
Memory & Cognition
1997,25 (/), 1-10

Fluency and response speed
in recognition judgments

RUSSELL A. POLDRACK and GORDON D, LOGAN
University of Illinois at Urbana-Champaign, Urbana, Illinois

Previous research has suggested that perceptual fluency can contribute to recognition judgments,
In this study, we examined whether fluency in recognition is based upon the speed of preceding
operations, as suggested by studies of perceptual fluency, Subjects studied items in both lexical de­
cision and naming tasks, and were then tested on two blocks of lexical decision trials with probe rec­
ognition trials. Jacoby's process dissociation procedure was used, and results from this procedure sug­
gested that recognition judgments in the task were based largely upon familiarity. However, the
estimated discriminability available from response time distributions was significantly less than the
observed recognition discriminability. Simulated memory operating characteristics confirmed this
underdetermination of recognition by response times. The results demonstrate, contrary to previous
suggestions, that fluency in recognition is not based upon speed.

Subjective feelings of familiarity are an important basis
for recognition memory (Jacoby, 1991; Mandler, 1980). In
this paper we investigate a possible mechanism for the
effects offamiliarity on recognition judgments that follow
other processing events. A number of studies have found
that recognition judgments can be correlated with response
times (RTs) to stimuli immediately preceding the recogni­
tion trial. The best example ofthis comes from studies of
perceptual fluency, in which the time needed to identify
a stimulus is correlated with the probability ofcalling that
item "old" on a recognition test (e.g., Johnston, Dark, &
Jacoby, 1985). Items that are identified quickly are called
"old" more often than those that are difficult to perceive
because the subject attributes this increased speed (or flu­
ency) to memory rather than to, for example, more stable
characteristics of the item, such as its frequency. We will
refer to this as the speed hypothesis: the claim that attri­
butions of response speed can support a significant level
of recognition memory. To examine this hypothesis, we
present a model of speed-based recognition and test this
model in a lexical decision experiment.

Evidence for the Speed Hypothesis
Several researchers have investigated the relationship

between recognition memory and response speed (Feus­
tel, Shiffrin, & Salasoo, 1983; Johnston et al., 1985; John-
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ston, Hawley, & Elliot, 1991; Watkins & Gibson, 1988).
In these experiments, subjects first study a set of stimuli.
At test, for each studied item and an equal number ofnew
items, subjects must first identify the item under difficult
perceptual conditions (either identification at short pre­
sentation speeds or clarification under masking). Subjects
then perform an immediate recognition judgment on the
item in clear view (we will refer to this as a successive rec­
ognition task). The repetition effect (see, e.g., Scarborough,
Cortese, & Scarborough, 1977) leads to better (faster, more
accurate) identification of those items that are repeated
from the study list. The speed hypothesis predicts that
items that are identified more quickly will be called "old"
regardless oftheir actual recognition status. Since old items
are processed more quickly than new items, most such de­
cisions will be correct, but the fastest new items will be
incorrectly called "old."

A number of studies have yielded evidence in favor of
the speed hypothesis. Johnston et al. (1985) and Feustel
et al. (1983) both found that items identified more quickly
in a clarification task were more likely to be called "old";
most importantly, they found that false alarms ("old" re­
sponses to new items) were greatest for those new items
identified most quickly. Johnston et al. found that this was
most evident for nonwords at long repetition lags, where
explicit memory would be weakest, suggesting that
fluency-based recognition is dissociated from explicit
recognition.

Watkins and Gibson (1988) claimed that the correlation
between identification time and recognition performance
was due to item effects, arguing that the items that were
more easily identified were also more familiar because
of stable characteristics such as word frequency, leading
to a correlation. Johnston et al. (1991) provided evidence
against this claim by showing that the effect occurred only
when recognition judgments followed identification im­
mediately and did not occur when identification trials and
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recognition trials were presented in a blocked manner.
This showed that the correlation depended uniquely upon
the ability of the subject to attribute response speed to fa­
miliarity.

However, the evidence for the speed hypothesis is not
conclusive. Johnston et al. (1991) and Watkins and Gibson
(1988) attempted to create simulated fluency by intention­
ally speeding the identification of some items in the per­
ceptual identification task. Both were unable to create a
fluency effect on recognition using this manipulation.
Johnston et al. also attempted to create artificial fluency
by speeding responses using semantic priming and were
similarly unsuccessful; Whittlesea (1993) was able to pro­
duce fluency on a recognition test using a conceptual flu­
ency manipulation (presenting a target word in a strong
context), and the effect was much stronger when overall
recognition performance was low. Whittlesea, Jacoby, and
Girard (1990) also succeeded in creating artificial ef­
fects of fluency using different levels of visual masking
at test; in subjects who were not aware of the differences
between mask densities, there was a small (but signifi­
cant) increase in "old" responses for items at the lower
mask density (cf. Whittlesea, 1993). The most reasonable
conclusion to be drawn from these studies is that the per­
ceptual fluency effect on recognition is somewhat fragile,
is most likely produced when fluency arises out ofvari­
ations in normal processing, and is most likely to occur
when overall recognition performance is relatively low
(cf. Johnston et aI., 1991), whereas conceptual fluency
effects may be more robust.

