
Perception & Psychophysics
/993, 53 (4), 403-42/

Evaluating a computational model of
perceptual grouping by proximity

BRIAN J. COMPTON and GORDON D. LOGAN
University of Illinois, Urbana-Champaign, Illinois

A formal approach to the phenomenon of perceptual grouping by proximity was investigated.
Grouping judgments of random dot patterns were made by the CODE algorithm (van OefTelen &
Vos, 1982) and several related algorithms, and these judgments were compared with subjects'
grouping judgments for the same stimuli. Each algorithm predicted significantly more subject
judgments than would be expected by chance. The more subjects agreed on how a given dot pat
tern should be grouped, the more successful was the algorithms' ability to match the judgments
for that pattern. CODE predicted significantly fewer subject judgments than did some of the other
algorithms, largely because of its overemphasis on the extent of interactivity among dots as they
are being grouped.

Gestalt laws of perceptual grouping, including group
ing by proximity, were initially put forth as arguments
against the prevailing theories of perception at the time.
In Helmholtz's atomistic sensory theory, "each fun
damental point sensation was taken to be independent of
its neighbors" (described in Hochberg, 1981, p. 259).
The Gestaltists, on the other hand, argued that the per
ceptual system does not simply collect and combine in
coming sensory information to give a picture of the world,
but instead actively organizes it. The law of grouping by
proximity dictates that "when the [stimulus] field con
tains a number of equal parts, those among them which
are in greater proximity will be organized into a higher
unit," which "must be considered as real as the organi
zation of a homogeneous spot" (Koffka, 1935, pp. 164
165). This "higher unit" is the product of a perceptual
process that actively imposes structure on sensory input.
It is an interpretation of a pattern's configuration, and it
cannot be derived simply by examining the pattern's con
stituent parts in isolation.

Although the Gestaltists emphasized the holistic nature
of perception, the actual computations dictated by some
of the laws of grouping, including grouping by proximity,
can conceivably be computed in a bottom-up fashion,
using relatively local information. Pomerantz (1981) has
suggested that grouping by proximity, similarity, and
common fate could be computed by using algorithms that
are purely data-driven, whereas grouping based on good
figure, good continuation, or Priignanz may require top
down processing.
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Palmer (1975) proposed a hierarchical model of per
ceptual representation, in which "structural units" at
lower levels of a hierarchy encode the more specific de
tails of an image and are themselves organized into more
global structural units at higher levels in the hierarchy.
This approach to perception highlights an important ques
tion for any theory of perceptual grouping by proximity:
at what level in the "perceptual hierarchy" does group
ing by proximity operate? Figure 1 provides one answer
to this question. Does the viewer see two groups, one with
11 dots and the other with 1O? Or are there six groups
of either 3 or 4 dots each? Clearly, both configurations
can be seen. Grouping by proximity can operate under
strict grouping criteria, with only the closest elements be
ing grouped together (e.g., seeing six groups of dots in
Figure 1), or with looser grouping criteria (e.g., seeing
two groups of dots in Figure 1). This suggests that a for
mal account of proximal grouping that specifies only one
"correct" way to perceive a pattern will fail to capture
an important aspect of the phenomenon.

A second question for any model of proximal group
ing is the extent to which elements interact with other ele
ments as they are being grouped. Can a single element
somehow influence the way relatively remote elements
are grouped, or does each element only influence its very
nearest neighbors? The Gestalt position does not rule out
the notion of purely local computations, but it raises the
possibility that relatively distant elements of the stimulus
field could interact in some way as they are grouped. Any
model of proximal grouping will need to consider how
great an effect relatively distant regions of a stimulus field
have on each other in determining perceptual groups.

The role of proximity in perceptual grouping can per
haps be studied best with the use of dot patterns as stim
uli. Each element in a dot pattern differs from the others
by only one attribute, that of position. Dot pattern stim
uli allow the effects of proximal grouping to be studied
in isolation, free from any influence of grouping based
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Figure 1. This pattern can be seen as containing two groups, one
with II dots and one with 10, or as six groups of 3 or 4 dots each.

on differences of shape, size, orientation, or color among
individual stimulus elements.

The evidence initially presented in support of the Gestalt
laws of perception was limited to phenomenological
demonstrations (Attneave, 1950). Although the validity
of the Gestalt principles was intuitively apparent to ob
servers, formal descriptions of the mechanisms underlying
them were lacking. Formal models of grouping princi
ples provide terminology for discussing and evaluating
potentially different instantiations of the principles. Also,
when a grouping principle is stated in formal terms, its
validity can be assessed by systematically comparing its
interpretations of stimuli against subjects' interpretations
of those stimuli.

Few formal models of proximal grouping have been
proposed. This is perhaps surprising, since grouping by
proximity is one of the most well known and intuitively
appealing of the Gestalt laws. One such formal model,
the CODE algorithm, has recently been put forth by van
Oeffelen and Vos (1982). The CODE algorithm is a purely
bottom-up approach to perceptual grouping, since it as
sumes that all information needed to form groups is avail
able in the stimulus itself. Its grouping mechanism is in
variant across changes in scaling or rotation of the stimulus
pattern.

Van Oeffelen and Vos (1982) initially tested the valid
ity of CODE in an experiment in which subjects were shown
stimuli consisting of clusters of dots for 100 msec and es
timated the number of clusters of dots that they saw. The
CODE algorithm agreed with the subjects' estimations more
than 80% of the time when fewer than five clusters were
presented, and less frequently for stimuli containing more

-than five clusters. The CODE algorithm has been used as
a predictor of numerosity judgments (Allik & Tuulmets,
1991; Vos, van Oeffelen, Tibosch, & Allik, 1988) and

has served as the basis of algorithms that attempt to ac
count for other grouping principles besides proximity
(Smits, Vos, & van Oeffelen, 1985; Vos & Helsper,
1991).

Although the CODE algorithm goes beyond the
phenomenological demonstrations of the Gestalt psychol
ogists in presenting a formal account of proximal group
ing, a similarity in the two approaches remains. The prox
imity principle was first supported by demonstrations in
which the stimuli were contrived to maximize the phe
nomenon of interest. Such stimuli were frequently ar
ranged in clusters in such a way that the groups that were
intended to be perceived were very obvious. The CODE

algorithm, while providing a specific mechanism for prox
imal grouping phenomena, was tested with the use of stim
uli that were contrived to contain distinct clusters.

Many formal accounts of proximal grouping can be
imagined that might effectively group stimuli that con
tain dots arranged in tight clusters. These types of stim
uli are more likely on the average to be considered
"good" (which has been variously defined as simple,
symmetrical, predictable, stable, and redundant; see
Koffka, 1935; see also Garner, 1970, 1974), in compari
son with stimuli containing dots whose positions are
chosen at random. Since many models of proximal group
ing are likely to be successful when goodness is high, it
is the ambiguous cases, in which goodness is low, that
should provide the most rigorous test of a model's be
havior. In the present study, we addressed this issue by
using completely random dot patterns as stimuli.

The CODE algorithm specifies a single organization for
a given pattern, which may be more appropriate when
stimuli are designed to have clusters, as opposed to be
ing generated randomly. Some stimuli can be organized
in several different ways, each essentially equivalent in
goodness. This will occur frequently when the stimuli are
random dot patterns, rather than patterns designed to sug
gest a particular organization. To accommodate the pos
sibility that there can be several good organizations of a
stimulus, in the present study we used variations of CODE

that, among other things, are less constrained and permit
a range of different organizations of proximal groups for
a single stimulus.

In the present study, random dot patterns were presented
to subjects who indicated how they should be grouped.
These grouping judgments were then compared with
grouping judgments for the same stimuli made by the CODE

algorithm and related algorithms. The CODE algorithm was
modified in two major ways. First, assumptions about the
proper strength of grouping (the level in the' 'perceptual
hierarchy" at which proximal grouping operates) were
relaxed to produce a less constrained version of CODE,

which allowed a single stimulus to be grouped in several
different ways. Second, some of the design decisions of
CODE were challenged by comparing the performance of
CODE with a family of related grouping algorithms pro
duced by considering alternatives to van Oeffelen and
Vos's (1982) design decisions. These algorithms differ
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Figure 2. (a) Solid line shows the strength gradient for a one
dimensional dot pattern; dotted lines show underlying spread func
tions associated with each dot, which are rescaled to each have a
height of 1. (b) Same as Figure la, but the functions are not rescaled.

their curves. The present discussion of the CODE algorithm
will make use of both the original version (with each
spread function having a height of 1) and this variation
(with spread functions having differing heights).

The CODE algorithm operates analogously on a two
dimensional stimulus array, such as the one shown in Fig
ure 3a. For a two-dimensional stimulus, the strength of
grouping can be represented by the z dimension. Figure 3b
shows the strength gradient (composed of individual
spread functions that do not have rescaled peaks) for this
stimulus as a surface. The surface is shown at a 45°
counterclockwise rotation. The shortest peak, at the front
of the surface, represents the combined strength of group
ing for Dots E and F, whereas the tallest peak, at the right
rear of the surface, represents Dots C and D.

