials per SOA (PSDRT ¼ 50, 100; PSDSSRT ¼ 25, 50)
RR tracking (70) Fixed SOA (70) RR tracking (40) Fixed SOA (40)

PSDRT 50 100 50 100 50 100 50 100

Effect PSDSSRT 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50

SSRTav

10 162 608 153 565 151 558 157 494 172 599 190 613 148 512 191 567

20 41 152 38 141 38 139 39 124 43 150 47 153 37 128 48 142

40 10 38 10 35 9 35 10 31 11 37 12 38 9 32 12 35

60 5 17 4 16 4 15 4 14 5 17 5 17 4 14 5 16

SSRTmean

10 156 394 317 556 	 	 	 	 190 321 594 737 	 	 	 	
20 39 98 79 139 	 	 	 	 47 80 148 184 	 	 	 	
40 10 25 20 35 	 	 	 	 12 20 37 46 	 	 	 	
60 4 11 9 15 	 	 	 	 5 9 16 20 	 	 	 	

SSRTmed

10 167 613 161 589 215 669 329 648 187 653 227 695 226 684 501 708

20 42 153 40 147 54 167 82 162 47 163 57 174 56 171 125 177

40 10 38 10 37 13 42 21 41 12 41 14 43 14 43 31 44

60 5 17 4 16 6 19 9 18 5 18 6 19 6 19 14 20

Note: PSD: population standard deviation (ms); SSRT: stop-signal reaction time in ms (see Appendix A for details); (	) the SSRTmean is not reliable for the
fixed-SOA procedure. The number of stop trials per SOA is given in parentheses.
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meta-analysis of Oosterlaan and Sergeant (1995) calculated that a weighted average

SSRT of children with ADHD was 349 ms. The methods evaluated in Section 4 will

work the same way if mean SSRTin were 350 and mean RT was 600 ms. The threat to

the reliability of summary SSRT measures lies not in the value of SSRTin, but in how

well the SOAs are distributed around the central SOA.

5. Variability in primary task reaction time

The horse-race model does not make assumptions about the distribution of pri-

mary RT. However, differences in RT variability between conditions may obscure

measures of inhibitory control. For example, the slope of the inhibition function is

sensitive to variability in go as well as stop processes (e.g., Schachar & Logan,
1990). The ZRFT correction of the inhibition function for individual task para-

meters is used to reveal differences in stop variability between groups of subjects

(Logan, 1994; Logan & Cowan, 1984; Logan et al., 1984; Schachar & Logan, 1990)

or between conditions. For example, Tannock et al. (1995) found that the slope of

the ZRFT transformed inhibition functions varied between 0.28 and 0.33, depending

on the dosage of methylphenidate given to ADHD children. They concluded that,

due to the ZFRT correction, this difference cannot be attributed to differences in

mean RT, SDRT and SSRTav. Instead, the differences were attributed to either
SDSSRT or the reliability of triggering the stop processes.

5.1. Simulations

The effect of variability in the go processes was simulated with SDRT ¼ 25, 50,
100, 150 and 200 ms, with a fixed proportion of exponential variance ¼ 0:36.

5.1.1. Inhibition function

Table 7 shows that the slope of the inhibition function is affected considerably by

SDRT. Logan and Cowan (1984) argued that ZRFT transformation should remove

slope differences caused by SDRT. However, the simulations showed that it did not.

Table 7

The inhibition function and summary stop-signal RT (ms) as a function of variability in primary task RT

(ms) and SOA procedure

SDRT ZRFT-slope SOA-slope (s�1) SSRTav SSRTmean SSRTmed

RR-T Fix RR-T Fix RR-T Fix RR-T RR-T Fix

25 �0.16 �0.16 6.3 6.3 249 249 248 248 248

50 �0.25 �0.26 5.0 5.3 249 248 249 248 248

100 �0.33 �0.33 3.3 3.3 249 249 250 247 248

150 �0.35 �0.37 2.3 2.5 249 249 252 247 248

200 �0.36 �0.39 1.8 1.9 247 248 254 245 244

Note: RR-T: response-rate tracking procedure; Fix: fixed-SOA procedure; ZRFT-slope: slope of the

normalized inhibition function. This measure has no metrical unit.
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5.1.2. Stop-signal reaction time

SDRT had a substantial effect on SSRTobs, as can be seen in Fig. 5. Although

SSRTobs was quite consistent across SOAs when SDRT ¼ 100 ms, this index de-
creased rapidly with SOA when SDRT ¼ 25 ms. Most importantly, however, SSRTav
and SSRTmed cancel out the SDRT effect on SSRTobs, as can be seen in Table 7.

5.1.3. Observed RT � predicted RT

The simulations indicated that an increase of SDRT reduced the difference between

observed RT and predicted RT. This finding provides another challenge to the use of

this criterion for testing the independence assumption of the horse-race model.

