Journal of Experimental Psychology:
Learning, Memory, and Cognition
1992, Vol. 18. No. 5, 883-914

Copyright 1992 by the American Psychological Association, Inc.
0278-7393/92/$3.00

Shapes of Reaction-Time Distributions and Shapes of Learning
Curves: A Test of the Instance Theory of Automaticity
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The instance theory assumes that automatic performance is based on single-step direct-access
retrieval from memory of prior solutions to present problems. The theory predicts that the shape
of the learning curve depends on the shape of the distribution of retrieval times. One can deduce
from the fundamental assumptions of the theory that (1) the entire distribution of reaction times,
not just the mean, will decrease as a power function of practice; (2) asymptotically, the retrieval-
time distribution must be a Weibull distribution; and (3) the exponent of the Weibull, which is
the parameter that determines its shape, must be the reciprocal of the exponent of the power
function. These predictions were tested and mostly confirmed in 12 data sets from 2 experiments.
The ability of the instance theory to predict the power law is contrasted with the ability of other

theories to account for it.

In studies of skill acquisition and automatization, the learn-
ing curve has a characteristic form: The time taken to perform
a task decreases as a power function of practice (for a review,
see Newell & Rosenbloom, 1981). The power function speed-
up is so ubiquitous that it has come to be known as the power
law. Current theories of skill acquisition and automaticity
treat the power law as a benchmark prediction that they must
make in order to be taken seriously (e.g., J. R. Anderson,
1982; J. R. Anderson & Milson, 1989; Cohen, Dunbar, &
McClelland, 1990; Crossman, 1959; Logan, 1988; MacKay,
1982; Newell & Rosenbloom, 1981; Schneider, 1985). Most
theories can account for the power law, in that they can be
implemented in such a way as to produce power-function
learning. Often, there is little that is fundamental to the
theories in the implementation. They could be implemented
in other ways to produce learning curves that follow some
other function. Few theories actually predict the power law,
in the sense that it follows as a necessary consequence of their
fundamental assumptions. Similarly, the shape of the learning
curve (the exponent of the power function; see the following
section) is a free parameter in most theories. There is nothing
in the theories to constrain the shape (to constrain the value
of the exponent).

In this article, I argue that the instance theory of automa-
ticity (Logan, 1988, 1990) predicts power function learning
and that it predicts the shape of the learning curve from the
shape of the underlying distribution of memory retrieval
times. These predictions are derived from the fundamental
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assumptions of the instance theory and new results on the
power law are reported: The power law applies to distributions
of reaction times, not just the means, and the shape of the
learning curve is closely related to the shape of the reaction-
time distribution. These predictions were developed and
tested in 12 data sets from two experiments.

Power Law

According to the power law,

RT = a + bN™, (1)

where RT is reaction time; « is the asymptote, reflecting an
irreducible limit on performance; b is the difference between
initial and asypmtotic performance; N is the amount of prac-
tice, measured in sessions or trials per item; and the exponent
¢ is the learning rate. Essentially, a and b are scaling param-
eters, moving the function into the range of numbers that the
data occupy. The shape of the function is determined entirely
by the exponent ¢. Some example power functions are plotted
in Figure 1, showing how the shape varies as the exponent
varies from 0.25 to 1.0. In real data, the exponent varies over
this range, though typically it is less than 1.0 (see Newell &
Rosenbloom, 1981).

The power law is ubiquitous. It occurs in virtually every
speeded task. Newell and Rosenbloom (1981) reviewed a large
variety of experiments conducted over a 50-year span and
found the power law fit practice data in all of them. Since
1981, the power law has fit data from an even broader range
of tasks, including solving geometry problems (J. R. Ander-
son, 1982), repeating sentences (MacKay, 1982), typewriting
(Gentner, 1983), retrieving facts from memory (Pirolli &
Anderson, 1985), performing mental rotation (Kail, 1986),
making social judgments (Smith, Branscome, & Bormann,
1988; Smith & Lerner, 1986), making lexical decisions (Lo-
gan, 1988, 1990), naming arbitrary shapes (MacLeod & Dun-
bar, 1988; fits reported in Cohen et al., 1990), learning pro-
cedural skills (Woltz, 1988), evaluating logic circuit diagrams
(Carlson, Sullivan, & Schneider, 1989), performing Sternberg
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Figure 1. Examples of power functions. (Each function begins at

the same point and asymptotes at zero. The functions differ only in

their exponents. The value of the exponent appears above each
function.)