According to CODE, grouping occurs when two or more
elements that lie in proximity cause the strength of group
ing for a region of the stimulus array to surpass a thresh
old value. When this occurs, all elements that are included
within that region are identified as belonging to a single
group. For the original CODE algorithm, this threshold is
1 (which is the height of the peaks before they are
summed). Figure 4a shows this threshold as applied to
the strength gradient seen in Figure 2b. This threshold
indicates the set of groups {AB,C,D}. (A set of groups
is defined as the configuration of groups that is specified
by a single value of a threshold.)

While CODE specifies that a single threshold is used,
the general approach is capable of generating multiple
sets of groups for a single stimulus pattern, by varying
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in the degree to which elements interact with each other ®
as they are grouped, and in the specific mechanisms of
interaction. Comparison among these different algorithms
allowed the role of interactivity among stimulus elements
in proximal grouping to be investigated. In the present
context, interactivity will be used to denote grouping al
gorithms that use relatively more global information about
the stimulus pattern (e.g., those that use the position of
remote stimulus elements to determine the group mem
bership of each element), and opposed to those algorithms
that rely on more local information (e.g., those that de- ®
termine group membership locally, free from influence
by distant regions of the stimulus pattern).

The CODE Algorithm
In the CODE algorithm, each element in the stimulus ar

ray exerts an influence on its neighboring region. This
effect is strongest on regions of the stimulus array closest
to the element, and diminishes to nearly zero for remote
regions of the stimulus array, with a strength gradient that
follows the shape of the normal distribution. CODE rep
resents this influence as a spread function in the shape
of a normal distribution, which is centered on each ele
ment in the stimulus.

The standard deviation of each spread function is set to
one half the distance between the element and its nearest
neighboring element. Once the shape of the spread function
is found, it is rescaled so that the height of its peak equals
1. The spread functions contributed by each element in the
stimulus array are then summed, to create a strength gra
dient for the stimulus array as a whole. Figure 2a illus
trates this process, as applied to a one-dimensional stimu
lus array consisting of four dots on a line (which are shown
just below the x-axis, and labeled A, B, C, and D). The
strength of grouping is represented by the y dimension.
The individual spread function for each dot is represented
by dotted lines, and the sum of the functions, the strength
gradient curve, is represented by the solid line. Since the
standard deviation of each spread function is defined as
half the distance from the dot to its nearest neighbor, some
of the spread functions have different dispersion values.
For example, Dots A and B are mutual nearest neighbors,
and thus have identical spread functions, but Dots C and
o have different spread functions, since the nearest neigh
bor to C is B, whereas the nearest neighbor to 0 is C.

Since each spread function is rescaled to have a maxi
mum height of 1, spread functions with differing stan
dard deviations have differing areas under their curves.
For example, the spread function of Dot 0 has a greater
standard deviation than do the spread functions for the
other dots, so once it is rescaled it contains a larger area
under its curve. The rescaling of the spread functions was
one of several design components of the CODE algorithm
that were investigated in the present study. Figure 2b
shows the spread functions and their sum for a variant
of the CODE algorithm that does not rescale the individual
spread functions before summing them. This variation of
CODE produces spread functions that have different
heights, but that all have identical areas (i .e., 1) under
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Figure 3. (a) A two-dimensional stimulus pattern. (b) Its strength
gradient.

® old values to the strength gradient surface. The regions
carved out by six different threshold values are shown
simultaneously in this figure. These six threshold values
identify every set of groups that the algorithm can generate
for this particular stimulus pattern. At each of the six thresh
old values, every region of the stimulus field that surpasses
the threshold is shown. Threshold I has the lowest value
on the z-axis, and Threshold 6 the highest. At Threshold I,
all dots are conglomerated into a single group, so the set
of groups is {ABCDEF}. At Threshold 2, the set of groups
is {ABCD,EF}; at 3, {AB,CD,EF}; at 4, {AB,CD,E,F};
at 5, {AB,C,D,E,F}; and at 6, {A,B,C,D,E,F}.

An informal exploration of the mechanics of the CODE

algorithm revealed that there is a limit to the number of
unique sets of groups that can be generated for any given
stimulus pattern. The number of sets of groups that can
be identified is always less than or equal to the number
of dots that the stimulus pattern contains. 1 This limit on
the number of sets of groups that can be generated by the
CODE algorithm (or any of its variants discussed in this
paper) will be referred to as the algorithm constraint.

Aim of Present Study
The purpose of the present study was to evaluate the

ability of the CODE algorithm, in its original form and in
several variations, to account for subjects' judgments of
how a given stimulus array should be grouped. One goal
of the present study was to determine under what condi
tions, if any, the CODE algorithm is an accurate predictor
of subjects' grouping judgments. A second goal was to
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Figure 4. (a) A single threshold (labeled T) applied to the strength
gradient seen in Figure 2a. (b) Four thresholds Oabeled I -4) ap
plied to the strength gradient seen in Figure 2b.

the threshold value. Figure 4b shows the different ways
the stimulus seen in Figure 2b can be grouped when dif
ferent threshold values are used. In this example, Thresh
old 1 specifies the set of groups {ABCD}; Threshold 2,
{ABC,D}; Threshold 3, {AB,C,D}; and Threshold 4,
{A,B,C,D}. Four sets of groups are shown, one speci
fied by each threshold level.

Groups are identified in an analogous fashion for two
dimensional stimuli. Figure 5a shows the effect of a thresh
old applied to the two-dimensional dot pattern shown in
Figure 3a. The z values are truncated at the threshold to
show the shapes of the regions that surpass the thresh
old. Only one threshold level is shown; it specifies the
set of groups {AB,CD,EF}.

Figure 5b is a top view of the strength gradient surface
for the same stimulus pattern. This figure shows the dots
and the regions that result from the application of thresh-
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Intersection Assumption
The second processing assumption concerns the way

in which the spread functions centered around each dot
are combined to produce the strength gradient surface.
The CODE algorithm handles overlap between the spread
functions associated with different dots by summing their
values, so that the intersection of two or more spread func
tions is additive. Alternatively, the algorithm could as
sume that at the intersection of two or more spread func
tions, the surface contour is determined by the spread
function that has the greatest value for that point, essen
tially superimposing spread functions, rather than add
ing them. This variation will be referred to as the inter
section parameter.

When additive intersections are used, the contributions
of each spread function to a given point are combined.
This is a form of interactivity that is not present when
maximum intersections are used, since in the maximum
intersections case only the spread function that makes the
greatest contribution to a given point has any influence
in determining the group membership of a dot located at
that point.

In algorithms in which the intersection parameter was
set to add, the surface contour at each x, y location was
determined by summing the contributions of all spread
functions in the stimulus array. When the intersection was
set to max, the surface contour at each x,y location was
set to the spread function that made the greatest contri
bution for that location. Figure 2b illustrated additive in
tersections; Figure 7 shows the same stimulus with max
imum intersections. The examples in Figures 6a and 6b
all have additive intersections.

dient surface. In contrast, when the peaks are rescaled
to all have the same height, the volume each dot contrib
utes to the strength gradient surface is a function of that
dot's standard deviation. The purpose of the rescaling pa
rameter was to determine what effect (if any) rescaling
had on the sets of groups that are chosen by the algorithm
for a given stimulus.

Distribution Assumption
Another processing assumption concerns the shape of

the spread function around each dot. The algorithm could
employ distributions other than the normal for this pur
pose. This variation will be referred to as the distribu
tion parameter. Two distributions were used, the normal
and the Laplace, an exponential distribution. 2 The Laplace
distribution may be more appropriate than the Gaussian
for describing strength gradients (see Shepard, 1987, for
an argument that exponential functions best characterize
generalization gradients in psychological space). The al
gorithms in the first and third columns of Figures 6a and
6b use the normal distribution, and those in the second
and fourth, the Laplace.

Standard Deviation Assumptions
The CODE algorithm assumes that the spread function

associated with each dot in a stimulus array has its own
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examine several of the processing assumptions of the CODE

algorithm.
The five factors will now be described in detail. Al

though the stimuli used in the present experiment were
all two-dimensional dot patterns, in our description of the
different parameters we will make use of the one
dimensional dot pattern first seen in Figure 2b for pur
poses of illustration.

Rescaling Assumption
The CODE algorithm rescales individual spread functions

so that their heights all equal 1. One variation of the CODE

assumes that no such rescaling is done and that the height
of each spread function is simply a function of its stan
dard deviation. This variation leaves the area under each
spread function equaling 1. This variation will be referred
to as the peaks parameter. Figure 2b demonstrates stan
dard peaks; Figure 2a, rescaled peaks. The examples in
Figure 6a have standard peaks, while those in Figure 6b
have rescaled peaks. When the peaks are not rescaled,
each dot contributes a volume of 1 to the strength gra-

Figure 5. (a) A single threshold applied to the strength gradient
seen in Figure 3b. (b) An overhead view of six thresholds (labeled
1-6) applied to the strength gradient seen in Figure 3b.
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Figure 6. (a) nIustration of the 12 algorithms that had standard peaks and additive intersections. Each combina
tion of the distribution, unique/same nearest neighbor, and nearest neighbor coefTJcient parameter is shown. (b) Same
as Figure 68, but with rescaled peaks.