Arguments Against the Speed Hypothesis
Successive recognition studies have demonstrated a cor­

relation between response speed and recognition judg­
ments. However, these studies have not provided any mea­
sure ofthe relative amount ofrecognition discrimination
that could be contributed by speed. For example, Johnston
et al. (1985) found a significant relationship between
identification speed and successive recognition. How­
ever, the differences in identification latency for "old" and
"new" responses, and for old and new items, were quite
small with respect to the standard deviation of identifi-

cation times. In making judgments based upon single re­
sponses, subjects would be limited in effectiveness by the
standard deviation of the distribution of RTs. Although
an experimenter can describe a distribution with respect
to its mean and standard error of the mean, subjects do not
have the luxury ofa sampling distribution; they must ex­
amine single values from the distribution, and thus their
ability to discriminate between old and new items depends
upon the variability of single items. It seems unlikely that
the observed difference between old and new RT distri­
butions in the Johnston et al. (1985) study could support
the level ofdiscrimination that was observed in their suc­
cessive recognition task, given the level ofvariability (cf.
Ratcliff, 1993). In the experiment presented here, we in­
vestigated this issue more thoroughly.

A Model of Speed-Based Recognition
We developed a simple process model of recognition

based upon RTs in order to measure the degree to which
recognition judgments could be based upon speed. This
model is similar in character to the signal detection the­
ory (SOT) model of recognition memory (Lockhart &
Murdock, 1970), where recognition is accomplished by
setting a criterion along a distribution of familiarity. We
simply defined familiarity in this model in terms ofpro­
cessing speed in order to test the claim that recognition
could operate on the basis of speed.

In order to make a recognition judgment under the speed
model, subjects compare a single processing time to a cri­
terion for saying "old." For a perceptual identification task
with successive recognition, this processing time would
be the identification time for the item immediately pre­
ceding the recognition trial. In our task, this was the lexi­
cal decision time for the trial immediately preceding the
recognition judgment. Subjects set a criterion on the RT
dimension for making yes judgments. If the processing
time is faster than the criterion, the subject responds "old."
Ifthe time is slower than the criterion, the subject responds
"new" (Figure 1). Discriminability between old and new
items is then determined by the distance between the pro­
cessing time distributions for old and new items, relative
to their variability.

Old Criterion New

Response Time

• Hits

~ False Alarms

o Misses

~ Correct Rejections

Figure 1. Illustration of response time distributions with fixed criterion, and the associated
recognition outcomes according to the speed model.
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(2) (5)

(4)dRT = Mnew - MOld.
SDflu

From Equation 4, we derived the predicted level ofSDflu
that would be necessary to support the observed level of
recognition performance (d~bs):

M -MIdPredicted SD = new 0
flu d'

obs

only fluent processes are responsible for the difference be­
tween old and new items as measured by dRT, dRT will
underestimate the discriminability available from flu­
ency. The components of variance ofRT can be stated as
follows:

To the extent that this value accounts for a small propor­
tion ofthe observed variability, we can conclude that speed
is inadequate to account for recognition judgments.'

Memory operating characteristics. In order to ad­
dress the problems with the validity ofdRT as a measure
ofdiscriminability, we computed simulated memory op­
erating characteristics (MOCs) using observed RT dis­
tributions. MOCs represent the discriminability between
old and new items over a range of levels of bias toward
saying "old" (i.e., a range ofcriterion values) and are pro­
duced by plotting the Z-score for hit rate [p(Hit)] against
the Z-score for the false alarm rate [p(FA)]. MOCs can
be produced empirically by varying the hit rate using a pay­
off schedule, or by plotting p(Hit) as a function of con­
fidence ratings. We produced simulated MOCs from RT
distributions as follows:

1. Specify a level of p(Hit). In our computations,
p(Hit) took four possible values: {0.2, 0.4, 0.6, 0.8}.

2. Determine the value on the old item RT distribution
that cut offp(Hit) percent of the old item RT distribution.
This value was taken as the criterion, C, for responding
"old" on the recognition test. If subjects said "old" to all
items as fast as or faster than C, they would have a hit
rate ofp(Hit).

3. Determine the proportion of the new item RT distri­
bution that was cut offby the criterion, C. This percentage
is taken as probability of a false alarm, p(FA; Figure 1).

