
Psychological Review
1996. Vol. 103. No. 4,603-649

Copyright 1996 by the American Psychological Association, Inc.
0033-295X/%/$3.00

The CODE Theory of Visual Attention:
An Integration of Space-Based and Object-Based Attention
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This article presents a theory that integrates space-based and object-based approaches to visual

attention. The theory puts together M. P. van Oeffelen and P. G. Vos's (1982, 1983) COntour DE-

tector (CODE) theory of perceptual grouping by proximity with C. Bundesen's (1990) theory of
visual attention (TV\). CODE provides input toT\A, accounting for spatially based between-object

selection, and TVA converts the input to output, accounting for feature- and category-based within-

object selection. CODE clusters nearby items into perceptual groups that are both perceptual objects

and regions of space, thereby integrating object-based and space-based approaches to attention. The

combined theory provides a quantitative account of the effects of grouping by proximity and distance

between items on reaction time and accuracy data in 7 empirical situations that shaped the current

literature on visual spatial attention.

For the last decade the attention literature has been em-
broiled in a debate over the nature of visual spatial attention
that focuses on the "thing" that attention selects (e.g., Baylis &
Driver, 1993; Driver & Baylis, 1989; Duncan, 1984; Egly,
Driver, & Rafal, 1994; Kramer & Jacobson, 1991; Vecera&Fa-
rah, 1994). Advocates of space-based attention argue that at-
tention selects regions of space independent of the objects they
contain. Attention is like a spotlight illuminating a region of
space. Objects that fall within the beam are processed; objects
that fall outside it are not (Eriksen & Eriksen, 1974; Eriksen &
St. James, 1986; Posner, 1980; Posner & Cohen, 1984; Treis-
man&Gelade, 1980; Treisman & Gormican, 1988). Advocates
of object-based attention argue that attention selects objects
rather than regions of space. Selection is spatial because objects
necessarily occupy regions of space, but objects rather than the
regions themselves are the things that are selected (Kahneman
& Henik, 1981; Kahneman & Treisman, 1984; Kahneman,
Treisman, & Gibbs, 1992; Pylyshyn & Storm, 1988). Object-
based theories assume that attention only selects regions of
space that are occupied by objects, whereas space-based theo-
ries assume that attention can select empty regions of space (cf.
Yantis, 1992).

The purpose of this article is to propose a theory of visual
spatial attention that integrates space-based and object-based
views. The theory takes a computational approach to the prob-
lem, characterizing attention in terms of representations and
the processes that operate on them. It differs from most ap-
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proaches to attention by being concerned with the representa-
tion of space and the representation of objects, incorporating a
theory of perceptual organization and atheory of selection. The
resolution of the controversy derives from the theory's assump-
tions about representation.

The article begins by describing five important questions that
face any theory of visual spatial attention. The answers pro-
posed by the new theory are presented by way of describing the
theory. The theory is applied to seven important paradigms that
shaped the current literature on visual spatial attention. Finally,
the benefits and limitations of the theory are discussed, and
fruitful directions for future research are pointed out.

Five Key Questions

How Is Space Represented?

A key question for both space-based and object-based theo-
ries of attention is how space is represented. Despite the impor-
tance of space in theories of attention for the last decade or two,
very little has been said explicitly about the representation of
space, perhaps because it seems that little needs to be said: Ob-
jects are arrayed in space in the world. Optics preserve the spa-
tial array as the world is projected on the retinae. Retinotopic
projection from retinae to cortex preserves the spatial arrange-
ment in visual cortex, which is interpreted (by theorists) as a
representation of space.

Space-based theories of attention appear to assume that space
is represented by a two- or three-dimensional (2-D or 3-D) map
of locations, with objects represented as points in space (Cave
& Wolfe, 1990; Treisman, 1990; Treisman & Gelade, 1980;
Treisman & Gormican, 1988; Wolfe, 1994). Theorists appear
to assume that distance between objects is represented by a Eu-
clidean metric, because Euclidean distance is an important
variable in studies of space-based attention (e.g., Eriksen &
Hoffman, 1973; Shulman, Remington, & McLean, 1979; Tsal,
1983).

Object-based theories have been even less explicit about the
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representation of space. They appear to assume that space is
represented as a 2-D or 3-D array of objects, organized by Ge-
stalt grouping principles. The distance metric is not clear, but
Euclidean distance is not especially important. Researchers of-
ten interpret data as evidence for object-based attention when
grouping factors counteract Euclidean distance (Baylis &
Driver, 1993; Driver & Baylis, 1989; Kramer & Jacobson,
1991). This abandonment of Euclidean distance and granting
it to the opposition is a peculiar tactic for object-based theorists
because grouping by proximity is a powerful and important Ge-
stalt principle.

A theory of space-based or object-based attention must be
explicit in its assumptions about how space is represented. Oth-
erwise, the theories cannot be tested adequately. Moreover,
comparisons between classes of theories can be made only if
their assumptions about spatial representation are explicit.
Otherwise, it is difficult to derive contrasting predictions.

What Is an Object?

The definition of an object is a central issue in object-based
theories. Nevertheless, there is no commonly agreed upon
definition. The most common tactic is to rely on intuition, as if
William James had said, "Everyone knows what an object is."
Some researchers rely on ratings of "goodness" of objects (e.g.,
Kramer & Jacobson, 1991), democratizing intuition. Others
rely on Gestalt grouping principles, like similarity (Kahneman
& Henik, 1977), common fate (Driver & Baylis, 1989), and
proximity (Banks & Prinzmetal, 1976; Prinzmetal, 1981). Still
others rely on spatial contiguity: Objects are conjunctions of
properties that occur at a common location (Kahneman &
Treisman, 1984; Kahneman, Treisman, & Gibbs, 1992). De-
spite the lack of consensual definition, most researchers agree
that objects are hierarchical; objects can be decomposed into
parts, and each part can be treated as a single object (Baylis &
Driver, 1993; Biederman, 1987; Marr & Nishihara, 1978; Na-
von, 1977; Palmer, 1977; Palmer & Rock, 1994). A theory of
object-based attention should say what an object is and should
account for hierarchical organization in the definition it
provides.

What Determines Shape of the Spotlight?

A great deal of space-based research has addressed the shape
of the region that attention selects. The default assumption
seems to be that the region is round, like a spotlight beam, but
some researchers have suggested different shapes, from ovals
(Eriksen, Pan, & Botella, 1994) to doughnuts (Juola, Bouw-
huis, Cooper, & Warner, 1991). In most of these approaches,
the shape is determined by "endogenous factors" or "higher-
level processes" that are outside the scope of the theory. If that
is the case, then the shape of the region becomes a free parame-
ter (or set of parameters) that the theorist can set without con-
straint to accomodate whatever data may appear. The theory I
am proposing constrains the shape of the spotlight, reducing the
need to invoke a homunculus to explain selection.

LaBerge and Brown (1989) took a more principled approach
to the shape of the spotlight in their gradient theory of attention.
They assumed that the spotlight adjusts to the shape of the se-

lected object, opening an aperture the size and shape of the ob-
ject through which perceptual features are sampled. The main
empirical thrust of their assumption focused on aftereffects of
selection, providing data that suggested that an aperture the size
and shape of the target remained open for a short time after the
selected object disappeared.

A theory of space-based attention must be explicit about
what determines the shape of the spotlight. Better theories will
be more specific about the factors that determine it and leave
less work for an omnipotent homunculus to do.

How Does Selection Occur Within

the Focus of Attention?

Space-based and object-based theories both assume that ev-
erything within the focus of attention is processed. Space-based
theories assume that everything within the spotlight is pro-
cessed (e.g., Eriksen & St. James, 1986; Treisman & Gormican,
1988), and object-based theories assume that every property of
the selected object is processed (e.g., Kahneman & Henik,
1981; Kahneman & Treisman, 1984; Kahneman et al., 1992).
These assumptions, by themselves, cannot account for cases in
which selection occurs within the focus of attention (see
Kahneman, 1973;Posner&Boies, 1971; Treisman, 1969).

The Stroop (1935) task provides a compelling example of
selection within the spatial focus of attention. The task requires
subjects to name the color in which a word is written and ignore
the name of the word. They manage to do so with great success.
Reaction times may be slower when the word names a different
color than the target (incompatible displays, e.g., GREEN in
red) than when the word names a noncolor (neutral displays,
e.g., MOST in red) or the same color as the target (compatible
displays, e.g., RED in red), but accuracy is high. Subjects rarely
report the word instead of the color (for a review, see MacLeod,
1991).'

The basic Stroop results are difficult to accomodate with the
assumption that everything in the spatial focus of attention is
processed. If everything in the spotlight or every property of the
selected object was processed, then the word should have been
processed as well as the color. Moreover, the word is usually pro-
cessed faster and more accurately than the color (Cohen, Dun-
bar, & McClelland, 1990; Logan, 1980). So why doesn't the
word determine performance? Because there is more to atten-
tion than spatial selection (Broadbent, 1971; Kahneman, 1973;
Posner & Boies, 1971; Treisman, 1969). Theories of visual-spa-
tial attention must interface with theories of other kinds of se-
lection to account for the basic phenomena in visual-spatial at-
tention and to provide a realistic account of attention in general
(Phaf, van der Heijden, & Hudson, 1990).

How Does Selection Between Objects Occur?

Most theories agree that visual attention is sometimes serial,
focusing on one item or one set of items at a time, moving from

1 Subjects rarely make mistakes; error rate is typically lower than
10%. When they do make errors, they tend to report the word

(Hillstrom & Logan, in press, found that subjects reported the word on

83% of the error trials), but they do not make errors very often.
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one to the other. Serial shifting of the focus is an important issue
in search tasks (e.g., Duncan & Humphreys, 1989; Treisman &
Gelade, 1980; Treisman &Gormican, 1988; Wolfe, 1994). Se-
rial search raises important questions for between-object selec-
tion: How does attention know which item to choose next? How
does the spotlight know where to go? There are very few theories
of the processes that govern the movements of attention (but see
Cave & Wolfe, 1990; Koch & Ullman, 1985; Wolfe, 1994;
Wolfe, Cave, & Franzel, 1989). Most often, the government is
left to "higher order processes" or homunculi.

Selection between objects is a prominent feature of atten-
tional cuing tasks, which many theories address (e.g., Eriksen
& St. James, 1986; Eriksen & Yen, 1985; Posner, 1980; Posner
& Cohen, 1984). Cues are presented that indicate which item
is the target or which location is likely to contain the target, and
subjects benefit from using the cues. Cuing also raises impor-
tant questions about between-object selection: How does atten-
tion know where to go? It has to go to the cue first and then
from the cue to the target. How does it know what to do? The
computational problem is more complex than with search, be-
cause attention has to move in a specific direction. Few theories
address the problem even though it is a major issue in cuing
tasks (but see Logan, 1995).

The problem for space-based and object-based theories is
that they must interface with other theories of cognition in or-
der to account for basic phenomena like serial visual search or
moving attention from cue to target. The other theories may
be able to explain some of the things that are currently left to
homunculi (Attneave, 1960).

Theory of Attention

In this article, I propose the CODE theory of visual attention
(CTVA) that integrates space-based and object-based ap-
proaches to attention and interfaces visual spatial attention
with other kinds of attentional selection and with higher level
processes that apprehend relations between objects. The theory
is a wedding of the COntour DEtector (CODE) theory of per-
ceptual grouping by proximity (Compton & Logan, 1993; van
Oeffelen & Vos, 1982, 1983) and Bundesen's (1990) theory of
visual attention (TVA). As with most weddings, each theory
retains its fundamental identity but compromises on details in
order to work with the other. This section of the article describes
the fundamental assumptions of the theories before and after
the wedding and describes the compromises and developments
that were necessary to join the theories together.

Basic Architecture

The basic architecture of the theory is illustrated in the top
panel of Figure 1. Many theories of visual spatial attention use
the same architecture (e.g., Milner, 1974; Mozer, 1991; Treis-
man & Gormican, 1988; van der Heijden, 1992): There are
early visual processes and late visual processes. The early visual
processes, often identified with V1 in striate cortex, represent
location and identity together. Later processes distinguish be-
tween location and identity and represent them separately. The
late location system is identified with processes in the magno-
cellular pathway leading through V2, V3, and V5 to posterior

Figure 1. Architecture of the CODE Theory of Visual Attention, in-
cluding an early system in which location and identity information are
combined, represented by the CODE theory, a late system that pro-
cesses identity information, represented by Bundesen's (1990) Theory
of Visual Attention (TVA), and a late location system, represented by
Logan's (1995) spatial relation theory. Top panel: schematic represen-
tation of components; bottom panel: theories associated with the
components.

parietal cortex, whereas the late identity system is identified
with processes in the parvocellular pathway leading through
V2, V3, and V4 to inferotemporal cortex (Ungerleider & Mis-
hkin, 1982; van der Heijden, 1992).

The CODE theory of visual attention adopts the same archi-
tecture but fleshes out the details. As illustrated in the bottom
panel of Figure 1, the early visual processes are represented by
van Oeffelen and Vos's (1982, 1983) and Compton and Logan's
(1993) CODE model of perceptual grouping by proximity and
the late identity processes are represented by Bundesen's
(1990) TVA model of parallel selection in vision. The late loca-
tion system is less well developed because less is known about
conceptual representation of location. The CODE theory of vi-
sual attention adopts a preliminary theory proposed by Logan
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(1995) that accounts for some instances of conceptually guided
selection between perceptual objects.

Representing Space and Defining Objects

CODE theory of grouping by proximity. Representation of
space and objects is the key to the theoretical integration of
space-based and object-based approaches to attention. The new
theory's representation derives from the CODE theory of per-
ceptual grouping by proximity proposed originally by van
Oeffelen and Vos (1982, 1983) and extended by Compton and
Logan (1993). The CODE theory provides two representations
of space, an analog representation of the locations of items and
a quasi-analog, quasi-discrete representation of objects and
groups of objects. The analog representation of location is pro-
duced by bottom-up processes that depend entirely on the prox-
imities of the various items in the display. The representation of
objects and groups is produced by an interaction between top-
down processes that apply a threshold to the analog representa-
tion of locations and the bottom-up processes that generated the
analog representation in the first place.

Locations of items are distributed in space. A key assump-
tion of the CODE theory, which contrasts with the implicit as-
sumption in most theories of attention, is that the representa-
tion of location is distributed across space. Locations are not
points but distributions in 1-D, 2-D, and 3-D space (also see
Ashby, Prinzmetal, Ivry, & Maddox, 1996; Maddox, Prin?.-
metal, Ivry, & Ashby, 1994). The form of the distribution may
not matter much, as long as it is roughly symmetrical and
peaked in the center. Van Oeffelen and Vos (1982, 1983) origi-
nally assumed that the distribution was normal, but Compton
and Logan (1993) showed that Laplace distributions worked
just as well in accounting for subjects' grouping judgments. 1
chose the Laplace distribution for the current theory because it
is easier to work with than the normal. Like the normal, the
Laplace distribution can be defined in more than one dimen-
sion. One- and two-dimensional definitions are sufficient for the
examples of perceptual organization considered in this article.
The probability density function for the 1-D Laplace distribu-
tion is:

/(x) = '/2 X exp [ ~ X | .x — 01 ]. (1)

The mean is 0 and the standard deviation is V 2 X ~ ' . The mean
represents the center of the item in the x dimension, and the
standard deviation determines the spread of the distribution
over the x dimension.

The representation of locations as distributions is illustrated
in Figure 2. The points x, y, and z represent the locations of the
items in the x dimension in the display. The dotted lines above
each of the points are the distributions that represent the loca-
tion of the items in the CODE representation. The points x, y,
and 2 are the means of those distributions. The spread of the
distributions is determined by the standard deviation, which is
the same for all three items in this example (cf. Compton &
Logan, 1993).

Representation of spatial array is a CODE surface. CODE
assumes that the location of each item in space is represented
by its own distribution. Bottom-up processes sum the distribu-

Figure 2. Feature distributions and the CODE surface representing

three items (X, y, and Z) arrayed in one dimension. The top panel

shows the feature distributions and the CODE surface; the bottom panel

shows three thresholds applied to the CODE surface that parse the dis-

play into a three (high threshold), two (intermediate threshold), or one

(low threshold) group.

tions for the different items producing a CODE surface. The
top panel of Figure 2 illustrates how a 1-D CODE surface is
generated from items whose locations vary in one dimension.
The dotted lines represent the distributions for each item, and
the solid line represents the CODE surface, which is the sum
of the distributions of locations of the individual items. To for-
malize this notion, the height of the CODE surface at point x.

(2)

for a display of A' items.
Figures 3 A and 3B illustrate how a 2-D CODE surface is gen-

crated from items whose locations vary in two dimensions, such
as an array of letters presented in a visual search task. Figure
3A shows the distribution of items (points) in 2-D space, and
Figure 3B shows the CODE surface that represents their loca-
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Figure 3. A dot pattern arrayed in two dimensions (3A), the corresponding CODE surface (3B) with a
threshold applied to it (3C), and a contour map of the CODE surface (3D) representing all possible group-
ings of the dots in the pattern.

tions. As in the 1-D case, the distributions for individual items
are summed to produce the CODE surface. In this case, the
distributions of individual items are 2-D, so the resulting
CODE surface is 2-D.

Perceptual groups depend on a threshold applied to CODE
surface. Bottom-up processes produce the CODE surface and
make it available to top-down processes. Perceptual groups are
produced by applying a threshold to the CODE surface. The
threshold cuts off peaks in the CODE surface, and items resid-
ing in the same above-threshold region of the CODE surface
belong to the same perceptual group. Items that reside in
different above-threshold regions are part of different percep-
tual groups,

The operation of the threshold is illustrated in the bottom
panel of Figure 2. The threshold is a y value that intersects the
CODE surface at particular x-y points. An above-threshold re-
gion is a range of x values for which the y value of the CODE
surface is greater than the y value for the threshold. Items that
fall within the range of x values for a given above-threshold re-
gion are part of the same perceptual group.

Perceptual grouping is hierarchical. Hierarchical grouping
is an inherent property of CODE. It is produced by varying the
threshold. The lower the threshold, the larger the groups (i.e.,
the more items they contain). As the threshold is raised, large
groups break up into smaller ones, but the relationship is hier-
archical in that smaller groups are always nested within the
larger ones. Hierarchical grouping is illustrated in the bottom
panel of Figure 2. The lowest threshold value groups all of the
items together. The intermediate value breaks the large group
into two smaller ones, and the highest value groups each item
separately.

The operation of the threshold in the 2-D case is illustrated in
Figures 3C and 3D. Figure 3C shows the same surface displayed

in Figure 3B with the peaks "sliced off" the CODE surface by
a threshold. Figure 3D shows a contour map of alternative
groupings, generated by applying several different thresholds to
the CODE surface. As in the 1-D case, grouping is hierarchical,
with smaller groups nested in larger ones.

Van Oeffelen and Vos (1982) showed that CODE could ac-
count for the subjects' judgments about the appearance of
groups in the sorts of stimuli that appear in textbook demon-
strations (e.g., a matrix of x's organized in rows or columns by
manipulating proximity). Compton and Logan (1993) showed
that several different parametric variations of CODE could ac-
count for subjects' judgments of grouping in random dot pat-
terns. The variation used in the current theory—Laplace distri-
butions with equal standard deviations—accounted for group-
ing judgments as well as any other. Compton and Logan (1996)
examined the in variance of grouping judgments over transfor-
mations of size and orientation, which CODE predicts, and
found that subjects' judgments were not invariant. They were
close, however, and CODE provided a reasonable description of
the data.

Extension of CODE to Attention

CODE distributions are distributions of item features. The
application of CODE to attention involves a straightforward
extension of the assumption about representation of location:
Location is distributed in the sense that information about the
features of the items is distributed over space. The distributions
that make up the CODE surface are distributions of item fea-
tures. The height of a distribution at any point in space repre-
sents probability (density) of sampling the features of the item
it represents. Given the shape of the assumed distribution
(Laplace), the probability of sampling features will be highest
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group with a probability proportional to the area of the distri-

bution in the above-threshold region (i.e., the feature catch for

the third item is greater than zero).

To formalize this idea in the 1-D case, the feature catch for

item 2, c=] 7, for a given threshold, T, may be denned as

' /2Xzexp[-Xz | jc-»,|J(/A-, (3)

where to and hi represent the limits of the above-threshold re-

gion. The sample that is taken from the above-threshold region

and subjected to later processing (e.g., TVA), is the sum of the

A'individual feature catches.

figure 4. Illustration of the feature catch produced by applying a

threshold to a CODE surface representing three items (X, Y, and Z).
(Note that part of the feature distribution for item A'is included in Ihc
feature catch for items 7 and Z.)

near the center of the item. It will drop off exponentially as dis-

tance from the center of the item increases.2

The assumption that information about features are distrib-

uted over space is similar to assumptions made by Wolford

(1975), Ratcliff (1981). Maddox et al. (1994), and Ashby et

al. (1996) to account for spatial factors in visual tasks. The as-

sumption can be articulated in terms of the receptive fields of

feature detectors in visual cortex: If an item falls in the center

of a receptive field, the detector will respond strongly to it. If the

item falls near the edge or on the edge of a receptive field, the

detector will respond less strongly. A given item will stimulate

several feature detectors, some in the center and some near the

periphery. The representation of the item's features is distrib-

uted over space in the sense that the detectors that respond to

them are distributed over space.

The CODE surface also represents distributions of features.

It represents the sum of the distributions of the features of all

the items in the display. The height of CODE surface at any

point in space represents probability (density) of sampling fea-

tures of all of the items whose distributions intersect at that

point.

Attention selects CODE-defined objects. The theory as-

sumes that attention chooses among perceptual objects in the

sense that it chooses among above-threshold regions. It assumes

that attention samples the features that are available within the

above-threshold region. The features of different items falling

within the above-threshold region are sampled with a probabil-

ity equal to the area of the distribution of the item that falls

within the above-threshold region: this probability of sampling

features is called the feature catch. Figure 4 depicts a three-item

display with a threshold set so that two of the items are grouped

together, in that they both fall within the above-threshold re-

gion. The probability of sampling features from those items

(the feature catch for those items) is high because large parts of

the distributions that represent them fall in the above-threshold

region. Note, however, that part of the distribution for the third

item that is not grouped together with the other two neverthe-

less falls within the above-threshold region. Features of that

item will be sampled along with features of the items within the

Sample =

A' / <•*;

= 1 %x z
Z-|U»

exp[-\:lx-e,\]dx\. (4)

The idea of the feature catch makes CTVA like object-based

theories of attention. Object-based theories assume that all

properties of a selected object are processed (Kahneman &

Treisman, 1984; Treisman, 1969); in CTVA, the above-thresh-

old region corresponds to the selected object, and all features

available in that region are sampled. However, CTVA is unlike

object-based theories in that features of items outside the se-

lected perceptual group are also sampled with some nonzero

probability. The sample that is subjected to later processing

contains features of all of the items in the display, not just those

in the selected group.

The CODE theory of visual attention is like space-based theo-

ries in that it assumes that features are sampled from items other

than the one that is the current focus of attention. Both assume a

kind of "fuzziness" in the processing, so that features of unat-

tended items intrude in the processing of attended items. How-

ever, the fuzziness lies in different parts of the system. Space-

based theories of attention assume that the boundary of the sam-

pled region—the edge of the spotlight—is fuzzy (e.g., Eriksen &

Eriksen, 1974; Eriksen & Hoffman, 1973). This idea is explicit

in LaBerge and Brown's (1989) gradient theory. By contrast, in

CTVA, the boundary of the attended region is sharp and the rep-

2 At this point in the development of the theory, I do not wish to draw
a strong distinction between items and features, so 1 will treat the feature
distributions in CODE as distributions of individual features and as
distributions of the entire set of features that belong to an item. Many
current theories of visual search propose separate spatial maps for the
individual features of an item—one map for redness, one for vertical
lines, and so on—with a master map of item locations that can be used
to address the individual features of an item (e.g., Cave & Wolfe, 1990;
Treisman & Gelade, 1980; Treisman & Sato, 1990: Wolfe, 1994; Wolfe,
Cave, & Franzel, 1989). In principle, CTVA could be applied to the
individual feature maps or to the master location map. The mathemat-

ics would be the same in either case, and as long as the (spatial) variabil-
ity of the distributions was the same for different features, the predic-
tions would be essentially the same. However, there is nothing in CTVA
that forces the same variability on distributions for different features
and it could be fruitful to use CTVA to explore the idea of multiple maps
and multiple CODE surfaces. That exploration is beyond the scope of
this article.
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resentation of items in space is fuzzy. Unattended items intrude
on the processing of attended ones because their representations
are distributed across space and fall within the (sharply
circumscribed) above-threshold region thai attention samples.