Fig. 5. The effect on observed SSRT and the ZRFT-transformed inhibition function, of variance in RT,

SOA, and the SOA-procedure. Panel A shows that high variance of go-speed has limited effect on the es-

timation of stop-speed, but low variance reduces the reliability of SSRT estimates obtained from noncen-

tral SOAs. Panel B shows that the slope of the inhibition function is not equalized for different levels of

SDRT by the ZRFT-transformation.
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5.1.4. Skewness of primary task reaction time

It was tested whether positive skewness of the go-RT distribution influenced in-

hibition measures. The effects were simulated with a fixed SDRT of 100 ms, and ex-

ponential proportions of variance 0; 0.01; 0.04; 0.16; 0.36; or 0.81. Skewness had

negligible effects when s2RT=SD
2
RT6 0:36, but there were some effects when

s2RT=SD
2
RT ¼ 0:81. For the fixed-SOA procedure, skewness had marginal effects on

the slope of the inhibition function and SSRTobs. Additionally, summary SSRTs

were somewhat less accurate. When RR-tracking is used, the effects of skewness were

even less. These results suggest that there are no alarming consequences of skewness

for the observed measures.

5.1.5. Interim conclusions

The simulations made at least two important points. First, variability in primary
task RT influences the slope of the ZFRT corrected inhibition function. This observa-

tion provides a challenge to using ZFRT functions to examine between group or con-

dition differences in stopping variability, as differences in RT variability between

groups or conditions are rule rather than exception. Second, RT variability affected

the difference between observed RT and predicted RT. This finding is adding to the

growing skepticism about using this criterion for testing the independence assumption.

6. Variability in stop-signal reaction time

The horse-race model assumes that SSRTin is constant but this assumption is not

likely to be true. A variable SSRT affects SSRTobs, but, on the other hand, it is also a

meaningful characteristic of the stop mechanism. In stopping studies, differences in

SDSSRT are typically evaluated by examining the slope of the ZRFT function (e.g.,

Schachar & Logan, 1990). To date, SDSSRT is quantified only in theory (Colonius,

1990) or, empirically, for only three subjects (Logan & Cowan, 1984).

6.1. Simulations

In these simulations, SDSSRT was 0, 10, 20, 50, 70 or 100 ms, and the proportion of

exponential variance s2SSRT/SD
2
SSRT was fixed at 0.16.

6.1.1. Inhibition function

An increase in SDSSRT reduced the slope of the inhibition and ZRFT transforma-
tion did not correct for this effect, as can be seen from Table 8. It is important to

note, however, that SDRT affects the ZRFT slope to a similar extent (see Section

5.1.1). Thus, it is not easy to determine whether groups or conditions differ with re-

spect to SDSSRT or by other factors.

6.1.2. Stop-signal reaction time

In Fig. 6A, it is illustrated that the decrease of SSRTobs with SOA was steeper as

SDSSRT increased. When SDSSRT ¼ 100 ms, SSRTobs overestimated SSRTin by more
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than 35 ms. Importantly, however, summary SSRT measures did not overestimate

SSRTin more than by 8 ms, as is shown in Table 8.

6.1.3. Observed RT � predicted RT

Variability in SSRTin contributed considerably to the difference between observed

RT and predicted RT (see Fig. 6B). A SDSSRT close to zero led to a near-perfect

match of signal responses and the predictions from the race model. For greater val-

ues of SDSSRT, observed RT� predicted RT increased. Even when go and stop pro-
cesses were statistically independent, greater values of SDSSRT were associated with

larger mismatches between observed RT and predicted RT.

6.1.4. Skewness of stop-signal reaction time

The influence of skewness of the SSRTin distribution was investigated by fixing

SDSSRT at 50 ms and then varying the exponential contribution to the ex-Gaussian

distribution (s2SSRT/SD
2
SSRT) between 0 and 0.64. The difference between a normal dis-

tribution and the most skewed distributions tested was only marginal compared to
the effect of SDSSRT.

6.1.5. Reliability and power

The confidence intervals of the slopes of the ZRFT transformed and the regular

inhibition function were regressed onto the number of signal trials per SOA

(R2s > 0:99, mixed across SOA procedures), yielding:
10 logð95% confidence interval ZRFT slopeÞ ¼ 0:232� ð1:064� 10 log nÞ
10 logð95% confidence interval SOA slopeÞ ¼ 1:27� ð1:09� 10 log nÞ

This result implies that a small or large effect size on the ZRFT slope (0.02 and

0.05) requires 65 and 27 trials, respectively, for each of the five SOAs. Demonstrating

such differences in an experimental setting, however, would require an unusually

large number of subjects. In Table 9, it can be seen that even a large effect would

require approximately 25 subjects per condition performing on 70 stop-signal trials

Table 8

The inhibition function and summary stop-signal RT (ms) as a function of variability in stop-signal RT

and SOA procedure

SDSSRT ZRFT-slope SOA-slope (s�1) SSRTav SSRTmean SSRTmed Est. SDSSRT

RR-T Fix RR-T Fix RR-T Fix RR-T RR-T Fix RR-T Fix

0 �0.37 �0.38 3.7 3.8 250 250 252 249 249 41 36

10 �0.36 �0.36 3.6 3.6 250 250 252 248 248 46 48

20 �0.33 �0.33 3.3 3.3 249 249 250 248 247 69 69

50 �0.30 �0.30 3.0 3.0 248 248 249 247 247 89 85

70 �0.26 �0.27 2.6 2.7 249 247 249 247 247 117 109

100 �0.21 �0.22 2.1 2.2 258 251 255 256 255 160 147

Note: RR-T: response-rate tracking procedure; Fix: fixed-SOA procedure; ZRFT-slope: slope of the

normalized inhibition function, this measure has no metrical unit; SSRT: stop-signal reaction time in ms