4. Complete Steps (2) and (3) for each level ofp(Rit).
5. Compute the Z values at each level for p(Hit) and

p(FA), and construct an MOC by plotting Z(p(Hit)) against
Z(p(FA)).

The level of discriminability afforded by the RT
distributions is evident in the distance of the least
squares regression line fitting each MOC from the unit
line; the intercept of this best fitting line is an indepen­
dent estimate of dRT.2 The shape and slope of the MOC
depends upon the shape of the underlying response time
distributions; deviations from normality result in non-

SD~bs = SDliu + SD;onflu' (3)

where these SDs are averaged over old and new items.
Computation ofdRT should then properly proceed using
only the variation due to fluent processes in the denomi­
nator:

dRT = ---=-"-------""-"-----

(SDold /2 + SDnew / 2)'

where Ms were the mean RTs and SDs are the standard de­
viations for RTs. By computing the percentage ofobserved
d' that is accounted for by dRT, we can get a quantitative
estimate ofthe degree to which recognition performance
could possibly rely upon response speed (cf. Jacoby, 1991).

A critical feature ofthis measure was the use ofthe stan­
dard deviation in the denominator. When subjects make
a judgment about the relative slowness ofa single response
compared to the overall distribution of response times,
they have only one observation with which to make that
judgment. The variation ofthe single sample for a subject
in the model, then, is simply the variation of the distribu­
tion itself, rather than the standard error of the experi­
menter's sampling distribution ofmean RT. This conven­
tion is also used in the definition ofd' in SDT (Green &
Swets, 1965).

Potential problems with dRT. The dRTmeasure suf­
fers from two potential problems. First, the calculation of
dRTas a measure ofdiscriminability assumes that the old
and new RT distributions are normal with equal variances.
The normality assumption fails for RT distributions,
which are positively skewed with long right tails. RTs have
been described as convolutions of normal and exponen­
tial distributions (Ratcliff& Murdock, 1976), Weibull dis­
tributions (Logan, 1992), or gamma distributions (Luce,
1986) and clearly differ from the normal distribution. In
addition, new items generally have more variation than
do repeated items (Compton & Logan, 1991; Logan,
1988, 1992), resulting in failure to satisfy the equal vari­
ance assumption.

Another problem lies with the contributions of non­
fluent processes to RTs. A nonfluent process is any pro­
cess that does not show an item-specific speed-up but
does contribute to RTs. Such processes as motor pro­
gramming and execution are possibly nonfluent; they
probably speed up with practice, but this speed-up might
generalize to both old and new stimuli. To the extent that
nonfluent processes add to the variation of the RTs but

d' = ~Id - Fnew , (1)
SDnew

where ~'d and Fnewrepresent means ofunobservable dis­
tributions of familiarity for old and new items respec­
tively, and SDnew represents the standard deviation of fa­
miliarity for new items (Green & Swets, 1965). Intuitively,
d' quantifies the distance between the standardized dis­
tributions offamiliarity for old and new items, which trans­
lates directly into recognition performance. Our measure,
called dRT, allows the analogous quantification of the
amount of discriminability available from RTs, and was
defined as follows:

dRT. Within the model, a measure of discriminability
between old and new RT distributions was developed, on
direct analogy to the d' measure used in SDT. d' is defined
as
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linear MOCs, while differences in variation between old
and new response time distributions result in MOCs with
slopes different from one.

The Present Experiment
Here we report an experiment in which we tested the

speed hypothesis using the model outlined above.This ex­
periment extended the test of the speed hypothesis be­
yond the perceptual identification studies reported earlier
to a processing task (lexical decision) where the nature
of the RT distributions is more clearly understood (e.g.,
Logan, 1988). The experiment tested the speed hypoth­
esis in a lexical decision task with successive recogni­
tionjudgments, where some words were repeated at test.
Lexical decision is a task that shows robust repetition ef­
fects (see, e.g., Logan, 1990; Scarborough et aI., 1977);
our model was applied to measure the degree to which
these repetition effects could support the observed level
ofrecognition. Jacoby's (1991) opposition procedure was
employed as an independent measure of the degree to
which recognition in the task is based upon familiarity.

In our experiment, subjects first studied words and non­
words in two study phases: lexical decision and naming.
Subjects were then tested using a lexical decision task.
On about 40% oftrials, a recognition probe followed the
lexical decision trial immediately. The speed hypothesis
predicts that these recognition judgments should be
based upon the lexical decision RT from the immediately
preceding trial. In this case, recognition accuracy should
be directly related to the size of the repetition effect for
old items. To the degree that the process dissociation pro­
cedure shows that the task is based upon familiarity, fail­
ure of the speed hypothesis means that these familiarity
effects must be based on something other than attribu­
tions of response speed.