Thresholds, variability, and the feature catch. CTVA pro-
vides later processes with a sample of features to process. The
probabilities of sampling features from particular items (the
feature catches for those items) depend on the proximities of
the items in the display, the variability of the feature distribu-
tions, and the threshold applied to the CODE surface. The prox-
imities are determined outside the theory by the experimenter
or the external world. The variability scales the proximities.
CTVA assumes that the variability of the feature distribution is
the same for all items in the display. Variability is manipulated
as a parameter of the model. Increasing variability has two
effects on the feature catch: It decreases the contribution of
items within the group to the feature catch (by decreasing the
area of their feature distributions that falls within the limits of
the above-threshold region), and it increases the contribution
of items outside the group but nearby (by increasing the area of
their feature distributions that falls within the limits of the

above-threshold region).
The threshold is manipulated as another parameter of the

model. Increasing the threshold decreases the magnitude of the
feature catch, decreasing the contribution of items inside and
outside the above-threshold region. The effects can be seen in
Equations 3 and 4. Increasing the threshold amounts to decreas-
ing the range of the limits of integration, including less of the

distribution in the sample.
The CODE surface and the feature catch. The local minima

or "saddle-points" on the CODE surface are important because
they represent the boundary between grouping and separating
sets of items. If the threshold is higher than the local minimum,
the items will break into two (or more) groups. If the threshold
is lower, the items will cluster into one group (Compton & Lo-
gan, 1993). For CTVA, this represents a boundary between se-
rial and parallel processing: If the threshold is higher than the
local minimum, groups of items can be processed one al a time.
If the threshold is lower than the local minimum, the items arc
grouped together and must be processed together.

The effect of threshold variation on the feature catch is illus-
trated in Figure 5. The top panel represents the feature distri-
butions and CODE surfaces for three items—a central target
and two flanking distractors (e.g., Eriksen & Eriksen, 1974).
The left panel represents items placed closer together than the
right panel. The middle panel plots the area in the feature catch
for the central target and the sum of the areas in the feature
catch from the two flanking distractors as a function of thresh-
old setting, going from low on the left to high on the right. The
total volume of the feature catch decreases as the threshold in-
creases. At low threshold values, below the local minimum, in-
formation is sampled from the whole display and the contribu-
tion from the distractors outweighs the contribution from the
target by a substantial margin. At high threshold values, above
the local minimum, attention is focused on the central target
item and information from the target outweighs information

from the distractors.
The impact of these effects on the feature catch can be seen

in the bottom panel of Figure 5, which plots the ratio of the

feature catch for the central target to the feature catch for the
sum of the distractors—a signal-to-noise ratio. The signal-to-
noise ratio is less than 1.0 and approximately invariant for low
thresholds smaller than the local minimum, but it jumps
abruptly at the local minimum to a value above 1.0 and grows
substantially as the threshold increases further.

There is a tradeoff between the magnitude of the signal and
the quality of the signal: Bigger signals have lower signal-to-
noise ratios; signal-to-noise ratio can be increased only by de-
creasing signal magnitude. In CTVA, the tradeoff is masked be-
cause signal magnitude and signal-to-noise ratio are both posi-

tively related to speed and response probability. Thus, different
combinations of signal magnitude and signal-to-noise ratio can
produce the same reaction time and accuracy. The tradeoff is
bounded by a sharp discontinuity (in the curve in the bottom
panel of Figure 5) at the point at which the threshold equals the
local minimum. In fitting the theory to data, I found that the
model performed similarly at all threshold values below the lo-
cal minimum and similarly (but differently) at all threshold val-
ues above the local minimum. The largest difference occurred
when the threshold crossed the local minimum.

Spatial indexing. The local minima between items or groups
is lower the further apart the items or groups are. Conversely, the
local minimum increases as items or groups get closer together.
This can be confirmed by inspecting Figures 2 and 3. The local
minimum represents the lowest threshold value at which an item
or group can be separated from the rest, and that threshold value
is different in different parts of a display, increasing with the den-
sity of items in the display. The question for theory is whether the
system maintains a single threshold for all of the items in the
display or takes advantage of these differences and allows several
different thresholds to operate al once.

There should be no problem with multiple thresholds if the
different items or groups are processed serially. The system could
reset the threshold before each serial inspection. Still, the system
must keep track of which items or groups have been processed,
and in doing so, it might also keep track of the threshold level
associated with each item or group. If items or groups are pro-
cessed in parallel, there must be some way of keeping track of
thresholds and keeping track of which item or group goes with
which threshold. Between-object parallel processing has the
same problem with multiple groups even if the threshold value is
the same for each group. The system must keep track of which
group is which. Keeping track of which threshold went with
which group should not be much more difficult.

Spatial indices are often proposed as a solution to the problem
ofkeepingtrack(Pylyshyn, 1984, 1989; Trick &Pylyshyn, 1994;
Ullman, 1984). Spatial indices provide an identity-neutral way
of refering to perceptual objects, and it seems reasonable to at-
tach things like threshold values to the spatial indices. The idea is
similar to Kahneman and Treisman's (1984; Kahneman et al.,
1992) idea of an object file: I am proposing a temporary episodic
representation of an object that includes an index to the percep-
tual representation of the object and information about the
threshold value at which the object was defined. The object file
serves as a referent to which other information can be attached,
such as the identity of the object or some other categorization.

Ultimately, the answer to the question of whether the system
can support multiple thresholds is "yes, but with a cost." The
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Figure 5. CODE surfaces representing a central target item and two flanking distractors (top panels)

placed near (left panels) or far (right panels) from the target; magnitudes of the feature catches (areas under
the above-threshold regions) for targets and distractors as a function of threshold (middle panels); and
signal-to-noise ratios reflecting the ratio of the target feature catch to the distractor feature catch as a
function of threshold (bottom panels). (Note the discontinuity in the bottom and middle panels when the
threshold increases above the local minima that separate the target from the distractors. Signal-to-noise
ratio increases markedly after the discontinuity.)

cost is that it must have some way of implementing a spatial

indexing process and it must implement an episodic memory

that keeps track of objects' locations and the spatial resolution

(threshold value) at which they were seen. There are many rea-

sons for proposing a system with a capacity for spatial indexing

and episodic storage. Keeping track of different threshold values

in CTVA is another one.

Bundesen 's(l 990) Theory of Visual A t tent ion

The CODE theory of visual attention still does not deal with

within-object or within-region selection. CODE provides the

input to subsequent selection mechanisms. CODE says that the

input consists of the sum of the feature catches from all of the

items whose distributions fall in the above-threshold region, but
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CODE does not say how that input is processed. I adopted Bun-

desen's (1990) theory of visual attention (TVA) as the recipient
of the input that CODE provides.

In many ways, Bundesen's (1990) TVA model is an ideal
match for CODE. They are both formal theories, and their
mathematics are compatible. They address phenomena at the
same level of abstractness, focusing, for example, on the idea
that items are composed of features without specifying the na-
ture or the number of the features. Most importantly, they are
compatible in that CODE provides as output what TVA takes
as input—a sampling of visual features. The original CODE
changed for the wedding, extending its assumptions about the
distribution of location to include the idea that the distributions
were distributions of feature values. TVA must change for the
wedding as well by altering its assumption about the represen-
tation of location.

Basic TVA. Bundesen (1990) conceived of TVA as a model
of selection, intended to explain the process by which people
choose among the inputs confronting them. TVA evolved over
several years, beginning with an attempt to model selection in
partial report tasks (Bundesen, Pedersen, & Larsen, 1984; Bun-
desen, Shibuya, & Larsen, 1985; Shibuya & Bundesen, 1988).
Bundesen (1987) generalized the model of partial report to a
fixed-capacity and independent race model of selection that was
the direct ancestor of TVA. Since 1990, Bundesen generalized
the model further, showing that fixed- and unlimited-capacity
versions of TVA correspond to Luce's (1959) choice model of
selection (Bundesen, 1993). The 1990 version addresses atten-

tion most directly and most generally; so that was the version I
married to CODE. The mathematical details of TVA are de-
scribed and explained in Appendixes A and B.

Basically, TVA chooses among categorizations of perceptual
inputs. TVA assumes two levels of representation: (a) a percep-
tual level that consists of features of display items; and (b) a
conceptual level that consists of categorizations of display items
and display features. The two representations are linked by a
parameter ij(x, /'). which represents the amount of sensory evi-
dence for membership in category i that comes from item x.

The greater the jj( x, j), the more likely x is to belong to category
i. The tj(x, /') reflects the bottom-up component of TVA. They
are determined entirely by the quality of the data and the set of
categories.

Variable x is an index for a display item, representing one
member of a set, S, of display items. Variable x is a symbol at
the categorical level of representation that stands for a sample
of information from the perceptual representation (i.e., a per-
ceptual item). Variable x does not represent the location of the
item. In Bundesen's (1990) theory, location is just another ca-
tegorizible feature of the item, like color or form.

Variable i represents a particular categorization for x. It
could be "red," "square," or "located in the top left corner."
The variable / represents one member of a set, R, of possible
categorizations. There is an 9 value for each combination of
item and categorization, reflecting the strength of perceptual
evidence that each x belongs to each i.

TVA selects among perceptual items and categorizations by
choosing a particular categorization for a particular item (or
particular categorizations for K items). The choice is deter-
mined by the outcome of a race between the alternative catego-

rizations, with the first one to finish being the one that is selected

(or the first K to finish). It is important to note that two things
are selected simultaneously by the outcome of the race: (a) a
perceptual item and (b) a categorization for it. Thus, TVA is
both an early selection theory and a late selection theory. It is an
early selection theory in that items are not identified before they
are selected; it is a late selection theory in that items are selected
on the basis of their identities, on the basis of the categorization
that wins the race (Bundesen, 1990).

Strength of perceptual evidence. The j| values are important
determinants of the outcome of the race, n values, modified by
two attentional parameters, determine the rate at which the cat-
egorizations that correspond to them are processed. Thus, n(x,

i) determines the rate at which x is categorized as an i. The
larger the TJ value, the faster the process. Other things equal, the
categorization with the largest ri value is most likely to win the
race. It is likely to be fastest and thus finish first. However, the
race is stochastic. Ultimately, ij values represent the rate param-
eters in exponential distributions of finishing times for the
different categorizations (see Appendix A). The race is between
the exponential distributions, and no one of them is guaranteed
to finish first.

Bundesen (1990) formalized the race model by specifying the
rate of categorization, v(x, i) in terms of q(x, i) and two atten-
tional parameters in the following equation:

v(x. i) = !j(jc, Oft - (5)

Perceptual bias. In Equation 5, ri values are modified by
two kinds of attentional weight, /3s and ws. ft reflects the per-
son's bias to categorize the display as i. ft is a bias because it
raises the probability that the first categorization will be i but it
does not change the likelihood that any given item (e.g., x) will
win the race (i.e., be the first item categorized as i; see Appendix
B). Note that the ft values are under the person's control (i.e.,
the homunculus). They can be varied to control the categoriza-
tion process, to determine which way the display is categorized.
The display is likely to be categorized as i if ft is high, so desired
analyses can be selected by raising ft values. Moreover, the dis-
play is unlikely to be categorized as j if ft is low, so undesired or
irrelevant categorizations can be turned off by setting their ft
values low. (The default assumption is that ft is low unless cat-
egory / is relevant.)

Attentional weights and priority. The variable wx reflects the
attentional weight on item x. It is an attentional weight because
increasing its value makes it more likely that item x will be cat-
egorized, but it does not change the likelihood of any particular
categorization of x (see Appendix B). Thus, it provides a way
of focusing in on item x in the display. According to Bundesen
(1990), the attentional weight, wx, is determined by the follow-
ing equation:

( = ~Z Ti(x,j)irt. (6)

The new term in Equation 6 is x,, which represents the prio-
rity of attending to items that belong to category^. Like ft TT can
be set by the "person" (homunculus). The variable ?r works
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together with t\ to determine the attentional weight. The item
with the largest combination of i\ and ir receives the greatest
weight. That item is the most likely to contain relevant infor-
mation: A high value of ij suggests that it contains much infor-
mation, and a high value of ir suggests that the information is
pertinent. Thus, the homunculus can use TVA to focus in on
relevant items by controlling the TT values. Setting TT, high makes
items in category i more likely to be selected. Setting jr, low
makes items in category i less likely to be selected. Combining
the if values with i\ values focuses attention on the most infor-
mative items.

Predicting accuracy and reaction time. The ease with which
predictions can be derived from T VA is one of its nicest features.
The predictions follow from Bundesen's (1990) interpretation
of the v(x, i) values as rate parameters in exponential distribu-

tions. The exponential distributions are functions of time, and
the rate parameter determines the mean finishing time. More-
over. Bundesen (1990) assumed that the different exponential
distributions race against each other, and the race model allows
predictions of response probability. Accuracy depends on the
relative magnitudes of the rate parameters. The connections be-
tween the v(x, i) values and exponential distributions are given
in Appendix A.

TVA can predict reaction time and accuracy in several ways.
The simplest, which Bundesen (1990) used most often, in-
volves a simple race in which the first categorization is the one
that is selected. Accuracy is the probability of choosing the ap-
propriate categorization first. The probability that categoriza-
tion "x belongs to i" finishes first is computed by taking the
ratio v(x, i) to all of the v's in the display:

P(xei first) =
v(x, i

2 2
Z,S JM

(7)

Mean reaction time is simply the mean finishing time of the
winner of the race plus some additive constant, b, that repre-
sents stimulus and response processing. The rate parameter of
the distribution of finishing times for the winner of the race is
the sum of the v(x,j) values for each x in S and eachy in R, and
the mean of the distribution is the reciprocal of its rate param-
eter (see Appendix A); that is,

2 2 v(z,j)
+ b. (8)

Predictions about accuracy and reaction time depend on the
three parameters that determine the v values, expressed in
Equations 5 and 6: i;, the strength of sensory evidence, 0, per-
ceptual bias, and ir, pertinence. In wedding TVA to CODE, one
more parameter is added, that represents the proportion of the
feature catch corresponding to each item. Adding that parame-
ter to the model requires some changes in TVA's assumptions
about the representation of location.

These predictions about reaction time and accuracy assume
that the response is determined by the first categorization—a
simple race between the alternative categorizations. However,
T VA can support more than a simple race. TVA can be config-

ured as a counter model, in which K/ categorizations of type /
must be made before the person responds with "i." Reaction
time would depend on an additive constant, b, and the time
required to make K categorizations. The time to make K cate-
gorizations can be computed using a standard Poisson counter
model (Townsend & Ashby, 1983). A counter model would be
useful in a situation in which a race model produced less than
ideal accuracy (say 80%). The imperfect accuracy could be im-
proved by sampling repeatedly and accumulating the results of
the sampling.3

To make the predictions concrete, consider a case in which a
person discriminates between an // and an S. The counting
model has two counters, one for H and one for S. There is a
criterion number of counts for each counter, KH and Ks, and
the process terminates when the criterion number of counts ac-
cumulates in one counter or the other. The probability of re-
sponding correctly (i.e., responding "H" when the target was an
//)is

j-o \ J

x,H) + v(x,S)) \v(x,H) + v(x,S))'

and mean reaction time for correct responses is

v(x,H)

f v(x,S) V / KH+j

\v(x,H) + a(x,S)) \v(x,H) + v(x,

J_l
P(RH[SH)

+ b. (10)

The counter model is a straightforward generalization of the
original race model in TVA. The counter model involves a race
between the H counter and the S counter. Accuracy depends on
the probability that the H counter finishes first, given that "H"
was presented, and the reaction time depends on the time taken
to accumulate KH counts. The H counter can finish first if KH

counts accumulate in it before Ks counts accumulate in the 5
counter. The S counter can accumulate j = 0 to Ks — 1 counts
before the H counter accumulates KH counts, and the H counter
will still win the race. The j counts can accumulate in the S

counter in many ways. The first S count could occur before the
first //count, before the second //count and so on. The actual
number of ways j counts could accumulate is given by the bino-
mial expression in the first term of Equation 9. The probability
that the H counter will increment is given by the ratio v(x, //)/

'Bundesen (personal communication, February 1995) considered

implementing TVA as a counter model in his original conception of

the model to account for speed-accuracy tradeoff effects and the like.

However, the main focus of his theorizing was on simple detection tasks,

in which one look at the stimulus would suffice, and on partial report
tasks, in which the main focus was on the probability that the first K

categorizations to finish were part of the cued subset, so he left the
counter model for future development.
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[v(x, H) + v(x, S)] in the second term of Equation 9. The
probability that that KH counts will accumulate in the H
counter is given by raising t>(x, H)/ [ v(x, H) + v(x, S)] to the
KHih power, as is shown in the second term in Equation 9. The
probability that the 5" counter will increment is given by the
ratio v(x, S)/[v(x, H) + v(x, S)] in the third term of Equation
9. The probability that; = 0 to Ks ~ 1 counts accumulate in the
S counter is given in the third term of Equation 9, by raising
v(x, S)/[v(x, H) + v(x, S)] to thejth power. The three terms
in Equation 9 combine to produce the probability that the H
counter will finish first given that "H" was presented, which
measures response accuracy. Equation 10 includes these three
terms plus a fourth that is the mean of a Gamma distribution
for the time required to reach KH +j counts. The four terms in
the numerator of Equation 10 are divided by P( RH | SH) to yield
mean counting time conditional on making a correct response,
and an intercept constant b is added to yield mean reaction
time. For further details on Poisson counting models, see Town-
send and Ashby (1983, pp. 272-280)."

The race model is a special case of the counter model in which
the counting process terminates when the first runner finishes
(i.e., KH = Ks = 1, so only the first runner is counted). The
counter model adds two more parameters to TVA—KH and
Ks—for a total of five. In many applications it is reasonable to
set the criteria equal to each other, so that only one more pa-
rameter is required beyond the three in the original TVA.

The predictions for the counter interpretation of TVA are
more complicated than the predictions for the simple race
model, but ultimately, they still depend on the v(x, i) values,
and those values depend on »j, ft, and ir, which are at the heart
of TVA. The predictions depend on the rate of counting, and
distribution of intervals between counts is the same exponential
distribution that governs the simple race model. Predicted reac-
tion times will be longer in a counter model than in a simple
race, because the process in the simple race has to iterate at least
K times. Predicted accuracy will be higher as well, because of
the repeated sampling. But reaction time and accuracy depend
on the same factors—the v(x, i)—in both interpretations.

CTVA is largely agnostic with respect to the process by which
TVA determines reaction time and accuracy. Its main purpose
is to describe the processes that give input to TVA and how that
input is modulated by the perceived spatial organization of the
display. Response-related processing is important, because the
input, modulated and processed, has to produce a response to
be measured, but it is not a central factor in the theorizing. Ei-
ther the race or the counter interpretation could serve my
purposes.

The Wedding of CODE and TVA

The wedding of CODE and TVA is straightforward: CODE
provides the input to TVA. CODE'S feature catch provides the
sensory data that defines the r\ values in TVA. TVA provides the
fi and TT values that allow selection of an appropriate response.
The feature catch is run through Equations 5-10 to provide
predictions of reaction time and accuracy. CODE and TVA be-
come CTVA.

Feature catch weights sensory evidence. The feature catch
modifies the strength of sensory evidence from the various

items in the display. Items that fall within the perceptual group
from which the feature catch is sampled will contribute a great
deal of sensory evidence. Items that fall outside but nearby will
contribute some sensory evidence, but less than the amount
contributed by items within the group. Items far from the group
will contribute very little sensory evidence. Thus, attention is
focused primarily on the members of the selected group and to
a lesser extent on their near neighbors.

From a formal perspective, the feature catch from item x,
defined in Equation 3 modifies the ij(x, i) values, multiplying
them by a number, ct, between 0 and 1.0 that depends on the
area of the distribution of xthat falls within the above-threshold
region, that is, T\(X, i)cx. Thus, the attentional weights, w^,
become

(11)

and v(x, i) becomes

v(x, i) = cxrt(x, Oft

= cyXx, Oft ^r. (12)

If all of the ijs, |3s, and ITS are equal to 1, Equation 12 reduces to

v(x, i) = cx (13)

According to Equation 13, v(x, i) depends on the ratio of the
feature catch for x to the sum of the feature catches from all of
the items in and nearby the selected perceptual group (i.e., the
sum of the feature catches within the selected above-threshold
region). Inserting Equation 13 into Equations 7-10 shows that
reaction time and accuracy also depend on the ratio of the fea-
ture catches. Control of the feature catches—by controlling the
threshold—is an important function in the new theory.

How did TVA change? Items play a different role in CTVA
than they do in TVA. TVA treats items as discrete units. Items
can be selected individually, and sensory evidence and atten-
tional weights are attached to items. By contrast, CTVA treats
items as spatial distributions and attaches sensory evidence and
attentional weights to parts of those distributions. CTVA selects
perceptual objects, not items. Perceptual objects may be made
of several items, and a given perceptual object may contain in-
formation from adjacent items that do not belong to it. The

4 Nosofsky and Palmeri (in press) present an exponential random

walk model as an alternative to the Poisson counter model. The main

difference is that, in the random walk model, evidence for one alterna-
tive is evidence against the other, whereas in the counter model, evidence
for the different alternatives accumulates independently. There is noth-

ing inherent in CTVA that would lead one to choose a Poisson counter

model over an exponential random walk model; CTVA could be con-

figured either way. I present the counter version here because the math-
ematics were easy to derive.
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information in a perceptual object is a blend of the information

about items inside and nearby the object.
The representation of location information in CTVA is much

more complex than it is in TVA. TVA treats location as an attri-
bute of an item, just like color and shape. Location is a category,
like color and shape are categories, and items can be selected by
location by increasing the priority for the desired location.
CTVA represents location in several ways. First, it retains TVA's
notion of location categories but it relies much less heavily on
them, generally not distinguishing item locations within a per-
ceptual group. Second, in CTVA, location is a factor in the per-
ceptual representation of the display, in that item locations are
represented as distributions over space (cf. Ashby et al., 1996;
Maddox et al., 1994). Third, the locations of perceptual objects
are represented in the set of groups constructed by applying a
threshold to a CODE surface. And fourth, locations of groups
relative to each other may be represented conceptually by pred-
icates like above (x,y) that express categorical spatial relations
(Logan & Sadler, 1996). Location can be selected in the third
and fourth senses by applying visual routines that are outside
the current model (Cave & Wolfe, 1990; Koch &Ullman, 1985;
Logan, 1995).

Finally, CTVA can process displays in parallel or in series,
whereas TVA processes only in parallel. In CTVA, processing
within perceptual groups is parallel. Processing between per-
ceptual groups can be serial or parallel, depending on the task
and the situation. In this respect, CTVA is midway between the-
ories like TVA that process all items at once and theories like
Treisman's feature integration theory (Treisman & Gelade,
1980) that process items one at a time. CTVA is like the theories
of Treisman and Gormican (1988), Duncan and Humphreys
(1989), Humphreys and Muller (1993), and Grossberg, Min-
golla, and Ross (1994) in that it processes parts of the display
in parallel and parts in series, but it differs from those theories
in how it defines the parts.

From a formal perspective, the difference can be understood
in terms of weights on the items, cx: TVA assumes that c,equals
1.0 for all the items in the display, and serial processing theories
assume that cx equals 1.0 for the currently selected item and 0.0
for all other items. CTVA assumes that cx is distributed un-
evenly between 0.0 and 1.0 over all the items in the display, with
the value depending on the area of the item's feature distribu-
tion that falls within the sampled region.

Parallel and serial processing are both possible in CTVA, de-
pending on the threshold applied to the CODE surface. As de-
picted in the bottom panel of Figure 2 and in Figure 3D, a low
threshold includes all the items in one group. The areas of the
different items' feature distributions are approximately equal,
so the weight on each item is approximately equal, as in parallel
processing. A high threshold picks off the peak of one of the
items in the display. The feature catch under that threshold
weights the central item heavily and adjacent items lightly, ap-
proximating the all-or-none distribution of weights in serial
processing. Raising the threshold from low to high changes the
emphasis from parallel to serial processing.5

Thus, the original TVA model is a special case of CTVA, in
which the entire distribution for every item in the display enters
into the sample. Each item has equal (and maximum) weight,
so CODE drops out of the picture and performance depends

entirely on TVA. In principle, CTVA can be compared against
the special case of TVA to see the extent to which modulating
the input with CODE improves prediction. One could ask
whether TVA needs CODE, and this comparison will answer the
question: To the extent that CODE improves the predictions,
TVA needs CODE.

One could also ask whether CODE needs TVA, and the an-
swer is clearly "yes," if CODE is to account for attention. TVA
provides CODE with the capacity for within-object selection
and for response generation, which CODE lacks. TVA does a lot
of the work in the fits of the model to data, with three or four
parameters to CODE'S two. TVA could improve other models
of visual spatial attention that do not specify means of within-
object selection or response selection (e.g., Eriksen & St. James,
1986; ICahneman et al., 1992). Thus, when comparing CTVA's
ability to account for data against other theories of visual spatial
attention, we must be careful to distinguish between what
CODE predicts uniquely and what TVA would do for any other
theory it interfaced with. To facilitate the distinction, I focused
on tasks that emphasized spatial factors that CODE accounts
for rather than TVA.

