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H. Colonius (1995) agreed with the fundamental tenets of the instance theory of automaticity. His
article addressed the mathematical development of the theory, pointing out an error in one of two
arguments that G. D. Logan (1988,1992) used to justify the choice of the Weibull as the distribution
of retrieval times and suggesting an alternative argument that places different emphasis on the power
function speedup and the Weibull distribution. This article attempts to clarify the problematic ar-
gument, point out some practical limitations on H. Colonius's (1995) alternative argument, and
suggest important future directions for the mathematical development of the theory.

For several years, I have been developing the instance theory
of automaticity to address a number of phenomena in the liter-
ature on skill acquisition and automaticity (Logan, 1988,1990,
1992). The theory accounts for differences between automatic
and nonautomatic processing, the conditions required to pro-
duce automaticity, the role of attention in the acquisition and
expression of automaticity, and the power function speedup
that characterizes skill acquisition (see Compton & Logan,
1991; Lassaline & Logan, 1993; Logan, 1988, 1990, 1992; Lo-
gan & Etherton, 1994; Logan & Klapp, 1991). The most im-
portant contribution of the theory was to shift the focus of re-
search from resource-based conceptions of automaticity (e.g.,
LaBerge & Samuels, 1974; Posner & Snyder, 1975; Shifirin &
Schneider, 1977) to memory-based conceptions, arguing that
automaticity was a memory phenomenon governed by the the-
oretical and empirical principles that govern memory (see also
Anderson, 1982,1992; Schneider, 1985).

Colonius (1995) agreed with the substance of the theory, ar-
guing that the data and the statistics of extreme values support
the idea that the power function speedup results from a race
between traces retrieved from memory. His article focused on a
part of the logic I used to derive the power function prediction,
addressing my assumptions about the Weibull distribution. He
pointed out a subtle but important error in one of the argu-
ments I used to justify the assumption that reaction times in
well-practiced tasks conform to the Weibull distribution, and
he suggested a different role for the Weibull distribution in test-
ing the theory. In this article, I wish to clarify and expand on
Colonius's argument, point out limitations on the test he pro-
posed, and suggest new directions for the mathematical devel-
opment of the instance theory.
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The Instance Theory and the Power Function Speedup
The instance theory consists of three main assumptions:

obligatory encoding, which says that attention to a stimulus or
event is sufficient to cause it to be stored in memory; obligatory
retrieval, which says that attention to a stimulus or event is
sufficient to cause things associated with it to be retrieved from
memory; and instance representation, which says that stimuli
or events are stored and retrieved separately (Logan, 1988, p.
493). These assumptions imply a learning mechanism: When
people perform the same task in the same environment repeat-
edly, obligatory encoding will result in the acquisition of a task-
relevant knowledge base, which obligatory retrieval will make
available to them when stimuli or events are repeated. This is
the essence of the theory: Performance is automatic when it can
be supported by traces retrieved from memory instead of costly
algorithmic computation (Logan, 1988,1990). Differences be-
tween algorithmic computation and memory retrieval account
for the differences between nonautomatic and automatic per-
formance. Consistency of the task and the environment (i.e.,
consistent mapping; Shiffrin & Schneider, 1977) is important
because repetition allows the knowledge base to grow and it al-
lows it to be useful in supporting current performance. Co-
lonius (1995) had no quarrel with this part of the theory.

A major goal in developing the theory was to account for the
power function speedup. Newell and Rosenbloom (1981) ar-
gued that a power function speedup was an empirical law that
governed all situations in which skill was characterized as speed.
Since their seminal chapter, the power function speedup has be-
come a benchmark prediction that theories have to make to be
taken seriously as accounts of skill acquisition (e.g., Anderson,
1982, 1992; Cohen, Dunbar, & McClelland, 1990; MacKay,
1982; Schneider, 1985). The obligatory retrieval assumption
and the instance representation assumption suggested a race be-
tween traces as a possible mechanism to account for the power
law. Intuitively, the more traces there are in memory, the more
likely it is that one will be retrieved exceptionally quickly, which
accounts for the speedup with practice. However, the faster a
trace is retrieved, the less likely it is that another trace will be
retrieved even faster; so increasing the number of traces will
have diminishing returns. This explanation accounts for the
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negative acceleration that is characteristic of the power func-
tion. The remaining step was to formalize these intuitions, and
I looked to the statistics of extreme values—maxima and min-
ima—to characterize the race mathematically.