Figure 7. A strength gradient idenlicalto the one seen in i"igure 2b,
but with maximum, rather than additive, intersection.~.

standard deviation, which is equal to one half the distance
from the dot to its nearest neighboring dot. The algorithm
could instead assume that the spread function for each dot
is derived from the average nearest neighbor distance
across all dots in the stimulus, rather than from the unique
nearest neighbor distance of each dot. This variation will
be referred to as the unique/same nearest neighbor pa
rameter. In algorithms in which the unique/same nearest
neighbor parameter was set to unique, the nearest neigh
bor contribution to each spread function was determined
by the distance between the dot and its nearest neighbor
ing dot. When the unique/same parameter was set to same,
the nearest neighbor distance for every dot was the mean
of all pairwise nearest neighbor distances. The two left
most columns of Figures 6a and 6b show the unique/
same parameter set to unique, while the rightmost two
columns show it set to same.

When the nearest neighbor parameter is set to unique,
the distance from each dot to its nearest neighbor con
tributes actively to the determination of the shapes of the
spread functions, giving different spread functions differ
ent standard deviations. When the nearest neighbor pa
rameter is set to same, all spread functions have the same
standard deviation, and the nearest neighbor distance in
formation affects all spread functions equally.

Another standard deviation assumption concerns the
coefficient that, when multiplied by the nearest neighbor
value, determines the standard deviation for each spread
function. The algorithm could set the spread functions to
multiples other than one half of the nearest neighbor dis
tance (independently of whether the nearest neighbor value
is unique for each dot or is an average of all interdot dis
tances). This variation will be referred to as the nearest
neighbor coefficient. The nearest neighbor coefficient
specified a weighting of the nearest neighbor distance to
produce the standard deviation for each spread function.
The different weightings used were .25, .5, and l. The
effect of these different weightings can be seen in Fig
ures 6a and 6b. Differences in this parameter affect all
spread functions equally. As the nearest neighbor coeffi
cient increases, spread functions get larger, and the ex
tent to which a given dot can influence the grouping of
its relatively distant neighbors increases.
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Purpose of Testing Variants of CODE

The strength gradient surface of the original CODE al
gorithm can be described in terms of the five parameters.
It has rescaled peaks, additive intersections, normally dis
tributed spread functions, unique nearest neighbor dis
tances, and nearest neighbor coefficients of .5. The CODE

algorithm (in its expanded form, in which the threshold
is allowed to vary) can therefore be seen as I algorithm
in the set of 48 that were investigated in the present ex
periment.

The variants of the CODE algorithm allow some of its
assumptions to be tested in order to determine whether
an algorithm of the complexity of CODE is required to pro
duce adequate predictions of subjects' grouping judg
ments. The different algorithms allow for different and
in some cases simpler assumptions about the mechanisms
underlying perceptual grouping by proximity.

For example, an algorithm that assumes that spread
functions are superimposed and not added together (the
intersection parameter set to max) and that each spread
function in a stimulus array is identical (the unique/same
parameter set to same) predicts that grouping is solely a
function of the distance between dots. (Algorithms with
this particular configuration of parameters will produce
identical grouping judgments, regardless of the settings
of the peaks, distribution, or nearest neighbor coefficient
parameters.) This approach to grouping can be visualized
as drawing a circle around each dot in the stimulus array
(with the height of the threshold determining the size of
the circles) and assigning dots whose circles overlap to
a common group. This simple distance model is perhaps

Figure 8. An overhead view of six thresholds (labeled 1-6) ap
plied to a strength gradient that is based on tbe same dot pattern
as that shown in Figure Sb, but that has different parameters.
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one of the simplest accounts of grouping by proximity that
can be imagined. Figure 8 shows the sets of groups that
are found when the simple distance model is applied to
the stimulus first introduced in Figure 3a. It should be
noted that for this particular stimulus pattern, the sets of
groups that are identified by the absolute distance model
are identical to the sets of groups identified by the CODE

algorithm (see Figure 5b). However, this equivalence of
result does not always hold between the two algorithms
when other stimuli are used, as will be discussed later.

A goal of the present study was to compare the rela
tively complex assumptions of the CODE algorithm with
simpler assumptions, and with equally complex parallel
assumptions. Through the comparison of different vari
ants of the algorithm, from the absolute distance algorithm
to more complex forms, the relative virtues of several as
sumptions of the CODE algorithm can be assessed.

METHOD

Subjects
The subjects were 44 undergraduate students at the University

of Illinois who received course credit for their participation.

Stimuli
The stimuli consisted of 64 random dot patterns which were gener

ated in the following manner. Dots were placed randomly within
an imaginary 80 X 80 square grid, under the constraint that no dot
be closer than four grid units to another. Eight dot arrays were gener
ated at each of eight numerosity levels, for a total of 64 patterns.
The numerosity levels were the even numbers from 6 to 20, in
clusive.

The patterns were printed on 8.5 x II in. paper, one to a page,
in a pseudorandom order, such that each sequence of eight patterns
included one pattern from each of the eight numerosity levels.

Procedure
The subjects were tested in groups. Each subject was given a

packet containing a page of instructions and the 64 dot patterns.
The subjects were instructed to draw a circle or other closed form
around any groups they saw on the page. They were allowed to
select as many or as few groups as they wished, but dots were not
to be assigned to more than one group. These rules for selecting
groups will be referred to as the selection constraint, because they
served to limit the responses that the subjects made. Written in
structions were provided, which were paraphrased by the experi
menter at the beginning of the session. The written instructions read
as follows:

You may take short breaks between patterns if you wish. When you
are finished, please close your booklet and wait for further instruc
tions from the experimenter.

The subjects used a pencil or a pen to circle the groups they saw
(if any) within each pattern. They were allowed to go at their own
paces, and they took between 10 and 15 min to complete their group
ing judgments for the 64 patterns.

Data Analysis
In the analysis of the subject data, a group was defined as con

sisting of two or more dots. Any single dots that were circled by
the subjects were ignored. Each subject's response on a single stim
ulus ~attern was defined as a set of groups. A single set of groups
contams zero or more groups, with the maximum number of groups
being equal to one half the number of dots in the pattern (as when
each dot is part of a group, and each group contains two dots).

The number of unique sets of groups that can be identified for
a dot pattern of a given size, under the rules of selection that were
given to the subjects, is shown in Table I. These values, the num
ber of theoretically possible sets of groups at each numerosity level,
are determined by the selection rules given to subjects, the selec
tion constraint, and they should not be confused with the number
of sets of groups that can be generated by a specific algorithm, the
algorithm constraint. 3 As indicated in Table 1, the size of selection
constrained sets of groups increases sharply with numerosity level.

The grouping judgments for the 44 subjects were sorted by stirn·
ulus patterns. For each stimulus pattern, subjects' responses that
were identical (i.e., the sets of groups chosen were identical) were
grouped together and counted. Subject data for each of the 64 stim
ulus patterns consisted of a list of the sets of groups that the sub
jects collectively generated for the pattern, and for each set of
groups, the number of subjects who grouped the stimulus pattern
in that particular way. The subject data were entered into a com
puter for comparison with the grouping predictions made by the
different variations of the CODE algorithm.

Predicting Groups
The subject data were compared with the predictions made by

48 variations of the CODE algorithm. These variations resulted from
the combination of five factors, in a 2 (peaks) x 2 (intersections)
x 2 (distribution) x 2 (unique/same nearest neighbor) x 3 (nearest
neighbor coefficient) design. As previously discussed, the CODE al
gorithm and its variants are capable of grouping each stimulus a
number of different ways by varying the threshold. Each set of
groups (for a given pattern) generated by an algorithm was taken
as a single prediction, so that, in most cases, an algorithm submit
ted as a prediction more than one set of groups for each stimulus
pattern. As a result, tests of the algorithms' performance, both
against each other and against an absolute standard, involved com
paring (for each stimulus pattern) several of sets of groups gener-

Numerosity Sets of
Level Groups

Table 1
Number of Unique Sets of Groups That Can Be Identified Under

the Selection Constraints at Each Numerosity Level

Instructions for Perceptual Judgment Experiment

The purpose of this study is to investigate how the human percep
tual system organizes visual patterns into groups.

You will be asked to make grouping judgments about a series of
dot patterns. Please draw a circle or other closed form around any
dots you see as a group. Your grouping judgment for a single pat
tern may include as many or as few groups as you see fit. If you
see any "stray" dots that don't seem to belong to any group, you
can just ignore them.

This experiment is not a logic puzzle or an exercise in reasoning;
we are merely interested in getting your perceptual intuitions. For
that reason, it is not necessary to take a long time or agonize over
a single pattern. The best judgments will be based upon your im
mediate impressions of the organization of the patterns.