METHOD

Participants
Forty-eight undergraduate students from the University of Illi­

nois participated in the experiment as part of a class requirement.
Twenty-four subjects participated in an inclusion condition, and
24 participated in an exclusion condition.

Materials
Words were selected randomly for each subject from a pool of

339 common words or matched nonwords, and assigned randomly
to conditions. For each subject, two sets of 48 study stimuli (24
words and 24 nonwords) were chosen. One set was presented as
stimuli in a lexical decision study block, and the other set was pre­
sented as stimuli in a naming study task. In addition, each study
list included an additional 5 primacy and 10 recency buffer items.
The words were nouns selected from the Kucera and Francis
(1967) word frequency norms, with a mean frequency of75.27 per
million and a range of 8 to 787 per million. All non words were
produced by changing one or two letters from the matched word,
and all were pronounceable (see Logan, 1990, for more details on
the stimulus set).

they would see words and nonwords, and would make lexical de­
cision, naming, and recognition responses to these stimuli. Sub­
jects responded in the lexical decision task by pressing the "Z" or
"X" keys on the keyboard with their preferred hand, and made rec­
ognition responses vocally. The experiment consisted of one ses­
sion lasting approximately 35-40 min.

The session began with 48 lexical decision study trials, on
which the subject performed only lexical decision. The 48 target
study items (24 words and 24 nonwords) were surrounded by 5 pri­
macy and 10 recency buffer items, which were not repeated there­
after. After a short break, subjects performed 48 naming study trials
(24 words and 24 nonwords), which were surrounded by 10 pri­
macy and 10 recency items that did not appear again. On naming
trials, subjects pronounced stimuli into a microphone that trig­
gered a voice-activated relay. An experimenter controlled the pre­
sentation of stimuli and recorded the naming accuracy ofthe subject.

Following the study trials, subjects performed two blocks of
lexical decision trials. Each block consisted of 96 studied items
(which appeared in each block) and 96 new items (which were
unique to each block). On a subset of trials, a recognition probe
was presented immediately after the lexical decision response.
Probes were presented following 40 new items (20 words and 20
nonwords), 20 old items (10 words and 10 nonwords) from the
lexical decision study block and 20 old items (10 words and 10 non­
words) from the naming study block. (Because ofa program error,
10 new words, rather than 20, were probed in the second test
block.) Subjects in the inclusion condition were instructed to say
"old" on recognition probes if they remembered having studied
the item in either of the study blocks. Subjects in the exclusion
condition were instructed to say "old" only to items that they re­
membered from the naming study block; they were instructed to
say "new" if they remembered having studied the item in the lexi­
cal decision study block.

On each trial, a 500-msec signal ("+") was followed by the pre­
sentation of the word or nonword. The stimulus remained on the
screen until the subject made the lexical decision task or naming
response. On the probed recognition trials, the stimulus remained
on the screen and the question "Old or New?" appeared; subjects
responded vocally, and an experimenter in the room recorded the
recognition responses. Subjects were instructed that speed and ac­
curacy were both important, and they were told to concentrate on
the lexical decision part of the experiment and not to try to antic­
ipate the recognition probes. The computer emitted a beep if the
subject made a lexical decision error.

RESULTS AND DISCUSSION

The alpha level for all statistical tests was .05. RTs
greater than 1.5 SDs above the mean were excluded from
the analysis (a total of 8.5% of trials).

Response Time
Study. Mean study RTs are presented in Table I. These

data were analyzed using a 2 (group: inclusion vs. exclu­
sion) X 2 (study block: lexical decision vs. naming) X 2

Table 1
Mean Study Response Times for Words and Nonwords

Averaged Over Subject Groups

Item Type

Procedure
Stimuli were displayed in lowercase on a Dell Super VGA mon­

itor, and stimulus presentation and response collection were con­
trolled by a Dell 210 microcomputer. Subjects were instructed that

Study Block

Lexical decision
Naming

----

Words

SE

15.0
21.5

Nonwords

.Iv! SE

708 20.1
641 40.0
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Table 2
Mean Test Response Times for Words and Nonwords

Study Type

Block

Old
(Lexical Decision)

M SE

Old (Naming)

M SE

Inclusion

New

M SE

Word 635 19.8 641 19.6 667 19.5
Nonword 719 21.9 720 24.2 694 21.3

2
Word 624 20.7 616 18.5 649 20.2
Nonword 699 22.0 703 23.0 680 20.3

Exclusion

Word 709 28.6 717 26.7 733 25.6
Nonword 798 34.0 828 37.6 779 30.5

2
Word 670 27.0 684 29.1 715 25.4
Nonword 753 26.2 767 25.6 726 24.8

(lexicality: word vs. nonword) mixed analysis ofvariance
(ANOYA). There was a significant effect of study block
[F(l,46) = 9.03, MSe = 17,399.3], reflecting faster re­
sponses on naming trials than on lexical decision trials.
There was also a significant effect oflexicality [F( 1,46) =

44.55, MSe = 7,834.9], reflecting faster responses for
words than for nonwords. No other effects were signifi­
cant (ps > .1).