Belween-group selection. CODE provides TVA with several
different perceptual groups to sample, at intermediate thresh-
old levels. I assume that in some cases, TVA is applied to one
perceptual group at a time, processing the display serially, fo-
cusing on one above-threshold region and then another. The
processes that govern the selection of above-threshold regions
for processing are outside the scope of CODE and TVA. Not
much is known about them (but see Cave & Wolfe, 1990; Koch
& Ullman, 1985; Logan. 1995). Nevertheless, they must take
time and that time must contribute to the effects that appear in
human performance. They complicate the predictions of the
theory but perhaps not enough to make it intractible. I will at-
tempt to separate effects due to within-object selection from
effects due to between-object selection in the CTVA analysis of
attentional phenomena.

I assume that in other cases, TVA is applied to all of the per-
ceptual groups simultaneously. The different groups race
against each other, and the winner is selected. The winner has

two components, a categorization,;', into one of the R response
categories, and an index, x, that distinguishes the winning
group from the other ones in the display. The race selects both
the response and the perceptual group that gave rise to the re-
sponse. The index, x, is important because it can be interpreted
computationally as a spatial index (Pylyshyn, 1984, 1989; Trick
& Pylyshyn, 1994; Ullman, 1984). Spatial indexing is required

5 Note, however, that two kinds of parallel processing are possible in

CTVA—within objects and between objects. Within-object parallel pro-
cessing is a necessary consequence of CTVA's assumptions about the

sampling of features. All items that fall within the above-threshold re-
gion will be processed in parallel. This is true regardless of the value

of the threshold, whether it is low enough to include all of the feature
distributions of all of the items or high enough to emphasize one item

over the rest. Between-object parallel processing depends on assump-
tions about between-object selection that lie mostly outside of CTVA.
Different perceptual groups can be processed in parallel by assigning a

separate spatial index to each group (cf. Pylyshyn, 1989; Trick & Pyly-
shyn, 1994).
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in the serial processing version of CTVA. The spatial index, x,

keeps track of the current object of attention.
Spatial indices are discussed extensively in the literature on

visual cognition (e.g., Pinker, 1984), where, among other
things, they are proposed as a solution to the binding problem
(see Pylyshyn, 1984; Treisman & Gelade, 1980; Trick & Pyly-
shyn, 1994; Ullman, 1984). A spatial index is a symbol (e.g., x
or g) that corresponds to a perceptual object. The symbol acts
as an address for the perceptual object, in that it provides a
means by which processes that operate on the symbol can access
perceptual information about the object to which it refers. The
spatial index distinguishes its referent from the alternatives
without conferring a particular identity on it. The system sim-
ply knows "a thing is there" without knowing what the thing is.
Once it knows this, it can ask other questions about it (e.g., "Is
it red?" "Is it a T?" "Is it above that other thing?") by accessing
the perceptual information it contains (i.e., by applying TVA).

In principle, CTVA should interface nicely with theories in
which spatial indexing is an important process. The CODE part
of the theory defines the objects that can be spatially indexed,
and the TVA part of the theory defines the processing that is
done on the indexed objects. Theories of spatial indexing have
to explain the processes that choose among perceptual objects.

CTVA may not explain selection between groups, but it inter-
faces nicely with Logan's (1995) theory oflinguistic and con-
ceptual control of attention that accounts for the direction of
attention from cues to targets. CODE interfaces with Logan's
(1995) theory in the same way it interfaced with TVA: It pro-
vides the input that Logan's (1995) theory needs to process.

The inputs to Logan's (1995) theory are schematic represen-
tations of objects as points, lines, surfaces, and regions, and
these are what CODE provides. The perceptual objects defined
by applying a threshold to a CODE surface serve nicely as in-
puts to Logan's theory. Logan's choice of schematic representa-
tions for the input to his theory was motivated by linguistic anal-
yses of the semantics of spatial relations, on which Logan's the-
ory relies heavily. According to linguistic analyses, the spatial
relations expressed in language (e.g., those expressed by prepo-
sitions in English) schematize the objects they take as argu-
ments, so that a small number of relations (roughly 80 in
English) can apply to an indefinitely large number of objects
(Clark, 1973; Herskovits, 1986; Jackendoff& Landau, 1991;
Talmy, 1983; Vandaloise, 1991).

Logan's (1995) theory involves two representations—a per-
ceptual representation of the layout of objects and surfaces and
a conceptual representation of propositions that express spatial
relations between objects. Directing attention from one percep-
tual object to another involves apprehending the spatial re-
lations between the objects, and that involves coordinating the
two representations. Coordination requires two more represen-
tations and the processes that operate on them: (a) a reference
frame that defines an origin, orientation, direction, and scale in
perceptual space and (b) a spatial template that represents the
different regions of acceptability associated with the relation.

Apprehending a relation like above(x, y) involves the follow-
ing steps: (a) finding the perceptual object corresponding to y,
(b) imposing the reference frame relevant to the relation
(above) on the perceptual object corresponding to y, (c) align-
ing the spatial template for above with the reference frame cen-

tered on y, and (d) determine whether x falls in a good or bad
region of acceptability relative to the template centered on y.

Cuing attention—directing attention from one object to an-
other—involves the same four steps that were just described.
The cue is y, the target is x, and the relation is (typically)
next_to(target, cue). Attention is directed to the cue (step a)
and then from the cue to the target (steps b-d). Once attention
is on the target, the target itself can be processed (i.e., with
TVA).

Basic Architecture Revisited

Figure 6 represents the complete version of the sketch of the
basic architecture. In the early visual processes, location and
identity are bound together in the feature distributions and the
CODE surface. The locations of items are given by the environ-
ment and the spread of features from the items is determined
by the CODE X parameter. The threshold parameter parses the
display into perceptual groups that serve as input to the later
processes. From the perspective of the late identity system, the
threshold defines the feature catch from each item in the dis-
play. From the perspective of the late location system, the
threshold defines a perceptual organization for the display.

TVA is the late identity system. It takes the feature catch as
input and computes the strength of sensory evidence for the cat-
egories relevant to the response alternatives—the i\ values. The
i\ values, modulated by bias (fi) and pertinence (IT), determine
the probability and the latency with which different categoriza-
tions—identities—are selected.

The late location system is represented less completely and
much less formally by Logan's (1995) theory of conceptual di-
rection of attention. It takes as input the perceptual groups de-
fined by CODE. It takes two perceptual objects and outputs
a relation between them. It takes one perceptual object and a
linguistic direction (e.g., above) as input and outputs a percep-
tual object that stands in that direction with respect to the first
object.

Individually, the components of this architecture can account
for a considerable range of attentional behavior. In combina-
tion, as specified by the architecture, they should be able to ac-
count for an even broader range of phenomena. It should be
possible to make quantitative predictions in each case. The ar-
chitecture affords a lot of flexibility, so it should be easy to pro-
vide quantitative accounts for different phenomena. The re-
mainder of the paper applies CTVA to seven phenomena that
have had an important impact on research and theory in visual
spatial attention.

Applying the Theory to Data

The theory can be understood best by applying it to data. In
the remainder of the article, CTVA is applied to reaction time
and accuracy data from seven empirical situations in which
grouping by proximity and distance between items have impor-
tant effects. None of the current models of attention deal with
these effects very adequately, including TVA, so they provide a
good arena in which to investigate CTVA, to assess the benefits
of marriage CODE to TVA. The fits to the data illustrate how
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Figure 6- Architecture of the CODE theory of visual attention indicating the parameters and representa-
tions associated with the early identity and location system, the late identity system, and the late location
system (cf. Figure 1). RT = reaction time.

different parts of the theory work and show which parameters

are important.

The fits use the 1-D version of CODE because it is more trac-

table than the 2-D version. The feature catch for the 1 -D case is

defined by limits of integration that are single points on the one

dimension. The points can be selected to group the display in

various ways, as Figure 2 illustrates. The feature catch for the 2-

D case is more complicated because the limits of integration

extend irregularly in two dimensions, as illustrated by the con-

tour lines defining the different threshold levels in Figure 3.

Thus, the feature catch is much harder to compute in the 2-D

case than in the 1-D case. Fortunately, the I-D case provides a

reasonable approximation to the situations I chose to fit.

The model involves a minimum of five parameters, and many

of the phenomena to be modeled involve fewer than five condi-

tions. For example, the flanker paradigm introduced by Eriksen

and Eriksen (1974) involves three main conditions: compati-

ble, incompatible, and neutral flankers. However, in many

cases, several of the parameters can be held constant, so that

(many) fewer than five actually predict performance. I tried to

keep the spatial parameters close to the same values across the

different paradigms. In most cases, I set the threshold equal to

the local minimum between the target item and the nearest dis-

tractor. In most cases, the stimuli were roughly the same size—

^to 1° of visual angle—solset Tequalto 100 units of distance

in the model and fixed the standard deviation of the feature dis-

tributions (i.e., V 2 X ~ ' ) at 50. Details of the fits to individual

data sets can be found in Appendix C.

Prinzmetal (1981): Grouping Effects in Conjunction

Search

For the last 15 years, much of the research on visual spatial

attention has been driven by Treisman's feature integration

theory (Treisman & Gelade, 1980; Treisman & Sato, 1990;

Treisman & Schmidt, 1982). Feature integration theory argues

that attention is necessary to conjoin features that are processed

separately. Attentional limitations on the conjunction process

led to two predictions that were readily confirmed in the initial

research and remain the focus of research today. First, visual

search for targets that are conjunctions of separable features

(such as a red T in a display of green 75 and red Ls) should be

difficult, compared to search for the features themselves (such

as a red T in a display of green 7s; Treisman & Gelade, 1980).

Second, when attention is stressed or overloaded, people should

erroneously combine features from different objects. These er-

rors, known as illusory conjunctions, appear as false alarms in

search tasks or false reports of feature combinations in identi-

fication tasks (Treisman & Schmidt, 1982).

Prinzmetal (1981) demonstrated an important effect of

grouping by proximity on illusory conjunctions. He found that

illusory conjunctions were more likely if the features to be con-

joined belonged to the same perceptual group than if they be-

longed to different groups. This result is well cited, and it is re-

garded as a strong piece of evidence for object-based attention

(Kahneman & Treisman, 1984; Kahneman et al., 1992). It is

an interesting test for CTVA because it can be accounted for

entirely in terms of between-object selection, alternating be-

tween perceptual organizations produced at different threshold

values. Within-object effects are not very important.

Method and results. Prinzmetal (1981) showed his subjects

displays like those in Figure 7. Their task was to indicate

whether or not the display contained a "plus": a vertical line

superimposed on a horizontal line. The displays were preceded

and followed by a noise mask and exposure duration was varied

so that mean accuracy was approximately 85%. Exposure du-

rations ranged from 30-150 ms between subjects. Mean

exposure duration across Experiments 1 -3 was 96.2 ms.

There were two important manipulations: The type of display

(target, conjunction, or feature) and the way the features of

target and nontarget items were distributed across the percep-
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Figure 7, Examples of displays from Prinzmetal's (1981) experi-
ments. Top panels = target-present displays; middle panels = target-
absent conjunction displays; bottom panels = target-absent feature dis-
plays; left panels = same-object displays; right panels = different-object

displays.

tual groups formed by the circles. There were three types of

display: Target displays contained the target "plus" and one

other feature (either a horizontal or a vertical line); nontarget

feature displays contained two examples of one of the features

in separate locations but no plus (i.e., two horizontal lines or

two vertical lines); nontarget conjunction displays contained

one example of each feature (i.e., a horizontal line and a vertical

line) but no plus. One third of the trials involved target displays,

one third involved nontarget feature displays, and one third in-

volved nontarget conjunction displays.

The contrast between conjunction and feature displays was

critical: People should find it harder to say "no" to conjunction

displays than to feature displays, because conjunction displays

contain the two features that are conjoined in the target plus,

whereas feature displays contain only one of the features, albeit

repeated. Prinzmetal's (1981) subjects produced more than

twice as many errors with conjunction displays than with fea-

ture displays. Averaging over Experiments 1-3, the probability

of saying "yes" was .949 for target displays, .215 for conjunction

displays, and .087 for feature displays.

More interesting, the difference between conjunction displays

and feature displays was affected strongly by the distribution

of features between groups. The features in each display were

presented in the context of 8 (Experiments 1 and 2) or 10

(Experiment 3) circles organized by proximity into rows or col-

umns. Figure 7 illustrates the displays from Experiment 1. The

features of the conjunction display could either occur in the

same group, as illustrated in the left panels of Figure 7, or in

different groups, as illustrated in the right panels of Figure 7.

Prinzmetal (1981) arranged the displays so that the Euclidean

distance between the features was the same whether they ap-

peared in the same or different groups, so that any difference in

the probability of falsely conjoining the features of the display

would be due to perceptual organization rather than distance.

If people processed all of the features of a perceptual group at

once, as object-based theories assume (Kahneman & Henik,

1977, 1981; Kahneman & Treisman, 1984; Kahneman et al.,

1992), they should say "yes" to conjunction displays, because

one perceptual object—group—possesses both features of the

target plus.

The data, averaged over Experiments 1-3 and presented in

Table 1, showed a strong effect of perceptual organization.

When the features were in the same group, the difference in

false-alarm rates between conjunction displays and feature dis-

plays was .147; when the features were in different groups, the

difference decreased to. 110. Prinzmetal (1981) argued that this

interaction could not be interpreted without assuming that sub-

jects processed the display in two groups.

CODE. The first step in applying CTVA to the data is to

analyse the feature catch provided by CODE. Figure 8A repre-

sents the CODE surface that would be produced by the stimuli

Prinzmetal (1981) used in Experiment 1. Figures 8B-D illus-

trate three alternative feature catches available in the display

that result from applying thresholds at three different levels.

The highest threshold value cuts off the tips of each of the peaks,

providing a feature catch that comes predominantly from the

item on which the peak is centered.

The intermediate threshold value divides the display into two

elongated objects, as Prinzmetal (1981) intended. The feature

catch available at this threshold value lumps together all of the

features in a perceptual group. Thus, within-group conjunction

displays should be hard to distinguish from target displays, be-

cause their feature catches both contain the critical horizontal

and vertical lines that make up the target plus. Between-group

conjunction displays should be indistinguishable from feature

displays because each group contains only one feature.

The lowest threshold value includes all of the items in the

display in a single group. The feature catch for targets would

include three features; the feature catch for nontargets would

include two features. Conjunction displays and target displays

would both contain the critical horizontal and vertical lines that

form the target plus.

Prinzmetal's (1981) results require a mixture of threshold

Table 1

Observed and Predicted Probabilities of "Target-Present"

Responses From Prinzmetal's (1981) Experiments on

Grouping Effects in Illusory Conjunctions

Group Target Conjunction Feature

Prinzmetal (1981) data
Same
Different

Middle threshold (two groups)
Same
Different

High threshold serial (2 items)
Same
Different

High and middle threshold
Same
Different

.956

.942

.899

.996

.996

.996

.985

.996

.247

.183

.810

.178

.175

.175

.247

.175

.100

.073

.083

.083

.083

.083

.083

.083
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Figures. The CODE surface forPrinzmetal's( 1981)displays(8A) with a high (8B), intermediate (8C),
and low (8D) threshold applied to it (cf. Figure 7).

values. The highest and lowest thresholds predict no difference
between same and different groups, and that difference was
prominent in Prinzmetal's (1981) results. The intermediate
threshold accounts for the difference but goes too far. It predicts
a large difference between conjunction and feature displays in
the same-group condition but no difference in the different-
group condition. In Prinzmetal's (1981) data, the difference be-
tween conjunction and feature displays was almost as large in
the different-group condition (. 110) as in the same-group con-
dition (.147).

The CODE analysis already constrains the interpretation of
Prinzmetal's (1981) experiments. The data cannot be ac-
counted for by a single threshold applied to the CODE surface.
At least two different thresholds must alternate with one an-
other. Alternation between the lowest and the highest cannot
work because neither of them is sensitive to the distribution of
features within and between groups. Alternation between the
intermediate threshold and either the highest or the lowest may
work, if performance with the high or low threshold (or both)
is sensitive to the difference between conjunction and feature
displays. The purpose of the TVA. analysis is to see whether a
two-threshold theory can account for the data.

CTVA. In order to fit TVA to Prinzmetal's (1981) data, I
had to decide how to represent the features in the display and
how to represent conjunctions. I accepted Prinzmetal's as-
sumption that the features were horizontal and vertical lines
and that the target cross was detected when the person perceived
both a horizontal and a vertical line. To model the detection
process, I let the presence of each feature race against the ab-
sence of that feature. Thus, horizontal raced with not-horizon-
tal, and vertical raced with not-vertical. The it values for feature
absence were 1 minus the i) values for feature presence. The fits
assumed q = .99 for feature presence and ij = .01 for feature
absence. Feature presence and absence had different J3 values

(.90 and .10, respectively, in the fits). The wx values were set to
1.0 for both objects.

The CODE surface was built by placing the centers of the
nearest items 125 units apart and setting the standard deviation
of the feature distributions to 50. The feature-bearing items
were 250 units apart in both the same- and different-group con-
ditions. Two thresholds were applied to the CODE surface, one
just above the local minimum between the nearest items and
one just below it. The first (high) threshold organized the dis-
play into eight groups, as illustrated in Figure SB, and the sec-
ond (intermediate) threshold organized the display into two
groups, as illustrated in Figure 8C. With the high threshold, if
one feature-bearing object was selected, the feature catch for
that object was .849 and the feature catch for the other feature-
bearing object was .012 in both same-group and different-group
conditions. With the intermediate threshold, the feature catch
was .855 for both feature-bearing objects in the same-group
condition and .855 for the selected object and .012 for the non-
selected object in the different-group condition.

I tried two different fits. First, the intermediate threshold was
fitted, which divided the display into two groups. Target-present
displays contain the critical features necessary for correct de-
tection no matter how the display was grouped. In conjunction
displays the critical features necessary for an illusory conjunc-
tion were both present in one group in the same-group condi-
tion but distributed across groups in the different-group condi-
tion. In feature displays, neither grouping contained the critical
features.

The predicted results, presented in Table 1, show a difference
between conjunction and feature displays in both conditions
and an interaction between grouping condition and display type
like the one Prinzmetal (1981) observed. However, the false-
alarm rate was much too high for the same-group conjunction
displays; the difference between target-present displays and con-
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junction displays was very small. Clearly, the intermediate
threshold by itself cannot account for the data.

Next, the high threshold was fitted, which divides the display
into eight objects. Only two of the objects contained features,
and I assumed that attention was focused on one of them. The
predicted results, presented in Table 1, captured the difference
between conjunction and feature displays but not the interac-
tion between display type and grouping. The difference between
conjunction and feature displays was the same in the two group-
ing conditions. Apparently, the high threshold by itself cannot
account for the data either.

No single threshold accounted for the data, so I tried com-
bining the intermediate and high thresholds. From the subject's
perspective, this amounts to changing between organizations of
the display from trial to trial, sometimes seeing it as two rows or
columns and sometimes seeing it as eight objects. I looked for a
mixture that would give a false-alarm rate of .247 in the same-
group conjunction condition and found that a mixture proba-
bility of .1135 was sufficient. In other words, subjects saw the
display as two groups on 11% of the trials and as eight groups
on 89% of the trials. The results, presented in Table 1, capture
PrinzmetaTs (1981) interaction.

Evaluation. CTVA did a reasonable job of accounting for
Prinzmetal's (1981) data. The numbers from the combined-
threshold fits in Table 1 are close to Prinzmetal's even though I
did not try to optimize the fit formally. More important, the
process of fitting was revealing. Prinzmetal (1981) wrote as if
subjects always saw the display as two groups and didn't con-
sider the possibility of alternative organizations. By contrast,
CTV\ could account for the interaction between display type
and grouping only if subjects were allowed to group the display
in different ways on different trials. In hindsight, subjects might
have been expected to alternate between organizations. Prinz-
metal drew the circles in blue and the lines and crosses in black.
It is possible that on some trials—many trials, by the present
analysis—subjects segregated the black objects from the blue
ones and saw only the lines and crosses.6

Cohen and Ivry (1989): Distance Effects in Illusory

Conjunctions

In their original investigation of illusory conjunctions, Treis-
man and Schmidt (1982) found no effect of distance on the
probability of an illusory conjunction. However, since then, sev-
eral researchers have found distance effects, such that the prob-
ability of an illusory conjunction decreases as the distance be-
tween the objects that contribute the miscombined features
increases (Chastain, 1982; Cohen & Ivry, 1989; Ivry & Prinz-
metal, 1991; Lasaga & Hecht, 1991; Prinzmetal & Keysar,
1989; Prinzmetal & Mills-Wright, 1984; Prinzmetal, Treiman,
& Rho, 1986; Wolford & Shum, 1980). CTVA provides a
straightforward account of this distance effect. The analysis fo-
cuses on Cohen and Ivry's (1989) experiments because they
were concerned primarily with distance effects.

Method and results: Experiments 1 and 2. Cohen and Ivry
(1989) reported four experiments on distance effects in illusory
conjunctions. Their experiments were organized in sets of two.
The procedures of the first two experiments were straightfor-
ward: Subjects were presented with a central digit (Experiment

Table 2
Observed and Predicted Response Probabilities From
Cohen and Ivry's (1989) Experiments 1 and 2
on Distance Effects in Illusory Conjunctions

Experiment 1 Experiment 2 Predictions

Response Near Far Near Far Near Far

Correct .535 .679 .608 .759 .558 .673
Color feature .171 .160 .101 .101 .149 .150
Color conjunction .135 .061 .130 .041 .189 .076
Letter feature .063 .050 .074 .055 .065 .075
Letter and color

feature .052 .033 .047 .029 .017 .017
Letter and color

conjunction .044 .017 .039 .016 .022 .009

Nole. Correct = probability of reporting letter and color of target ob-
ject correctly; color feature = probability of reporting letter correctly
and color incorrectly; color conjunction = probability of reporting let-
ter correctly and reporting color of nontarget object; letter feature =
probability of reporting letter incorrectly and color correctly; letter and
color feature = probability of reporting letter and color incorrectly; let-
ter and color conjunction = probability of reporting letter incorrectly
and reporting color of nontarget object.

1) or pair of digits (Experiment 2) and a pair of peripheral let-
ters on an imaginary circle about 2.5° from fixation. The dis-
plays were exposed briefly and masked. The task was to first
name the digit (Experiment 1) or the smaller or larger of the
two digits (Experiment 2) and then name the color and identity
of one of the letters. One letter was always an O, The other was
either an /" or an X. The colors were pink, yellow, green, and
blue. The letter O was a distractor; the task was to name the
color and the identity of the letter that was not O. The main
manipulation was the distance between the letters, which was
either .88° (near) or 2.86° (far), center to center.

The main data were the probabilities of reporting combina-
tions of letter identities and colors, which are presented in Table
2. These probabilities came from trials in which the digit was

6 Accuracy is belter overall in the high-threshold condition than in

the middle-threshold condition, which raises the question why subjects

would ever adopt the middle threshold instead of relying exclusively on
the high threshold. The answer must be that grouping by proximity is

compelling; subjects cannot avoid perceiving the display as two groups

entirely. The reason for this can be seen in the CODE surfaces depicted

in Figure 8: Prinzmetal's (1981) displays are organized in two groups

over much of the possible range of threshold variation. Very high thresh-

olds are required to separate the items within groups, and higher thresh-

olds might exclude all the items. The range of threshold variation that

parses the display into eight objects is relatively narrow. Note as well

that the accuracy for the high-threshold condition is as good as the ac-

curacy for the middle-threshold, different-group condition. This was a

consequence of my decision to consider only the two feature-bearing

items in the fits. If all eight items were included in the high-threshold

fits, accuracy would be lower because of noise from the six featureless
items (see Equations 16 and 17). Nevertheless, it would still be higher

than accuracy in the middle-threshold, same-group condition, in which

the two target features are included in the same group. In that condition,

the false-alarm rate for conjunction displays will always be close to the

hit rate for target displays because both target features are present in the
feature catch.
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reported correctly. The requirement to report the digit was in-
tended to focus subjects' attention on the digit, away from the
peripheral letters. Treisman and Schmidt (1982) argued that
illusory conjunctions occurred primarily when attention was
stressed or distracted, and this manipulation was intended to
have that effect. The requirement to report the larger or smaller
of the two digits in the second experiment was intended to focus
attention more stringently than in the first experiment. Report-
ing a conjunction (of size and identity) should require a sharper
focus of attention than reporting a single feature (identity;
Treisman &Gelade, 1980).