Formalizing the theory required three further assumptions:
Each trace was retrieved independently, each trace had the same
distribution of retrieval times, and the first trace to be retrieved
governed performance. The problem then amounted to figuring
out how the time required for the first trace to be retrieved
changed as a function of the number of traces in memory—the
number of runners in the race. This is a well-studied problem
in the statistics of extreme values, and I found two kinds of an-
swers in the statistics of extreme values that suggested that not
only mean reaction time, but the whole distribution of reaction
times, should decrease as a power function of practice.

One answer involved starting with an initial distribution and
working forward by increasing n, the number of traces. The
expression for the cumulative distribution function for minima
sampled from the same parent distribution, F(x), is

I tried the exponential distribution and the Weibull distribution
and found that both predicted a power function decrease in re-
action time over practice (see Logan, 1988, Appendix A). The
cumulative distribution function for the Weibull is

F(x) = I — exp(—x"). (2)

The cumulative distribution function of minima sampled from
the Weibull distribution can be obtained by substituting Equa-
tion 2 into Equation 1:

(3)

The other answer involved working backward from the
asymptotic distribution of minima. There are three distribu-
tions of minima that are asymptotic in the sense that minima
sampled from any parent distribution come to be distributed as
one of the three as sample size approaches infinity if the minima
converge on any distribution at all (e.g., see Castillo, 1988). The
asymptotic distribution that was relevant to a particular parent
distribution depended on the lower tail of the parent. Distribu-
tions that are bounded at the lower tail and have a lower tail with
a particular shape (Gnedenko, 1943) converge on the Weibull
distribution. I argued that the reaction time distributions con-
tributing to the race should be of this type, and I claimed con-
sequently that reaction time distributions at high levels of prac-
tice must conform to the Weibull.

The Asymptotic Argument

Distributions of Minima Degenerate as n Approaches
Infinity

Colonius (1995) pointed out, correctly, that my claim that
distributions of minima sampled from reaction time distribu-
tions converged on the Weibull was erroneous. Working forward
from an initial distribution does not result in a Weibull distri-
bution of minima, as I claimed. Colonius, citing Castillo
(1988), noted that the distribution of minima sampled from

any parent distribution, including the Weibull expressed in
Equation 3, become degenerate as sample size approaches in-
finity. The value of Ft:n(x) must equal 0 in regions where the
parent distribution, F(x), equals 0 and it must equal 1.0 in re-
gions where the parent distribution is greater than 0 and less
than or equal to 1.0. Thus, minima sampled from a Weibull
distribution do not converge on a Weibull distribution as n ap-
proaches infinity, contrary to my claim.

The tendency for distributions of minima to become degen-
erate as sample size approaches infinity means that one cannot
work forward from Equations 1 and 3 to asymptotic distribu-
tions of minima. However, it does not mean that one cannot
predict a power function speedup with Equations 1 and 3 using
nonasymptotic arguments. Essentially, this is what Colonius
(1995) and I both do (see below). The degeneracy of distribu-
tions of minima as sample size approaches infinity is important
in principle but it may not be very important in practice. Con-
sider, for example, a parent retrieval time distribution with a
mean of 800 ms and a standard deviation of 300 ms, numbers
that are typical of real data in experiments to which instance
theory has been applied (e.g., see Logan, 1992). If the distribu-
tion were Weibull with an exponent of 2.0 (which is also
typical), the 1st percentile would be 300 ms and the 99th per-
centile would be 1,630 ms, a difference of 1,330 ms. With
1,000,000 samples, the nondegenerate range of the distribution
of minima (i.e., 0 < Fl:n(x) < 1.0) would have reduced consid-
erably. The difference between the 1st and 99th percentiles
would be reduced by a factor of n~lla = 1/1,000 to 1.3 ms.
Let us assume, for the sake of argument, that when n equals
1,000,000, the distribution is approximately degenerate. The
important question is, How likely is this to occur in practice?