Test. Mean test RTs are presented in Table 2. These
data were analyzed using a 2 (group: inclusion vs. exclu­
sion) X 3 (study type: lexical decision, naming, and un­
studied) X 2 (lexicality: word vs. nonword) X 2 (test
blocks) mixed ANOYA. There was a significant effect of
group [F(l,46) = 4.72, MSe = 147,238]; subjects in the
inclusion task were faster overall than subjects in the ex­
clusion task. There was a significant effect of test block
[F(1,46) = 15.48, MSe = 8,079.1], showing a decrease in
RTs from Block 1 to Block 2. The effect oflexicality was
significant [F(l,46) = 77.24, MSe = 8,365.4], reflecting
the fact that responses to words were faster than responses
for nonwords. The lexicality X list interaction was sig­
nificant [F(2,92) = 23.22, MSe = 2,341.0]. This effect
reflected the fact that studied words were faster than new
words but studied nonwords were slower than new non­
words. This negative repetition effect for nonwords is
likely due to the role offamiliarity in lexical decision; re­
peating a nonword makes it more familiar, which makes
the item harder to reject as a nonword (see, e.g., Feustel
et aI., 1983). No other effects were significant (ps > .1).

significant effect oflexicality [F(I,46) = 16.25, MSe =
0.005]; responses to words were more accurate than re­
sponses to nonwords in both study blocks. The interac­
tion was not significant.

Test. Test accuracy data are presented in Table 4.
These data were analyzed using a 2 (group: inclusion vs.
exclusion) X 2 (test block) X 2 (lexicality: word vs. non­
word) X 3 (study type: lexical decision, naming, or new)
mixed ANOYA. There was a significant effect oflexical­
ity [F(l,46) = 6.39, MSe = 0.004], reflecting greater
accuracy for words than for nonwords. The effect of
study type was significant [F(2,92) = 4.02, MSe = 0.002].
Planned comparisons showed that old items from the lex­
ical decision study block had higher accuracy at test than
did new items (p < .01); no other comparisons were sig­
nificant. The lexicality X list interaction was significant
[F(2,92) = 24.82, MSe = 0.001], reflecting the fact that
studied words were more accurate than new words, but
studied nonwords were less accurate than new nonwords.
These data rule out a speed-accuracy tradeoff as an ex­
planation for repetition effects. The four-way interaction
was marginally significant (p < .06); the meaning ofthis
interaction is unclear. No other effects were significant
(ps>.I).

Recognition
Recognition results were analyzed using the d' measure

of discriminability (Green & Swets, 1965). These data

Table 3
Mean Study Accuracy for Words and Nonwords,

Averaged Over Subject Groups

0.915
0.946

Accuracy
Study. Study accuracy data are presented in Table 3.

These data were analyzed using a 2 (group: inclusion vs.
exclusion) X 2 (study block: lexical decision vs. naming)
X 2 (lexicality: word vs. nonword) mixed ANOYA.There
was a significant effect of study block [F( 1,46) = 11.68,
MS e = 0.004], reflecting greater accuracy in the naming
block than in the lexical decision block. There was also a

Study Block

Lexical decision
Naming

M

0.955
0.986

Item Type

Words

SE

0.008
0.004

M

Nonwords

SE

0.014
0.009
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Table 4
Mean Test Accuracy (Proportion Correct) for Words and Nonwords

Study Type

Old Old
(Lexical Decision) (Naming) New

Block M SE M SE M SE

Inclusion

Word 0.973 0.006 0.973 0.005 0.952 0.009
Nonword 0.952 0.012 0.932 0.020 0.960 0.008

2
Word 0.988 0.004 0.978 0.006 0.941 0.008
Nonword 0.944 0.013 0.951 0.010 0.964 0.008

Exclusion

Word 0.987 0.006 0.975 0.008 0.951 0.008
Nonword 0.949 0.014 0.957 0.005 0.970 0.006

2
Word 0988 0.005 0.977 0.006 0.947 0.008
Nonword 0.968 0.010 0.953 0.009 0.970 0.007

are presented in Table 5. The data were analyzed using a
2 (group: inclusion vs. exclusion) X 2 (lexicality) X 2
(study task: lexical decision vs. naming) X 2 (test block)
mixed ANOVA. The main effect ofblock was significant
[F(l,46) = 25.25, MS e = 0.61], reflecting greater dis­
criminability in the second test block than in the first.
This main effect was accompanied by a block X group in­
teraction [F(l,46) = 15.98, MSe = 0.61]. This effect re­
flects a greater increase in d' across test blocks for inclu­
sion than exclusion subjects. The main effect of study
task was significant [F( 1,46) = 20AO, MS e = OAI],
showing greater discriminability for items studied in the
naming block than for items studied in the lexical deci­
sion block. The main effect oflexicality was also signifi­
cant[F(l.46) = 4.11, MSe = 0.55]; recognition was bet­
ter for words than for nonwords. Both ofthese effects are
qualified by a significant study task X lexicality inter­
action [F(l,46) = 8.06, MSe = 0.29], revealing a greater

difference between study tasks for nonwords than for
words.