(see Appendix A for details); Est. SDSSRT: the estimated SD of SSRT (ms) based on Eq. (A.4).
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per SOA whereas 45 subjects are needed when using 40 stop-trials. A small effect

(<0.03) can be shown using 70–140 subjects, depending on the number of stop-signal

Fig. 6. The effect on inhibition measures of variance in stop-speed, SOA, and the SOA-procedure. Panel A

shows that SSRTobs decreases more with SOA as SDSSRT increases. Panel B shows that observed–predicted

signal RT is strongly influenced by SDSSRT (even though the independence assumption holds). Panel C

shows that the estimated interquartile distance (SSRTp75�SSRTp25; see Appendix A) overestimates the
true interquartile distance.
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Table 9

Required sample size per group for detecting differences in the slope of the inhibition function with a power of 0.8, as a function of heterogeneity, SOA pro-

cedure, and given 40 or 70 signal trials per SOA (PSDRT ¼ 50, 100; PSDSSRT ¼ 25, 50)
RR tracking (70) Fixed SOA (70) RR tracking (40) Fixed SOA (40)

PSDRT 50 100 50 100 50 100 50 100

Effect PSDSSRT 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50

ZRFT-slope

0.03 55 63 69 76 109 161 189 205 99 126 164 136 240 221 335 312

0.05 20 23 25 27 39 58 68 74 36 45 59 49 86 79 121 112

0.08 8 9 10 11 15 23 27 29 14 18 23 19 34 31 47 44

0.1 5 6 6 7 10 15 17 18 9 11 15 12 22 20 30 28

SOA-slope (s�1)

0.3 53 59 65 75 108 159 188 199 173 123 162 368 228 218 339 295

0.5 19 21 23 27 39 57 68 71 62 44 58 132 82 79 122 106

0.8 7 8 9 10 15 22 26 28 24 17 23 52 32 31 48 42

1 5 5 6 7 10 14 17 18 16 11 15 33 20 20 30 27

Note: PSD: population standard deviation (ms). ZRFT-slope effects are expressed as differences between slopes, which have no metrical unit. The values of

stoptrials per SOA are given in parantheses.
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trials. Moreover, the fixed-SOA procedure requires doubling the number of subjects

for the detection of slope differences. Similar numbers are required to reveal a differ-

ence of 0.3 in the slope of the normal inhibition function.

6.1.6. Estimating variability in stop-signal RT

The two methods for estimating variability in SSRTin both yielded disappointing

results. In Fig. 6 it can be seen that the Colonius method overestimated the inter-

quartile distance of SSRTin by 10–50 ms; most strongly for early SOAs. This over-

estimation is considerable given a true inter-quartile distance between 0 and 190

ms. Note that estimating the SSRTin distribution requires a large number of ob-

served RTs on signal and nonsignal trials. Table 8 shows that SDSSRT was also over-

estimated when calculated using the inhibition function (see Eq. (A.4) in the

Appendix A).

6.1.7. Interim conclusions

The simulations clarified three misconceptions that can be found in the stopping

literature relating to SDSSRT. First, it is incorrect to assume that SDSSRT does not af-

fect SSRTobs. But, as Logan and Cowan (1984) demonstrated, the effect of SDSSRT on

SSRTav, SSRTmed and SSRTcentr is negligible. Secondly, observed RT� predicted
RT strongly increases with SDSSRT. This is even true when stop and go processes

are stochastically independent. Thirdly, SDSSRT has a strong effect on the slope of
the ZRFT transformed inhibition function but in the opposite direction of the effect

exerted by SDRT. It then follows that group or condition differences in the slope of

the ZRFT function cannot be used to unambiguously index variability in stop-signal

RT.

7. Stopping failures

Response inhibition requires fast stop processes but also a high reliability in trig-

gering stop processes. Deficiencies in triggering may occur when the stop signal is not

detected or not translated into an internal stop command. Schachar and Logan

(1990) (see also Logan & Cowan, 1984) noted that children with ADHD may differ

from normal control children in triggering rate. They observed that the slope of the

ZRFT function discriminates between ADHD children and controls and concluded

that this slope provides a diagnostic of triggering deficiencies. The interested reader

is referred to Tannock et al. (1995) for an illustration of the use of the slope of the
ZRFT function as a diagnostic. The power of the slope of the ZRFT function to de-

tect triggering deficiencies will be examined below.

7.1. Simulations

Six levels of triggering rate were analyzed, from pðTrigÞ ¼ 0:75–1.0 in steps of
0.05.
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7.1.1. Inhibition function

In Fig. 7A, it can be seen that the inhibition function was more sensitive to a de-

creased triggering rate for early SOAs, resulting in an increased RR. Note that

RR6 0:2 could not be reached for pðTrigÞ6 0:8. For the RR-tracking procedure,
this implies that the SOA could not reach asymptote. These results are therefore
not reported here. Finally, ZRFT transformation did not correct the slope of the in-

hibition function. The slope was less steep as stop processes are triggered less often.