6
8

10
12
14
16
18
20

203
4,140

115,975
4,213,597

190,899,322
10,480,142,147

682,076,806,159
51,724,158,235,372
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Nearest
Neighbor

Intersection Coefficient

Standard Peaks

.25 832 100 832 100 832 100 832 100

.5 832 100 832 100 832 100 832 100
I 832 100 832 100 832 100 832 100
.25 811 97 809 97 746 90 746 90
.5 815 98 816 98 746 90 746 90
I 820 99 816 98 746 90 746 90

Rescaled Peaks
.25 831 100 832 100 832 100 832 100
.5 832 100 832 100 832 100 832 100
I 832 100 832 100 832 100 832 100
.25 808 97 808 97 746 90 746 90
.5 804 97 807 97 746 90 746 90
I 804 97 815 97 746 90 746 90

Table 3
Number of Sets of Groups Generated by Each Algorithm, With
Frequencies as Percentages of the Maximum Number Possible

Unique Nearest Same Nearest
Neighbor Neighbor

Normal Laplace Normal Laplace

No. % No. % No. % No. %

Additive

Additive

Maximum

Maximum

subject agree~ent within numerosity levels, and the ex
tent of agreement declined as numerosity level increased.

Table 3 shows the number of sets of groups (aggregated
over the 64 stimulus patterns) generated by each of the
48 algorithms that were tested. For 23 of the 24 versions
of the algorithm that had additive intersections, the
algorithm-constrained limit on the number of sets of
groups that could be generated was reached for all 64 stim
ulus patterns. Since the maximum number of sets of
groups that could be found was equal to the number of
dots in the pattern (see note 2), for these 23 additive in
tersection algorithms the number of sets of groups found
was the sum of the numerosity levels times eight stimu
lus sets, or 832 (the remaining algorithm generated 831
sets of groups). The 24 algorithms that had maximum in
tersections identified fewer sets of groups than the theo
retical maximum.

There are two possible explanations for the less than
perfect ability of some of the algorithms to identify all
possible sets of groups. It may be that two or more dots
or groups had conglomerated with a single move in thresh
old because two local minima in the strength gradient sur
face (the points at which two regions conjoin or break
apart, resulting in a change in the set of groups) are lo
cated at exactly the same height. In this case, a single
change in the threshold would cause two separate con
glomeration events to occur simultaneously, thereby re
ducing the number of sets of groups that could be identi
fied. Alternatively, it may be that because of limitations
of the computer implementation, very small differences
in the heights of two or more saddle points (the points
in the strength gradient surface at which two groups join
or break apart with a minute change in threshold) went
undetected, again resulting in a reduction in the number
of sets of groups that could be identified.

Table 2
Average Number of Subjects Selecting Each Set of Groups,

for Each of the 64 Stimulus Patterns

Stimulus Numerosity Level

Set 6 8 10 12 14 16 18 20 M

A 6.3 2.4 2.3 1.2 1.9 1.5 1.3 1.4 1.8
B 4.0 4.4 2.0 2.0 2.1 1.9 1.6 1.2 2.0
C 3.7 2.9 3.1 2.0 2.3 1.4 1.2 1.2 1.9
D 3.4 2.3 2.0 1.6 1.5 1.6 1.2 1.1 1.6
E 4.0 2.8 1.6 1.3 1.4 1.6 1.1 1.2 1.6
F 5.5 2.4 2.8 1.6 1.3 1.7 1.4 1.4 1.8
G 4.9 2.4 2.0 1.3 1.4 1.4 1.9 1.3 1.7
H 8.8 2.2 3.7 2.3 1.7 1.3 1.4 1.3 1.9

M 4.6 2.6 2.3 1.6 1.6 1.5 1.3 1.3 1.8

The subjects agreed with each other to varying degrees
on how the dot patterns should be grouped. One indica
tor of the extent of agreement is the average number of
subjects who selected each set of groups that the subjects
produced for a given stimulus, as shown in Table 2. For
example, for the stimulus pattern labeled A6, each set of
groups was selected by an average of 6.3 subjects. This
value is greater than the mean for Numerosity Level 6,
which was 4.3, indicating better than average intersub
ject agreement on how Pattern A6 should be grouped.
There was considerable variability in the extent of inter-

ated by the algorithm with several sets of groups generated by the
subjects.

The sets of groups found by each algorithm for each stimulus
pattern were generated in the following manner. For each algorithm,
the strength gradient surface for each of the 64 stimulus patterns
was calculated, according to the appropriate parameters, in the fol
lowing manner.

First, the standard deviation for each dot's spread function was
found. The distance between each dot and its nearest neighbor was
calculated, and if unique/same nearest neighbors was set to same,
the mean of the nearest neighbor distances was used as the nearest
neighbor distance for each dot. This value was then multiplied by
the nearest neighbor coefficient (.25, .5, or I) to produce the stan
dard deviation value for each dot. Next, for each x, y position in
the grid, the contribution of the spread function associated with each
dot (a function using the distribution specified by the distribution
parameter, standard deviation derived by the method previously de
scribed, and centered on the dot) was determined. If the peaks pa
rameter was set to rescaled, the value of the spread function at each
x,y position in the grid was multiplied by the reciprocal of the spread
function's greatest value (i.e., the value of the function at its center).
Finally, the contributions of each dot to each point in the x,y grid
were combined, either additively or by taking the single greatest
value, as specified by the intersection parameter.

Once the strength gradient surface was created, the threshold was
varied in an attempt to identify as many sets of groups as possible.
(The number of sets of groups an algorithm can generate is less
than or equal to the number of dots present in the pattern; see note 2.)
In order to find all possible groups quickly, the threshold was varied
in an iterative fashion, in a search for still-unidentified groups, rather
than simply incremented in a stepwise fashion from the bottom or
top ofthe strength gradient surface. The nature of this iterative search
process is described in detail in Appendix B.

RESULTS AND DISCUSSION
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Table 4
Number of Stimuli, for Each Algorithm Tested, That Were

Significant at the p < .0001 Level by the Binomial Test,
With Frequencies as Percentages of Total

Unique Nearest Same Nearest
Neighbor Neighbor

Nearest
Neighbor Normal Laplace Normal ~ Laplace

Intersection Coefficient No. % No. % No. % No. %

Evaluating Algorithm Performance
Versus an Absolute Standard

The first question in examining the algorithms is
whether the algorithms can predict subjects' judgments
with any degree of accuracy. A binomial test was per
formed in which the frequency with which an algorithm
matched subjects' judgments was compared with the prob
ability that sets of groups selected at random (from the
set of theoretically possible sets of groups; see Table 1)
would match subjects' judgments.

A separate binomial test was conducted for each of the
64 stimuli, under each of the 48 algorithms, for a total
of 3,072 tests. For each test, the dependent variable was
the number of subjects whose judgments for the pattern
were matched by one of the sets of groups generated by

Additive

Maximum

Additive

Maximum

Standard Peaks
.25 63 98.4 63 98.4 63 98.4 63 98.4
.5 63 98.4 63 98.4 63 98.4 63 98.4
I 56 87.5 63 98.4 42 65.6 63 98.4
.25 63 98.4 63 98.4 63 98.4 63 98.4
.5 63 98.4 63 98.4 63 98.4 63 98.4
1 63 98.4 64 100 63 98.4 63 98.4

Rescaled Peaks

.25 58 90.6 58 90.6 63 98.4 63 98.4

.5 60 93.8 61 95.3 63 98.4 63 98.4
I 40 62.5 57 89.1 42 65.6 63 98.4
.25 60 93.8 60 93.8 63 98.4 63 98.4
.5 60 93.8 60 93.8 63 98.4 63 98.4
I 60 93.8 60 93.8 63 98.4 63 98.4

the algorithm for that pattern. For example, consider the
case in which one of the algorithms matches 41 of the
44 subjects' grouping judgments for a certain six-dot stim
ulus. Imagine that this particular algorithm has generated
six sets of groups for this particular stimulus. The bino
mial test, then, consists of comparing the actual number
(41) of subject judgments that were matched, with the
number of matches expected if six sets of groups were
chosen at random from the set of selection constrained
sets of groups (which for six-dot stimuli is 203, as shown
in Table 1).

Table 4 shows, for each of the 48 algorithms, the num
ber of stimuli (out of 64) for which the performance of
the algorithm was better than chance (p < .00(1). The
48 algorithms collectively reached the binomial criterion
for success on an average of 61 of the 64 stimulus pat
terns. The performance of each of the algorithms is con
siderably better than would be expected if the sets of
groups were chosen at random.

Evaluating the Algorithm Parameters
Table 5 shows the number of subjects' judgments that

were matched by each algorithm, both as raw frequen
cies of the total and as percentages of all subject judg
ments. Which parameters made a difference in the abil
ity of the algorithms to predict the subjects' judgments?
To address this question, a five-way analysis of variance
(ANOYA) was performed, with the five parameters that
define the different algorithms as factors. The 64 stimuli
were treated as subjects. For each stimulus, the depen
dent measure was the number of subjects whose group
ing judgment for the stimulus matched one of the judg
ments made by the algorithm (calculated separately for
each of the 48 algorithms).