The results of the two experiments were essentially the same.
Subjects made illusory conjunctions in the near-spacing condi-
tion but not in the far-spacing condition. Evidence of illusory
conjunctions was obtained by comparing the probability of a
color-feature error (given that letter identity was reported
correctly) with the probability of a color-conjunction error
(given that letter identity was reported correctly). There were
four colors, one correct and three incorrect. A color-feature er-
ror occurred if the reported color was not present in the other
item in the display. There were two possible color-feature errors.
A color-conjunction error occurred if the reported color was the
color of the other item in the display. If color report was at
chance, then there should be half as many color-conjunction
errors as color-feature errors because there was one nontarget
color presented in the display and two not presented (i.e., a ratio
of 1:2). The number of color conjunction errors was greater
than this chance expectation in the near spacing condition,
showing that illusory conjunctions were prevalent when the
contributing items were close. The number of color conjunction
errors was less than the chance expectation (slightly but
significantly) in the far spacing condition, showing that illusory
conjunctions were unlikely to occur when the items were far
apart. Thus, the probability of illusory conjunction decreases
with distance. Cohen and Ivry (1989) interpreted the less-than-
chance frequency of illusory conjunctions in the far condition
as evidence of an "exclusionary guessing strategy," whereby
subjects would detect the color of the far item correctly and ex-
clude it from their guesses.

CODE. The CODE analysis is straightforward. The dis-
plays would contain three (Experiment 1) or four distributions
(Experiment 2), two of which correspond to the critical colored
letters. The analysis focused on the two distributions for the col-
ored letters. I ignored the distributions for the digits because
they are far from the colored letters and differ from them cate-
gorically. Thus, TVA would set the fl and TC values for digits close
to zero when selecting colored letters, so the digits would have
virtually no impact on the race even if they were present in the
feature catch.

The feature distributions for the colored letters were set 50
units apart in the near condition and 250 units apart in the far
condition. I set the standard deviation of the feature distribu-
tions at 50. The threshold was set just above the local minimum
between the distributions in order to maximize the feature
catch. According to CTVA, illusory conjunctions occur when
the feature catch from a selected above-threshold region con-
tains features from different items and the first relevant features
to finish come from different items. For example, if a pink X
and a green O are both sampled in the feature catch and "X"

and "green" are the first relevant categorizations to finish, the
person will report an illusory conjunction. The probability that
illusory conjunctions will occur depends on the overlap of the
feature distributions from the different items in the feature
catch. The further apart the items, the smaller the overlap, and
the less likely the illusory conjunctions. With these parameters,
the feature catch for the target item and its neighbor were .394
and .192, respectively, in the near condition, and .918 and .041
in the far condition.

CTVA. The TVA analysis involved deciding whether the
target item was one of two letters (Xor F) and one of four colors
(pink, green, yellow, or blue). The fi and w, values for these
categorizations were set to 1.0, and the i)(x, i) values ranged
between 0 and 1. The ij values for target letters and colors were
set to 0.9, and the ij values for the nontarget categorizations,
given that a target was present, were set to 0.1. Thus, if the target
was F, ri(x, F) was set to 0.9 and r/(x, X) value for X was set to
0.1. If the color was pink,!?(.*,;«'«£) was set to 0.9 and the y(x,

j)s for the other colors were set to 0.1. The predicted results
appear in Table 2 along with the observed data.

The predicted results capture the main effect observed by Co-
hen and Ivry (1989): Illusory conjunctions were more preva-
lent in the near condition than in the far condition. In the near
condition, the ratio of color conjunction errors to color feature
errors was 1.267 in the simulated data, compared to .789 and
1.287 in Cohen and Ivry's (1989) Experiments 1 and 2, respec-
tively. By contrast, in the far condition, the ratio of color-con-
junction errors to color-feature errors was .508 in the simulated
data, which is close to chance expectation. Cohen and Ivry
(1989) found ratios of .381 and .405 in their far condition, pre-
sumably because their subjects used an exclusionary guessing
strategy that I did not attempt to model. Nevertheless, the
CTVA predictions are reasonably close to their data even
though there was no formal attempt to optimize the fit.

Method and results: Experiments 3 and 4. Cohen and Ivry's
(1989) third and fourth experiments attempted to test the hy-
pothesis that illusory conjunctions occurred between items that
fell within the spotlight beam but not between items that fell
outside it. To this end, they had subjects report two digits 3.3°
or 6.6° apart (Experiment 3) or 3° or 6° apart (Experiment 4)
and then report the color and identity of an X or F that appeared
with a colored, nontarget O, as in Experiments 1 and 2. The two
colored letters appeared between the digits, one outside and one
between the digits, or both outside the digits. According to Co-
hen and Ivry's hypothesis, subjects would expand the spotlight
to encompass both of the digits, so the spotlight would be larger
when the digits were more widely spaced. The letters to be re-
ported were presented in two out of six equally spaced locations,
which Cohen and Ivry (1989) labeled from left to right as A-F.
The digits appeared between positions ./1-B and E-Fin the large
spotlight condition and between positions B-C and D-E in the
small spotlight condition. The two experiments were close rep-
lications; the only difference was that visual angle was smaller
by 10% in Experiment 4. Examples of their displays are pre-
sented in Table 3.

The hypothesis that illusory conjunctions would occur within
the spotlight beam but not outside it led to several predictions:
First, it predicted illusory conjunctions only in condition CD in
the small spotlight condition (narrowly spaced digits), because
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Table 3

Examples of Displays and Observed and Predicted Rates

of Illusory Conjunctions in Cohen andlvry's

(1989) Experiments 3 and 4

Position

CD
BD-CE
BE
AD-CF
AE-BF
AF

CD

BD-CE
BE
AD-CF
AE-BF
AF

Example displays

wX Yz
Xw Yz
Xw zY

X w Yz
X w zY
X w z Y

w X Y z
wX Y z
wX Yz

Xw Y z
Xw Yz
Xw zY

Small

wYXz
Yw Xz
Yw zX

Y w Xz
Y w zX
Y w z X

Large

w YX z
wY X z
wY Xz

Yw X z
Yw Xz
Yw zX

Exp. 3

.111

.008
-.013

.016
-.023

.004

.119

.103

.046

.039

.021

.015

Exp. 4

.070

.022

.032

.017
-.009

.010

.149

.081

.109

.033

.065

.010

CTVA

.136

.071

.019

.032

.009

.004

.138

.084

.047

.035

.022

.003

Note. In the example displays, X and Y represent the locations of the
colored letters to be reported in the conjunction task, and w and z rep-
resent the locations of the digits to be reported in the primary task.
Small and Large refer to the distance between the digits. The letters A-
F represent Cohen and Ivry's (1989) notation for the position of the
colored letters, where A is the leftmost position, B is second from the
left, and so on. The rate of illusory conjunction is the probability of a
color conjunction error minus half of the probability of a color feature

that was the only condition in which both letters fell between

the digits and therefore within the beam. Second, it predicted

illusory conjunctions in conditions CD, BD, CE, and BE in the

large spotlight condition (widely spaced digits) because both

letters fell between the digits in each of those conditions. Third,

it predicted no illusory conjunctions outside the spotlight in any

condition (i.e., in conditions BD, CE, BE, AD, CF, AE, BF,

or AFin the small spotlight condition or in conditions^/), CF,

AE, BF, orAF'm the large spotlight condition). And fourth, it

predicted no effect of distance on the rate of illusory conjunc-

tions when the letters fell within the spotlight.

The illusory conjunction rates, presented as a function of

condition in Table 3 and plotted as a function of distance be-

tween the letters in Figure 9, provided partial support for their

hypothesis. Illusory conjunctions tended to occur within the

spotlight but not outside it in the small spotlight condition.

However, in the large spotlight condition, illusory conjunctions

occurred between letters inside and outside the spotlight

(conditions AD, CF, AE, and BF) and there were strong dis-

tance effects within the spotlight (see Figure 9). Indeed, inspec-

tion of Figure 9 reveals no sharp discontinuity in the rate of

illusory conjunctions at the boundary of the spotlight.

CODE. The CODE analysis begins by rejecting the idea

that the spotlight can be stretched arbitrarily to include the two

digits. If the spotlight included the two digits and the space be-

tween them, then there should be no basis for conjoining colors

and letter identities correctly, so illusory conjunctions should

occur as often as correct conjunctions. We saw this effect in the

CTV\ analysis of the middle-threshold, same-group condition

of Prinzmetal (1981). Furthermore, in order to include both

digits in a single spotlight beam, the threshold would have to be

set so low that it would include the two colored letters wherever

they appeared in the display. Letters outside the digits would be
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Figure 9. Rates of illusory conjunctions (the probability of a color
conjunction error minus half the probability of a color feature error) as
a function of distance between the colored letters observed in Cohen
and Ivry's ( 1 989 ) Experiment 3 ( top panel ) and Experiment 4 ( middle
panel), and predicted by CTVA (bottom panel). CTVA = CODE the-
ory of visual attention.
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Table 4

Feature Catches for Each Condition of Cohen andlvry's

(1989) Experiments 3 and 4

Small spotlight

Position

CD
BU-CE
BE
AD-CF
AE-BF
Al

Target

.1490

.1329

.0050

.1779
.0332
.0838

Distractor

.1095

.0623

.0011

.0525
.0050
.0079

Large spotlight

Target

.1397

.3119

.4513

.1809

.2549

.0149

Distractor

.1038

.1634

.1665

.0564

.0618

.0012

Note. The letters A-I-"represent Cohen and Ivry's(1989) notation for
the position of the colored letters, where A is the leftmost position. B is
second from the left, and so on.

just as likely to be included in the above-threshold region as

letters between the digits. Because of these problems, the CODE

analysis took a different tack.

The CODE analysis assumes that the regions of the display

from which features are sampled depend on the shape of the

CODE surface and the threshold setting. Cohen and Ivry's

(1989) displays were represented as CODE surfaces generated

from four feature distributions, with thresholds set at the local

minima between the distributions, slicing off four separate re-

gions from which features can be sampled. CODE accounts for

the putative effects of the spotlight in terms of the influence of

the feature distributions of the digits on the CODE surface.

The smallest distance in the set of displays was set to 25 units

(i.e., the distance between Xand win conditions CD, BD, CE,

and BE in the small spotlight condition) and the distance be-

tween alternative letter positions was set to 50 units (i.e., the

distance between A'and Fin condition CD in both the small and

large spotlight conditions). All other distances were multiples

of these distances. I set the standard deviation of the feature

distribution at 100. The threshold was set differently in each

condition at the local minimum between the letters and their

nearest neighbors. The feature catches for targets and distrac-

tors computed from these parameters are presented in Table 4,

averaged over the two positions that targets could have occupied

in each display (i.e., the positions corresponding to Xand Yin

each row of Table 3). Cohen and Ivry (1989) did not report

data separately for the two positions.

CTVA. As in the analysis of Experiments 1 and 2, 0 and wx

were set to 1.0 for color and letter categorizations. The q(x, /)

values for target letters and colors were set to 0.825, and the rj(x,

i ) values for the nontarget categorizations, given that a target

was present, were set to 0.175. The predicted illusory conjunc-

tion rates (the probability of a color-conjunction error minus

half the probability of a color-feature error) are presented in

Table 3 as a function of condition and plotted in Figure 9 as a

function of distance between the colored letters. The correlation

between observed and predicted values was .888 for Experi-

ment 3 and .729 for Experiment 4. These correlations are high

considering that the observed illusory conjunction rates from

Experiments 3 and 4 correlated only .805 with each other (i.e.,

the data were somewhat unreliable).

As in Experiments 1 and 2, CTVA did a good job of capturing

the reduction in illusory conjunction rate as the distance be-

tween the letters increased. The predicted data in Figure 9 de-

crease with distance at about the same rate as the observed data

in both experiments. Moreover, the predicted data showed illu-

sory conjunctions between letters inside and Outside the spot-

light and distance effects within the beam in the large spotlight

condition, just like the observed data.

CTVA predicted a difference in the right direction between

the illusory conjunction rates in the small and large spotlight

conditions. Even though the distance between the letters was

the same in the two conditions, the model's performance was

influenced in the same manner as human subjects' by adding

the digits to the display. However, the CTVA fit was not perfect.

It tended to overpredict the data in the small spotlight condition

and underpredict them in the large spotlight condition; the ob-

served difference was larger than the predicted one. Thus, there

may be more going on in these experiments than CTVA can

account for.7

Evaluation. The CTVA model captured the essential fea-

ture of Cohen and Ivry's (1989) experiments, which is a reduc-

tion in illusory conjunction errors as the distance between items

increased. The model provided a better account of the simple

distance effects in Experiments 1 and 2 than the modulation of

distance effects by the spacing of the digits in Experiments 3 and

4. Thus, there is room for improvement. Note, however, that the

spotlight model proposed by Cohen and Ivry (1989) did not

fare very well either, even though it made only qualitative pre-

dictions (also see Ashby et al.. 1996). Nevertheless, the CTVA

fits are encouraging. They suggest that the model could be ex-

tended to deal with the other cases in the literature (e.g., Chas-

tain, 1982; Ivry & Prinzmetal, 1991; Lasaga & Hecht, 1991;

Prinzmetal & Keysar, 1989; Prinzmetal & Mills-Wright, 1984;

Prinzmetal, Treiman, & Rho, 1986; Wolford & Shum, 1980).

The model did not deal with the initial digit-report task or the

shift of attention from the digits to the target in any of the ex-

7 1 was able to improve the fit and capture the quantitative difference
between the large and small spotlight conditions by allowing the stan-
dard deviation of the feature distributions to vary between spotlight
conditions, following Ashby et al. (1996) who fitted the same data by

allowing larger variance in the large spotlight condition. I set the stan-
dard deviation of the feature distributions to 60 units for the small spot-
light condition and kept the other parameters the same (i.e., /?and wx —

1; ij = 0.825 for color and letter presence; 77 = 0.175 for color and letter
absence). The large spotlight condition was fitted with the same param-
eters used for the fits to both conditions in Table 3 and Figure 9 (i.e., the
predicted data are the same as those for the large spotlight condition in

Table 3). The predicted illusory conjunction rates for the small spot-
light condition were much closer to the observed values: .096, .015,
.003, .004, .001. and .0002 for Conditions CD, BD-CE, BE, AD-CF,
AE-BF, and AF, respectively. The correlations between the predicted
and observed illusory conjunction rates (including the new predictions

for the small spotlight condition and the old predictions for the large
spotlight condition) were much higher than with the previous fits: .986
for Experiment 3 and .869 for Experiment 4. However, these improved
fits required me to violate the CTVA assumption that the feature distri-
butions are built by bottom-up processes, which implies that their stan-
dard deviations should be independent of how top-down attention is
deployed to the displays.
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Figure 10. Examples of displays from Banks and Prinzmetal's (1976) experiments. Column I = good

figure condition; Column 2 - isolated target condition; Columns 3-5 = camouflaged target conditions.

periments. The digit-report task would be easy to model but the
shift in attention would require further specification of be-
tween-object processing, which is beyond the scope of this arti-
cle (but see Logan, 1995; Logan & Sadler, 1996).

Banks and Prinzmetal (1976): Grouping Effects in
Visual Search

Banks and Prinzmetal (1976) published an important series
of experiments that pitted grouping by proximity against the
number of items in the display. The results were counterintu-
itive: Adding items to a display usually impairs performance
(e.g., Duncan & Humphreys, 1989; Treisman & Gormican,
1988; Wolfe, 1994), but Banks and Prinzmetal (1976) found
that adding items improved performance when those items
clustered together with other distractors to isolate the target.
These results are well cited and viewed as strong evidence for
object-based attention (e.g., Kahneman & Treisman, 1984;
Kahneman et al., 1992).

The grouping principle in the Banks and Prinzmetal (1976)
experiment is proximity, so CTVA is clearly relevant. In the
CTVA analysis, adding items has two effects, one on between-
group selection and one on within-group selection. The effect
on between-group selection is that adding items makes the iso-
lated target more likely to be selected than in the original dis-
plays, and it makes targets that were not isolated but camou-
flaged by the added items, less likely to be selected than targets
in the original displays. The effect on within-group selection is
primarily on processing the camouflaged targets: Adding items
to the display places one or two more distractors close to the
target, close enough to affect a feature catch centered on the
target.

Method and results. Banks and Prinzmetal (1976) showed
their subjects displays like those in Figure 10. Each display con-
tained a Tor an Fand two to six r-Fhybrids (formed, roughly,
by moving the right half of the top bar of the T down the stem
to the position of lower bar of the F). Ts and Fs occurred only

in the four corners of the display in Conditions A and B and
close to the corners in Condition C. The task was to say whether
each display contained a T or an F.

There were three experiments. Experiment 1 used the full set
of displays in Figure 10, exposing them until the subject re-
sponded, so reaction time was the main dependent variable. Ex-
periment 2 used a subset of the displays (those in Figure 10A).
The displays were exposed briefly (50 ms in the first session, 40
ms in the second) and followed by a blank field with twice the
luminance. Accuracy became an important dependent variable
as well as reaction time. Experiment 3 used the full set of dis-
plays to gather measures of grouping. Subjects looked at pic-
tures of the displays in Figure 10 and drew lines around the
groups they saw. The grouping measure, reported in Banks and
Prinzmetal's (1976) Table 1, reflected the mean number of
group boundaries between the target and the average distractor.

The design of Experiments 1 and 2 compared the five condi-
tions represented in the columns of Figure 10. Condition 1 was
the good figure condition, in which the target and distractors
together formed a simple figure: a diagonal line, a square, or a
square with a dot in the middle. Banks and Prinzmetal (1976)
expected the target to be embedded in this simple structure.

Condition 2 was the main focus of their research. It was the
isolated target condition, in which the added distractor grouped
together with the other ones to form a cluster separate from the
target. Banks and Prinzmetal (1976) expected better perfor-
mance in the isolated target condition than in the good figure
condition, because the target would be easier to extract from the
distractors.

Conditions 3-5 were the camouflaged target conditions, in
which the target appeared in the cluster of items formed by add-
ing two new distractors. Banks and Prinzmetal (1976) expected
worse performance in the camouflaged target conditions than
in the good figure condition because of a display size effect:
There were two more distractors in the displays.

Averaged over the three stimulus sets in Experiment 1, mean
reaction times were 576, 553, 632, 670, and 726 ms for Condi-
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B

l-igure II. The CODE surface for Banks and Prmzmetal's (1976) displays ( 1 1 A) with a high ( I IB),
intermediate ( I tC).andlow{ 1 ID) threshold applied lo it (cf. Figure9).

tions 1-5, respectively. Experiment 2 confirmed these results,
producing mean reaction times of 583, 559, 596, 613, and 651
ms and mean probabilities of a correct response of .973, .987,
.970, .942, and .915 for Conditions 1-5, respectively. The data
confirmed Banks and Prinzmetal's (1976) expectations: Reac-
tion time was faster for isolated targets than for good-figure
targets, and reaction time was slower for camouflaged targets
than for good-figure targets.

CODE. The CODE surface for the isolated- and camou-
flaged-targel displays are illustrated in Figure 11 A. There is no
difference between targets and distractors in Figure 11, so the
isolated target display has the same CODE surface as the three
camouflaged target conditions. Figure 1 IB illustrates the appli-
cation of a high threshold to the CODE surface, one that sepa-
rates each of the items from the others in the display. Figure 11C
illustrates an intermediate threshold that clumps the cluster of
items into one group and isolates the singleton. Figure 1 ID il-
lustrates a low threshold that groups all of the items together.

The CODE analysis provides some insight into the configu-
ration of CODE and TVA that is required to fit the data. The
low-threshold setting is an unlikely candidate for the CODE
contrihution because it ignores the spatial arrangement of the
items. Banks and Prinzmetal (1976) found strong effectsof spa-
tial arrangement. The low-threshold setting could predict the
display-size effect that Banks and Prinzmetal (1976) observed,
but it could not predict the crucial difference between good fig-
ure and isolated target displays, in which the effects of grouping
were pitted against display size and grouping won.

The intermediate- and high-threshold settings are reasonable
candidates whose viability rests on the TVA analysis. The inter-
mediate-threshold setting requires processing the clustered
items in the camouflaged target conditions in parallel, and that
may or may not be feasible depending on the signal to noise
ratio in TVA.

Between-object effects. The high-threshold setting requires
serial processing, and that requires a theory of between-object
selection, which is outside the scope of CTVA. Nevertheless,
some simple assumptions can be made that lead to testable pre-
dictions. I assumed that items are processed in an order that
corresponds to their degree of isolation. Thus, the isolated item
is processed first, then the two items with two neighbors, and
finally, the item with three neighbors. Banks and Prinzmetal
(1976) dismiss strategies like this as "far from optimal" (p.
362) because the target is more likely to occur in a nonisolated
position in Conditions 1-4. However, the target is no more likely
to occur in any other single position than in the isolated posi-
tion, so there is no reason to prefer any other position to the
isolated one. The strategies are no worse than random choice.
Moreover, the strategies may be reasonable if they are consistent
with habits or "natural tendencies" or if they interact with the
recognition system in a way that benefits performance (see Lo-
gan, 1994).

This search strategy allows an estimate of the mean number
of comparisons required to find the target {search depth) for the
displays in Figure 10. If subjectsexamine only the four positions
that targets can occur in, search depth will range from 1 to 4.
The search strategy predicts a search depth of 1 for the isolated
target condition and 2.5 for the good figure condition. In the
camouflaged target condition, search depth should be 2.5 for the
2 two-neighbor positions and 4 for the three-neighbor position,
averaging 3.

Within-object effects. CODE by itself also predicts some
within-object effects in Banks and Prinzmetal's (1976) experi-
ments. Figure 12 illustrates a 1-D CODE surface applied to a
slice of Banks and Prinzmetal's (1976) displays. The top panel
of Figure 12 shows three equally spaced items that correspond
to the good figure condition. The middle and bottom panels of
Figure 12 add a fourth item, placing it in between two of the
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Figure 12. The CODE surface with athreshold applied to it for Banks

and Prinzmetal's (1976) good figure condition (top panel), isolated

target condition (middle panel), and camouflaged target condition

(bottom panel) arrayed in one dimension. T = target; D = distractor.

three items from the top panel of Figure 12. The middle panel
of Figure 12 represents the isolated target condition, and the
bottom panel of Figure 12 represents the camouflaged target
condition.

Thresholds have been applied to the different conditions and
lines have been drawn to delimit the feature catch. The thresh-
olds represent the high-threshold condition, in which CODE
parses the display into objects that correspond to individual
items. The thresholds were set at the lowest level that would
allow the target item to be separated, which is a local minimum
between items on the CODE surface. Thresholds higher than
the local minimum will pick offindividual items, but thresholds
lower than the local minimum will group the target item with
its neighbors (i.e., the local minimum represents the boundary
between the high- and intermediate-threshold conditions).

The important points to be taken from Figure 12 concern the
feature catches in the different conditions. The feature catches
for the good figure condition and the isolated target condition
are large and not contaminated much by their neighbors. The
nearest neighbor is relatively far away, and the local minimum
on the CODE surface between the target and the neighbor is
relatively low. By contrast, the feature catch for the camou-
flaged-target condition is smaller and much more contaminated
by its neighbor. The near neighbor raises the CODE surface in
the region of the target and, consequently, raises the local mini-
mum between itself and the target. This reduces the weight, cx,
on the target, relative to the good figure and isolated target con-
ditions (by reducing the range of the limits of integration, ex-
cluding more of the tails of the target's feature distribution),
and the reduction in the weight necessarily slows reaction time
and decreases accuracy (see Equations 11-13). Adding insult
to injury, the near neighbor intrudes more into the above-
threshold region, giving it substantial weight in the feature
catch. The extra item in the feature catch should slow reaction
time and decrease accuracy further.

This analysis suggests that the number of near neighbors
might be an important predictor of reaction times, because the
threshold adjustment and noise effects are exacerbated by near
neighbors. 1 counted the number of near neighbors for Banks
and Prinzmetal's (1976) displays, portrayed in Figure 10,
counting a horizontally, vertically, or diagonally adjacent item a
near neighbor and not counting anything else. So, for example,
the number of near neighbors in displays in the top row of Fig-
ure 10 is 1, I, 2, 2, and 3 for Conditions 1-5, respectively. Aver-
aged over all the displays, the number of near neighbors was .67,
.67, 2.0, 2.0, and 2.67 for Conditions 1-5 respectively.

Regression analyses. 1 performed some regression analyses,
predicting the 15 reaction times in Banks and Prinzmetal's
(1976) Experiment 1 (see their Table 1) from the CODE-based
measures of search depth and number of near neighbors and
comparing the CODE predictions with those from Banks and
Prinzmetal's (1976) grouping measure and display size. The
correlations between the measures appear in Table 5. The sim-
ple and multiple regression equations appear in Table 6.