7.1.2. Stop-signal reaction time

A failure to trigger stop processes affected SSRTobs, in particular at early SOAs

(see Fig. 7B). Interestingly, this failure to trigger caused nonlinear relationships be-

tween SSRTobs and SOA, not seen previously. The summary SSRT measures, pre-

Fig. 7. The effect on inhibition measures of a decreased triggering rate of the inhibition mechanism, SOA,

and the SOA-procedure. Panel A shows that the slope of the inhibition function decreases as a result of

failures to trigger and that the RR-tracking procedure may cause spurious results if the tracked level of

RR is lower than 1 – P(Trigger). Panel B shows that SSRTobs, including SSRTcentr, becomes inaccurate

as triggering inhibition fails. Note that the RR-tracking procedure reduces SOA to meaningless values

if triggering failures become more frequent than inhibition rate.
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sented in Table 10, overestimated SSRTin considerably for p < 1:0. It can be seen
that overestimations amounted to 40 ms (fixed-SOA procedure) or more (RR-track-

ing procedure).

7.1.3. Observed RT � predicted RT

The mismatch between observed RT and predicted RT increased as stop processes

are triggered less often. For p ¼ 0:75, the difference was 18 ms at the central SOA.

7.1.4. Interim conclusions

A failure to engage has major effects on all inhibition measures tested. In contrast

to all other parameters manipulated, the effects of trigger deficiencies were not com-

pensated for using the RR-tracking procedure or summary SSRT measures. In ac-

cord with the stopping literature (e.g., Tannock et al., 1989), trigger failures
affected the slope of the ZRFT transformed inhibition function. They did so, how-

ever, to a similar extent as the changes in slope associated with go RT and SSRT

variability. Thus, it seems dangerous ground to use the slope of the ZRFT function

as an index uniquely pointing to triggering deficiencies. At this point, there seems to

be no tool available to identify reliably a failure in triggering the stop mechanism. At

best, a triggering failure is indicated by decreasing trends in SOA when using the

RR-tracking procedure.

8. Dependence between primary task RT and stop-signal task RT

The horse-race model assumes independence between stopping and go processes.

The independence assumption takes two related forms; context independence and

stochastic independence. Context independence means that the duration of primary

task processes are not affected by the presence of stop processes, and vice versa. Sto-

chastic independence means that their durations are not correlated. Together, these
assumptions allow for treating the nonsignal RT distribution as the distribution of

Table 10

The slope of the inhibition function and summary stop-signal RT (ms) as a function of triggering rate of

the inhibition process

p ZRFT-slope SOA-slope (s�1) SSRTav SSRTmean SSRTmed

RR-T Fix RR-T Fix RR-T Fix RR-T RR-T Fix

1.00 �0.33 �0.33 3.3 3.3 249 248 250 247 247

0.95 �0.31 �0.31 3.1 3.1 258 256 258 257 255

0.90 �0.28 �0.30 2.8 3.0 269 263 266 267 264

0.85 �0.24 �0.28 2.4 2.8 284 272 276 282 274

0.80 	 �0.27 	 2.7 	 281 287 	 286

0.75 	 �0.25 	 2.5 	 289 293 	 299

Note: RR-T: response-rate tracking procedure; Fix: fixed-SOA procedure; ZRFT: slope of the normalized

inhibition function, this measure has no metrical unit; SSRT: stop-signal reaction time in ms (see Ap-

pendix A for details); (	) these values cannot be computed reliably.

G.P.H. Band et al. / Acta Psychologica 112 (2003) 105–142 129



duration of go processes on stop trials. Violations of stochastic independence are

thought to increase the difference between observed RT and predicted RT on signal

trials (e.g., De Jong et al., 1990; Jennings et al., 1992; Logan & Cowan, 1984). Thus,

observed RT� predicted RT is used to test whether the data fit the horse-race model
(e.g., Jennings et al., 1992; Logan & Cowan, 1984).
De Jong et al. (1990) examined the effects of dependency on estimations of

SSRTin. They showed that SSRTobs was influenced by the correlation between

SSRTin and RT. The effect was more pronounced for noncentral SOAs and increased

with SDSSRT. A positive correlation caused an increase of SSRTobs with SOA, a stee-

per inhibition function and greater mismatch between observed RT and predicted

RT. Unfortunately, De Jong et al. did not examine the effects of independence on

the ZRFT slope.

8.1. Simulations

The effect of a correlation between RT and SSRTin was tested by varying the pro-

portion shared vs. nonshared variance. The correlations that were thus created var-

ied from r ¼ �0:4 to þ0.4, in steps of 0.1.

8.1.1. Inhibition functions

A more positive correlation (r) between RT and SSRTin resulted in a steeper in-
hibition function and this effect did not disappear after ZRFT-transformation. The

slopes of the functions were (R2s > 0:91; curvilinear functions provided a better fit):

ZRFT slope ¼ �0:326� 0:127� r

SOA slope ¼ 3:26þ 1:27� r

These findings indicate that the correlation between SSRT and RT may increase
the slope of the ZRFT function. The obvious danger is, of course, that the slope dif-

ference is erroneously interpreted in terms of SSRT variance rather than suggesting a

violation of the stochastic independence.

8.1.2. Stop-signal reaction time

Values of r > 0:2 caused SSRTobs to increase with SOA while a negative relation
between go and stop processes enhanced the decrease of SSRTobs with SOA. Sum-

mary measures of SSRTobs were not sensitive to interdependence between go and
stop processes.