A main effect of the peaks parameter was seen
[F(l,3024) = 30.17,MSe = 3,154,p < .001], with the
algorithms having standard peaks matching an average of

Table 5
Number of Subject Judgments Matched by Each Algorithm,

With Percent of Subject Judgments Matched

Unique Nearest Same Nearest

Nearest
Neighbor Neighbor

Neighbor Normal Laplace Normal Laplace

Intersection Coefficient No. % No. % No. % No. %

Standard Peaks

Additive .25 924t 38.2 988t 35.1 I,Ol5t 36.0 1,013t 36.0
.5 986t 35.0 1,029t 36.5 985t 35.0 978t 34.7
I 549 19.5 825 29.3 281:1: 10.0 716 25.4

Maximum .25 937t 33.3 959t 34.1 998t 35.4 998t 35.4
.5 1,052t 37.4 1,056t 37.5 998t 35.4 998t 35.4
I 863 30.6 1,027t 36.5 998t 35.4 998t 35.4

Rescaled Peaks

Additive .25 672 23.9 654 23.2 I,Ol5t 36.0 I,Ol3t 36.0
.5 701* 24.9 731 26.0 985t 35.0 978t 34.7
I 348:1: 12.4 608 21.6 281:1: 10.0 716 25.4

Maximum .25 728 25.9 728 25.9 998t 35.4 998t 35.4
.5 728 25.9 728 25.9 998t 35.4 998t 35.4
I 728 25.9 728 25.9 998t 35.4 998t 35.4

*CODE algorithm. tMatched significantly more judgments than did the CODE algorithm
(p < .(01). :l:Matched significantly fewer judgments than did the CODE algorithm (p < .(01).
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Nearest
Neighbor SD Coefficient

Parameter .25 .5 1.0

Unique 29.3 31.1 25.2
Same 35.7 35.1 26.6

Table II
Three-Way Interaction (p < .OS) Between Intersection

Unique/Same, and Standard Deviation CoefrlCient
Parameters: Percent of Subject Judgments Matched

Table 10
Two-Way Interaction (p < .OS) Between Unique/Same and

Standard Deviation Coefficient Parameters: Percent of
Subject Judgments Matched

Additive Intersections

Unique 28.7 30.6 20.7
Same 36.0 34.4 17.7

Maximum Intersections
Unique 29.8 31.6 29.7
Same 35.4 35.4 35.4

1.0

1.0

19.2
32.6

.5

.5

32.7
33.5

SD Coefficient

.25

32.4
32.6

.25

Additive
Maximum

Intersection

Nearest
Neighbor
Parameter

Table 9
Two-Way Interaction (p < .01) Between Intersection and

Standard Deviation Coefficient Parameters: Percent of
Subject Judgments Matched

SD Coefficient

32.8% of the subjects' judgments, and those having re
scaled peaks matching 28.2%. As shown in Table 5, each
algorithm with standard peaks performed as well as or
better than its counterpart with rescaled peaks.

A main effect of the intersection parameter was seen
[F(l,3024) = 32.82, MSe = 3,431, p < .001], with the
algorithms having additive intersection algorithms match
ing an average of28.1 % of subjects' judgments, and those
having maximum intersections matching 32.9%. The ef
fect of having additive intersections was especially detri
mental when the nearest neighbor coefficient was set to I,
a combination that seemed to overemphasize global fac
tors in grouping.

A main effect for distribution of the spread function was
seen [F(l,3024) = 8.97, MSe = 937, p < .005], with
algorithms using the normal distribution matching 29.2%
of the judgments, and those using the Laplace distribu
tion matching 31.8%. Algorithms with Laplace distribu
tions were less susceptible than their counterparts with
normal distributions when other parameters came together
to overemphasize interactivity (e.g., additive intersections
or a nearest neighbor coefficient of I), as is shown in
Table 5.

A main effect was seen for the unique/same nearest
neighbor parameter [F(l ,3024) = 22.28, MSe = 2,329,
p < .001], with algorithms having unique nearest neigh
bors matching 28.5% of subjects' judgments and those
with the same nearest neighbors matching 32.5%. Models
with the same nearest neighbors ignore nearest-neighbor
relations (except to the extent that the mean nearest
neighbor value may change from pattern to pattern) and
involve more local computations than do their counter
parts that use unique nearest neighbors.

Peaks Unique Same

Unique/Same

Standard 33.1 32.5
Rescaled 23.9 32.5

Table 6
Two-Way Interaction (p < .01) Between Peaks and Unique/Same

Parameters: Percent of Subject Judgments Matched

A main effect was seen for the nearest neighbor coeffi
cient [F(2, 3024) = 30.53, MSe = 3,192,p < .001], with
algorithms having a coefficient of 0.25 matching 32.5%
of subjects' judgments, those with a coefficient of 0.5
matching 33.1 %, and those with a coefficient of 1 match
ing 25.9%. Whenever there was a difference among nearest
neighbor coefficients, algorithms with a coefficient of 1
performed worse than those with a coefficient of .5. These
results clearly show the detrimental effect of overempha
sizing interactivity among points in a stimulus, at the ex
pense of keeping local features distinct.

In addition to the main effects, there were five two-way
interactions, and two three-way interactions. These inter
actions are shown in Tables 6-12. The interaction ofthe
peaks and the unique/same parameters, shown in Table 6,
shows that rescaling the spread functions matters only
when unique nearest neighbor distances are used. This
result is to be expected, since rescaling the peaks should
have no effect when each spread function already has the
same height, as is the case when the nearest neighbor dis
tances (and therefore the spread functions) are identical
for all dots .

The main effects and the remaining interactions (other
than the peaks by unique/same interaction previously men
tioned) seem to result from related phenomena. The al-

1.0

22.4
29.4

30.3
33.2

Laplace

.5

33.0
33.3

SD Coefficient

25.9
32.6

Normal

.25

32.3
32.6

Additive
Maximum

Normal
Laplace

Intersection

Distribution

Table 8
Two-Way Interaction (p < .01) Between Distribution and

Standard Deviation Coefficient Parameters: Percent of
Subject Judgments Matched

Table 7
Two-Way Interaction (p < .OS) Between Intersection and

Distribution Parameters: Percent of Subject Judgments Matched

Distribution
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Table 12
Three-Way Interaction (p < .05) Between Intersection,

Distribution, and Standard Deviation Coefficient
Parameters: Percent of Subject Judgments Matched

------_._-
SD Coefficient

Distribution .25 5 1.0

Additive Intersections

Normal 32.2 32.5 13.0
Laplace 32.6 33.0 25.4

Maximum Intersections

Normal 32.5 33.5 31.8
Laplace 32.7 33.6 33.3

gorithms that were more successful tended to be those that
computed their groups from relatively more local infor
mation about the stimulus pattern. Across the 48 al
gorithms tested, the maximum intersection algorithms
were more successful than the additive intersection al
gorithms. The maximum intersection algorithms, in which
the contribution of each spread function to the strength
gradient surface is limited by the contributions of other
spread functions, can be said to be more local than the
additive algorithms, whose spread functions contribute
some quantity to the entire strength gradient surface.

The algorithms with Laplace distributions were more
effective than those with normal distributions. In a Laplace
algorithm, the contribution to the strength gradient sur
face is greater in the immediately surrounding regions than
in normal algorithms.

The nearest neighbor coefficient parameter follows a
similar pattern. Although the algorithms with a coefficient
of 0.25, which were the most local in nature, did not per
form as well as those with a coefficient of 0.5, the al
gorithms with a coefficient of 1, the least local, performed
the worst of all.

Evaluating Performance Among the Algorithms
In addition to the test of the algorithm parameters, per

formance among the individual algorithms was assessed.
In this test, the CODE algorithm was compared with each
of the other 47 algorithms. For each comparison, a Wil
coxon signed ranks test was performed on the number of
subject judgments that were matched by the algorithms on
each stimulus. With 48 comparisons, the alpha level was
set to p < .001. As indicated in Table 5, 29 algorithms
performed significantly better than the CODE algorithm, 3
algorithms performed significantly worse, and 15 al
gorithms did not perform significantly better or worse. It
is clear that the performance of CODE can be dramatically
improved by modifying some of its assumptions.

Performance Distinctions Among Algorithms:
An Example

Figure 9 gives an example of how different algorithm
parameters can group the same stimulus pattern in differ
ent ways. Figure 9a shows one of the stimuli used in the
experiment. Figures 9b and 9c show the sets of groups

generated for this stimulus by two different algorithms.
Both algorithms had standard peaks, additive intersections,
Laplace distributions, and unique nearest neighbors, with
the algorithm in Figure 9b having a nearest neighbor coeffi
cient of .5 and the one in Figure 9c having a nearest neigh
bor coefficient of 1. The sets of groups specified by these
two algorithms are identical, except for those specified at
Threshold 2 by each algorithm. The algorithm in 9b speci
fies the set of groups {ABCD},{EF}, and the one in 9c
specifies {ABCEF},{D}.