Twohigher order interactions were also present in the
d' analysis. The significant block X lexicality X study
task interaction [F(l,46) = 11.97, MSe = 0.27] reflected
the fact that the increase in d' from Block I to Block 2
was much smaller for nonwords studied in the naming
block than for other lexicality X study task combinations.
The significant block X lexicality X group interaction
[F(l,46) = 7.99, MSe = 0.69] reflected the fact that the
increase in d' from Block I to Block 2 was not different
for subject groups for nonwords, but was much greater
for the inclusion condition than for the exclusion condi­
tion for words. No other effects were significant (ps > .1).

Process Dissociation
The process dissociation procedure (Jacoby, 1991) was

used to estimate the roles of fluency and recollection in

Table 5
d' and dRT Values for Inclusion and Exclusion Groups by Block and Study Type

Words Nonwords

Block d' SE dRT SE %d' d' SE dRT SE %d'

Inclusion

Lexical decision 129 0.093 0.35 0.078 27.1 1.14 0.129 -0.18 0.043 n/a
Naming 131 0.127 0.28 0.072 21.4 1.74 0.230 -0.22 0.071 n/a

2
Lexical decision 229 0.220 0.26 0.105 11.4 1.78 0.164 -0.16 0.060 n/a
Naming 2.46 0.230 0.33 0.105 13.4 1.84 0.139 -0.23 0.076 n/a

Exclusion

Lexical decision 153 0.156 0.20 0.077 13.1 0.92 0.126 -0.09 0.084 n/a
Naming 155 0.182 0.14 0.072 9.0 1.70 0.159 -0.29 0.079 n/a

2
Lexical decision 131 0.204 0.38 0.099 29.0 134 0.140 -0.18 0.085 n/a
Naming 167 0.193 0.33 0.094 19.8 1.70 0.139 -0.31 0.072 n/a

Note-% of d' was not calculated for nonwords because dRT was negative, making the mea-
sure meaningless for these data.



Table 6
Process Dissociation Procedure Results

by Study Type and Block

Words Nonwords

Block Recollection Familiarity Recollection Familiarity

1 0.196 0.596 0.125 0.486
2 0.438 0.689 0.333 0.675

recognition performance. These data are presented in Ta­
ble 6. This analysis showed that recognition performance
in the present experiment had a large familiarity compo­
nent that overshadowed the recollection component in
every block for both words and nonwords, and by a fac­
tor ofmore than three in the first block. The relative con­
tribution of fluency decreased in the second test block,
probably due to repetitions ofstudied items from the first
test block. These data demonstrate that a familiarity-based
process (i.e., fluency) supports recognition judgments in
the task.

Speed Model Analyses
Having found that familiarity was the predominant basis

of recognition judgments in the task, we examined the
degree to which this familiarity might be based upon at­
tributions ofresponse speed. We first calculated dRTval­
ues according to Equation 2; these are presented in Ta­
ble 5 along with the observed d' values. The difference
between dRT and d' indicates the degree to which the ob­
served recognition performance could possibly be sup­
ported by response speed. The ratio ofdRTto d' is also pre­
sented in Table 5. These values are uniformly small and
suggest that response speed could have supported very
little ofthe observed recognition performance. However,
because recognition performance was at least partially at­
tributable to recollection, these ratios may underestimate
the proportion of fluency-based recognition discrimina­
bility that can be explained by RT differences.

The speed model is also undermined by a dissociation
between RTs and recognition results for words and non­
words. Repetition effects for words were positive, leading
to predictions ofabove-chance recognition performance.
However, repetition effects for nonwords were negative,
in which case the speed model predicts below-chance rec­
ognition accuracy. These predictions were not supported
by the recognition data. Although d' for non words was
significantly less than d' for words overall, performance
for nonwords was still well above chance in all conditions.