Individually, the CODE measures outperformed Banks and
Prinzmetal's. The measure of search depth and the number of
nearest neighbors were each more highly correlated with reac-
tion time than Banks and Prinzmetal's grouping measure and
display size. The CODE measures outperformed Banks and
Prinzmetal's in multiple regression as well. Combining number
of nearest neighbors with the measure of search depth resulted

Table 5
Correlations Between Reaction Times (RTs) in Banks
and Prinzmetal's (1976) Experiment I and Measures

of Grouping (— G), Display Size (D), Number of Near

Neighbors (N), and Search Depth (S)

Predictor

-G
D

N
S

RT

.567

.311

.758

.826

-G

_

.269

.523

.732

D

—
.206
.000

N

—

.620
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Table 6
Simple and Multiple Regression Equations Predicting Reaction

Times (RTs) From Banks andPrinzmetal's (1976) Experiment

1 From Measures of Grouping (-G), Display Size (D), Number

o/Near Neighbors (N), and Search Depth (S)

Rorr Predictor Equation

.5667

.3105

.5900

.7580

.8255

.8831

G
D
G + D
N
S
N + S

RT = 727 - 84.6G
RT = 531 ± 17.9D
RT = 664-79.1
RT = 553 + 49.1N
RT = 488 + 57.4S
RT = 489 + 25.7N + 40.3S

Note. R = multiple correlation from multiple regression; r = simple
correlation from simple regression.

in a multiple correlation that was considerably higher than the
multiple correlation from the grouping measure and display
size. The multiple correlation including display size was only
slightly higher than the simple correlation between the grouping
measure and reaction time. Even without TV\, CODE provides
a better account of Banks and Prinzmetal's (1976) data than
their own analyses.

CTVA. The first step in applying TVA is setting the ij values.
In the Banks and Prinzmetal (1976) experiment, the distractors
(T-F hybrids) are similar to the alternative targets (T and F).
1 used three levels of if. a high one for targets and distractors
resembling themselves, an intermediate one for the mutual re-
semblance between targets and distractors, and a low one for
the mutual resemblance between alternative targets. Thus, i\(x,
T\x = T) = T\(x,F\x = F) = -n(x,D\x = D) = l.0>y(x, T\x
= D) = -q(x,D\x=T) = T)(x,F\x = D)^n(x,D\x = F) = $2
>rj(x, T\x = F) = q(x,F\x= 7") = .01. Bias(0) and attention
weights (w x ) were set to 1.0 for 7s, >'s, and distractors.

Three between-item distances were included in the calcula-
tions: nearest neighbors, which were I ° of visual angle away
(100 units); middle neighbors, which were 1.41° away
(diagonally; 141 units); and far neighbors, which were 2° away
(200 units). The standard deviation of the feature distributions
was set to 50. In order to apply Equations 11 and 12 to the data,
I treated the displays as if they were 1-D. I generated a CODE
surface by adding together the feature distribution for the target
and its nearest neighbor. This allowed me to define the local
minimum surrounding the target and therefore set the thresh-
old. I used the threshold set at the local minimum to compute
the feature catch from each item in the display.

1 fit parallel and serial models to the data. There were two
versions of each type, one with the same threshold for each of
the four critical display positions (set to the local minimum be-
tween the target and the nearest-possible neighbor, which is the
added item in Figure 10, Conditions 3-5), and one with a
different threshold for each critical position (set to the local
minimum between the target and its nearest neighbor).

The parallel models focused on the four critical display posi-
tions (the four corner positions in each display). Each position
contributed two "runners" to the race, one for each possible
target (i.e., 7"vs. -F), and the four positions raced against each

other. Reaction time and accuracy predictions were generated
from Equation 12.

The serial models used the search strategy described above in
the regression fits, focusing on the most isolated item first and
preceding through the display according to the degree of isola-
tion. The race was run separately for each of the four positions
in the display. There were three runners in the race at each po-
sition—T, F, and distractor. The distractor ran in the race be-
cause three out of four positions in each display contained dis-
tractors, and the appropriate action, if a distractor was present,
was to proceed to the next display position. Reaction time and
accuracy predictions were generated by first applying Equation
12 to generate processing times and accuracies for each display
position and then integrating them with the serial search strat-
egy. Reaction times for successive display positions were added,
and the reaction time for each display was set to the mean of the
different trajectories through the display. Accuracies for succes-
sive display positions were multiplied together, and the accuracy
for each display was set to the mean of the different trajectories.

The models were fitted to the 15 reaction times in Banks and
Prinzmetal's (1976) Experiment I (see their Table 1). The
same parameters predicted accuracy, although Banks and
Prinzmetal did not report it. They did report accuracy for their
Experiment 2, which was a partial replication of their Experi-
ment 1 with brief exposures, so we tried to fit those accuracy
data. The serial model fits were better than the parallel model
fits and the different-threshold fits were marginally better than
the same-threshold fits (r = .913 for different- and .903 for
same-threshold serial fits; r = .808 for different- and .807 for
same-threshold parallel fits). The results of the different-thresh-
old fits and the results of Banks and Prinzmetal's (1976) Exper-
iment 1 are presented in Table 7.

The parallel models missed two essential features of Banks
and Prinzmetal's (1976) results. First, they missed the display
size effect, predicting longer reaction times for Pattern C dis-
plays than for Pattern B displays (see Figure 10). This occurred
because the nearest neighbors were farther from the targets in
Pattern B displays than in Pattern C displays. (Reaction times
were slower in Pattern A displays than in Pattern B displays be-
cause the nearest neighbors were closer to the targets.) Second,
and more important, the parallel models failed to predict the
advantage of the isolated target condition over the good-figure
condition. The near neighbors were the same distance away
from the targets in the two conditions, so reaction times and
accuracies were the same, contrary to what Banks and Prinz-
metal (1976) observed.

The serial models captured the essential features of Banks
and Prinzmetal's (1976) data. Pattern C was faster than Pattern
B, and Pattern B was faster than Pattern A. More importantly,
the isolated target displays were faster and more accurate than
the good-figure displays in each pattern.

The feature catches (cv) used in the fits for each pattern and
condition are presented in Table 8. There is a feature catch for
the target, for the near neighbor, the middle neighbor, and the
far neighbor in each pattern. The correspondence between these
values and Banks and Prinzmetal's (1976) displays can be
gleaned from Figure 10A, Condition 5. Target corresponds to
the position of the target; near corresponds to the position of
the distractor immediately to the right or immediately below
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Table 7

Observed and Predicted Reaction Times and Predicted Percent

Correct Scores for Banks and Prinzmetal (1976)

Pattern 1 2

Condition

3 4 5

Banks and Prinzmetars (1976) data

A
B

C

A

B

C

A

B

C

598
573
557

585
99

536
99

586
99

607
91

597
91

570
95

558
551
552

585
99

536
99

586
99

553
97

549
97

552
97

609
638
649

Parallel processing

671
99

670
99

676
99

Serial processing

628
89

623
90

709
82

640
667
703

671
99

670
99

676
99

628
89

623
90

709
82

759
735
683

675
99

674
99

676
99

7 1 1
82

705
83

709
82

the target; middle corresponds to the position of the distractor

along the diagonal; and far corresponds to the position of the

distractor in the bottom left or top right positions. The distrac-

tor in the bottom right position was not considered in the fits.

The entries in Table 8 correspond to target and distractor posi-

tions that were employed in the fits. Thus, for example, the near

condition is blank in Pattern A, Conditions 1 and 2 because

there were no very near neighbors in those displays (see Figure

10).

The feature catches for the same-threshold fits were .757,

.114, .036, and .007 for all patterns and conditions.

Evaluation. CTVA did a reasonable job of accounting for

Banks and Prinzmetal's (1976) data. As they anticipated, be-

tween-object effects were the most important factors in our ac-

count. However, in the CTVA analyses, serial processing models

did better than parallel processing models. Contrary to Banks

and Prinzmetal's suggestion, CTVA had to assume a serial

search strategy that focused on the most isolated position first

in order to capture the advantage of isolated target displays

over good figure displays. These fits encourage further

investigations.

Cohen and Ivry (1991): Density Effects in Conjunction

Search

The difficulty of searching for targets that are conjunctions of

separable features is another cornerstone prediction of Treis-

man's feature integration theory (Treisman & Gelade, 1980;

Treisman & Sato, 1990). Reaction time increases as a linear

function of display size with a sleep slope. Since the original

demonstration that conjunction search was harder than search

for the features that made up the conjunction, the result has

been investigated vigorously. Often, the original result repli-

cates, but some researchers have shown that conjunction search

is sometimes easy, producing slopes near zero (e.g., Wolfe et al.,

1989) and sometimes feature search is hard, producing slopes

well above zero (e.g., Treisman & Gormican, 1988). Recently,

Cohen and Ivry (1991) found that the conjunction search slope

could be reduced considerably if the density of the displays was

reduced by increasing the distance between adjacent items.

This distance effect falls in the domain of CTVA, and CTVA

accounts for it in a way that is similar to its account for distance

effects on illusory conjunctions.

CODE. Conjunction search is difficult when distractors

share features with the target (e.g., the distractors are green X 's

and red O's, and the target is a red X). CTVA interprets this as

a similarity effect; the rj(x, i) values for distractors are high in

conjunction search. In order to avoid target-present responses

to distractors, the feature catch has to focus on individual items,

either serially—one by one—or in parallel with separate spatial

indices for each item. The threshold is set high so that the con-

tribution of adjacent items to the feature catch is much smaller

than the contribution of the item in the current focus of atten-

tion. Increasing distance between items has two effects in the

theory: First, it decreases the overlap of distributions from ad-

jacent items, and that decreases the probability of sampling fea-

tures from adjacent items and reduces the likelihood of false

target-present responses. Second, it lowers the local minima on

the CODE surface, and that lets the system adopt a lower thresh-

old (i.e., just above the local minimum). That increases the con-

tribution of the target item to the feature catch and speeds pro-

cessing (see Equations 12and 10). Both of these factors would

speed the search rate, as Cohen and Ivry (1991) observed.

CTVA. In order to apply TVA to conjunction search, the

rules by which responses are chosen must be specified. Consider

the case in which the target is a red T and the distractors are

green Ts and red X s. The person decides a target is present if he

Table 8

Feature Catches (cjfor Parallel and Serial Fits

to Banks and Prinzmetal (1976)

Pattern

A
Condition 1
Condition 2
Condition 3
Condition 4
Condition 5

B
Condition 1
Condition 2
Condition 3
Condition 4
Condition 5

C
Condition 1
Condition 2
Condition 3
Condition 4
Condition 5

Target

.864

.864

.757

.757

.757

.941

.941

.757

.757

.757

.864

.864

.757

.757

.757

Near

.114

.114

.114

.114

.114

.114

.114

.114

.114

Middle

.067

.067

.036

.036

.036

.067

.067

Far

.013

.013

.007

.007

.007

.029

.029

.007

.007

.007
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or she determines that a perceptual object is both red and T.

The person decides that a perceptual object is not a target if he

or she determines that the object is not red or not T. Thus, the

decision rules are as follows:

1. IF red AND T THEN terminate search and say "present."

2. IF not red OR not T THEN examine the next item.

3. IF there are no more items to be examined THEN say

"absent."

In TVA, the time to decide that an object is red depends on

the rate of processing, v(x, red) and the time to decide it is T

depends on v(x, T). The time to decide that an object is not

red depends on the rate at which "not red" can be detected—

v(x, notred), and the time to decide that an object is not T

depends on ti(x, notT). In order to decide that a target is pres-

ent, both red and T must be detected. Thus, the time to decide

that a target is present is the maximum of the times required to

decide that the object is red and it is a 7": max(red, T). In order

to decide that an object is not a target, it is sufficient to detect

cither not red or not T. Thus, the time to decide that an object

is not a target is the minimum of the time to decide it is not red

and the time to decide it is not T: min(nolred, notT).

The decision about whether a given object is a target depends

on a race between the process that decides an object is a target

and the process that decides an object is not a target. The math-

ematics underlying the race are developed in Appendix D.

When CODE and TVA are put together, the v(x, i) values are

modified by the feature catches, cx, so reaction time and accu-

racy depend both on the factors that affect v(x, i) (i.e., sim-

ilarity between targets and distractors) and the factors that

affect c, (i.e., the density of the items in the display).

The finishing times and accuracies for individual compari-

sons must be combined over items to predict mean reaction

time and accuracy for the whole display. The traditional way to

do this in the conjunction search literature is to assume serial

self-terminating processing, in which attention focuses on the

items one by one (e.g., Cave & Wolfe, 1990; Treisman & Gelade,

1980; Treisman& Sato, 1990; Wolfe, 1994; Wolfe et ah, 1989).

In models like these, reaction time is the sum of the individual

comparison times plus an additive constant, and accuracy is the

product of the accuracies of the individual comparisons. It is

also possible to combine individual finishing times and accura-

cies in various parallel models (e.g., Duncan & Humphreys,

1989;Pashler, 1987;Townsend&Ashby, 1983). Parallel models

must find some way to keep individual items distinct from each

other, or else illusory conjunctions would inflate the error rate.

One way to keep items distinct is to spatially index them, and

while spatial indexing is often thought of as a serial process (e.g.,

Ullman, 1984), Pylyshyn (1989) and colleagues (e.g., Pylyshyn

&Storm, 1988; Trick & Pylyshyn, 1994) suggested that four or

more spatial indices may be deployed in parallel. In principle,

CTVA could provide a parallel-processing account of conjunc-

tion search if it assumed multiple spatial indices. For the present

purposes, however, 1 configured CTVA as a serial self-terminat-

ing search process to make the exposition clearer. The key re-

sults depend on the finishing times and accuracies for individual

items (see Appendix D). They should have the same effect on

overall reaction time and accuracy no matter how they are

combined.

In a serial, self-terminating version of CTVA, mean reaction

time for target-present responses is

= FTf FTA + b, (14)

where FTp and FTA are the finishing times for the processes

that detect target presence and absence, respectively, D is dis-

play size, and b is an additive constant that represents residual

time for perceptual encoding and motor processing. For target-

absent responses, mean reaction time is

b. (15)

According to Equations 14 and 15, reaction time is a linear

function of display size with a slope that depends on the finish-

ing time of the process that detects target absence. The slope

for target-present responses is approximately half the slope for

target-absent responses, as is commonly found in conjunction

search experiments (Treisman & Gelade, 1980).

The CTVA model also predicts accuracy, although Cohen and

Ivry (1991) did not report it. The probability of a correct re-

sponse for target-present displays is

P(C\P) = 1 -[1 -P(P)]-P(A)D
(16)

where P(P) and P(A) are the probabilities that the processes

that detect target presence and absence, respectively, function

correctly. The probability of correctly detecting the target is one

minus the probability of missing the target when it is present.

The system will miss a target when it is present if it fails to detect

the target, with probability 1 — P(P), and if it fails to false alarm

to a distractor, with probability P(A)"~t. These probabilities

are independent, so they combine multiplicatively to produce

the miss rate, which is subtracted from 1 in Equation 16 to pro-

duce the hit rate.

The probability of a correct response for target-absent dis-

plays is

Averaged over experiments and target-present and target-ab-

sent conditions, the mean slope in Cohen and Ivry's (1991)

clumped condition was 34 ms per item, and the mean slope in

their spread condition was 14 ms per item. I estimated the slopes

by calculating finishing times for individual comparisons using

the equations in Appendix D. The finishing times can be in-

serted into Equations 14 and 15 to predict mean reaction times

as a function of display size. I chose not to predict mean reac-

tion times because there was considerable variation in slopes

and in the ratio between target-present and target-absent slopes

in Cohen and Ivry's (1991) experiments, which suggested that

the serial, self-terminating model on which Equations 14 and

15 are based may not be appropriate for all of their data. Indeed,

Cohen and Ivry (1991) argued that search was parallel in some

of their conditions. Consequently, the CTVA analysis focused

on finishing times, which would support predictions for parallel

search models as well as serial, self-terminating ones.

The distances between items were set to 100 units in the

clumped condition and 200 units in the spread condition. The
standard deviation of the feature distributions was set to 50 in
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each case. The threshold was set halfway between the local min-
imum between items and the peak of the feature distribution,
in order to focus more sharply on the target item. With these
parameters, the mean finishing time for the target-absent pro-
cess was 3.12 units in the clumped condition and 1.67 units in
the spread condition. Finishing times for target-absent pro-
cesses determine the slopes in Equations 14 and 15; if one unit
equals 10 ms, the predicted results are close to the average val-
ues in Cohen and Ivry's (1991) experiments.8

In the clumped condition, the feature catch included 39.4%
of the target's feature distribution and 7.1% of each of the dis-
tractor's feature distributions. In the spread condition, the fea-
ture catch included 63.2% of the target's feature distribution
and 2.2% of each of the distractor's feature distributions. The
probability of correctly deciding target absence was .972 in the
clumped condition and .992 in the spread condition. The mean
finishing time and accuracy for the process that detected target
presence was 3.04 units and .821 for the clumped condition and
2.51 units and .967 for the spread condition.

Evaluation. The CTVA model did a reasonable job of ac-
counting for Cohen and Ivry's (1991) results. Cohen and Ivry
(1991) proposed two processing mechanisms underlying their
results: (a) a fine-grained localization process akin to Treis-
man's conception of conjunction search in the clumped condi-
tion and (b) a coarse-grained localization process different from
Treisman's conception in the spread condition. By contrast, the
CTVA analysis accounts for both conditions with the same pro-
cessing mechanisms. The only difference between the condi-
tions is the spacing of the item's feature distributions. While it
remains possible that different mechanisms underlie perfor-
mance in the different spacing conditions, the CTVA analysis
suggests that further research with more incisive experiments
will be necessary to rule out theories (such as CTVA) that pro-
pose a single mechanism.

Wolfe, Cave, and Franzel (1989): Double Versus Triple

Conjunction Search

Most experiments in the conjunction search literature in-
volve conjunctions of two features, or double conjunctions.
Wolfe, Cave, and Franzel (1989) tested people in a triple con-
junction task, in which targets were conjunctions of three fea-
tures (e.g., large red 7s) and distractors contained only one of
the target features (e.g., large green Xs, small red Xs, or small
green 7s). They found that this triple conjunction search was
much easier than double conjunction search. They interpreted
their results in terms of preattentive processes rather than the
attentive comparison process that operates on the selected
items, arguing that triple conjunctions stood out more from the
background of distractor items. To account for the triple con-
junction results, they proposed guided search theory (Cave &
Wolfe, 1990; Wolfe, 1994) as an extension of Treisman's feature
integration theory. Whereas Treisman argued that preattentive
and attentive processes were independent, Wolfe et al. (1989)
argued that preattentive processes interacted with attentive pro-
cesses, suggesting likely candidates for attention to focus on.
Triple conjunction search was easy, they argued, because preat-
tentive processes segregated triple conjunction targets from the

distractors more easily than they segregated double conjunction
targets.

The field appears to have accepted the interpretation offered
by Wolfe et al. (1989). Treisman and Sato (1990) revised fea-
ture integration theory to account for the triple conjunction re-
sults, proposing an inhibitory interaction between attentive and
preattentive processes. They argued that inhibition was more
effective when targets differed more from distractors, as with
triple conjunctions that share only one feature with the target.
Others in the field apparently agree with Wolfe and Treisman.
Grossberg, Mingolla, and Ross (1994) modeled the Wolfe et al.
(1989) data and attributed the ease of triple conjunction search
to preattentive grouping processes. Surprisingly, no one appears
to have tried to interpret the advantage of triple conjunctions in
terms of the attentive comparison process.

In the course of modeling Cohen and Ivry's (1991; double)
conjunction search data, it occurred to me that TVA can be
extended easily to account for triple conjunction search. More-
over, TVA accounts for the advantage of triple conjunction
search over double conjunction search in terms of the attentive
comparison process and not in terms of preattentive grouping
processes. Thus, TVA offers a new approach to the analysis of
triple conjunction search that differs significantly from other
current approaches (e.g., Grossberg et al., 1994; Treisman &
Sato, 1990: Wolfe et al., 1989).

The TVA analysis can be extended to triple conjunction
search by simply including a v(x, i) value for each of the three
features and their absence (i.e., not small, not red, and not T).
As with double conjunctions, decisions about target presence
are determined by the outcome of a race between the presence
and absence of the target features:

Outcome^ = min[max(r, T, s), min(r, T, s)].

Notice that there are three runners in the race for target ab-
sence, which is more than the two that raced for target absence
in standard conjunction search. This is important because the
fastest of three runners will finish before the faster of two run-
ners (see e.g., Logan, 1988,1992), and this will reduce the slope
of the function relating reaction time to display size because the
slope is determined by the rate at which target absence is de-
cided. Thus, the TVA analysis predicts shallower slopes in triple
conjunction search than in standard, double conjunction
search. A formal derivation of the finishing times and accura-
cies for target-present and target-absent responses is presented
in Appendix D. The finishing times developed in Appendix D
can be put into Equations 14 and 15 to predict slope values.

Finishing times for target-present and target-absent processes

8 Similar results are obtained if the threshold is set to the local mini-
mum. The accuracies are a little lower and the finishing time difference

between the clumped and spaced conditions is a little smaller. Using the

same spacing parameters and ij and X values but setting the threshold to

the local minimum, the finishing times (and accuracies) were 1.985

(.956) and 1.298 (.989) for clumped and spaced target-absent pro-
cesses, respectively, and 3.037 (.821) and 1.958 (.954) for clumped and

spaced target-present responses. The feature catches were .632 and .865

for clumped and spaced targets, respectively, and .159 and .066 for

clumped and spaced distractors.
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Table 9
Processes Detecting Target Presence and Target Absence

in Double and Triple Conjunction Search

Finishing times

Task

Double conjunction
Triple conjunction

two features different
Triple conjunction

one feature different

Target
present

4.742

5.628

5.743

Target
absent

3.122

1.628

3.014

Accuracies

Target
present

.887

.763

.849

Target
absent

.972

.999

.979

were modeled using the parameters from the clumped condi-
tion from the Cohen and Ivry (1991) fits. The target was 100
units from the neighboring distractors; the standard deviation
of the feature distributions was 50; the 17 value representing the
similarity between a feature and its absence was .01; and the
threshold was set halfway between the local minimum and the
peak of the target's feature distribution. Table 9 contains the
predicted finishing times and accuracies.

Several effects in Table 9 are noteworthy. First, the time to
detect target presence is greater for triple conjunctions than
double conjunctions because the maximum of three values is
larger than the maximum of two values (i.e., max(red, large,
T)> max( red, T)). Second, the time to detect target absence,
upon which the search slope depends (see Equations 14 and
15), is shorter for triple conjunctions than for double conjunc-
tions. The difference is large when triple conjunction distractors
differ from targets on two features, as Wolfe et al. (1989) ob-
served. The difference is smaller when triple conjunction dis-
tractors differ from targets on only one feature, also as Wolfe et
al. (1989) observed. Thus, TVA appears to account for the main
trends in the data of Wolfe et al. (1989). Interestingly, it attri-
butes the effects to the attentive comparison process rather than

the preattentive processes.
Evaluation. TVA did a good job of accounting for the

main differences between double and triple conjunction
search. The credit goes entirely to TVA; Bundesen's (1990)
theory can account for the differences without recourse to
CODE. It is significant that TVA accounts for the differences
entirely in terms of the attentive comparison process. This is
important because the other approaches to the contrast be-
tween double and triple conjunctions do not attempt to
model the comparison process. Some, such as Cave and Wolfe
(1990) and Grossberg et al. (1994), provide formal accounts
of preattentive processes but not the attentive comparison
process. The TVA analyses suggest that other researchers may
have misattributed the advantage of triple conjunction
search to preattentive processes. The TVA analyses demon-
strate that at least one construal of attentive processes—and
one with considerable predictive power (Bundesen, 1990) —
accounts for the advantage of triple conjunctions in terms
of attention rather than preattention. In the context of that
theory, it is possible that all of the advantage of triple con-
junction is due to attentive processes or that part of the ad-
vantage is due to attention and part is due to preattention. It

is not possible, in the TVA theory, to account for the advan-
tage entirely in terms of preattentive processes.

Target-Distraclor Discriminability and the Size of the
Spotlight

Several researchers have been concerned with factors that de-
termine the size of the region that attention selects. Eriksen and
St. James's (1986) zoom lens theory assumes that the spotlight
can expand and contract according to task demands, but the
resolving power diminishes as the size increases. Treisman and
Gormican (1988) assumed that the size of the spotlight in-
creased as the difficulty of discrimination decreased. Easy dis-
criminations could be done in parallel all over the visual field,
whereas difficult discriminations required sharply focused at-
tention. Duncan and Humphreys (1989) made similar assump-
tions, arguing that the rate of processing increased as the sim-
ilarity between targets and distractors decreased.'