Table 13 lists each set of groups subjects generated for
this pattern. The algorithm with a nearest neighbor coeffi
cient of 1 fails to predict the set of groups {ABCD} ,{EF} .
This is because the spread functions for that algorithm
exert their influence over a very large area of the stimu
lus field. The aggregate influence of the spread functions
increases the strength of grouping around the center of
the dot figure, at the expense of the separateness of Group
{ABCD}. This is one example of the detrimental effect
of overemphasizing global factors in proximal grouping.

Performance of Single Threshold
Version of CODE

The performance of the original single threshold version
of CODE (with the threshold set to I) was assessed. The
single-threshold version of CODE generated one set of
groups for each of the 64 stimulus patterns, in compari
son with the multiple-threshold (but otherwise identical)
version, which generated a total of 832 sets of groups for
the 64 patterns (see Table 3). The single-threshold version
of CODE matched 189 judgments, which is 6.7% of the
2,816 judgments made by all subjects. (As was shown
in Table 5, the multiple-threshold version matched 701
judgments, which is 24.9% of total subject judgments.)

For the purposes of comparison, the same assessment
was made of an alternative single-threshold version of
CODE. This alternate version used a single variable thresh
old (determined separately for each stimulus pattern)
which was defined as the one that matched the greatest
number of subjects' judgments, rather than the fixed
threshold of I. This "best threshold" version of CODE

matched 367 judgments, or 13.0% of the total. If the CODE

algorithm is to be used to predict a single grouping con
figuration for each pattern, the process by which the
threshold is selected will require further investigation.

It is clear that the multiple-threshold version of CODE

outperforms the single-threshold version. To what fac
tors can this improvement be attributed? One possibility
is that the threshold that the subjects used varied from
stimulus to stimulus and was determined by the stimulus
alone or by an interaction between subject and stimulus.
If this were the case, the multiple-threshold version of
CODE would be most appropriate. A second possibility is
that differences in thresholds were produced solely by in
dividual differences among the subjects. If this were the
case, a model intermediate between the single-threshold
and the multiple-threshold model would be appropriate
one in which each of the subjects has a unique threshold
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Figure 9. (a) A two-dimensional stimulus pattern. (b and c) An overhead view of six thresholds (labeled 1-6) applied to two strength

gradients based on the dot pattern seen in Figure 9a. The thresholds in Figures 9b and 9c are generated by algorithms with additive
intersections, Laplace distributions, and unique nearest neighbors, with that in Figure 9b having a nearest neighbor coefficient of .5 and
that in Figure 9c having a nearest neighbor coefficient of 1.

that is applied to all stimulus patterns. According to this
individual differences view, the threshold would be ex
pected to vary only between subjects, and not within
subjects.

To investigate the individual differences explanation, we
performed the following analysis. Our goal was to deter
mine whether subjects differed in their average threshold
and to assess the extent of differences between subjects rel
ative to differences within subjects. We entered the thresh
old that each subject used on each stimulus for which there
was a match between their judgment and the algorithm
(using the most successful algorithm so as to maximize the
number of available data points) into a one-way ANOVA,

with subjects as a factor. The effect of subjects was sig
nificant [F(43,1,055) = 7.69, MSc = 4,443,314, P <
.001], which indicates the presence of individual differ
ences among subjects in the thresholds they used. How
ever, the main effect of subjects accounted for only 32.7%
of the variance. The remaining variance was due to dif
ferences in thresholds within subjects.

The individual differences model requires that there be
differences between subjects in the thresholds that they
used, but not differences within subjects. Because of the
large variation of thresholds within subjects, the individ
ual differences model would be unable to approach the
success of the multiple-threshold model.
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Table 14
Correlation Between Index of Goodness and Number of

Subject Judgments Matched by Each Algorithm

Nearest Unique Nearest Same Nearest
Neighbor Neighbor Neighbor

Intersection Coefficient Normal Laplace Normal Laplace

Table 13
Complete Set of Grouping Judgments Made by Subjects Versus

Predictions Made by Two Algorithms for the Stimulus
Pattern Seen in Figure 9A

Note-Both algorithms have standard peaks, additive intersections,
Laplace distributions, and unique nearest neighbors; the nearest neigh
bor coefficient is .5 for one algorithm, I for the other. Columns for
algorithms (labeled Nearest Neighbor Coefficient) show threshold in
dex if the set of groups was predicted. They are left blank if it was not.
Judgments matched = 41 for coefficient of .5, 37 for coefficient of I .

~ 100
-'= 90U
+-'

800
2 '\

70 \

(J) 60 b
+-' "-
C 50 '0
Q) \

E 40 \

Q'> 30 '0-0...
U ....0_

::J 20
-:J

10

Figure 10. Percent of subject judgments matched at each numer
osity level. Solid line shows average over the 48 algorithms; dotted
line shows single most successful algorithm.

gorithms, and for the single best algorithm. The results
are what should be expected from proximal grouping al
gorithms faced with stimuli that have varying degrees of
goodness: good stimuli are associated with more accurate
predictions of grouping by the algorithm.

In order to ensure that the ability of the present experi
ment to discriminate among algorithms was not depen
dent upon the degree of goodness of the patterns being
grouped, the following analysis was performed. The 64
stimulus patterns were assigned to either a high or a low
goodness category (with 32 patterns being assigned to each
category), according to the criterion of intersubject agree
ment. For both the high and the low goodness stimuli,
the number of subject judgments matched was averaged
over the 32 stimulus items and placed into the design of
the five-way ANOVA that was described in the section
entitled Evaluating the Algorithm Parameters. This
ANOVA had the five parameters (peaks, intersection, dis
tribution, unique/same nearest neighbors, and nearest
neighbor coefficient) that defined the algorithms as fac
tors. The correlation between the cells for the high good
ness and the low goodness patterns was .93.

Two separate ANOVAs were performed; one for the
high-goodness stimuli and one for the low-goodness stim
uli. These ANOVAs were identical in design to the five
way ANOVA that was used to evaluate the algorithm pa
rameters (except that they had 32, rather than 64, stim
uli). The results of the two ANOVAs were extremely sim
ilar to each other and to the 64-stimulus ANOVA. The
main effects were identical in all three ANOVAs, and the
interactions were identical, with the following exceptions.
In the high-goodness stimulus ANOVA, the two-way
interaction of intersection X nearest neighbor coefficient
was not significant [F(2,1488) = 1.96, MSe = 184,
p < .14], although it reached significance in both the 64
stimuli ANOVA and the low goodness stimuli ANOVA.
In the low-goodness stimulus ANOVA, the two-way inter
action of intersection and distribution [F(l, 1488) = 3.68,
MSe = 62, p > .05], and the three-way interaction of
intersection, distribution, and nearest neighbor coefficient

~ 0 +---,---,--,-----,-----,----,---,--,.-----,
4 6 8 10 12 14 16 18 20 22

Numerosity Level

3 3
4 4
5 5
2

.5 I

Nearest Neighbor
CoefficientSet of Groups

Selected

{ABC} ,{EF}, {O}
{BC}, {EF}, {A},{O}
{EF}, {A} ,{B},{C}, {O}
{ABCO},{EF}
{AB},{CO},{EF}

Standard Peaks

.25 .85 .83 .85 .85

.5 .84 .83 .86 .81
1 .78 .82 .43 .83

.25 .83 .84 .85 .85

.5 .81 .81 .85 .85
I .81 .83 .85 .85

Rescaled Peaks

.25 .73 .74 .85 .85

.5 .72 .69 .85 .85
I .74 .75 .85 .85

.25 .80 .80 .85 .85

.5 .80 .80 .85 .85
I .80 .80 .85 .85

Number of
Subjects
(n = 44)

14
13
10
4
3

Maximum

Additive

Maximum

Additive

Algorithm Performance and Goodness
A final question concerns the relation between the good

ness of the individual stimuli and the ability of the algo
rithms to predict how subjects will group them. An in
dex of goodness was derived, based on subject agreement.
The more subjects who agreed on a particular grouping,
the better the grouping (suggested by Hochberg &
McAlister, 1953). The average number of subjects who
selected each set of groups was calculated for each stim
ulus pattern. Stimuli were considered good to the extent
that the average number of subjects selecting each set of
groups was high. The correlation between the average
number of subjects per set of groups and the number of
subject judgments matched for each stimulus was com
puted. The resulting correlation is shown for each algo
tithm in Table 14. As was shown in Table 2, the extent
of intersubject agreement declines sharply with numer
osity level. Similarly, the performance of the algorithms
declines sharply with numerosity level. Figure 10 shows
performance by numerosity level, averaged across all al-



[F(2,1488) = 1.61, MSe = 27, P > .20], were not sig
nificant, although they were significant in both the
64-stimulus ANOVA and the high-goodness stimulus
ANOVA. In the high-goodness stimulus ANOVA, the ef
fects that agreed with those found in the other two
ANOVAs accounted for 98.6% of the variance due to
treatments, and in the low-goodness stimulus ANOVA,
the effects that agreed with the other two ANOVAs ac
counted for 98.7 % of the variance due to treatments.
These results indicate that performance distinctions among
algorithms were stable across changes in pattern goodness.