The relationship between recognition and speed was ex­
amined directly by comparing dRT and d' in a repeated
measures ANaYA with lexicality as an additional within­
subjects factor. The main effect of measure (d' vs. dRT)
was significant[F(l,47) = 330.1, MSe = 0.354]; d' values
were greater (M = 1.60) than dRTvalues (M = 0.04). The
effect oflexicality was also significant [F( I ,47) = 44.26,
MSe = 0.112], reflecting greater d' and dRT values for
words than for nonwords. The measure X lexicality inter­
action was also significant [F(l,47 ) = 13.26, MSe = 0.103].
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The difference between dRT and d' was greater for non­
words than for words; however, d' significantly exceeded
dRT for both words and nonwords (ps < .00 I).

In order to further examine the speed hypothesis, we
compared the observed variability of RTs to the varia­
bility that would be necessary in order to support the ob­
served recognition performance, according to the flu­
ency model (Equation 5). Predicted and observed
standard deviations were computed for each subject;
these values are presented in Table 7, along with the pro­
portion of observed variance accounted for by the pre­
dicted variance. These values were compared using a 2
(predicted vs. observed) X 2 (block) X 2 (group: inclu­
sion vs. exclusion) mixed ANaYA. There was a signifi­
cant main effect of predicted versus observed [F(l,43) =
80.08, MSe = 6,562.8]. Predicted SD was significantly
lower (M = 20.8) than observed SD (M = 130.2). No
other effects were significant. Thus, the observed SD
values were outside of the range of values necessary to
support speed-based recognition performance.

Memory operating characteristics. To confirm the
dRT analysis, simulated memory operating characteris­
tics (MOCs) were constructed from the test RT distribu­
tions for items studied in the lexical decision study block.
These are presented in Figures 2 and 3 for inclusion and
exclusion groups separately, along with a point represent­
ing observed recognition performance and the best fit­
ting linear function for the MaC. In each case, these points
fell far outside the MaC, showing that the observed level
of recognition discriminability was greater than that avail­
able from the RT distributions. The y-intercept of the lin­
ear MaC function (in normalized coordinates) is an es­
timate of dRT (Green & Swets, 1965); these estimates
were similar in magnitude to those obtained from Equa­
tion 2, and in all cases fell outside the confidence inter­
vals for observed recognition d', It is interesting to note
that the operating characteristics obtained in the present
study were linear with a slope very near the unit slope.
Although this finding is difficult to interpret (Lockhart
& Murdock, 1970), it does suggest that there were no
large-scale violations of the assumptions underlying the

Table 7
The Predicted Level ofSDnu

(Standard Deviation of the Fluency Distribution)
Required to Support the Observed Recognition Performance,

Along With the Observed Standard Deviations for Words
and the Percentage of Variance Accounted for

SD % Variance
Block Predicted Observed Accounted for

Inclusion

1 27.5 112.7 6.0%
2 16.9 118.6 2.0%

Exclusion

1 22.4 152.5 2.2%
2 17.1 133.3 1.6%

Note-Nonword data are not included because the observed repeti­
tion effects were negative.
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based upon something other than response speed. How­
ever, studies of fluency and recognition have defined flu­
ency experimentally in terms of RTs (e.g., Johnston,
Dark, & Jacoby, 1985; Johnston, Hawley, & Elliott, 1991);
such a redefinition would throw out an important litera­
ture on fluency and recognition. In addition, the defini­
tion offluency in terms ofspeed is advantageous because
it allows one to bring to bear a great deal of previous
work on RTs to this problem (e.g., Luce, 1986).

We might ask, however, how else (other than response
speed) fluency could be represented within the existing
range ofRT models. One possibility is that fluency could
be based upon the speed of a given processing stage
rather than on the entire RT (Ratcliff, 1993). This might
allow the subject greater discriminability than that which
is possible from overall RTs (by excluding the variation
arising from these nonfluent processing stages). The non­
word results in the present experiment argue in favor of
this sort ofmodel; fluency would arise from the process­
ing stage in which repeated words or nonwords are fa­
cilitated, excluding the decision stage in which repeated
nonwords are slowed. Examination of this possibility
would entail the formidable task ofconstructing a model
of the processing stages involved in the task and then
using the finishing time distributions from one stage to
predict recognition performance. Alternatively, in a latent

Block 1

Nonwords

Inclusion

Block 1

Words

- -I 0 I 0
N N

-1 -1

-1 0 2 -1 0 2
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Block 2 Block 2
2 2

Y= 0.999x - 0.087

1 •p

I 0 I 0
N N

-1 -1

-2
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Figure 2. Simulated memory operating characteristics (MOCs)
for inclusion group by block and lexicality, along with observed
recognition memory performance (denoted by a circle). The
equation for the best fitting linear function is included for each
MOe.
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Nonwords

Block 1 Block 1
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-1 -1
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normalized operating characteristic. The MaC data show
that, although familiarity played a large part in recogni­
tionjudgments, littleofthis performance can be accounted
for in terms of speed.