The search literature provides strong empirical support for
these speculations about the size of the spotlight, processing
rate, and processing power. The rate of processing in visual
search tasks, measured as the reciprocal of the slope of the linear
function that relates reaction time to the number of items in the

display, decreases as the difficulty of discrimination increases
(Treisman & Gormican, 1988), and it decreases as the sim-
ilarity between targets and distractors increases (Duncan &
Humphreys, 1989).

CTVA provides a straightforward account of the relation be-
tween discrimination difficulty and search rate. According to
Equation 7, accuracy depends on the ratio of the correct v (x, i)
value to the sum of the other v(x,j) values. Extending Equation
7 to sum over all of the items in the display and rearranging the
terms yields

( 1 8 )

Equation 18 makes it clear that accuracy depends on the sum
of the rates of processing of the other categorizations of the
other items in the display, that is. ZS v(z,j). If that sum is
large, accuracy is low. If that sum is small, accuracy is high. The
magnitude of the sum depends on the similarities of the other
categorizations to the correct categorization and on the number
of other (similar) items in the display.

9 Duncan and Humphreys' (1989) theory is not easily characterized

as a spotlight theory because they were not specific about the mecha-
nism of selection. A recent extension of their theory by Humphreys and
Muller (1993) seems contrary to the spotlight view, because it assumes

that processing is always parallel (i.e., distributed over the whole visual
field rather than focused in a single beam).



CODE THEORY OF VISUAL ATTENTION 631

From Equation 12, the rate of processing for any given item

v(x, i) = cx ri(x, i) ft —— .

1. Noise Same as Target

HHHHHHH

HHH H HHH

HHH H HHH

The processing rate, v(x, i), depends on the magnitude of the
feature catch, cx, and the similarity between the item and the
target (or nontarget) categorization, T](X, i). Processing rate can
be held constant as one or the other of these factors increases if
the other decreases by a corresponding amount. Thus, cx and
i)(x,;') trade off against each other. A low cx and a high rj(x, i)
can produce the same processing rate as a high cx and a low
ri(x, i), and that provides the account of the relation between
processing rate and discriminability. When the discriminability
between targets and distractors is high, ri(x,i) for the distractors
is low, so cx can be high. A high c, occurs when the threshold is
set low and several items are processed at once, in parallel.
Thus, high discriminability allows parallel processing. By con-
trast, when discriminability between targets and distractors is
low, ri(x, i) for the distractors is high, so cx must be set low to
prevent false categorizations of distractors. The model lowers cx

by raising the threshold so that items are segregated perceptu-
ally from each other, and that segregation promotes serial pro-
cessing. Thus, low discriminability encourages serial process-
ing. High discriminability produces big spotlight beams and
low discriminability produces small ones, consistent with the
data and with theorists' speculations.

Eriksen andEriksen (1974): Distance Effects With
Distracting Flankers

Eriksen and Eriksen (1974) published an important article
on which much of the debate over space-based and object-based
attention was grounded. They showed that people were influ-
enced by distractor items that flanked the target even when
there was no uncertainty about target location. Flankers that
were associated with the same response as the target facilitated
reaction time and accuracy, whereas flankers that were associ-
ated with the opposite response from the target impaired reac-
tion time and accuracy. These effects are modulated by distance
between targets and flankers and by factors that place the target
and flankers in the same or different perceptual groups, so the
task is an important test case for CTVA.

Method and results. Eriksen and Eriksen (1974) presented
their subjects with displays like those in Figure 13. The task was
to determine the identity of the central letter and move a lever
to the left or right, depending on the letter. Two letters were
mapped onto each response. H and K were mapped onto one
response, and S and Cwere mapped onto the other. The central
letter always appeared in the same position, .5° above the fixa-
tion point. The displays were exposed for I s, so reaction time
was the most important dependent variable.

The most important independent variable was the compati-
bility of the flankers and the target. In response compatible dis-
plays (Conditions 1 and 2), the target and the flankers both
called for the same response. In response incompatible displays
(Condition 3), the target and flankers called for opposite re-

2. Noise Response Compatible

K K K H K K K

KKK H KKK

KKK H KKK

3. Noise Response Incompatible

SSSHSSS

SSS H SSS

SSS H SSS

4. Noise Heterogeneous - Similar

NWZHNWZ

NWZ H NWZ

NWZ H NWZ

5. Noise Heterogeneous - Dissimilar

GJQHGJQ

GJQ H GJQ

GJQ H GJQ

6. Target Alone

H

Figure 13. Examples of displays from Eriksen and Eriksen's (1974)

experiments, showing noise same as target (top panel), noise response

compatible (second panel), noise response incompatible (third panel),

noise heterogeneous and similar (fourth panel), noise heterogeneous

and dissimilar (fifth panel), and target alone (bottom panel), and show-

ing the distance manipulation (Conditions 4 and 5 are neutral).

sponses. The other conditions were controls that can be used
to assess facilitory and inhibitory components of the response
compatibility effect (i.e., the difference between compatible and
incompatible displays). Distance between the target and flank-
ers (.06°, .5°, and 1.0°) was the other important independent
variable.

The results, displayed in Figure 14, showed a strong response
compatibility effect. The difference in reaction time was large
when the flankers were close to the target and diminished as
distance increased. This effect is very robust, having been repli-
cated many times with many variations on the procedure. The
number of flanking letters does not seem to be a crucial factor;
similar effects can be obtained with one (Andersen, 1990; Flow-
ers & Wilcox, 1982; Kramer & Jacobson, 1991) and two
(Eriksen & Schultz, 1979; Coles, Gratton, Bashore, Eriksen, &
Donchin, 1985) on each side.

The distance between the target and the flankers is important,
regardless of the number of flankers. The response compatibil-
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F'rsttn' 14. Mean reaction times (top panel) and accuracy (bottom
panel) as a function of distance between the target and the flanking
distractors in Eriksen and Erikscn's (1974) experiment.

ity effect decreases as distance increases in many experiments

(Andersen, 1990; Eriksen & Hoffman, 1972; Flowers &Wilcox,

1982; Kramer & Jacobson, 1991). The distance effect is inter-

preted as strong evidence for space-based attention. The decline

in facilitation and interference with distance is interpreted in

terms of the width of the beam of the attentional spotlight. Fa-

cilitation and interference occur to the extent that the flankers

fall within the beam (but see van der Heijden, 1992).

The response compatibility effect is also influenced by Ge-

stalt grouping principles that determine whether the target and

distractors are seen as part of the same or different perceptual

groups (or objects). Facilitation and interference are stronger

when the target and distractors are part of the same group than

when they are part of different groups (Baylis & Driver, 1992;

Driver & Baylis, 1989; Harms & Bundesen, 1983; Kramer &

Jacobson, 1991; also see Kahneman & Henik, 1981). This is

interpreted as strong evidence for object-based attention: Ob-

ject-based theorists argue that attention selects all of the prop-

erties of the selected object, relevant and irrelevant. Distractors

are processed when they are selected together with the target—

when they fall in the same group—but not when they fall in

different groups.

Object-based research on the Eriksen and Eriksen (1974)

paradigm has ignored space in general and proximity in partic-

ular as an organizing principle, conceding proximity to the

space-based opposition. This is surprising because the spacing

effects in the original Eriksen and Eriksen (1974) experiment

could have been due to grouping rather than distance itself. In

their displays, depicted in Figure 13, the distance between the

flankers was held constant as the distance between targets and

flankers increased. This manipulation would cause the distrac-

tors to be grouped together by proximity and separated from

the target.

The confounding of grouping and distance raises an impor-

tant question: How do subjects know which item is the target?

The original design of the Eriksen and Eriksen (1974) task was

intended to remove the requirement of locating the target. The

display appeared in the same position from trial to trial and the

target always appeared in the same position relative to the other

items in the display and relative to the fixation point. Thus,

target location was highly predictable. Nevertheless, the predict-

ability of target location does not mean that subjects did not

have to engage in some processing to find it. Even if the target is

always the middle item, subjects must need to compute middle

in order to find it (Logan, 1995). It may have been easier to find

the target when distractors were separated.

Grouping effects based on principles other than proximity

are outside the scope of CTVA. The between-item effects in-

volved in finding the middle item are also outside the immedi-

ate scope of CTVA. While there may well be between-item

effects in the Eriksen and Eriksen (1974) task, there are cer-

tainly within-item effects, and those within-item effects are the

focus of the CTVA analysis.

CODE. The CODE analysis defines the feature catch in the

Eriksen and Eriksen (1974) task. For simplicity, I focused on

a three-item version of the paradigm, with one target and two

identical flanking distractors, rather than the seven-item version

Eriksen and Eriksen (1974) initially studied. Results are similar

across three- and seven-item versions. CODE analysis would

suggest that the outside flankers in the seven-item version are

too far from the target to have much of an impact on it.

Feature distributions and the CODE surface for the Eriksen

and Eriksen (1974) task are presented in Figure 15. The top

panel illustrates a narrow spacing condition, and the bottom

panel illustrates a wide spacing condition. Also illustrated in

Figure 15 are thresholds for each condition, set just above the

local minimum between the target and the flankers, which de-

fine the feature catch.

Two effects of the distance between flankers and targets are

apparent in Figure 15. First, when the flankers are close, a much

greater area of their distributions falls within the feature catch

then when the flankers are far. Thus, flankers should have a

greater impact on the feature catch when the flankers are close

than when they are far from the target. Second, when the flank-

ers are close, the local minimum between target and distractors

is higher, so the threshold is higher. The area of the target's fea-

ture distribution that falls within the feature catch is smaller

in close-spaced displays than in far-spaced displays, so overall

reaction ti me should be slower.

Both of these effects are observed in the literature: Many in-

vestigators report a diminution in the flanker effect as distance

increases (Andersen, 1990; Eriksen & Hoffman, 1972, 1973;

Flowers & Wilcox, 1982; Kramer & Jacobson, 1991). Those

same studies found faster reaction times with greater target-

flanker distances, though most investigators did not comment

on that effect.

CTVA. The Eriksen and Eriksen (1974) paradigm presents

four different kinds of stimuli that need to be represented in
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CTVA: Two alternative targets (e.g., H and 5") and two alterna-

tive distractors (response compatible and response incom-

patible). Setting the 17 values is straightforward: -n for the target

H, given that an H is presented, should be 1.0. i; for the distrac-

tor H, given that the target is an H, should be 1.0. i) for the target

S, given that the target is an //, should be between 1.0 and 0.0.

So should rj for the distractor S, given the target H. ft should be

the same— 1.0—for the two alternative targets, and wx should

be the same— 1.0—as well.

This parameterization of TVA, which is much like the one for

the preceding paradigms, fails to produce the basic Eriksen and

Eriksen (1974) results. It predicts a higher error rate on re-

sponse incompatible trials than on response compatible trials,

but it predicts equivalent reaction times. TVA gets the ordering

of difficulty right—response incompatible displays are harder

than response compatible ones—but it predicts that the effects

will appear in error rate rather than reaction time, and the re-

sults are nearly always the opposite. The major effects are on

reaction time; the effects on accuracy are weak or nonexistent

(see e.g., Eriksen & Eriksen, 1974).

The faulty predictions result from construing TVA as a sim-

ple race model. The probability of a correct response depends

on the ratio,

P(correct) -

D T D

u D T D

Figure 15. The CODE surface for a three-item version of Eriksen and
Eriksen's ( 1974) experiment with a threshold applied just above the
local minimum between the central target (T) and flanking distractors
(D). Top panel = narrow spacing; bottom panel = wide spacing.

,, S) + v(D2, H) + v(D2, S)'v(T, H) + v(T, S) + v(A,

(19)

On response compatible trials, v(Dt , H) and v(D2, //) will be

large, because the flankers, like the target, are Hs. On response

incompatible trials, however, v(D,, H) and v(D2, H) will be

small because the flankers are 5s rather than Hs. Consequently,

the probability of a correct response will be higher on compati-

ble trials than on incompatible trials, by an amount that de-

pends on the magnitude of «(£>,, H) and v(D2, H). So TVA

predicts more errors on incompatible trials, and the difference

in error rate may be quite large.

Mean reaction time depends on the denominator of Equation

19 (following the logic expressed in Equations 6 and 12 and the

derivation in Appendix A). On compatible trials, v(D,, H) and

v(£>2, H) will be large and v(D, , S) and v(D2, S) will be small,

because the flankers are Hs and not 5s. The situation is reversed

on incompatible trials. The values of v(Dt , S) and v(D2, S) will

be large and v(D,, H) and v(D2, 1!) will be small, because the

flankers are 5s and not Hs. The important point is that the mag-

nitude of the denominator will be the same in both cases. What

is lost in v(D, H), in going from compatible to incompatible

trials, is gained in v(D, S). What is lost in v(D, S), in going

from incompatible to compatible trials, is gained in v(D, H).

Consequently, mean reaction time will remain the same: TVA

cannot account for the ubiquitous compatibility effect on reac-

tion time.10

In order to fit the Eriksen and Eriksen ( 1974) results, I con-

figured TVA a counter model ( Townsend & Ashby, 1983), letting

the race run until several "runners" had finished. There were two

counters, with criteria KM = K$ = 3, and the counting process

finished as soon as one counter accumulated its criterion number

of counts. The probability of responding correctly and mean re-

action time for correct responses were computed from Equations

9 and 10. The v(x, i) values were determined by setting ri equal

to 1 .0 for H, given // and 5, given 5, .01 for H given 5 and 5

given H , and .5 for H or 5 given a neutral distractor. fl and w,

were set to 1.0. There were two distractors, located 50, 100, and

1 50 units on either side of the target. The standard deviation of

target and distractor feature distributions was 50. The results of

the fits are plotted in Figure 16.

101 think this prediction is generally true of race models. The instance

theory of automaticity (Logan, 1988), for example, cannot account for
the Stroop (1935) effect. Reaction time should be just as fast on incom-

patible trials as on compatible trials because the word should retrieve
the same number of traces in both cases. Accuracy should be much
lower on incompatible trials because there should be more word traces

than color traces in the race, so the word should be more likely to win.
The subject should produce an error whenever the word wins on an
incompatible trial, so error rate should be very high. This problem can
be solved by allowing the retrieval process to retrieve more than one
trace before terminating. The retrieval process in the instance theory
could drive a counter model, as I have done here with CTV\, or it could
drive a random walk model, as in Nosofsky and Palmeri's (in press)
exemplar-based model of speeded classification. These models are

straightforward generalizations of the simple race model, and the statis-
tics underlying the retrieval process remain the same.
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Figure 16. Mean reaction times for compatible, neutral, and incom-

patible conditions (top panel), feature catches for target and noise items
(middle panel), and accuracy (expressed as percent correct) for com-
patible, neutral, and incompatible conditions (bottom panel) predicted
by the CODE theory of visual attention for the Eriksen and Eriksen

(1974)experiment.

The mean reaction times, in the top panel of Figure 16, corre-

late strongly with the observed data in Figure 14: r = .901. The

predicted reaction times show the two patterns characteristic of

distance effects in the Eriksen and Eriksen (1974) paradigm.

First, the compatibility effect decreases as distance between the

target and the distractors increases. There is a strong compatibil-

ity effect when the distance is small. Compatible responses are

faster than neutral responses, which in turn, are faster than in-

compatible responses. The ordering of conditions remains the

same as distance increases, but the magnitude of the differences

decreases. Thus, CTVA captures the effect reported many times

in the literature (Andersen, 1990; Eriksen & Hoffman, 1972,

1973; Flowers &Wilcox, 1982; Kramer & Jacobson, 1991). The

predicted compatibility effects in Figure 16 are smaller than the

observed ones in Figure 14, perhaps because between-object

effects, which were not modeled, contributed to the observed

effects.

Second, mean reaction time in all conditions decreases as the

distance between targets and distractors increases. Averaged over

compatibility conditions, the predicted effects were close to the

observed ones (502,452, and 433 ms predicted vs. 498,449, and

439 ms observed). The distance effect is found in all experiments

in which distance is manipulated, although the investigators typ-

ically do not comment on it (Andersen, 1990; Eriksen & Hoff-

man, 1972, 1973; Flowers &Wilcox, 1982; Kramer & Jacobson,

1991). The reduction in reaction time with distance is predicted

by CTVA. The threshold is set at the local minimum in the

CODE surface between the target and the distractors. As distance

increases, the local minimum moves farther away from the target

and this has two effects, both of which speed processing. It in-

creases the feature catch, c^, from the target and it decreases the

feature catch from the distractors. These effects can be seen in

the middle panel of Figure 16, which plots the feature catch for

the target and one of the distractors as a function of distance.

Predicted response accuracy is plotted in the bottom panel of

Figure 16. Accuracy is at ceiling for response compatible dis-

plays but varies as a function of distance for incompatible and

neutral displays. At the shortest distance, accuracy is well below

ceiling for response incompatible displays, increasing rapidly as

distance increases. Accuracy for neutral displays is intermedi-

ate between compatible and incompatible displays, increasing

as distance increases. These results capture the pattern ob-

served by Eriksen and Eriksen (1974) presented in Figure 14.

Evaluation. The CTVA analysis accounted for the major

effects in the Eriksen and Eriksen (1974) paradigm. Response

compatible displays were more difficult than neutral displays,

which in turn, were more difficult than response compatible

displays. Construing CTVA as a counter model (rather than a

simple race model) allowed it to account for the difficulty in

terms of the appropriate dependent variable, showing strong

effects on reaction time and substantial effects on accuracy, as

Eriksen and Eriksen (1974) found. The CTVA analysis pre-

dicted an overall reduction in reaction time as distance in-

creased, which is commonly observed in the Eriksen and Erik-

sen (1974) paradigm but has never before been accounted for.

Zoom lens models, such as Eriksen and St. James's (1986),

would predict the opposite result, because they argue that re-

sources are spread more thinly as the spotlight expands, and

spreading resources more thinly slows responding.
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The CTVA analysis does not account for between-object
effects, which have been shown to be important in the Eriksen
and Eriksen (1974) paradigm (e.g., Baylis & Driver, 1992;
Driver & Baylis, 1989; Harms & Bundesen, 1983; Kramer &
Jacobson, 1991). Inspection of Eriksen and Eriksen's (1974)
displays in the present Figure 13 suggests that between-object
grouping by proximity effects may contribute something to the
distance effect. These effects are beyond the scope of the current
version of CTVA but remain an important topic for future
research.

General Discussion

Answers to the Five Questions

This article began with five questions that challenge any the-
ory of visual spatial attention. How does CTVA address them?
The answers have been implicit in the exposition of the theory
throughout the paper. Now it is time to make them explicit.

How is space represented? The theory assumes that space is
represented in two ways. From a bottom-up perspective, space
is represented as a CODE surface. Each object is distributed in
space and the CODE surface is the sum of the distributions. The
CODE surface is determined completely by bottom-up pro-
cesses. The theory assumes it is constructed by obligatory par-
allel processes that operate simultaneously over the whole visual
field. From a top-down perspective, space is represented in
terms of perceptual groups denned by the intersection of the
CODE surface and a threshold. The threshold is set by top-
down processes, and top-down processes can operate on the
groups produced by the threshold setting. Processes that appre-
hend spatial relations, for example, may operate on the groups
that CODE provides (Logan & Sadler, 1996).

What is an object? In CODE, an object is a perceptual
group. Thus, an object is whatever falls within an above-thresh-
old region of the CODE surface. CODE defines a hierarchy of
objects in a principled fashion, by moving the threshold up and
down the CODE surface. Low thresholds produce a small num-
ber of multi-element objects; high thresholds produce a larger
number of single-element objects.

Theoretical integration. At this point, the theoretical inte-
gration should be clear: The above-threshold region of CODE
surface is BOTH an object and a spotlight. CTVA selects objects
and regions of space in the same act of attention. The difference
between object-based and space-based attention is a matter of
perspective. In CTVA, the two views are complementary rather
than adversarial.

What determines the shape of the spotlight? The spotlight
in CT\A is the above-threshold region of the CODE surface.
The shape of the above-threshold region is determined jointly
by the shape of the CODE surface and the threshold. The spot-
light can have different shapes, depending on the threshold set-
ting, but the shapes are constrained by the shape of the CODE
surface, which depends deterministically on the proximity of
the items in the display. CTVA does not banish omnipotent ho-
munculi entirely because top-down processes determine the
threshold setting, but it eliminates much of the work the ho-
munculus had to do in space-based theories by constraining the
shape of the spotlight to match the topography of the CODE
surface.

How does selection occur within the focus of attention? Selec-
tion within the focus of attention occurs according to the prin-
ciples of Bundesen's (1990) TVA model of selection. The per-
son controls a bias parameter that makes a particular categori-
zation more likely and a priority parameter that makes relevant
objects more likely to be selected. In the counter-model version
of the theory, the person also controls the response criteria that
determine the number of counts required to categorize an
object.

How does selection between objects occur? Selection be-
tween perceptual objects depends on top-down processes that
apply conceptual representations of spatial relations to above-
threshold regions of the CODE surface. The top-down processes
include spatial indexing and reference frame alignment. The
top-down processes are addressible by language, so that one per-
son's utterances can control another person's attention (Logan,
1995). Selection between objects is the least well-specified part
of the theory. Logan and Sadler (1996) sketched the computa-
tional requirements of the apprehension of spatial relations be-
tween objects, but they did not implement them at the same
level of specificity as the other components of CTVA.

Benefits of CTVA

The marriage of CODE and TVA is beneficial in several re-
spects. First and foremost, it provides quantitative accounts of
seven important phenomena that have shaped the current liter-
ature on visual spatial attention. These accounts are unique be-
cause the accounts of competing theories are primarily qualita-
tive. Moreover, CTVA provides some new insights into the phe-
nomena that were not apparent in the qualitative accounts. The
CTVA analysis ofPrinzmetal's( 1981 )experiments on grouping
effects on illusory conjunctions suggested that subjects grouped
the displays only occasionally and most often treated the display
items as separate objects. The analysis of Cohen and Ivry's
(1989, 1991) experiments on distance effects in illusory con-
junctions and conjunction search showed that a single mecha-
nism could account for what appeared to be qualitatively
different effects. The CTVA analysis of Banks and Prinzmetal's
(1976) experiments showed that a serial search strategy, which
they explicitly discounted, turned out to be necessary to ac-
count for the advantage of perceptually isolating the target. And
the CTVA analysis of double and triple conjunction search sug-
gested that the advantage of triple conjunctions may stem, in
part at least, from attentive processes that compare display
items with a description of the target, rather than the preatten-
tive processes proposed by other theorists (Grossberg et al.,
1994; Treisman& Sato, 1990; Wolfe etal., 1989).

The CTVA analyses were beneficial because they were among
the first to provide a formal representation of space in the atten-
tion literature. Theories of visual attention agree that space is
important and location information is special, but few say any-
thing explicit about the representation of space and the proper-
ties of the representation (but see Ashby et al., 1996; Maddox
et al., 1994). The CODE theory is important because it brings
grouping by proximity back into the repertoire of object-based
approaches to attention and provides a reasonable account of
that grouping principle (Compton & Logan, 1993; van Oeffelen
&Vos, 1982, 1983).
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The CTVA analyses were also beneficial in that they showed
the power of Bundesen's (1990) TVA model. Bundesen and col-
leagues applied the model primarily to partial and whole report
tasks (Bundesen, 1987; Bundesen, Pedersen, & Larsen, 1984;
Bundesen, Shibuya, & Larsen, 1985; Shibuya & Bundesen,
1988). Bundesen (1990) extended it to deal with other phe-
nomena, and the current analysis extends it even further. The
idea that selective attention can be based on a race between al-
ternative candidates is exceptionally powerful and promising
(e.g., Bundesen, 1993). It is especially interesting because the
theory is tractible mathematically and assumes independence
of processes. By contrast, many current formal models of atten-
tion, typically based on connectionist architectures, assume
highly interactive processes and, consequently, must be ana-
lysed by simulation rather than simple mathematics (e.g., Co-
hen et al., 1990; Grossberg et ah, 1994; Humphreys & Miiller,
1993;Mozer, 1991;Phafet al., 1990).

Limitations of CTVA

The CTVA model is limited in several respects. Some of the
limitations point out important directions for future research,
but some are stumbling blocks from which CTVA may never
recover. Some of the limitations stem from the fact that CTVA
is abstract. It says nothing about the nature of the features that
comprise the feature distributions, and it says nothing about
how similarity between perceptual objects and category tem-
plates is computed. It does not deal with other grouping princi-
ples, such as grouping by similarity, and it does not deal with
motion. These limitations can be overcome by future research,
and 1 will suggest possible solutions to some of these problems
later.