GENERAL DISCUSSION

The proximal grouping algorithms examined in this
study were successful in matching subjects' judgments.
This was particularly true when there was agreement
among subjects on how a particular pattern should be
grouped. The comparisons among the five algorithm pa
rameters and the 48 algorithms demonstrated the unsuit
ability of defining proximal grouping in a way that over
emphasizes interactivity between dots in relatively distant
regions of the configuration. The performance of the origi
nal CODE algorithm (as measured by the pairwise com
parison with its alternatives) was significantly worse than
many of its alternatives because of an overemphasis on
interactivity.

The most successful algorithms, however, were not the
most local. Several of the algorithms that were most suc
cessful used unique nearest neighbor distances (which em
phasize differences in individual nearest neighbor dis
tances), and nearest neighbor coefficients of .5 (which is
intermediate between the most local value, .25, and the
most global, 1).

The test of the algorithms demonstrates that the best
models of grouping by proximity employ a moderate level
of interactivity among the stimulus elements during pro
cessing. Since to group elements is to establish a rela
tionship among them, models of grouping must employ
some degree of interactivity. The present study indicates
that the degree of interactivity should be relatively mini
mal. Algorithms that use only limited interactivity should
be easier to compute, since they can be performed simul
taneously at a number of locations.

The various algorithm parameters (except, perhaps, the
distribution parameter) can be seen as different ways of
defining interactivity. Since no configuration of parame
ters specified a single algorithm that was vastly superior
to all others, the best algorithms can be viewed as existing
within a region of a space defmed by the various algorithm
parameters. In general, the success of an algorithm was
a result of the configuration of a number of parameters,
and not just the value of a single parameter. For exam
ple, consider the single most successful algorithm, which
matched 1,056 subjects, and had rescaled peaks, maxi
mum intersections, Laplace distributions, unique nearest
neighbors, and nearest neighbor coefficients of .5, as
shown in Table 5. With one exception, the algorithms that
differ from this best algorithm by only one parameter also
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performed quite well. The exception is the algorithm that
shared four of the parameters and had rescaled peaks,
which performed rather poorly. It is interesting that the
rescaling of peaks had perhaps the most dramatic effect
of the strength gradient surface, suggesting that it would
be computationally intensive to implement.

While the CODE algorithm was moderately successful,
the present study shows it can be improved upon without
making more complex processing assumptions. For rela
tively ambiguous stimuli, models of perceptual grouping
need to account for more than one potential "good" con
figuration. The original formulation of the CODE al
gorithm, with its single prediction of grouping, is less ap
propriate for ambiguous stimuli than an algorithm that
allows for several possible organizations.

The ability of the algorithms (in absolute terms) to
predict subjects' judgments was highly correlated with the
goodness of the individual stimuli, as measured by inter
subject agreement. (In contrast, the relative ability of in
dividual algorithms, in comparison with other algorithms,
to predict subjects' judgments was largely unaffected by
goodness.) In addition to the issue of goodness, there is
another limit to the ability of a proximity-based definition
of grouping to predict the groups subjects see in random
dot patterns. In some patterns, grouping principles based
on, for example, orientation, good continuation, or simi
larity may overpower organizations based on proximity
alone. An example of this can be seen in the subjects'
judgments for the dot pattern shown in Figure 9. One set
of groups, {AB}, {CD},{EF}, was selected by 3 subjects,
but by neither of the two algorithms. If a line is drawn
between the two dots in each group, it is clear that the
three groups of dots have very similar orientations. This
explanation of the set of groups {AB}, {CD}, {EF} sug
gests that proximity is not the only grouping principle in
effect. A more complete model of perceptual grouping
must employ other grouping principles, in addition to
proximity, even when dot pattern stimuli are used. Such
an approach will require a balancing of different group
ing principles. Similarly, each grouping principle has its
own limitations. Koffka (1935) suggested that the applica
bility of the principle of grouping by proximity is limited
by the perceived goodness of the stimulus to which it is
applied.

This study has shown that assumptions about the mech
anisms of proximal grouping can make nontrivial differ
ences in the way a stimulus is organized. It is not always
the case that design decisions based on what "looks good"
to the designer will lead to the most effective character
ization of grouping for a number of subjects over a num
ber of different stimuli. Most of the algorithms predicted
judgments very successfully when subject agreement was
high. As subject agreement declined, all of the algorithms
performed less well, and the more successful algorithms
continued to outperform the less successful ones.

One possible interpretation of the role of goodness in
differentiating among the algorithms involves a distinc
tion between bottom-up and top-down processing in per
ceptual grouping. While van Oeffelen and Vos (1982) pre-
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sented the CODE algorithm as a strictly bottom-up account
of grouping, the approach taken in the present paper can
be seen as having both bottom-up and top-down compo
nents. The creation of the strength gradient surface and
the generation of different sets of groups by applying dif
ferent thresholds to the surface can be seen as purely
bottom-up processes, while the selection of a single set
of groups can be seen as a top-down process. Perhaps the
job of the bottom-up processes is to generate a reason
able set of interpretations, from which top-down processes
can select a single interpretation. From this perspective,
for an algorithm to match an extremely "good" pattern,
it need only produce among its alternatives the single
popular interpretation that many subjects choose. Stim
uli that are less good provide a more stringent test of the
algorithm: for these patterns, the more successful al
gorithms will be those that produce several reasonable in
terpretations.

Marr's Approach to Grouping
CODE was designed to find proximity-based groups in

a two-dimensional stimulus pattern. If the representation
of spatial position described by CODE is accurate, one
would expect to find analogous representations of spatial
position in contexts other than perceptual grouping. Van
Oeffelen and Vos (1983) compared CODE to the grouping
function of Marr's (1982) primal sketch. Marr's primal
sketch is one level of representation in his ambitious the
ory of vision, in which grouping plays only a small part.

Marr described grouping as functioning to create tokens
in the primal sketch. Although both CODE and the primal
sketch represent spatial position as a landscape of peaks
of excitation centered on the elements present, there are
two important differences. First, the component of the
primal sketch analogous to the Gaussian spread functions
of CODE uses a different function, '\J2G, to represent points
in the stimulus field. 4 This function, which is shown in
Figure 11, has both excitatory and inhibitory components.
In contrast, CODE uses a Gaussian function to represent
excitation around a point. CODE lacks any inhibitory com
ponent. As was shown in the present experiment, rela
tively subtle changes in the design assumptions of the CODE
algorithm can produce very different grouping predic
tions. Changes in shape of the spread function alone might
produce significantly different grouping predictions, but
this remains to be seen.

f\
Figure 11. The shape of the 'l'G function used in Marr's primal

sketch, approximated as the difference of two Gaussian functions
in a ratio of 1:1.6.

One aspect of the use of the \J2G function by the primal
sketch is that the net level of excitation averaged across
the stimulus field is zero. As with CODE, groups can then
be identified as elements contained within contiguous
regions that surpass the threshold (which is zero). The
"strength of grouping" factor, which is represented in
the modified CODE algorithm by varying the threshold,
could be represented in the primal sketch by varying the
size of the \J2G filter around each point (see Watt, 1988,
p. 116). When the spread of the fIlter is large, the strength
of grouping is high, and when it is small, the strength
of grouping is low. The primal sketch model assumes that
changes in the strength of grouping are accomplished by
changing the surface that represents the stimulus and leav
ing the threshold the same. In contrast, CODE indicates
that changes in the strength of grouping are accomplished
by leaving the surface representing the stimulus the same,
and by changing the threshold. These two approaches to
characterizing the strength of grouping may not produce
equivalent results. A useful comparison could be made
between CODE and the primal sketch, using the approach
presented in this study. This would require that certain
details of the primal sketch be made explicit: for exam
ple, the way in which the spread of the \J2G fIlter changes
to create different grouping configurations. Such a com- .
parison is beyond the scope of the present study.

Grouping Effects in Cognition and Memory
The approach to representing spatial position taken by

CODE is similar to that taken by Ratcliff (1981) in a model
of order relations in perceptual matching. In Ratcliffs
model, the spatial position of each letter in memory is
represented with a normal distribution. As the delay be
tween study and test was increased, the standard devia
tion of each spatial position increased, and the spatial po
sition of each letter became less distinct. As a result, it
becomes more difficult to distinguish between stimuli that
differ by a transposition of adjacent elements. Ratcliff pre
sented subjects with a string of letters, which was then
masked, and a test string was presented for a same/differ
ent discrimination after a delay. The discrimination was
more difficult when adjacent letters in the test string were
transposed than it was when nonadjacent letters were
transposed. The phenomenon of spatial generalization,
which leads to performance decrements in this percep
tual matching task, may be similar to the ability to gener
alize about position in order to determine what groups
are present in a stimulus field.