memory search (Strayer & Kramer, 1990), searching displays
for instances of rules (Kramer, Strayer, & Buckley, 1990),
making pronunciation decisions (Logan, 1990), and verifying
alphabet-arithmetic equations (Logan & Klapp, 1991; fits
reported in Logan, 1988).

Nearly all of the power law fits have addressed mean (or
median) reaction time. The effects of practice on the distri-
bution of reaction times and parameters other than the mean
are largely ignored. This is unfortunate because changes in
the distribution can be as important as changes in the mean,
both practically and theoretically (e.g., Compton & Logan,
1991). The theory and data presented in this article suggest
that the power law applies to the entire reaction-time distri-
bution, not just the mean.

Most of the theories that account for the power law, includ-
ing the instance theory, fail to make the time-honored dis-
tinction between learning and performance. Overt reaction
time is a measure of performance and reflects factors—such
as motivation, stress, and distraction—other than the learning
that is of primary theoretical interest. It is not obvious how
to separate factors that affect learning from those that affect
only performance, nor is it obvious how performance factors
would distort the underlying learning curves. Dramatic
changes in motivation, stress, and distraction might disrupt
the learning curve, but most learning researchers try to hold
these factors constant (see, e.g., the studies reviewed previ-
ously; also see Newell & Rosenbloom, 1981). One can hope
that performance factors affect primarily the scaling parame-
ters of the power function (i.e., a and b) and have little effect
on its shape (i.e,, ¢). One can also hope that variability
contributed by performance factors is small in relation to that
contributed by the processes of primary interest.

Instance Theory of Automaticity

The instance theory was described in detail in other articles
(Logan, 1988, 1990). The theory assumes that performance is
automatic when it is based on single-step, direct-access re-
trieval of solutions from memory and that automatization
reflects a transition from performance based on some general
algorithm for performing the task to performance based on

memory retrieval. When subjects have no experience on a
task, they solve the problems it poses by applying a general
algorithm (such as counting in addition tasks). The solutions
produced by the algorithm are encoded into memory and
retrieved when the problems are encountered again. After
sufficient practice, performance will become automatic in
that all problems can be solved by memory retrieval.

The instance theory makes three fundamental assumptions:

1. Obligatory encoding assumes that attention to an object
or event is sufficient to commit it to memory. It may not be
encoded well, depending on conditions of attention, but it
will be encoded nevertheless.

2. Obligatory retrieval assumes that attention to an object
or event causes all available information associated with it to
be retrieved from memory. Retrieval may or may not be
effective, depending on conditions of attention and other
factors, but the retrieval process goes on nevertheless.

3. Instance representation assumes that each encounter
with an object or event is encoded, stored, and retrieved
separately as a unique instance. This assumption allies the
theory with instance or exemplar theories of memory (Hintz-
man, 1988; Jacoby & Brooks, 1984), categorization (Hintz-
man, 1986; Medin & Schaffer, 1978), judgment (Kahneman
& Miller, 1986), and problem solving (Ross, 1984) and con-
trasts it with strength or prototype theories.

These three assumptions imply a learning mechanism:
When people perform the same task repeatedly, obligatory
encoding causes instance representations of the same act to
be stored in memory. The more repetitions, the more in-
stances are stored. Obligatory retrieval causes information to
become available when familiar situations are encountered
once again. The more instances there are in memory, the
more will be retrieved (i.e., the response from memory will
be stronger). The assumption of instance representation al-
lows one to model the retrieval process as a race in which the
fastest trace determines performance (i.e., performance is
based on the first instance to be retrieved from memory).