The instance theory makes an important distinction between
practice on the task and practice on particular instances. The
power function predictions address practice on particular in-
stances rather than practice on the task itself. Most tasks studied
in the automaticity literature involve many different stimuli,
and instance theory says that it is repetitions of the individual
stimuli that count, not repetitions of the task itself (e.g., see
Logan & Klapp, 1991). In real-world skills (i.e., the domains
to which theories of automaticity should generalize), there are
thousands of instances to be learned. Thus, it will take several
orders of magnitude more than 1,000,000 trials to present a
single instance 1,000,000 times. Moreover, this analysis as-
sumes that people learn every instance and forget none of them,
which is an unrealistic assumption (Anderson & Milson, 1989;
Grant & Logan, 1993). In practice, the number of retrieved
instances may be much smaller than the number of presented
ones, which further mitigates the degeneracy of the distribution
of minima.

Asymptotic Distributions Are Distributions of
Transformed Scores

In 1988 and 1992,1 justified my choice of the Weibull distri-
bution with an asymptotic argument as well as a nonasymptotic
argument. I claimed that the distribution of minima sampled
from any parent distribution whose form was a reasonable de-
scription of empirical distributions of reaction times would
converge on the Weibull because the Weibull was the relevant



THEORETICAL NOTES 753

one of the three asymptotic distributions of minima. As Co-
lonius (1995) pointed out, this claim was mistaken because it
missed a subtle but extremely important point in the mathe-
matical development of asymptotic distributions: The reason
why asymptotic distributions do not become degenerate as sam-
ple size approaches infinity is that they are distributions of a
linear transformation of the original variable and not distribu-
tions of the original variable itself. This point is extremely im-
portant. There is nothing in the instance theory to justify
transforming the retrieval times, and that makes arguments
about asymptotic distributions irrelevant. Moreover, it makes
arguments about the domains of attraction for the different
asymptotic distributions irrelevant as well. Theorists must look
elsewhere for explanations of the power function speedup.

This issue is important enough to be explained in some detail:
The variable in all three of the asymptotic distributions is a
linear transformation of the variable, x, in the parent
distribution:

x-+an -I- bnx.

The additive and multiplicative terms (an and bn, respectively)
are functions of n . For each asymptotic distribution, there is a
series of additive and multiplicative terms whose function is to
"undo" the effect of raising [ 1 - F(x)] in Equation 1 to the «th
power and thereby prevent the asymptotic distribution from de-
generating. For the Weibull distribution, the additive term, an,
drops out because the Weibull is bounded at the lower tail and
the variable, x, can be transformed so that the lower bound is
0.0. The multiplicative term, bn is a power function, «1/0.
Transforming the scale of the Weibull distribution in Equation
3 by this power function prevents the asymptotic distribution
from degenerating in the following manner:

= 1 -exp[-(nl/a(n-1/ax))a]

= l-exp[-x"]. (4)

The result of the transformation is a Weibull distribution, not a
degenerate function that is either 1 or 0.

It is important to note that the Weibull distribution that re-
sults from the transformation is not necessarily the same as the
parent distribution (though it is in Equation 4). The Weibull
distribution that results from the transformation depends on
the exact value of the multiplicative term, bn, and that term
can take on an indefinitely large number of values. The power
function, n1/a, could be multiplied or divided by a constant,
have something added to it or subtracted from it, and so forth.
In those cases, the asymptotic Weibull distribution would not
be the same as the parent Weibull. It would have the same form
(i.e., Weibull) but not the same parameters. According to Cas-
tillo ( 1988, p. 109), the multiplicative term, bn, could be re-
placed by another, b%. The only restriction on the substitution
is that a candidate term, 6J, must satisfy

The important point is that the asymptotic distribution of min-
ima does not result directly from the parent distribution. In-

stead, it requires a transformation of the variable in the parent
distribution. There is no justification for transforming finishing
times in the initial assumptions of the instance theory or in the
additional assumptions that are required to formalize the race
model. Thus, arguments based on asymptotic distributions are
simply inappropriate. Justification for assuming the Weibull
distribution and the proof of the power function speedup must
be based on nonasymptotic arguments or arguments that work
forward from an initial distribution (see Logan, 1988,1992).