The way in which CODE represents spatial positions (as
distributions centered on each element) is similar to the
way in which temporal positions are represented in Glen
berg and Swanson's (1986) theory of temporal distinc
tiveness in memory retrieval. In this theory, memory
traces include the time at which the item is presented. An
advantage of the auditory versus visual modality for re
cently presented items is attributed to temporal informa
tion being represented more precisely for the auditory in
formation (i.e., the spread function representing each



temporal position is smaller for auditory as opposed to
visual items). This is similar to the observation that the
variations of CODE that performed the most poorly had
the largest spread functions and thus overgeneralized posi
tional information.

It has been noted in many studies that pattern configu
ration affects performance on a number of tasks. Config
uration has been shown to influence numerosity judgments
(see, e.g., Bevan, Maier, & Helson, 1963; van Oeffelen
& Vos, 1982). Banks and Prinzmetal (1976; Banks, Lar
son, & Prinzmetal, 1979) found effects of the proximal
grouping of distractors in visual attention tasks. Using dot
patterns in a series of experiments, Hock, Tromley, and
Polmann (1988) found similarity, categorization, and
memory effects that involved higher order perceptual units
and could not be explained in terms of differences between
patterns at the level of individual elements. The role of
perceptual organization in studies such as these could be
illuminated by the use of a formal grouping algorithm,
such as CODE, to describe pattern configuration.

This study has shown that grouping by proximity can
be modeled with relatively local computations. The ap
proach that CODE takes to representing positional infor
mation is analogous to the ways in which spatial (or even
temporal) position have been represented in other con
texts. It may be that other grouping principles can also
be described with relatively local computations, and that
they make use of similar representations of position. A
more complete model of perceptual grouping will include
a number of grouping principles, with each principle fully
specified, and tested against subjects' judgments. Such
an approach, if successful, will tell us much about how
position is represented, and about the types of computa
tions that are required to impose organization on a stim
ulus field. A successful computational model of percep
tual organization would also be a valuable methodological
tool in any experimental setting in which pattern config
uration plays a role.

A number of studies have shown that stimuli cannot be
fully understood from their physical descriptions alone;
their representations at the psychological level must be
understood as well. To understand the role that pattern
configuration plays in various contexts, one must under
stand the principles of perceptual organization in detail.
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NOTES

I. As a demonstration of this constraint, consider the case in which
none of the dots in a stimulus array are grouped together, as when the
grouping threshold is set to a very high value. As this threshold value
is lowered, dots conglomerate to form groups of more than one dot.
Each time a single dot or group conglomerates with another single dot
or group, a new set of groups is found. As each new set of groups is
identified, the remaining number of single dots or groups that can poten
tially be conglomerated to create a new set of groups is reduced by one.
Therefore, at each point in the process, the number of remaining sets
of groups that can potentially be identified is constrained by the num
ber of remaining single dots or groups. If more than one single dot or
group conglomerates at a single increment of the threshold, the num
ber of sets of groups that will be produced will be less than the number
of dots the stjmulus contains. This constraint applies both to the origi
nal CODE algorithm, and to all its variants that are discussed in the present
paper.

2. The three-dimensional probability distribution for the normal dis
tribution is
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m

Tn = E!(G;).
;=\

where q indicates the number of dots that are no longer available
to be selected. When j = I, q = O. When j > I,

When k; = 0, where k; is the number of groups in G;, !(G;)
= 1. When k > 0,

k (n-q
)

TIj=l G;(j)

D
!(G;) =

shows the values of!(G;) from i = 1 to m (where m is the num
ber of G at numerosity level n, for example, when n = 6, m =
11; see Table AI), for numerosity level n = 6. Tn, the number
of selection-constrained sets of groups at numerosity level n,
is defined as

In each formula, 0 is the standard deviation and r is the radial distance
from the origin.

3. The selection constraint is discussed in Appendix A; the algorithm
constraint is discussed in note I. Since the algorithms followed the rules
of selection in generating their sets of groups, each algorithm-constrained
set of groups is a subset of the selection-eonstrained set of groups for
the appropriate numerosity level. The set of groups generated by an al
gorithm is both selection constrained and algorithm constrained.

4. The formula for the 'V 1G function is given by Marr as

-I ( r
1

) 1/2 1'V 1G(r} = - I - - e- r <7,

'lro' 201

I
j(r} = --e<-\.../2r)/<7.

0-./2

and the corresponding formula for the Laplace distribution is

j(r} = _1_e-(1/2)(rl<7)1,

o~

APPENDIX A

Note-Index to group size configurations (i), group sizes (G;(j)}, number
of groups in G;, (k;), andj(G;}, the number of sets of groups that can
be derived from G;, are shown.

Table Al
Complete Set of Group-Size Configurations for Patterns

Containing Six Dots

The grouping algorithms in this study created a strength gra
dient surface to represent the positional structure of each dot
pattern. Once a surface was created, a search process began in
an attempt to find, for that stimulus, as many sets of groups as
possible. This search process took advantage of the monotoni
cally decreasing nature of the spread functions used. Imagine
a situation in which an algorithm has identified all possible sets
of groups (as specified by the algorithm constraint) for a par
ticular stimulus (e.g., the one with dots ABCD shown in Fig
ure 2B). There will exist at the lowest threshold a set of groups
that specifies a single group containing all of the dots in the pat
tern {ABCD}, a set of groups with two distinct groups or sin
gle dots at the next highest threshold {ABC},{D}, and so on
until the last set of groups, which contains only single dots
{A},{B},{C},{D}, is identified at the highest threshold. This
ordered relation between the threshold value and the number
of groups and single dots that threshold specified allows the
search algorithm to search for any potential set of groups that
may lie between the threshold values associated with two previ
ously identified sets of groups. For example, if a set of groups
has been identified that contains two groups or individual dots,
and if another has been identified that contains four groups or
individual dots, the search can begin for the potential set of
groups that contains three groups or individual dots.

D = TIRw !,
w=1

where v is the number of sequences of identically sized groups
in G;, and Rw is the length of each such sequence. For example,
Table A1 indicates that for n = 6 and i = 11, v = 1 and
R. = 3, so for !(GII), D = 6.

APPENDIX B

j-\

q = E G;(b).

b=\

The denominator D addresses the situation in which G; contains
one or more sets of two or more groups of equal size. Since
the algorithms under study are said to operate in parallel, dif
ferences among sets of groups that are due to the order in which
identically sized groups are selected during the computation of
!(G;) must be factored out. If G; contains no sequences in which
G;(j) = G;(j +1), the denominator D = 1. If any such sequences
are present, the denominator D is defined as

j(G;}

I
15
20
15
6
I

45
60
10
15
15

T. = 203

o
I
I
I
I
I
2
2
2
2
3

2
3
4
5
6

2, 2
3, 2
3, 3
4, 2

2, 2, 2

I
2
3
4
5
6
7
8
9

10
11

where r is the radia1 distance from the origin. This function can be closely
approximated by the difference of two Gaussian functions in a ratio of
I :6, as is shown in Figure II.

To determine whether the algorithms examined in the present
study performed better than would be expected by chance, it
was necessary to calculate the number of logically possible ways
of grouping a stimulus pattern. As numerosity increases, the
number of possible ways of grouping the stimulus pattern in
creases, as can be seen in Table 1. The number of potential sets
of groups was calculated separately for each numerosity level.

Under the selection constraint, a set of groups can contain
zero or more groups, with each group containing 2 or more dots.
The number of groups and their sizes are limited by the num
ber of dots in the stimulus. For each numerosity level, an ex
haustive list ofgroup-size configurations was generated and rank
ordered by group size. Table Al shows the complete set of
group-size configurations that can be found for patterns with
6 dots. The number of different group-size configurations varies
with numerosity; there are 11 group-size configurations for 6
dot stimuli, and 627 group-size configurations for 2lH1ot stimuli.

The function relating group-size configuration G; to the num
ber of sets of groups it specifies is defined as!(G;). Table Al



At each iteration of the search process, a new threshold is
set half way between the highest known threshold of the set of
groups with the lower threshold and the lowest known thresh
old of the set of groups with the higher threshold. If this thresh
old specifies not a new set of groups, but instead one of the ad
jacent sets of groups, the known threshold boundary of the
appropriate set of groups is updated, and the search process
repeats until a new set of groups is identified (or until the pro
cess terminates, after 40 consecutive searches for the same poten
tial set of groups). The search process must be terminated after
40 iterations, because at this point the increment at which the
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threshold is being changed is so small that it begins to approach
the resolution limit of the strength gradient surface (represented
in the computer implementation as 8-byte double-precision real
numbers). The iterative search process allows for the detection
of differences between sets of groups less than 2-40 times the
distance from the base to the maximum height of the strength
gradient surface.

(Manuscript received February 3, 1992;
revision accepted for publication October I, 1992.)
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