8.1.3. Observed RT � predicted RT

In Fig. 8, it can be seen that observed RT� predicted RT increased with r, up to
12 ms for the central SOA. Moreover, the mismatch was not reduced to zero when

RT and SSRT were not correlated. Note that the dependence effect is small com-

pared to the effects of SDRT and SDSSRT (see Sections 5.1.5 and 6.1.7). This pattern

of results presents a serious challenge to the use of observed RT� predicted RT as a
test of the independence assumption (e.g., De Jong et al., 1990; Jennings et al., 1992).
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8.1.4. Interim conclusions

The simulations make at least three important points. First, summary measures of

SSRT are relatively robust against violations of the independence assumption under-

lying the horse-race model. Second, the mismatch between observed RT and pre-

dicted RT is not a valid test of the independence assumption. Third, and perhaps

most importantly, violations of the independence assumption exert an effect on

the slope of the ZRFT function that can be interpreted, mistakenly, in terms of

SSRT variance.

9. Dependence between stop-signal delay and stop-signal reaction time

A decrease of SSRTobs with SOA is not indicative of a negative relation between

SSRTin and SOA, which would be a violation of context independence. Instead, it is

compatible with the horse-race model, given that SDSSRT > 0. For early SOAs, even
a slow SSRTin may result in successful inhibition. Obviously, for longer SOAs only a

fast SSRTin results in correct inhibition.
There are several reasons, why SOA and SSRTin do not need to be independent.

For example, it is well established that primary task RTs shorten when warning in-

tervals increase up to 1 s (e.g., Sanders, 1998). In a similar vein, SSRTin can be af-

fected by stop-signal delay. Alternative, the shortening of SSRTin associated with

longer SOAs could be due to a refractory effect on short SOAs. Logan and Burkell

(1986), for example, found that SSRTobs decreased by 42 ms with SOA even after

correcting for the effect of SDSSRT, and interpreted this residual decrease as a refrac-

tory effect (see also Pashler, 1994).

Fig. 8. The effect of correlation between RT and SSRTin, SOA, and the SOA-procedure on the difference

between observed and predicted signal RT. Although this measure is used as a test of independence be-

tween the two processes, dependence has a relatively small effect in comparison to SDSSRT or the measure-

ment error.
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9.1. Simulations

The effect of a correlation between SOA and SSRTin was tested by letting part of

the single-trial deviation of SSRTin from the mean SSRTin depend on the difference

between the current SOA and the mean of SOAs. This procedure did not allow close
control over the correlation levels. The resulting r varied from �0.80 to þ0.52.

9.1.1. Inhibition functions

The slope of the inhibition function increased with r, and the difference remained

after ZRFT correction. The slopes of the functions, after combining the results ob-

tained using different SOA procedures, were R2s > 0:96 (curvilinear functions pro-
vided a better fit):

ZRFT slope ¼ �0:342� 0:205� r

SOA slope ¼ 3:42þ 2:05� r

This pattern indicates that the ZRFT slope is sensitive to dependencies between

SSRT and SOA.

9.1.2. Stop-signal reaction time

The SSRTobs decreased with SOA when r > 0:1 and increased when r < 0:1, as
can be seen in Fig. 9. Summary SSRT scores were robust against dependencies be-

tween SSRT and SOA.

9.1.3. Observed RT � predicted RT

The results indicated that the difference between observed RT and predicted RT

was greatest when r ¼ 0 (i.e., 10 ms at the central SOA).

Fig. 9. The effect on SSRTobs of SOA, the SOA-procedure, and correlation between SOA and SSRTin.

Note that correlations were not identical for the simulations of response-rate tracking and the fixed-

SOA procedure.
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9.1.4. Interim conclusions

The simulations revealed that, in contrast to summary SSRT scores, ZFRT slope

is sensitive to dependencies between SOA and SSRT. The latter finding contributes

to the growing evidence against the use of ZFRT slope as an index for stop variabil-

ity.

10. Discussion

The simulation studies based on the horse-race model had three major goals. The

first goal was to determine the robustness of inhibition indices, i.e., stop-signal RT

and the ZRFT function. The second goal was to examine how violations of the as-

sumptions underlying the horse-race model, i.e., constant stop-signal RT and inde-
pendence of stop-signal RT and primary task RT, may influence inhibition indices.

The third goal was to obtain a set of guidelines for using the stop-signal paradigm.

10.1. Inhibition indices

Two inhibition indices are typically used in studies using the stop-signal para-

digm. One is stop-signal RT and the other is the slope of the ZRFT function. The

former is assumed to provide a sensitive index of the duration of inhibition pro-
cesses, which is relevant both as an absolute measure and in comparison between

conditions. The latter has little meaning as an absolute measure. It is used only to

compare between conditions or groups and is assumed to provide an estimate of

the trial-by-trial variability of inhibition processes (Logan, 1994).

10.1.1. Stop-signal RT

Several summary measures of stop-signal RT provided accurate estimates of stop-

ping latency under a wide range of parameter settings. However, there were a few
notable exceptions. First, substantially more trials or subjects are needed to obtain

reliable estimates when between-subject variability in SSRT is higher. Secondly, in-

creased variability in stop-signal RT necessitates a judicious choice of stop-signal

delay. Thirdly, and most importantly, occasional failures of triggering the stop

mechanism resulted in a considerable overestimation of SSRT. Finally, it should

be noted that three SSRT measures provided less accurate estimates. SSRTav calcu-

lated across noncentral SOAs does not yield a reliable estimate of stop latency. In

addition, SSRTmean fails to reveal differences between stop latencies when SOA is de-
termined using the fixed procedure. Furthermore, the Colonius method for estimat-

ing SSRT (e.g., Colonius, 1990) seems to underestimate stop latency and requires

large trial numbers. Thus, the Colonius method is not recommended for obtaining

a reliable estimate of stop latency.