The Nonasymptotic Argument

Colonius (1995) suggested a nonasymptotic argument, based
on the min-stable property of the Weibull distribution. The
min-stable property refers to the fact that the distribution of
minima sampled from a parent Weibull distribution is itself a
Weibull distribution. The form of the distribution remains the
same—remains stable—as sample size increases. The distribu-
tion simply changes in scale, following a power function, as is
shown in Equation 3. This is the same nonasymptotic argument
I made in 1988 and 1992, assuming that the parent distribution
is the Weibull and inferring the power function speedup.

Colonius (1995) drew a different inference, arguing that the
(observed) power function speedup and the (assumed) race be-
tween traces imply a Weibull distribution for reaction times.
Apparently, minima sampled from a parent distribution will
decrease as a power function of sample size (practice) only if
the parent distribution is Weibull. This finding is important be-
cause it provides an a priori justification for assuming the Wei-
bull distribution. Previously, the a priori justification for the
Weibull was based on the asymptotic argument. Colonius
showed that the asymptotic argument was flawed and that re-
moved the a priori basis for assuming the Weibull distribution.
The nonasymptotic argument, based on the min-stable prop-
erty, provides a new justification for assuming the Weibull dis-
tribution, so the choice of distributions remains principled.

Colonius (1995) cited a theorem in Huang (1989) that
proves that a sequence of means of minima uniquely deter-
mines the distribution function of the minima. This is an im-
portant theorem that would be well worth explaining to the psy-
chological community because means generally do not con-
strain distributions uniquely (Townsend, 1990). The theorem
is important to instance theory because it implies that the power
function speedup in the means together with the race assump-
tion (i.e., the assumption that the means are means of minima)
implies a power function speedup in the distribution of reaction
times. Moreover, Colonius argued that the power function
speedup in the means and the race assumption imply a Weibull
distribution of reaction times. This finding is important as well
because it provides a further justification for choosing the Wei-
bull distribution. This is an important contribution that adds
to the strength of the instance theory.

Colonius (1995) proposed a shift in emphasis in testing in-
stance theory as a result of Huang's (1989) theorem. Whereas I
assumed a race and the Weibull distribution and predicted the
power function speedup, Colonius recommended assuming the
power function speedup and a race and predicting the Weibull
distribution. He proposed a specific test of the Weibull distribu-
tion prediction:
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nl/"X1:n = X for all «;>!,

where A" is a nonnegative random variable with a nondegenerate
continuous distribution function F. He claimed that this rela-
tion can be tested by comparing only two levels of practice, n\
and «2, where log «i/log n2 is irrational. He claimed that this
test is better than simply testing for the Weibull shape at some
given level of practice.

The test that Colonius proposed may not be better than sim-
ply testing for a Weibull shape. Colonius's test amounts to com-
paring one distribution against another, and that is essentially
the same as comparing an empirical distribution against a the-
oretical one (i.e., the Weibull). In fact, it may be worse because
it involves comparing two empirical distributions, each of
which is noisy, whereas comparing an empirical distribution
with a theoretical one involves only one source of noise (there
is no noise in "estimating" the theoretical distribution).

Moreover, there is a danger in comparing only two levels of
practice. Colonius ignored the consequences of a central as-
sumption of the instance theory, that memory retrieval races
against a general algorithm for performing the task. Colonius's
arguments (and mine) require the assumption that the minima
are sampled independently from identical distributions (the iid
assumption). The iid assumption may be reasonable if only
memory retrieval is involved because memory traces of differ-
ent instances may well have the same distribution of retrieval
times. But it is unlikely that an arbitrary algorithm will have the
same distribution of finishing times as memory retrieval of a
single instance. This is an important consideration, especially
at low levels of practice, in which the algorithm dominates. In
studies that collected strategy reports, it is evident that people
persist in using the algorithm even at advanced levels of skill
(Compton & Logan, 1991; Logan & Klapp, 1991). The danger
in testing only two levels of practice is that one may be tempted
to test too early, when performance is still dominated by the
algorithm. That could lead to an inappropriate rejection of the
Weibull distribution and thus, instance theory. Indeed, Logan
(1992) found better agreement with the distributional predic-
tions of the instance theory when the first few sessions were de-
leted from analysis (see also Logan & Etherton, 1994).