More serious limitations stem from CODE'S assumption that
objects can be idealized as points in space (i.e., if the threshold
is high enough). This assumption prevents CODE from dealing
with objects that extend in space, with structured objects, and
with interconnected or overlapping objects. This is an impor-
tant limitation because many objects in the world have these
properties. Many objects, such as the page you are reading, ex-
tend in space and cannot be easily idealized as points. Many
objects are structured—things are built from interconnected
parts (Biederman, 1987; Marr & Nishihara, 1978)—and the
representations of structured objects cannot be idealized as
simple points. Moreover, objects often overlap and occlude each
other, and that is not easily captured in the pointilistic CODE

representation.
In principle, it may be reasonable to idealize the locations of

objects as points. That strategy is a common one in the linguis-
tic and psycholinguistic literature on the apprehension of spatial
relations (Herskovits, 1986; Jackendoff & Landau, 1991;
Talmy, 1983). Even in that literature, however, some objects
are idealized as lines, regions, and volumes, and that is hard to
reconcile with the CODE idealization. Moreover, idealization of
objects as points may be a more difficult problem for object
recognition (identification) than for localization, for reasons

described above.
It may be possible to deal with these problems by relaxing the

assumption that objects are idealized as points, allowing objects

to occupy 1 -D, 2-D, and 3-D regions in space. It may be possible
to account for distance and grouping effects by assuming that
the boundaries of objects vary in a manner similar to the varia-
tion in the pointilistic objects in CODE. The position of a line,
for example, might vary according to a Laplace distribution in
a direction orthogonal to its main axis. However, much of the
elegance of CODE may be lost in the translation.

The difficulty with extended, structured, and overlapping ob-
jects is mitigated somewhat in the experimental paradigms that
CTVA and the other theories of visual spatial attention address.
Most experiments on visual search, partial report, and so on,
present subjects with separate objects with a simple structure,
and the CODE representation may be well suited for those dis-
plays (but see Wolfe, 1996). It may not be unreasonable to ide-
alize a display of randomly positioned letters as a set of uncon-
nected points. Thus, CTVA is a reasonable model of current
research in visual spatial attention.

Another difficulty with CTVA is that it defines objects only in
terms of location. Proximity is the only grouping principle that
determines what an object is. While many researchers would
agree that location is an important defining characteristic of an
object, most would argue that it is not the only one. Grouping
by similarity (Baylis & Driver, 1992), common fate (Driver &
Baylis, 1989), and connectedness (Kramer & Jacobson, 1991)
have been shown to produce strong object-based effects inde-
pendent of proximity. It may be possible to incorporate the
effects of grouping by similarity and common fate into CTVA
(see below), but connectedness may be difficult because it im-
plies a hierarchical structure that is not captured in CODE'S
idealization of objects as points (see Palmer & Rock, 1994).

Capacity Limitations and the Locus of Selection

The locus of selection and the nature of capacity limitations
are longstanding issues in the attention literature, occupying
psychologists since the time of Broadbent (1958) if not earlier.
The typical theory of attention includes early preattentive pro-
cesses that are unlimited in capacity followed by attentive pro-
cesses that are limited in capacity. Controversy surrounds the
locus of the boundary between preattentive and attentive pro-
cesses and the involvement of capacity limitations in each stage
of processing. The CODE theory of visual attention takes a po-
sition on these issues, departing somewhat from the typical
view.

Locus of selection. The locus of selection issue has been ar-
ticulated in at least two ways in the literature: One concerns
attended items, addressing the kind of information on which
attentional selection is based. Advocates of early selection argue
that items are selected on the basis of physical features, like lo-
cation and color (van der Heijden, 1992), while advocates of
late selection argue that attentional selection is based on iden-
tity, meaning, or category membership (e.g., Shiffrin & Schnei-
der, 1977). The second way of articulating the issue concerns
unattended items, addressing the level of processing attained by
stimuli that attention does not select. Advocates of early selec-
tion argue that unattended stimuli receive only cursory analysis
of physical features (Broadbent, 1958) and advocates of late
selection argue that unattended stimuli are fully processed, to
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the level of identification (Deutsch & Deutsch, 1963). The two
approaches appear similar, and many consider them equivalent.
However, they really address different issues. As van der Heijden
(1992) points out, all stimuli could be processed fully, to the
level of identification, but selection could be based on location
nevertheless. Late selection in one sense could be paired with
early selection in the other sense.

CTVA is both an early selection and a late selection theory
with respect to attended items. It is an early selection theory
from the perspective of CODE, because between-object selec-
tion is based on location, and selection by location is tradition-
ally associated with early selection. However, it is a late selection
theory from the perspective of TVA, because TVA selects items
by categorizing them (Bundesen, 1990). Items race to be cate-
gorized, and the first one (or the first K) to finish is (are)
selected.

CTVA is an early selection theory with respect to unattended
items, because unattended items are not categorized. Categori-
zation occurs when an item wins the race (or when K items
finish). Unselected items lose the race and therefore are not
categorized. They receive only cursory processing.

Note that CTVA does not accept the common assumption of
a chain of increasingly abstract processes going from stimulus
to response, beginning with low-level representations and pro-
ceeding to identity, categorization, and meaning. Like TVA,
CTVA assumes only two levels of representation, precategorical
and categorical. The precategorical representation consists of
the feature distributions and the CODE surface; the categorical
representation consists of categorizations of display items. In
principle, the same kinds of information exist in both represen-
tations. The precategorical representation contains the percep-
tual information that supports categorization, and the categor-
ical representation contains categorizations of perceptual infor-
mation. Abstract categories, like mammal, are defined in terms
of perceptual features in the precategorical representation, just
as concrete categories, such as red, are (for further discussion,
see Logan, 1995).

Note as well that CTVA does not assume that all possible cat-
egorizations of the display can be processed in parallel over the
whole display. Some categorizations, such as deciding whether a
display instantiates a categorical spatial relation like above or
beside require more than the TVA part of CTVA. Logan (1994,
1995) argued that apprehension of spatial relations requires
integrating information from several attentional fixations,
whereas TVA describes what happens in a single fixation. Ap-
prehension of spatial relations requires the underspecified late
location part of CTVA depicted in Figures 1 and 6. Other cate-
gorizations that require more than one fixation of attention
likely cannot be done by the TVA part of CTVA. It is not imme-
diately clear what kinds of categorization can and cannot be
done by TVA. Future research and further specification of the
TVA and late location parts of CTVA will be required before an
answer emerges.

Capacity limitations. Theories of attention assume that the
capacity for processing information is unlimited, limited, or
fixed. According to Townsend and Ashby (1983), capacity is
unlimited if the rate at which one item is processed does not
depend on the number of items being processed simultaneously.
Capacity is limited if the rate at which an item is processed

depends on the number of other items being processed. Capac-
ity is fixed if it is limited, and the limit is constant across dis-
plays, tasks, and situations. CTVA assumes that capacity is
limited.

According to Bundesen (1990), the processing capacity, C,
of TVA and CTVA can be defined as the sum of all of the v(x,

i) values across all perceptual categorizations of all elements in
the visual field, that is

According to this definition, capacity is unlimited if the v(x, i)
values do not change when a new item is added to the display;
that is, C increases by 2,<R v(x, i) when a new item is added;
capacity is limited if the v(x, i) values decrease when a new
item is added to the display; C increases by an amount less than
2(,R v(x, i) when a new item is added; and capacity is limited
and fixed if the v(x, j) values decrease so that C stays constant.

According to this definition, CTVA and TVA are limited-ca-
pacity models. This follows from the definition of v(x, i) in
Equations 5 and 12. The value of v(x, i) is the product of ij(jc,
0 , ft , and the normalized attentional weight, wf/ 2 ws . As new
items are added to the display, the attentional weight on item x

decreases ( see Equation 6 ) and, consequently, v(x,i) decreases.
Bundesen ( 1990) argued that if the items in the display were

homogeneous, that is, if£&v(x, Oft was constant for all items
in the display, that capacity, C, would be fixed as well as lim-
ited." In many applications of CTVA, the homogeneity as-
sumption will be violated because v(x, i) depends on the fea-
ture catch, cx, (see Equation 12) and the feature catch will be
different for different items in the display (i.e., whenever items
are unevenly spaced). Thus, CTVA assumes limited capacity
but usually not fixed capacity.

In some applications, CTVA does not use attention weights
to select targets to process in the same way that TVA does. In
the fits to the Eriksen and Eriksen ( 1974) data, the attention
weights, wx, were set to 1 and the central target item was selected
by the late location system outside of CODE and TVA (i.e., us-
ing Logan's 1995 theory). In those applications, the v(x, i) val-
ues are not affected by adding other items to the display, so
CTVA assumes unlimited processing capacity.

Note that processing capacity is not the same theoretical con-
struct as processing resources. Processing capacity plays a role
in resource theories, but it is only one of several constructs at
work in those theories. Most resource theories make the strong
assumption that processing capacity is both limited and fixed
across displays, tasks, and situations (i.e., C is constant in all
contexts), and neither TVA nor CTVA make that assumption.

'' The fixed-capacity version of TVA does not assume that capacity is

fixed at the same value for all displays, tasks, and situations. The same

experimental procedure can be complicated in a way that violates the
homogeneity assumption (e.g., by crowding so many items in a display
that lateral masking is produced), and the factors that limit capacity in

one situation may not be the ones that limit it in another (e.g., capacity

may be limited by display contrast in one situation and by item sim-

ilarity in another). Thus, the TVA idea of fixed capacity is quite differ-
ent from the resource-theory idea of fixed capacity.
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Resource theories go beyond the idea of processing capacity,
making additional assumptions about how capacity can be al-
located. They argue that resources can be allocated in parallel
rather than in series and the allocation is graded rather than all
or none. Moreover, they assume that performance changes in a
continuously graded fashion as resource allocation varies (see
e.g., Kahneraan, 1973; Navon & Gopher, 1979; Norman &
Bobrow, 1975). None of these ideas is entailed by the concept
of processing capacity. TVA and CTVA are largely mute on the
issue of resources and therefore immune to the criticisms of
resource theory (e.g., Allport, 1980; Duncan, 1980; Logan, in
press; Navon, 1984; Neisser, 1976).

Future Directions

A theory as broad as CTVA is a fertile ground for future re-
search. By incorporating Bundesen's (1990) TVA, CTVA inher-
its the phenomena that TVA accounts for, and TVA is already a
far-reaching theory. One important direction for future re-
search is to look inward and test the assumptions underlying
both TVA and CTVA. The distributional assumptions are im-
portant to test because they were made largely for mathematical
convenience. Other distributions may do as well as or better
than the exponential and the Laplace (see e.g., Ashby et al.,
1996; Compton & Logan, 1993; Maddox et al., 1994). Other
directions for future research are more outward-looking, trying
to extend the theory to new domains. In the remainder of the
article, I will describe three that are high on my agenda.

Proximity and grouping effects in partial report. Several in-
vestigators have found that performance in partial report tasks
is influenced by perceptual grouping and by the presence of
nearby distractors. Fryklund (1975) showed that subjects do
better if the items they are supposed to report are adjacent to
each other in coherent groups. Merikle (1980) found something
similar, showing that partial report performance was better
when the to-be-reported subset was compatible with the Gestalt
grouping of the display than when it was incompatible. It should
be possible to account for these results with CTVA, using ver-
sions of TVA that Bundesen and colleagues developed for partial
report tasks (e.g., Bundesen, 1987; Bundesen et al., 1984; Bun-
desen et al., 1985; Shibuya & Bundesen, 1988).

The key to fitting these data may lie in a proximity effect re-
ported by Snyder (1972) and Mewhort, Campbell, Marchetti,
and Campbell (1981). In partial report tasks that probe for a
single item rather than a set of items, errors are often correct
reports of the letters adjacent to the target item. The CODE
theory of visual attention would explain this result in terms of
the feature catch. Items adjacent to the target are likely to in-
trude in the feature catch for the target because significant parts
of their feature distributions are likely to fall in the above-
threshold region centered on the target. Adjacent items are
more likely than nonadjacent items to intrude in the target's
feature catch because the feature distribution falls off exponen-
tially as distance increases. Thus, in principle, CTVA can ac-
count for the Snyder (1972) and Mewhort et al. (1981) results.
The question is whether it can account for them quantitatively,
using reasonable parameter values.

The same idea can be extended to account for the grouping

effects reported by Fryklund (1975) and Merikle (1980): Items
close to each other or in the same perceptual group are likely to
intrude in each other's feature catch. If the task requires identi-
fication of adjacent items or items in the same group, these in-
trusions might be beneficial, perhaps priming responses appro-
priate for other to-be-reported items. However, if the task re-
quires identification of nonadjacent items or items in different
perceptual groups, then intrusions from adjacent items and
items in the same perceptual group might be harmful, priming
inappropriate responses that compete with the required re-
sponses to to-be-reported items. To test this idea, CTVA would
have to be extended to include the TVA account of multi-item
partial report performance (e.g., Bundesen, 1987; Bundesen et
al., 1984; Bundesen et al., 1985; Shibuya & Bundesen, 1988)
and, possibly, to include priming of not-yet-reported items.12

Grouping by similarity. CODE and CTVA deal only with
grouping by proximity, yet many other factors affect perceptual
grouping and grouping by those factors affects performance in
attention tasks. An important direction for future research is to
extend CODE and CTVA to deal with other grouping princi-
ples. Grouping by similarity is a good candidate for the first step
in that direction because it is well studied perceptually (e.g.,
Beck, Prazdny, & Rosenfeld, 1983; Bergen, 1991) and it has
powerful effects on attention (e.g., Baylis & Driver, 1992; Dun-
can & Humphreys, 1989; Harms & Bundesen, 1983; Hum-
phreys & Miiller, 1993;Ivry&Prinzmetal, 1991; Wolfe, 1994).

The mechanisms for dealing with similarity effects may al-
ready be present in CTVA. The similarity parameters in TVA
may interact with CODE to limit access to the attentional sys-
tem to items that share common characteristics. Manipulating
ft increases access for items similar to category i, that is, with
high TI(X, i) values, and decreases access for items dissimilar to
category i, (that is, with low ij(x, i) values). If the items in the
display are dissimilar—if the distribution of TI(X, i) values is
distinctly bimodal with some very high and some very low val-
ues—then manipulating /? should "parse" the display into two
groups—one with high ri(x, /) values and one with low i\(x, i)
values. However, if the items in the display are similar—if the
distribution of ri(x, i) values is unimodal and compact—then
manipulating fi should not separate the items.

The effects of manipulating 0 and ij on the feature distribu-
tions can be seen in Figure 17. Figure 17 represents feature dis-
tributions and the CODE surface for displays like OXXOXO.
Similarity between the Xs and Os decreases going from the top
left to the bottom right, and the effective feature distributions
for the Os decrease in area as similarity decreases. The feature
distributions for the Os were multiplied by the product of ft and
y(x, i), which reduces the area under each feature distribution.
Feature distributions with low values of r/(x, i) are suppressed,
whereas feature distributions with high values of TI(X, i) main-
tain their salience. The CODE surface, however, is built before
ft has its effect in the current version of CTVA, so the CODE
surface remains the same as similarity varies.

The proposed modification of CTVA is presented in Figure
18. In the modification, manipulations of j3 feed back to the

12 Since this article went to press, Logan and Bundesen (1996) ap-
plied CTVA to these partial report tasks with considerable success.
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0 X X 0 X 0 0 X X 0 X 0

0 X 0 o x x o x o

Figure 17. Feature distributions and original CODE surfaces for items that differ in similarity (X and O),

with n(x, j')ft = 1 -0 for the Xs but varying between 1.0 and 0.0 for the Os (1.0, 0.8, and 0.6 from top to

bottom in the left-hand panels; 0.4,0.2, and 0.0 from top to bottom in the right hand panels).

CODE surface so that the CODE surface changes as similarity
between the Xs and the Os decreases. Figure 18 plots effective

CODE surfaces that were produced by multiplying all of the
feature distributions in the display by the product of ft and TI(X,
i) and then summing the feature distributions. The multiplica-
tion changes the shape of the CODE surface so that items with
low values of ri(x, i) are suppressed, whereas feature distribu-
tions with high values of ri(x, i) remain prominent.

It remains to be seen whether this modification of CTVA can
account for similarity effects in grouping and attention experi-
ments. The idea can be tested quite stringently by requiring the
model to account for both grouping judgments and effects on
performance in attention experiments with the same parameter
values. That test, however, is beyond the scope of this article.

One limitation of the proposed approach is that it depends
on top-down specification of ft, which requires foreknowledge
of the categorical difference between the groups to be segre-
gated. Textbook demonstrations of grouping by similarity do
not (seem to) require foreknowledge of the dimension that dis-
tinguishes the groups. Moreover, visual search for singleton
targets—items that differ in some unforeseen property from the

abstractors—is almost as easy as search for predesignated
targets (Mttller, Heller, & Zeigler, 1995; Treisman, 1988). It is
possible that there is some interaction between bottom-up and
top-down processes that allow the system to set the appropriate
fi values to achieve segregation, but there is not much time for
those interactions to take place because similarity grouping
effects are apparent very quickly (Beck et al., 1983) and single-
ton popout is very fast (i.e., cost of not knowing the target di-
mension is small; Miiller et al., 1995; Treisman, 1988). Perhaps
CTVA will have to be supplemented by some other mechanism
that segregates dissimilar items and isolates dissimilar targets
(cf. Cave & Wolfe, 1990; Humphreys & Miiller, 1993).

Attention and automaticity. Theories of visual spatial atten-
tion are intended to interface with theories of other aspects of
cognition, such as memory retrieval, but they rarely do. Conse-
quently, theories of visual spatial attention are largely ahistor-
ical, capturing a moment in a person's life without describing
how the knowledge that is necessary to support current perfor-
mance was acquired. Similarly, theories of other aspects of cog-
nition rarely say anything about visual spatial attention and the
perceptual processes that allow them to inferface with the ex-
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0 X 0

Figure IS. Feature distributions and modified CODE surfaces fur items that differ in similarity (X and
O),with>i(;r,/)ft = 1.0 for the Xs but varying between 1.0 and 0.0 for the Os( 1.0,0.8, and 0.6 from top to
bottom in the left-hand panels; 0.4,0.2, and 0.0 from top to bottom in the right-hand panels).

ternal world. An important goal for future research is to integ-

rate CTVA with other theories of cognition, especially theories

that describe learning.

I am particularly interested in interfacing CTVA with the in-

sumce theory of autotnaticity(Logan, 1988, 1992) and a recent

generalization of the theory by Nosofsky and Palmeri (in press)

called the exemplar-based random walk (EBRW) model. The

instance theory and EBRW describe the acquisition and expres-

sion of automaticity in a manner that relates it to theories of

memory (Hintzman, 1988; Jacoby & Brooks, 1984), concept

learning (Hintzman, 1986; Medin & Schaffer, 1978; Nosof-

sky, 1988), problem solving (Ross, 1984, 1987), judgment

(Kahneman & Miller, 1986), and social categorization (Smith

& Zarate, 1992). So interfacing CTVA with instance theory

should go a long way toward a general account of cognition.

The instance theory is an excellent candidate for interfacing

with CTVA because they are both race models. The instance the-

ory describes automaticity as performance based on retrieval of

past solutions from memory, and during retrieval, the different

traces of past solutions in memory (the instances) race against

each other, with the first trace to finish determining performance

(Logan, 1988, 1992). Until now, the instance theory has as-

sumed a binary similarity gradient, with traces either identical to

each other or completely different, and it has assumed that the

retrieval time distribution was the same for each trace. These

assumptions were made largely for mathematical convenience,

in order to support proofs that mean reaction time and the entire

distribution of reaction times would decrease as a power function

of practice (Logan, 1992). The EBRW model is an improvement

over the instance theory because it assumes that similarity is

graded continuously and retrieval time varies as a function of

similarity. Moreover, EBRW generalizes the idea of a simple race,

in which the first instance retrieved is the winner, to a relay race,

in which several instances are retrieved before the process termi-

nates. The idea is similar to the counter-model generalization of

CTVA in Equations 9 and 10.

The integration of CTVA and the instance-EBRW theory

would interpret each instance as an r\(x, i) parameter, with a

retrieval time that depends on v(x, i). As in the original in-

stance theory, different traces of the same stimulus would have

distinct but identical y(x, i) (and v(x, i)) values, so that re-

trieval time would depend on the number of instances in mem-
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ory as well as their similarity to the current object of attention.

The novel contribution (from EBRW) is to allow nonidentical

traces to enter the race with retrieval times that are functions of

their similarity to the current object of attention. Moreover, the

attentional mechanisms in CTVA would allow a principled ac-

count of the effects of attention in the acquisition and expres-

sion of automaticity, which is a central topic in recent investiga-

tions of the instance theory (Logan & Etherton, 1994; Logan,

Taylor, & Etherton, 1996). Of course, the proof will be in the

pudding. It remains to be seen whether these speculations can

provide reasonable accounts of the attention and learning phe-

nomena associated with automaticity.

Conclusions

The combination of CODE and TVA accounted for many

phenomena in the literature on visual spatial attention. The

CTVA model provided coherent answers to the five questions

that challenge current theories of attention. It integrated object-

based and space-based approaches to attention, arguing that the

output of CODE, which TVA selects, is both an object and a

region of space. The major contribution of CTVA was to pro-

vide coherent accounts of seven major empirical phenomena

that shaped the current literature on visual spatial attention.

This was an important contribution because the CTVA ac-

counts were quantitative, whereas previous accounts were only

qualitative.

The strengths of CTVA derive equally from the representa-

tional assumptions of the CODE theory and the processing as-

sumptions of the TVA theory. By itself, CODE addresses only

the phenomenology of grouping by proximity; combined with

TVA, it addresses attention. By itself, TVA underestimates the

importance of space and cannot account for the effects of dis-

tance and grouping by proximity; combined with CODE it pro-

vides a more complete and more balanced account of atten-

tional phenomena. The CTVA model is strong primarily be-

cause it was built from strong components; CODE and

especially TVA were impressive theories to begin with. Perhaps

the most important contribution of CTVA is to show that strong

theories can be made even stronger by combining them with

other theories and that, ultimately, psychology can progress by

developing theories cumulatively (Posner, 1982).
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Appendix A

The Mathematical Basis of TVA

Bundesen's (1990) TVA depends on the exponential distribution to

predict reaction time and accuracy. The purpose of this appendix is to

provide the derivations and explain the reasoning underlying them.

Exponential Distribution and v(x, i)

Bundesen (1990) interprets the v(x, i) values as rate parameters in

exponential distributions. The exponential distribution's density func-

tion is

/(f) = Xexp[-X().

Its cumulative distribution function is

= [" f(t)dt= l -enp[-A(] .
Jo

( A l )

(A2)

The relation between v(x, i) and the exponential distribution de-

pends on the hazard function, h(t). Bundesen (1990) assumed that the

v(x, i) values were hazard functions for exponential distributions. The

general expression for the hazard function is

(A3)

The hazard function for an exponential distribution is 0 for time < 0

and constant over time > 0, as can be verified by inserting Equations A1

and A2 into A3. The value of the constant is A, the rate parameter for

the exponential distribution.

The hazard function is useful for many reasons (see Luce, 1986;

Townsend & Ashby, 1983). For our purposes, the hazard function is

useful because it leads directly to the distribution function:

Substituting the constant hazard function for the exponential distribu-

tion, h(x) = \, into Equation A4 yields:

F(t)= 1 -exp[-A?J, (A5)

which is the same as Equation A2. Thus, in Bundesen's (1990) theory,

the v(x, i) values are directly interpretable as rate parameters—X val-

ues—for exponential distributions. The exponential distributions are

important because they yield estimates of reaction time immediately:

The mean and standard deviation of the exponential and, hence, reac-

tion time, are both 1 /A.

Reaction Time

Exponential distributions behave nicely when they race against each

other. The density function,/^]tl(f), for the minima of two distributions,
/j(()and/2(0,is

(A6)

(A7)

If the distributions are exponential, then A6 becomes

fminC) = X,exp[-X,(]exp[-X 2(] + A2exp[-X2/]exp[-A,r].

= 1 -exp (A4)

Thus, the distribution of minima sampled from two exponential distri-

butions is itself an exponential distribution with a rate parameter equal

to the sum of the rate parameters from the parent distributions from

which the samples were drawn. This result can be generalized, using

Equations A6 and A7 recursively, to prove that the distribution of min-

ima sampled from n exponential distributions is itself an exponential

distribution with a rate parameter equal to the sum of the n rate param-

eters. This generalization is important because it allows Bundesen (and

me) to predict the mean and the standard deviations of the finishing

times of the race; they are simply the reciprocal of the rate parameter of

the exponential distribution that describes the race.
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Accuracy

Response probabilities can be derived from Equations A6 and A7.