10.1.2. ZRFT function

The simulations yielded largely negative outcomes with regard to the slope of the

ZRFT function as an index of between-group or between-conditions differences in
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stopping. The use of the slope of the ZRFT function requires that primary task RT

distributions between-groups or between-conditions are basically similar, sample

sizes should be large and trial numbers high, and within-group or within-conditions

performance should be homogeneous. It is doubtful that these ideal conditions are

met in the laboratory.
The simulation results indicated that the slope of the ZRFT function is affected by

SSRT variability and stop failures. In this respect, the results are consistent with the

assumptions made in the literature (e.g., Logan, 1994). But the results also showed

that the slope is sensitive to variability in primary task RT for which the ZRFT

transformation is thought to correct. Thus, it seems impossible to attribute slope dif-

ferences unequivocally to between-group and condition variance in stopping.

10.2. Horse-race model assumptions

The simulations focused on two assumptions underlying the horse-race model;

constant SSRT and independence of SSRT and primary task RT. For the calculation

of SSRTobs the horse-race model assumes that SSRT is constant but this assumption

is not likely to be true. As formally derived by Logan and Cowan (1984) and dem-

onstrated by simulations reported by De Jong et al. (1990), violation of the constant

SSRT assumption does not seem to impact summary estimates of stopping duration.

The current results are in accord with this literature. The summary SSRT measures
provided accurate estimates of stop latency.

The independence assumption takes two varieties, stochastic independence and

context independence. Violations of stochastic independence refer to situations when

the durations of the go processes and stop processes are correlated. Previously, it has

been shown that a positive correlation of go and stop durations caused an increase of

SSRT with SOA (De Jong et al., 1990). A similar result was obtained in the current

simulations. This finding contributes to the skepticism of using the slope of the

ZRFT function as an index of stopping variability. Summary measures of SSRT
were not significantly affected by correlated durations of go and stop processes. A

similar pattern of findings was obtained for violations of context independence; that

is, when SSRT was correlated with SOA.

Several investigators used the difference between observed RT and predicted RT as

a criterion for testing the independence assumption (e.g., De Jong et al., 1990; Jen-

nings et al., 1992; Logan & Cowan, 1984; Van Boxtel et al., 2001). The current sim-

ulations examined the validity of this criterion. The results were disappointing and

suggested that this criterion cannot be used as a valid test of independence. The pat-
tern of results indicated that the effect of dependence on observed RT� predicted RT
was small compared to the effects of RT variability, stopping failures or early SOAs.

10.3. Guidelines

The pattern of results that emerged from the current simulations can be used to

formulate a set of recommendations for using the stop-signal paradigm to assess

the ability to inhibit a motor response.

134 G.P.H. Band et al. / Acta Psychologica 112 (2003) 105–142



10.3.1. Setting stop-signal delay

From the perspective of experimental economy, setting stop-signal delay by track-

ing based on a RR on signal trials of p ¼ 0:5 seems to offer the best solution––less
trials are needed for a more accurate estimate of SSRT. Recent empirical illustra-

tions of this procedure can be found in Ridderinkhof et al. (1999), Williams et al.
(1999), or Van Boxtel et al. (2001). Other considerations than experimental economy

may determine the setting of stop-signal delay. Investigators may want to use the

slope of the ZRFT function to examine between-group or condition differences in

the variability of the stopping mechanism (but see below). In that case, the best so-

lution is using a tracking algorithm to obtain a set of SOAs that are symmetrically

distributed around the central SOA (i.e., the delay resulting in a RR on stop-signal

trials of p ¼ 0:5). A recent illustration of this procedure for setting three stop-signal
delays is provided by Band et al. (2000). Finally, investigators may want to use fixed
SOAs. For example, time locking between respond and stop-signals may be required

for the analysis of psychophysiological measures (e.g., event-related brain potentials

or heart rate frequency) obtained during task performance. In that case, it is impor-

tant to ascertain that SOAs cover the most interesting part of the inhibition function

(i.e., the part relating to RRs greater than 0.15 and less than 0.85). Psychophysiolog-

ical illustrations of the use of fixed SOAs are provided by De Jong et al. (1990) and

Jennings et al. (1992). When more than one fixed SOA is used, several summary

SSRT measures provide an accurate estimate of stopping duration (see Section
10.1.1).

Recommendation 1: The tracking procedure based on RR (p ¼ 0:5) is the most op-
timal strategy for setting stop-signal delay.

10.3.2. Stop-signal reaction time

The most results that emerged from the current simulations indicated that, using

the horse-race model, accurate estimates are obtained of the duration of stopping

processes. Central SSRT measures were fairly robust against variability in primary
task RT or stop-signal task RT and even to violations of the dependency assumption

underlying the horse-race model. Less accurate estimates of SSRT were only ob-

tained when the triggering of the stop mechanism failed. Stopping failures have been

assumed to occur when the slope of the ZRFT function discriminated between

groups or conditions (e.g., Tannock et al., 1989, 1995). If true, investigators should

be aware that their estimates of SSRT might be inaccurate.