It seems to me that the best test of the Weibull assumption
involves fitting a set of constrained Weibull distributions to em-
pirical distributions over a wide range of practice. The Weibulls
are constrained to have the same shape parameter, a, and the
(power function) reduction in the scale of the distribution over
practice is constrained to have an exponent equal to the recip-
rocal of the Weibull exponent (i.e., 1 /a). I performed this test
on 12 data sets in Logan (1992) and found reasonable fits, es-
pecially at higher levels of practice for which the algorithm was
assumed to have dropped out.

Why the Weibull?

Colonius (1995) suggested a shift of focus from the power
function speedup to the Weibull distribution in testing the in-
stance theory. He argued that if one assumes a race and observes
a power function speedup, then the distribution must be Wei-
bull. If the empirical distributions are not Weibull, then the race
assumption is invalid. This is an important contribution be-

cause it makes the theory falsifiable. So far, the few data that
have been subjected to the test have found a Weibull shape
(Logan, 1992), so the race assumption appears to be valid. Nev-
ertheless, I am uneasy about the shift in emphasis for three
reasons.

First, the power function speedup that Newell and Rosen-
bloom (1981) addressed is a speedup in mean reaction time
only, not a speedup in the entire distribution of reaction times.
The power function speedup in distributions is a relatively new
discovery, and most of the evidence has come from my labora-
tory (but see Strayer & Kramer, 1990). I would like to see more
evidence for its robustness and generality before making it a
cornerstone assumption of instance theory instead of a predic-
tion to be tested. In general, ordering of means does not imply
ordering of distributions (though ordering of distributions im-
plies ordering of means; Townsend, 1990), so a power function
speedup in mean reaction time does not in itself imply a power
function speedup in the distribution of reaction times.1 Indeed,
most theorists focused only on mean reaction times, and it was
the instance theory that drew attention to the speedup in the
entire distribution of reaction times (Logan, 1988, 1992).
Other construals of skill acquisition do not imply a power func-
tion speedup in the distribution. For example, a probability
mixture of slow nonautomatic processes and fast automatic
processes could produce a power function speedup in the means
if the mixture probability changed appropriately, but a mixture
model would not predict a power function reduction in the dis-
tribution. Instead, variability would increase and then decrease
over practice (Compton & Logan, 1991). Thus, the power func-
tion speedup in the distribution of reaction times is a major
discovery that was inspired by instance theory, and the instance
theory was the first to account for it (see Anderson, 1992; Cohen
et al., 1990). Moreover the instance theory predicts a constraint
between the shape of the reaction time distribution and the
shape of the power function that no other theory predicts (i.e.,
the exponent, a, of the Weibull, which determines its shape, is
the reciprocal of the exponent of the power function, I/a,
which determines its shape; Logan, 1992).

Second, the Weibull is a very flexible distribution. Its shape
can vary dramatically, depending on the exponent, a, ranging
from exponential to normal. Logan (1992, Appendix B)
showed that the Weibull closely mimicked the ex-Gaussian dis-
tribution (a convolution of a normal distribution and an expo-
nential distribution) that provides an excellent approximation
to observed reaction time distributions (Ratcliff & Murdock,
1976). Van Zandt and Ratcliff (1995) showed that the Weibull
closely mimicked a mixture of gamma distributions. Moreover,
a mixture of gammas chosen in the right way could approxi-
mate the power function reduction in the scale of the distribu-
tion with practice that is characteristic of the Weibull. Thus, it
may be difficult to discriminate the Weibull from similar-look-

1 Huang's (1989) theorem, which states that a power function
speedup in the means implies a power function speedup in the distribu-
tion, assumes that the means are means of minima (i.e., it assumes a
race between memory traces). Other theories account for the power
function speedup without assuming a race, and consequently, the
speedup in the means does not imply a speedup in the distributions for
those theories.
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ing alternatives, such as the log-normal. Given the present state
of knowledge, it may be reasonable to assume the Weibull dis-
tribution to develop the power-function predictions or to use it
as an approximation to empirical distributions.