GENERAL DISCUSSION

In a successive recognition study, we found that recog­
nition performance was largely dependent upon famil­
iarity according to Jacoby's (1991) process dissociation
procedure. However, our model-based analyses showed
that the observed recognition performance could not be
supported by attributions of response speed to familiar­
ity. Using the dRTmeasure of discrimination by fluency,
we found that speed could account for only a small pro­
portion of the observed recognition discrimination for
both words and nonwords. The construction of MOCs
confirmed the findings ofthe dRT analysis. Weconclude
that response speed cannot underlie the fluency effect in
successive recognition tasks.

What Might Fluency Be?
Our results show that response speed can support only

small portions of observed recognition performance.
Against our conclusions one might argue that fluency is

Figure 3. Simulated memory operating characteristics
(MOCs) for exclusion group by block and lexicality, along with
observed recognition memory performance (denoted by a circle).
The equation for the best fitting linear function is included for
each MOe.



network theory ofRTs (Schweickert, 1978), fluency might
be accounted for in terms of slack, which is the amount
of time by which a process can be lengthened without
affecting overall RT. Changes in the amount of slack
might be observable by the subject without affecting ob­
served RTs, with greater slack being interpreted as in­
creased fluency. Further investigation is needed to ex­
amine these possibilities.

Recent studies of the neural basis of repetition prim­
ing also suggest likely possibilities for the underlying
basis of fluency effects. Neural imaging studies have
shown that priming is associated with decreases in re­
gional cerebral blood flow to the cortical areas involved
in performing a task, for example, occipital areas for vi­
sual tasks (Buckner et a!., 1995) and frontal areas for con­
ceptual tasks (Demb et a!., 1995. It is currently unclear
how these changes relate to the phenomenological expe­
rience of fluency, but the data do suggest that subjects
might experience changes in different forms of process­
ing as qualitatively different forms of fluency. Event­
related potential studies of repetition priming also sug­
gest bases for the qualitative experience of fluency. Rep­
etition leads to an attenuation of the N400 potential,
which is thought to reflect semantic processing or seman­
tic memory retrieval (Rugg, 1990), and this repetition ef­
fect differs in its topographic distribution for within­
modality and between-modality repetition (Domalski,
Smith, & Halgren, 1991); this modality effect suggests
that the effect may have both perceptual and conceptual
components that could be experienced separately. These
findings are in line with the imaging results in suggest­
ing that fluency might result from the phenomenal expe­
rience of the reduced level of processing that accompa­
nies stimulus repetition. Thus, subjects may attribute a
reduced amount of processing either to prior experience
or to other sources, depending upon the constraints of
the task being performed (Jacoby, Kelley, & Dywan,
1989; Whittlesea, 1993).

Formalizing the Concept of "Fluency"
The discovery ofa procedure by which to separate the

effects of familiarity and recollection in recognition
tasks has led to a consensus that both are independently
important in recognition (Jacoby, 1991), and a primary
source of familiarity is attributions of fluency. The basis
of fluency effects, however, has remained markedly un­
specified. By ruling out speed as a foundation for the ef­
fects of fluency, our findings suggest that theories of
memory need to specify new mechanisms by which flu­
ency might occur. Defining fluency in terms of intuitive
concepts like "ease," without specifying the mechanism by
which this fluency is generated, results in theories that
defy testing and falsification. The analytic method laid
out in the testing ofour speed model can perhaps provide
a framework for testing other alternative theories of flu­
ency. In addition, our analysis is applicable to testing any
theory that involves comparisons between RT distribu­
tions. Further work with this model should bring increased
rigor to studies of theoretical concepts like fluency.
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NOTES

I. Ratcliff (1993) made the similar point that subjects might be able
to make decisions about their own response speed on the basis of de­
cision stages that are independent of output processing.

2. The simplest form of the fluency model would be one in which
the criterion remains fixed across judgments. This fixed-criterion
model predicts that all items called "old" should be faster than all
items called "new," with a slight overlap possible due to variance in

other components of processing. However, this prediction is called
into question by the data from Johnston et al. (1985); the RT distribu­
tions for items called "old" and items called "new" showed a substan­
tial degree of overlap. A variable-criterion model can account for the
overlap in distributions. In this model, the subject's criterion for say­
ing "old" varies according to some distribution (see, e.g., Grice,
1968). However, such a model is much less tractable analytically than
the fixed-criterion model, because a stochastic component must be in­
troduced. Wickelgren (1968) generalized SDT to the case of variable
criteria and showed that discriminability in the variable criterion case
will always be smaller than discriminability in the fixed-criterion case
(because the variance of the criterion appears in the denominator of
the d' calculation). This means that the fixed-criterion model is the
limiting best case of all variable-criterion models. On the basis of this
argument, we used the fixed-criterion model to generate MOCs.
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