Race Model

The race mode! requires three additional assumptions:
First, the time to retrieve solutions from memory is a random
variable. This is a plausible assumption because few would
believe the alternative assumption, that retrieval time is con-
stant. Second, performance is determined by the first trace to
be retrieved. This assumption makes the model a race model.
Retrieval times vary randomly, and the instance with the
fastest retrieval time determines performance. Intuition may
suggest that the retrieval time of the fastest instance may
decrease as more runners are added to the race and that the
race model may produce something approximating the power
law. (The more instances there are in the race, the greater the
chances of randomly sampling an extremely fast value; this
produces the speed-up. The more extreme the value, the less
likely it is to sample one that is more extreme; this produces
the negative acceleration characteristic of power functions.)

The third assumption plays a crucial role in allowing one
to go beyond intuition and prove mathematically that the
race model predicts a power function. The theory assumes
that all instances have the same distribution of retrieval times
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and are stochastically independent of each other. The as-
sumption that the retrieval-time distribution is the same for
all instances may strike many readers as implausible, but it
may well be approximately correct. The power of this as-
sumption is that the race model reduces to the problem of
finding the minimum of N samples from the same distribution
and learning how the minimum behaves as N increases. This
is a well-studied problem in the statistics of extreme values
(see, e.g., Gumbel, 1958), and it is possible to prove mathe-
matically that the entire distribution of minimum values (of
minima) decreases as a power function of N.

If the assumption is violated—if the distributions are not
identical—then the proofs do not apply. However, I investi-
gated the consequences of violating the assumption using
simulation and mathematical analysis and found that it is not
very important. The distributions of retrieval times can have
different parameter values (i.e., they are all Weibull distribu-
tions, as discussed later, with different values of g, b, and ¢);
as long as they have the same form, the distribution of minima
appears to decrease as a power function of N. This analysis is
presented in Appendix A.

Before proceeding to the power-function proof, it is impor-
tant to note that the instance theory assumes there are two
races going on. One, described above, is between the various
instances in memory. The other is between memory and the
algorithm that supports initial performance on the task. In
essence, the algorithm races with the fastest instance retrieved
from memory, and the winner of this race determines per-
formance. An important question is whether the race between
the algorithm and memory retrieval distorts the power func-
tion predictions. Formally, it must. Although it may be plau-
sible to assume that all memory instances have the same
distribution of retrieval times, it stretches credulity to assume
that the finishing-time distribution of an arbitrary algorithm
will be the same as the retrieval-time distribution. Conse-
quently, the power-function proofs cannot apply, and there is
no guarantee that the full race model will produce power-
function learning. However, three considerations mitigate this
difficulty: First, the algorithm will drop out as practice pro-
gresses. Eventually, there will be so many instances in the
race that the algorithm will have no chance of winning. At
that point, the power-function proofs will apply. Second,
Logan (1988) used simulation to investigate the consequences
of having different distributions for the algorithm and mem-
ory retrieval and found that power functions fitted the simu-
lated data very well (also see Strayer & Kramer, 1990). The
algorithm poses problems in principle that may not be very
important in practice. Third, the analysis presented in Appen-
dix A suggests that the power function predictions are not
compromised much if the distributions come from the same
family but have different parameter values. The distribution
of finishing times from the algorithm may have a similar form
to the distribution for memory retrieval, in which case the
power-function proof should apply to the whole data set.

Weibull Distribution

The statistics of extreme values suggest that reaction times
from a race model should follow the Weibull distribution if
there are sufficient runners in the race. The Weibull distri-

bution is important because it is the third asymptotic distri-
bution of extreme values. Many readers will be familiar with
the concept of asymptotic distributions through their knowl-
edge of the normal distribution and the central limit theorem.
According to the central limit theorem, distributions of sums
or averages will conform to the normal distribution as sample
size increases. The normal distribution is asymptotic for sums
and averages in that sums and averages taken from any parent
distribution (with finite variance) will be distributed normally
when sample size is sufficiently large.