Recommendation 2: Central SSRT measures provide the best estimate of the du-

ration of stop processes.

10.3.3. ZRFT function

The simulations yielded disappointing outcomes with regard to the slope of the

ZRFT function. The slope of the ZRFT function was sensitive to variability in pri-

mary-task RT and was not robust against violations of the assumptions underlying

the horse-race model. The conclusion is that slope of the ZRFT function does not

provide a valid index to discriminate between groups or conditions.
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Recommendation 3: The slope of the ZRFT function should not be used to exam-

ine between-group or between-condition differences in the variability of the stopping

mechanism.

10.3.4. Observed RT � predicted RT

The results of the simulation studies made two important points. First, observed

RT � predicted RT was strongly affected by variability in primary-task RT and
stop-signal task RT. Thus, observed RT� predicted RT cannot be used as a valid cri-
terion for testing the independence assumption underlying the horse-race model. Sec-

ondly, violations of the independence assumption did not result in inaccurate

estimates of the duration of stopping processes. Thus, it seems fair to conclude

that there is no need to examine whether the data violate the independence assump-

tion.
Recommendation 4: Observed RT� predicted RT should not be used as a test of

the independence assumption underlying the horse-race model.

10.3.5. Experimental economy

The simulation studies indicated that central measures of SSRT do not only pro-

vide the most accurate estimates but are also the most reliable. In addition, central

measures of SSRT are also more powerful to detect differences between groups or

conditions.
Recommendation 5: The detection of a difference in SSRT of approximately 20 ms

requires about 50 subjects performing on 300 nonsignal and 100 signal trials using

RR tracking for setting stop-signal delay.

10.4. Conclusion

The simulations yielded some good news and some bad news. The good news is

that, using proper procedures, an accurate and reliable measure can be obtained
of the duration of stop processes that can be used to discriminate between groups

and conditions. The estimate of stopping duration can be obtained even when the

constant stopping duration and independence assumptions of the horse-race model

are violated. The bad news is that the slope of the ZRFT function should not be used

to discriminate between groups assumed to differ in inhibitory ability or conditions

predicted to impose different demands on the stopping mechanism. The implication

is that conclusions derived from studies using the slope of the ZRFT function should

be taken with great caution. In particular, when considering that the current findings
were obtained using idealized data sets. That is, the simulations were run with con-

sistent parameter values, a constant shape of the stop-signal primary-task RT distri-

butions, large numbers of trials, no measurement error, and without accounting for

strategies subjects may use when performing the stop-signal task. Moreover, the sim-

ulations did not examine the effects of interactions of the factors that were examined.

Thus, the possibility cannot be ruled out that the bad news concerning the slope of

the ZFRT function might even be worse. But this remains to be seen in future sim-

ulations studies. At this point, it is concluded that SSRT provides a robust index of
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stopping duration but researchers should stay away from using the slope of the in-

hibition function.
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Appendix A. Calculation of summary SSRT measures, confidence intervals and power

A.1. Average stop RT: SSRTav

It is a recurrent finding that SSRTobs changes with SOA. This can be due to vari-

ability in SSRTin that is independent of SOA. If variability of SSRTin cannot be

ruled out, the speed of stopping can be expressed as a single SSRT across SOAs,

that serves as a summary measure (e.g., Logan, 1994; Logan & Cowan, 1984). This

summary measure (SSRTav) is obtained by averaging SSRTobs’s for which 0:15 <
RR < 0:85.

A.2. Stop reaction time at the mean of the inhibition function: SSRTmean

Another summary SSRT measure, suggested by Logan and Cowan (1984), is the

difference (SSRTmean) between mean RT and the mean of the inhibition function.

The accuracy of the estimated mean of the inhibition function increases with the

number of SOAs and symmetry of the SOAs around the midpoint of the inhibition

function. To calculate the mean of the inhibition function, one step is to subtract the
RR at SOA (n� 1) from SOA (n). This cannot be done for the first SOA. In the sim-
ulations, where five SOA levels were used, the fifth SOA was also rejected for the cal-

culation of the SSRTmean. This is because there should be an equal number of SOAs

at both sides of the function’s midpoint. Thus, the SSRTmean was calculated on the

basis of SOA 2, 3, and 4 by using the following equation:

SSRTmean

¼ mean RT

� f½ðRR2 �RR1ÞSOA2� þ ½ðRR3 �RR2ÞSOA3� þ ½ðRR4 �RR3ÞSOA4�g
ðRR4 �RR1Þ

ðA:1Þ

A.3. Stop-signal reaction time at the median of the inhibition function: SSRTmed

The median SSRT (SSRTmed) is based on the same principle as SSRTmean. It is cal-
culated as the median primary-task RT minus the median of the inhibition function.

Note, that if a distribution is symmetrical, the mean equals the median. The median
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is easier to calculate than the mean of the inhibition function. The median is the SOA

where RR ¼ 0:5. This point can be determined by linear regression of RR onto SOA.
The median of the RT distribution minus the median of the inhibition function is

interpreted as SSRTmed. When the tracking procedure is used, the SOA where

RR ¼ 0:5 is observed directly. Under these circumstances, the SSRTmed can safely
be used as the only SSRTobs, which is also referred to as SSRTcentr in this report.