The probability that/i(0 wins the race can be obtained by integrating

the first term on the right-hand side of A6, that is,/i(t)[I - F2(t)l, and
the probability that /^(t) wins the race can be obtained by integrating

the second term on the right-hand side of A6, that is, f2 (t) [ 1 -/•',( t)].
The results for exponential distributions can be obtained by integrating
the two terms on the right-hand side of the top line of Equation A7. The
probability that/(t) finishes first is

P ( l f i r s r ) -r X,exp[-X,Oexp[-X2/]rf(

(A8)

and the probability that^(t) finishes first is

P(2 first) = J X2exp[-X2J]exp[-X,;]dl

(A9)

These results can be generalized by recursion to samples from n

different exponential distributions. In general, the probability that the
sample from one distribution finishes first is simply the ratio of the rate
parameter for that distribution to the sum of the rate parameters for all
of the distributions in the race. Substituting v(x, i) for X, yields the

following general equations: The probability that item x finishes first
(i.e., that AT is the first item categorized as /) is

P(x first) =
2 v(z,i)'

(A10)

and the probability that categorization i finishes first (i.e., that i is the
first categorization made of x) is

P(i.first) --
v(x, i)

(A l l )

Equations A10 and Al I can be used to generate predictions about ac-
curacy, if x is the correct item to select and the other items in S are

incorrect (Equation A10) or if i is the correct categorization and the
other categorizations in R are incorrect.

Appendix B

Pigeonholing and Filtering in TVA

There are two selection mechanisms in TVA, pigeonholing and filter-
ing. Following Broadbent (1971), pigeonholing involves selecting a cat-
egorization for a display item whereas filtering involves selecting a dis-

play item to be processed. Pigeonholing and filtering are separable se-
lection mechanisms in that increasing the likelihood of a particular
categorization (pigeonholing) should not affect the likelihood that a
particular item is the first object of the categorization (filtering), and

increasing the likelihood that a particular item is selected (filtering)
should not affect the likelihood that the item is categorized in a partic-
ular way (pigeonholing).

In TVA, pigeonholing is accomplished by manipulating ft and filter-

ing is accomplished by manipulating wx. The manipulations seem sim-
ilar because (1, has is computed by multiplying the TI(X, i) value (see
Equation 5), and wx has is computed by multiplying the ij(jc, i) value
by a pertinence parameter, n-,- (see Equation 6). Many people (including

me) have difficulty understanding how pigeonholing and filtering could
be separable given the similarity in the way their manipulations are
effected. The purpose of this appendix is to make clear the reasons why
the mechanisms are separable.

j3 and Pigeonholing

Bundesen (1990) argued that manipulating the bias to catetorize an
item as /, ft, affected the probability of categorizing every item in the
visual field as i without affecting the probability that any particular item
would be the first one categorized as / . This effect, known as pigeonhol-

ing (Broadbent, 1971), can be seen by expanding the v(x, i) terms in
Equation Al 1 so that they represent the product of ti(x, Oandft••

The probability that / is the first categorization made of x is:

P(iflrsl) =
v(x, i)

iU. Oft
" 2 v(x,j)Pj

J.H

( B l )

Increasing ft will increase the numerator of Equation Bl and therefore
increase the probability that i is the first categorization to finish for x.

The probability that x is the first item categorized as i is given by
Equation A10:

P(xflrst) =
2 u ( z , i )

(B2)

This probability is independent of ft. In other words, increasing ft will
not increase the probability that any particular item, x, will finish first
(i.e., be the first to be categorized as /') because ft increases the proba-
bility that every item will finish first by the same amount. If ft =0.9,

then every TI(X, i) value is multiplied by 0.9, whether 17 is large or small
for that particular jt. Thus, increasing ft has the effect of shrinking the
time scale of the race between the different items. However, shrinking
the time scale does not affect the order in which the items finish. Conse-

quently, manipulating ft affects the probability of categorizing an item
as i without affecting which item will be the first one to be categorized as

i. This is the biasing effect of pigeonholing, as envisioned by Broadbent
(1971).

(Appendixes continue on next page)
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Put differently, Equations B1 and B2 show that the effect of increasing

ft is spread over every item in the display—it increases the probability

that every item will be categorized as i. Again, this is the biasing effect

of pigeonholing, envisioned by Broadbent (1971) and incorporated into

TVA by Bundesen f 1990).

Filtering and wx

Bundesen (1990) argued that manipulating the attentional weight on

an item x, wx, affected the probability that item x would be selected

without affecting the probability that x would be categorized in any
particular way. Increasing wx will increase the numerator of Equation

B2 and therefore increase the probability that item x is selected first.

Increasing n>v will not increase the likelihood that item jt will be catego-

rized in any particular way, because wx affects all categorizations of x to

the same extent. This follows from Equation B1. The attentional weight,
wx, drops out of the equation and therefore has no effect on the proba-

bility that x will be categorized as i. Thus, if wx/2wx was 0.9, the tj

values for each categorization of x would be multiplied by 0.9, shrinking

the time scale with which the categorizations finished but not affecting
which categorization finished first.

The logic seems clear when wx is the focus of the argument. However,

the person does not manipulate wx directly, but instead, manipulates

TT,, which determines wx. The effect is shown in Equation 6, which is
reproduced here:

The potential for confusion slems from the fact that TT, and ft both have

their effects by multiplying the r)(x, i) values. How can TT and 0 have

separate effects when they both multiply 17?

The answer lies in the scope of the effects. Changes in /? are affect all

items equally (see Equation 5) . Changes in TT cause changes in atten-

tional weights (see Equation 6), and a change in the attentional weight

of an item affects all categorizations of the item equally (see Equation

5 ) . Thus, the effects of ft are spread over all the items in the display and

consequently change the likelihood that every item is categorized as / ,

whereas the effects of v, are spread over all categorizations of item x

and consequently change the likelihood of all possible categorizations
of item x.

Appendix C

Details of the CTVA Fits

This section is intended to describe the fits of the CTVA model in
enough detail to allow interested readers to replicate them for them-

selves. In order to make analytically tractable fits, I made a number of

simplifying assumptions. The most important one was to fit all of the
data with 1-D CODE surfaces, for which the boundaries of the above-

threshold regions were defined as points that could be found by com-

puting local minima on the CODE surface. The boundaries of above-

threshold regions on more realistic 2-D CODE surfaces were lines that

would not be easy to compute analytically. Fortunately, many of the

data sets I fitted displayed items in linear arrays, so the I-D CODE

surfaces were appropriate.
The fits were calculated deterministically using the equations in the

text of the article. One of the virtues of CTVA is that predictions can

be derived analytically without stochastic simulation. In principle, the

CTVA predictions can be calculated with pencil and paper using the
equations in the text and the procedures described here. In practice, I

used Pascal programs to generate predictions, to make it easier to ex-

plore the effects of varying parameters and to find parameter values that
produced good fits to the data.

Prinzmetal(I98l)

The first step in fitting Prinzmetal's (1981) data was to define the

feature catch. I used two 1 -D CODE surfaces to define the feature catch,

one for objects within groups and one for objects between groups. The
within-group surface was constructed, essentially, by drawing a hori-

zontal line through the rows of circles in Figure 3 and positioning the

centers of the feature distributions in the centers of the circles. Objects

within groups were 125 units apart, and objects between groups were

250 units apart. I chose a high and low threshold along that CODE

surface, based on the local minima between the centers of the circles.

For the high threshold, I set the limits of integration one unit more than
the local minimum to create separate above-threshold regions for each
circle with two units of distance separating them. For the low threshold,

I set the limits of integration one unit less than the local minimum so

that the above-threshold regions centered on each circle would overlap

and form one large region. The within-group feature catch was calcu-

lated by integrating a 1 -D Laplace distribution (see Equations I and 3)

between the limits of the above-threshold regions.

When the distractor was in the same group (left panels of Figure 7)

and the threshold was low, the feature catches for the target and distrac-

tor features were equal, since they all fell within the same above-thresh-

old region. When the threshold was set high, the feature catch for the

target included the area under its distribution within the above-thresh-

old region centered on the target and the area under the distractor dis-

tribution that fell within the above-threshold region centered on the

target. (Recall that the center of the distractor distribution was 250 units

away from the center of the target distribution.) The high-threshold fea-

ture catch for the distractor included the area of the distractor distribu-

tion that fell within the above-threshold region centered on the distrac-

tor and the area of the target distribution that fell within the above-
threshold region centered on the distractor.

The between-group CODE surface was constructed in a similar man-

ner to the within-group surface, by drawing a vertical line between ver-

tically aligned circles in Figure 7 and positioning the centers of the fea-
ture distributions on the centers of the circles. I used the limits of inte-

gration defined for the within-group high and low thresholds to

compute the between-group feature catch. When the distractor was in a

different group and the threshold was low, the feature catch for the target

included the area of the target distribution that fell within the above-

threshold region centered on the target plus the area of the distractor

distribution that fell within the above-threshold region centered on the
target. The feature catch for the distractor was defined similarly, com-

puting the areas of the target and distractor distributions that fell within
the above-threshold region centered on the distractor. When the thresh-

old was high, the calculation was essentially the same except that the

above-threshold regions were slightly smaller.

The second step in fitting CTVA to the data was to calculate response

probabilities. The feature catches defined in the first step were plugged
into Equation 12 to compute v(x, i) values, and the v(x, i) values were
plugged into Equation 7 to compute response probabilities. In order to

report target presence, the two target features—a horizontal and a ver-
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tkaJ line—had to finish the race. Evidence for each feature raced

against evidence for its absence. Thus, horizontal present raced against

horizontal not present, I set the jj values for absent features equal to I
minus the ?j values for present features. The probability of correctly
detecting a target was set equal to the product of the probability of cor-

rectly detecting the horizontal feature and the probability of correctly
detecting the vertical feature. Attention weights (based on *• values)

were fixed at ]. The fits in Table 1 were obtained by manipulating three
parameters—the standard deviation of the feature distributions, the bi-

ases ((9 values) for target presence and absence (which were constrained

to sum to 1.0), and the rt values for horizontal and vertical features
(which were constrained to be equal). I did not try to optimize the fit
formally (i.e., with a curve-fitting program that searches for parameter
values that minimize least squares, etc.), but I did try to find parameters

that approximated the observed data. The fits in Table 1 are based on a

feature-distribution standard deviation of 50, 0 of 0.9 and 0.1 for fea-
ture presence and absence, respectively, and jj of 0.99 and 0.01 for fea-

ture presence and absence, respectively.

Cohen and Ivry( 1989)

Experiments I and 2

The fits to Cohen and Ivry's (1989) data involved computing the

feature catches and then the response probabilities. To compute the fea-

ture catch, a 1-D CODE surface was created with the centers of the

feature distributions 50 units apart in the near condition and 250 units
apart in the far condition. The threshold was set just above the local

minimum between the two objects (i.e., almost midway between the

objects). The feature catch for the target was computed by integrating a

3 -D Laplace distribution within the limits of the above-threshold region

centered on the target. The feature catch for the target also included the

area of the distractor distribution that fell within the above-threshold

region centered on the target.
Once the feature catches were computed, response probabilities were

computed using Equations 12 and 7. The attention weights and biases

were set equal to 1.0 for each color and letter categorization. Eta values

were set for each of the four colors and for each of the two letters. Eta

values for colors that were present in the display ranged between 0 and

1; i} values for colors that were not present in the display were set to 1

minus the eta values for colors that were present. Similarly, the 13 value

for the target letter ranged between 0 and I and the -rj value for the un-

presented letter was set to 1 minus the value for the target. So, for exam-

ple, if the target was a pink Fand the distractor was a green O, and the

75 values for pink and green were set to 0.9 and the 17 values for yellow

and blue would be set to 0.1; if the ij value for F were set to 0.9 and the

n value for X would be set to 0. L The different colors raced against each

other, following Equation 7, as did the letters. The probabilities of the
various combinations of outcomes listed in Table 2 were computed by

multiplying and adding the probabilities computed from Equation 7,

The fits in Table 2 depended on two free parameters: the standard

deviation of the feature distributions, which was set at 50, and the jj

values for color and letter presence, which were set equal to each other

at 0.9. The 17 values for absent colors and letters were constrained to

equal 1 minus the y values for present colors and letters.

Experiments 3 and 4

The fits to Experiments 3 and 4 involved computing 1 -D CODE sur-
faces for each of the 12 conditions listed in Table 3, calculating the fea-

ture catches, feeding the feature catches into Equations 12 and 7, and

combining the different outcomes to produce the predicted response

probabilities. The 12 conditions differed in terms of the placement of

the two letters for the conjunction task and in terms of the placement of

the two digits for the primary task. The closest spacing was between
letters arid digits (e.g., between w and X in Condition Small CD in Table

3). It was set equal to 25 units. The closest spacing between letters was

twice as large (e.g., between ,Yand Kin Condition Small CD in Table

3). It was set equal to 50 units. All other distances were multiples of 25

or 50.

The thresholds were set just above the local minimum on the CODE

surface between each of the letters from its nearest neighbor. Thus, in
Condition Small CD in Table 3, thresholds were set at the local minima

between w and Xand between Kandz. In Condition Far CDh thresholds

were set at the local minimum between X and Y. The feature catches

were computed by integrating the area of the distribution for the target

Jetter and the distractor letter that fell within the above-threshold region

surrounding the target letter, by integrating the area of the distribution

for target and distractor letters that fell within the above-threshold re-

gion surrounding the distractor letter, and then averaging the two values.

I did this because Cohen and Ivry (1989) did not report data separately

for targets and distractors in the alternative positions (i.e., targets could

appear in the positions occupied by the Xs or the Ys in Table 3; Cohen

and Ivry averaged over positions in each of the 12 conditions, so I did

the same).

The feature catches were plugged into Equations 12 and 7 in the same

manner as in the analysis of Experiments 1 and 2.1 calculated the prob-

ability of detecting each color and the probability of detecting each let-

ter, and I combined them by multiplying and adding to create the six

categories listed in Table 2. I computed illusory conjunction rates in

the same way Cohen and Ivry (1989) did. by subtracting half of the

probability of a color feature error from the probability of a color con-

junction error (correct target letter; correct distractor color). Those val-

ues appear in Table 3 and Figure 9.

The fits in Table 3 and Figure 9 depend on two free parameters: the

standard deviation of the feature distributions (set at 100) and the ?j

values for color and letter presence (set at 0.825), which were con-

strained to be equal. The »? values for color and letter absence were set

at 1 minus the TJ values for color and letter presence. Altogether, there
were 72 data points to be predicted in each experiment—six response

categories in 12 conditions. The correlation between the CTVA predic-

tions and the data was 0.955 in Experiment 3 and 0.942 in Experiment

4. The data from the two experiments correlated 0.976 with each other,

so CTVA captured a large proportion of the reliable variance,

Banks and Prinzmetal (1976)

The fits to Banks and Prinzmetal's (1976) data were difficult because

the displays were 2-D rather than linear arrays of characters. Neverthe-

less, 1 approximated the spatial distribution of items with 1-D CODE

surfaces. I constructed three ! -D CODE surfaces to represent near, mid-

dle, and far neighbors. Each surface had two feature distributions, one

representing a potential target and another representing the distractor.

The distances between the centers of the distributions were 100, 141,
and 200 units for near, middle, and far distractors, respectively. The

standard deviation of the feature distributions was set to 50.

The CTVA fits set the threshold in two different ways. The same

threshold fits assumed that there was only one threshold applied to the

whole display. It was set just above the local minimum between the

target and the near distractor 100 units away. This threshold overesti-

mated the minimum threshold in the isolated target condition and un-

(Appendixes continue on next page)
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derestimated it (slightly) in the camouflaged target condition, where

other near neighbors would raise the local minimum on the 2-D CODE

surface and move it toward the target. I calculated feature catches for

near, middle, and far distractors using this threshold by integrating the

feature distributions for the distractors within the limits of the above-

threshold region surrounding the potential target.

The different threshold fits set the threshold just above the local min-

imum between a target and its nearest neighbor, so the threshold varied

between conditions. In the isolated target conditions, for example, the

nearest neighbor was 141 (Conditions A and C) and 200 (Condition B)

units away; in the camouflaged target condition, the nearest neighbor

was 100 units away. These thresholds underestimated the local mini-

mum in each display because they ignored the contribution of the other

feature distributions to the 2-D CODE surface. Nevertheless, they were

a reasonable approximation that could be computed analytically.

The feature catches computed in these two ways were used to com-

pute c(x, i) values, and the v(x, i) values were used to compute re-

sponse probabilities and processing times for the parallel and serial

models described in the text of the article. Those computations should

be sufficiently clear, so I will not describe them further here.

Cohen and Ivry(1991)

The fits to Cohen and Ivry's (1991) conjunction search experiments

were relatively straightforward. 1 used 1-D CODE surfaces to compute

the feature catches and considered only two feature distributions in each

CODE surface, one representing the target and one representing the

distractor in target-present displays and one representing each of two

distractors in target-absent displays. I set the feature distributions 100

units apart in the clumped condition and 200 units apart in the spread

condition. In order to increase accuracy, I set the threshold halfway be-

tween the local minimum between the feature distributions and the

peak of one of the feature distributions. The standard deviation of the

feature distributions was set to 50. These feature catches were used to

generate v(x, i) values, and the v(x, i) values were used to generate

accuracies and processing times for individual comparisons, using the

equations developed in Appendix D. I interpreted these accuracies and

processing times in terms of a serial search model, following common

practice in the search literature (e.g., Cave & Wolfe, 1990; Treisman &

Gelade, 1980; Treisman & Sato, 1990; Wolfe, 1994), but they could be

interpreted in terms of a parallel processing model in which several

items were processed in parallel (cf.Pashler, 1987; Pylyshyn, 1989).

Eriksen and Eriksen (1974)

The fits to Eriksen and Eriksen's (1974) data were straightforward. I

generated a 1 -D CODE surface from three items—a central target and

two flanking distractors. There were three distances between the target

and the distractors, which I set to 50, 100, and 150 units. I set the stan-

dard deviation of the feature distributions to 50 units. The thresholds

were set just above the local minimum between the target and the dis-

tractors, and the feature catch for targets and distractors was computed

by integrating their respective distributions within the above-threshold

region.

The feature catches were used to modify the v(x, i) values, and the

v(x, (') values were used in Equations 9 and 10 to predict accuracy and

reaction time. There were three free parameters. The ij value for //given

H and S given 5 was fixed at ! .0, and the tj values for 5* given // and //

given S and those for S given a neutral distractor and H given a neutral

distractor were allowed to vary. The third parameter was the counter

criteria, KH and Kx, which were constrained to be equal to each other.

Appendix D

TVA and Conjunction Search

Standard Conjunction Search

Conjunction search requires discriminating perceptual objects that

contain all of the target features from objects that do not contain all of

them. The standard conjunction search task involves two features. For

example, if the target is a red T, the discrimination is between red Ts

on the one hand, and not-red 7s, red not-7s, and not-red not-7s on the

other (see e.g., Treisman & Gelade, 1980). The TVA analysis assumes

there is a v(x, /) value for each of these alternatives, where x is the

perceptual object and iis red. T, not-red, or not- T. The TVA analysis

assumes further that the categorizations race against each other and

decisions about whether an object is a target depend on the outcome of

the race. If the item is not a target, the race is straightforward: red, T,

not-red, and not- Thrace against each other and the object is not a target

if not-red or not-T finish before red and T. If the item is a target, the

race is more complicated. Both red and T must finish before not-red

or not-r. This complicates the formal analysis of the race. In essence,

the slower of red and Trace against the faster of not-red and not-7*.

Thus,

Outcome- min[max(/-, 7"),min(F, T)].

The probability density function for max(red, T) is

_/„„(-«•)

= u,exp [— vrx]( 1 — exp [- V T X ] } + u^exp [-t;7-jc]( 1 — exp [— vrx\),

and its distribution function is

Fm»W = (l -e*p[-v,x]) + (l -exp[-vTx])

-(I -exp[-(v, +

The probability density function for min(nolred, notT) is

/minW = (»?+ Df)exp[-(DF+ V T ) X ] ,

and its distribution function is

The probability density function for the minimum of these random

variables is

Substituting the density and distribution functions into this expres-

sion yields

/<*)= {(«,exp [-»,

+ (»r»p[-»r*])( 1 - exp[-t>r;t])](exp[-(tir + »f )*])

+ [ (Bf+ i)f)exp[-(uF+ vf)x]}{exp[-vrx]

+ e\p[-vrx] -exp[-(B, + l) r)x]},

which is the distribution of finishing times for the race. The mean of

this distribution is
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FT=-
Vr Vf

This mean finishing time is not conditionalized on the outcome of the

race. It includes cases in which max(red, T) wins as well as cases in
which min(notred, notT) wins. In order to model conjunction search,
we need the mean finishing times conditional on each runner winning
the race and we need the probabilities that each runner will win. The

probabilities can be derived from two additive terms on the right-hand
side of the unconditional probability density function. Thus, the prob-
ability P(P) that max(red, T) will win the race (i.e., the probability

that a target is judged to be present ) is

+ (urexp[-t)7ji:])(l ~e\p[-v,x])](e*p[-(v7+Vf)x])dx

vr + Vf 4- v f vj + t-v 4- vf vt 4- VT 4- v7 4 Vf

and the mean conditional finishing time for max(rcd, T) is

1 / v,

v_r_ vr + VT \

The probability P(A) that min( notred, notT) will win the race (i.e.,

the probability that a target is not present) is

P(A)= \ ((VT+V

(exp[-»r-t] + exp[-tyjr] - exp[-(i)r + V f ) x ] ) d x

V7+ Vf V7+ Vf Vp + Vf

Vr + V7+ Vf VT 4 IV + Vf Vr+ Vj + V7 + Vf '

and the mean conditional finishing time for min(notred, notT) is

FT =

The TVA analysis assumes that people search through the perceptual
objects in the display in a self-terminating fashion. Under that assump-
tion, the mean conditional finishing times determine reaction time and
the slope of the function relating reaction time to the number of items

in the display. The expressions for mean reaction time and accuracy as
a function of display size are given in the main body of the article.

Triple Conjunction Search

Wolfe, Cave, and Franzel (1989} tested people in a triple conjunction

task, in which targets were conjunctions of three features (e.g., small
red 7s) and distractors contained only one of the target features (e.g.,
small green X s, large red X s, or large green 7s). The TVA analysis can
be extended to triple conjunction search as well by including a v(xt i)

value for each of the three features and their absence (i.e., not small, not

red, and not T). As with double conjunctions, decisions about target
presence are determined by the outcome of a race between the presence
and absence of the target features:

Outcome^ = min[max(r, T,s), min(F, T,J)].

Notice that there are three runners in the race for target absence.

which is more than the two that raced for target absence in standard

conjunction search. This is important because the fastest of three run-

ners will finish before the faster of two runners (see, e.g., Logan, 1988,
1992), and this will reduce the slope of the function relating reaction
time to display size because the slope is determined by the rate at which
target absence is decided. Thus, the TVA analysis predicts shallower
slopes in triple conjunction search than in standard, double conjunction
search. This is an important conclusion because the difference is attrib-
uted to the comparison process, whereas Wolfe et al. (1989) and others
(e.g., Grossberg, Mingolla, & Ross, 1994; Treisman & Sato, 1990) at-

tributed it to preattentive processes that precede the comparison
process.

The mean finishing times and response probabilities for triple con-
junction search can be determined in the same way as for double con-
junction search. For target-present decisions, the probability of a cor-
rect decision is

P(P)-
Vs

V, + C7 + Vf + l)j VT + V; + Vf + t); V, + V7 + Vf + Hg

ty + VT vr + 1;̂

Vr + VT + V7 + Vf + Vj Vr + Vs + V? + Vf + t!j

vr+ vs vr+ VT + vs

VT + Vs + V7 + Vf 4 IY Vr + VT + Uj 4 V7 4- Vf + Vs '

and mean finishing time is

JV , v?
FT,
' P(P)[(V, + t>

iV + ur

i), + Vf + Vf + i)j)2 (u r + u, + Ur+i>f + tij)'

vt + vs VT + v1

( Vr 4 VT + V, 4 V7 4- Vf + Vj)

For target-absent decisions, the probability of a correct decision is

P(A)
l '

_ ty + V f + % ty + Vf + v? v7+ Vf+v^

Vr 4- V7 + Vf + Vs Vr + Vf + Vf + Vj Vs 4 IV 4- Vf + Vs

Vf+Vf+ Vs Vf+ Vf + VW

Vr + VT 4- V7 + Vf 4 Vf Vr+ Uj 4 iv + Vf 4- Uj

Vf + Vf+ UT V7 + Vf 4- V,

and mean finishing time is

FT 1 f t J F +Uf + vj | v7+ V f + V j
A P(A) [(vr+vf+Vf+Vj)2 (Vr+Vr + V f + V s )

,+ Vf| V7+Vf+V; -, -. - -_

Vf 4- Vf + Uj V7 + Vf + Uj

(vr 4- vs 4 V7 + Vf + Vj)2 (Vf+vs+ V7+ Vf + Vj
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