Finally, I am uneasy about using the Weibull distribution to
diagnose the race model because the test may be unrealistically
stringent. Other processes besides memory retrieval contribute
to observed reaction times. There must be some encoding pro-
cesses that transform physical stimuli to neural codes and some
motor processes that transform neural codes to overt responses.
These other processes must take time, and it is unlikely that the
time they take will be constant. Thus, the observed reaction
time distribution should be a convolution of the Weibull distri-
bution and one or two other distributions that represent the
time for encoding and responding. It may be that the durations
of these processes are relatively short and, more important, rel-
atively constant, because the Weibull distribution by itself pro-
vides a reasonable description of empirical reaction time distri-
butions (Logan, 1992). However, there is no guarantee that en-
coding and response processes will be relatively invariant in all
applications. When more powerful experiments are conducted,
variability in encoding and response may become more prob-
lematic. Indeed, Logan (1992) found some perturbations in fit-
ting Weibulls to empirical reaction time distributions that were
accounted for by assuming variability in encoding and response
processes.

One solution to this "intercept" problem would be to model
the encoding and response processes in sufficient detail to spec-
ify the distributions of their processing times. That would be
an important step but a difficult one given the current state of
knowledge and the (normal) amount of controversy in the liter-
atures on perception and motor control. In the mean time, it
may be better to compare the instance theory with specific al-
ternatives than to attempt to perfect its fit to a given data set.
As with Compton and Logan's (1991) comparison between the
instance theory and a probability mixture of fast (automatic)
and slow (algorithmic) processes, it may be possible to find
qualitatively different predictions that distinguish the alterna-
tives without requiring either theory to fit the data perfectly. No
other theory models the entire reaction process, and it is unrea-
sonable to expect the instance theory to do so.

Future Mathematical Developments

It is encouraging to have someone with Colonius's mathemat-
ical knowledge and ability working on the instance theory. The
statistics of extreme values are not very familiar to psycholo-
gists, and I am no exception. For me and many others I have
spoken to, much of the attraction of the instance theory lies in
its mathematical development. It is interesting and surprising
that simple assumptions can lead to such powerful predictions.
The assumptions may be overly simple, however, and it would
be worthwhile to generalize them and make them more
realistic.

The main problem with the mathematical development of the
instance theory is that it relies heavily on the iid assumption.
Many people express skepticism when I tell them I assume iden-
tical distributions. I already explained why the algorithm is un-
likely to have the same distribution of finishing times as the

memory retrieval process. Many people think that it is likely
that different traces may have different retrieval time distribu-
tions. There may be primacy and recency effects, such that the
first- and last-learned items are retrieved faster than the others.
Robert Nosofsky and Tom Palmeri (personal communication,
November, 1994) are working on a generalization of the in-
stance theory that assumes that retrieval time is a function of
similarity. Stimulus encoding may be context dependent
(Logan & Etherton, 1994) such that the same stimuli encoded
in different contexts may be retrieved at different speeds.

It is easy to show with simulations that the power function pre-
dictions are robust with respect to violations of the iid assumption.
Logan (1992, Appendix A) reported simulations from Weibull
distributions that vary in location, scale, and shape parameters
that continue to show the power function speedup for distribu-
tions. Logan (1992, Appendix A) provided proof that the power
function speedup for distributions held for Weibull distributions
that varied in location and scale parameters, with the shape pa-
rameter held constant. More work along these lines would advance
theoretical development considerably.

Another important direction for mathematical development
is to separate "intercept" processes such as perceptual encoding
and response generation from the "central" processes that the
instance theory addresses. The clearest separation may require
well-developed theories of perception and motor control to in-
terface with the instance theory, but it may be possible to use
more general techniques that deconvolve the distributions with-
out specifying the processes that generate them. The intercept
problem is pervasive in models of reaction time because theo-
rists focus primarily on one or two processes and hope that the
other processes do not contaminate their predictions too much.
A general solution to the intercept problem would be an impor-
tant step forward for the instance theory in particular and for
models of reaction time in general.

In summary, Colonius (1995) agreed with the substance of
the instance theory, accepting the idea that automaticity is well
characterized as a race between traces of past instances re-
trieved from memory. His article primarily addressed one of
two arguments I used to account for the ubiquitous power func-
tion speedup in reaction time. Although there was an error in
the asymptotic argument, the nonasymptotic argument re-
mains sound, and the instance theory remains a viable account
of automatization.
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