A.4. The Colonius (1990) method for calculating the SSRT distribution

De Jong et al. (1990, Appendix) and Colonius (1990) proposed a method that is

meant to recover the distribution of SSRTin for every SOA. Here, the cumulative dis-

tribution of SSRTobs’s is calculated based on the ratio between the density functions

of signal and of nonsignal RT and the probability of responding on signal trials. For-
mally,

pðSSRTþ SOA > tjSOAÞ ¼ RRðSOAÞfsðtjSOAÞ=fnsðtÞ ðA:2Þ

where, as a function of time t, p(SSRTþ SOA > tjSOA) is the cumulative distri-
bution function of SSRTs, given a SOA; RR(SOA) is the RR at SOA; and fs and fns
are the density functions of the signal and nonsignal RT distributions, respectively.

As Eq. (A.2) estimates the entire distribution of SSRTin, it is possible to derive the
median from that distribution (SSRTp50), and it is also possible to estimate vari-

ability of SSRTin with the interquartile distance (SSRTp75 � SSRTp25).
This method requires smoothed and stable distributions of RT and a monotonic

inhibition function. As experiments do not usually employ more than 30% signal tri-

als, the signal RT distribution has to be based on approximately 15% of all trials,

given that half of all responses are inhibited. Moreover, these signal trials are usually

distributed across several SOAs, which results in even less data to obtain a distribu-

tion per SOA. It is likely that, for these reasons, this method does not seem to be in
use in empirical studies.

In the present simulations, Eq. (A.2) was used to calculate the cumulative

distribution of SSRTobs for intervals of 10 ms between 0 and 800 ms. In order

to remove spurious data points and to create a monotonically rising cumulative

function, the data were smoothed by averaging nonmonotonic values across adja-

cent intervals. Density functions were smoothed by averaging large local probabil-

ity differences with adjacent values. Smoothing continued until the function was

monotonic or smooth, but there was a maximum of ten iterations, because further
iterations would flatten the functions. The median SSRT was calculated using this

method for each of five SOAs. Theoretically, the five measures should be equal if

there is no relation between SOA and SSRTin. The mean of these five values is re-

ported as SSRTp50.

For every SOA, the interquartile distance, i.e. the difference between the 25th

(SSRTp25) and 75th (SSRTp75) percentile score was calculated. This measure is less

sensitive than the SD to the distortion of the estimated distribution at the tails, which

is said to occur using the Colonius method (Logan, 1994). In addition, it is not as
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easy to extract the SD from a cumulative distribution as it is to calculate the inter-

quartile distance.

A.5. The Logan and Cowan (1984) method for estimating SDSSRT

An alternative method for estimating the variance of SSRTin is suggested by

Logan and Cowan (1984). They argued that the inhibition function can be inter-

preted as the cumulative distribution of a random variable Td, and its variance
can be calculated from the slope of the inhibition function at the central SOA (i.e.
the SOA where RR ¼ 0:5). For example, if a normal distribution is assumed, the re-
lation between the slope (B) and SD is

B0:5 ¼ 1=½SDTdð2pÞ
�1=2� ðA:3Þ

The variability in the arrival of stop- and go-processes is the only source of vari-
ance contributing to the variance of the inhibition function. Furthermore, the vari-

ance in stop-signal RT and primary-task RT are assumed independent. It then

follows that the variance of Td is the sum of the variances of RT and SSRT. There-
fore, the SDSSRT can be calculated by

SD2
SSRT ¼ 1

B0:5
ffiffiffiffiffiffi
2p

p
� �2

� SD2
RT ðA:4Þ

A.6. Confidence interval

The size of the 95% confidence interval depends on the SE and was calculated as

2� 1:96� SE, because the area of a normal distribution between z-scores �1.96 and
þ1.96 is 0.95.

A.7. Calculation of power (1� b)

The power (1� b) to detect a difference between two averages depends on four
factors: (a) the effect size, (b) a, (c) sample size and (d) population variability. Three
methods were used to calculate the number of subjects that are required in order to

reach a power (1� b) of 0.8 for the detection of differences between two scores using
a t-test, with an a of 0.05. The calculations are based on the assumption that two
groups or conditions yield the same distribution of measurements, but a different

mean. The number of subjects (n) that need to be tested to achieve a power of 0.8

was computed as follows. For two indices (a and b), with mean l and standard error
r, the probability of finding a difference at the a ¼ 0:05 level is 1� b ¼ 0:80 when,

ðla þ raÞU�1ð0:95Þ ¼ ðlb þ rbÞU�1ð0:80Þ ðA:5Þ

where U�1 is the inverse t-distribution.
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It is assumed that the standard error of a and b are equal, and for n subjects, the

standard error is

ra ¼ rb ¼
SDffiffiffi
n

p ðA:6Þ

Therefore,ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðla�

p
lbÞ

SD
¼ 2½U�1ð0:8Þ þ U�1ð0:95Þ� ðA:7Þ

n ¼ 4½U�1ð0:8Þ þ U�1ð0:95Þ�2 r2

ðla � lbÞ
2

ðA:8Þ

n ¼ 24:73ðSD=effect sizeÞ2 ðA:9Þ
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