There are three distributions that are asymptotic in this
sense for extreme values (minima and maxima). Which dis-
tribution applies in a particular case depends on very general
properties of the parent distribution, namely, whether high
and low values are bounded or infinite (see Gnedenko, 1943;
Gumbel, 1958; Leadbetter, Lindgren, & Rootzen, 1983). For
distributions that are bounded at zero at the low end and
extend toward positive infinity at the right, the asymptotic
distribution of minima is the Weibull. Distributions of reac-
tion times must belong to this family if they belong to any at
all.! Reaction times cannot be smaller than zero, and in
principle they can be infinitely large.

The Weibull distribution is related to the exponential dis-
tribution, which is used commonly in mathematical psychol-
ogy. The distribution function for the exponential is

Fx) =1 — exp(—x).

The Weibull distribution is an exponential distribution in
which the independent variable is raised to some power (for
details, see Johnson & Kotz, 1970, chap. 20). Its distribution
function is

F(x) =1 — exp(—x9). 2)

The generalized Weibull has three parameters: the exponent
¢ and two scaling parameters, ¢ and b. The generalized
distribution function is

F(x) = 1 — exp[—((x—b)/a)]. 3)

! Gnedenko (1943) showed that the necessary and sufficient con-
ditions for minima sampled from an initial distribution, F(x), to
converge asymptotically on the Weibull distribution were (also see
Leadbetter et al., 1983; Luce, 1986) xr > —o and

lim———F(hx —x) X,

no F(h = xr)

where ¢ > 0, x > 0, and xr = infix; F(x) > 0}. The variable ¢ turns
out to be the exponent of the asymptotic Weibull distribution (see
Equations 2, 3, and 6). The variable xr is the smallest possible value
of x (i.e., the smallest value for which F(x) > 0). In reaction-time
distributions, xr must be greater than or equal to zero, because
reaction times cannot be negative (anticipatory errors and prescience
notwithstanding). Exponential and gamma distributions, which are
commonly used to describe empirical reaction-time distributions,
fulfill these conditions, as does the Weibull distribution. Technically
speaking, the ex-Gaussian distribution will not fuifill these conditions
because the Gaussian component of the distribution is not bounded
at zero but extends to negative infinity (i.e., xr = —o). This techni-
cality also limits the application of the ex-Gaussian to reaction-time
data. Most applications assume the ex-Gaussian is truncated at zero,
however.
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The scaling parameters, g and b, serve primarily to bring the
distribution into the range of numbers that occur in the data
set. The shape of the Weibull is determined by the exponent,
¢. The effect of the exponent on the shape of the distribution
is illustrated in Figure 2, which displays Weibull density
functions with exponents that vary from 1.0 to 4.0. When the
exponent is 1.0, the Weibull becomes the exponential. When
the exponent is 3.6, the Weibull is approximately normal.
With exponents between these values, the Weibull is shaped
like typical reaction-time distributions, truncated at the low
end with a long upper tail. Its shape closely resembles the
shape of distributions produced by the convolution of a
normal and an exponential distribution, which provides an
excellent quantitative description of reaction-time distribu-
tions (Ratcliff & Murdock, 1976). The Weibull is compared
with the convolution of normal and exponential distributions
in Appendix B.

The fact that Weibull distributions with appropriate expo-
nents are shaped like reaction-time distributions is important
in two respects. First, the instance theory predicts that reaction
times from well-practiced subjects will conform to the Wei-
bull. This follows from the application of the statistics of
extreme values to the race model: The Weibull is the asymp-
totic distribution of minima sampled from the same distri-
bution, and hence, it is the asymptotic distribution predicted
by the race model. Second, with appropriate exponents, the
Weibull may be used to approximate reaction times at all
stages of practice. This makes the development of mathemat-
ical proofs easier and motivates fitting Weibull distributions
to empirical data.

Power Function Proof

According to the statistics of extreme values, the distribu-
tion function, F,(x), for minima drawn from » independent
samples from any distribution, F(x), is

Fix)=1-[1 - F(x)]" 4)
/\4 WEIBULL DENSITY FUNCTIONS
i I3

f(x)

Figure 2. Examples of Weibull probability density functions. (Each
function has the same scaling parameters. The functions differ only
in their exponents, The vatue of the exponent appears above each
function.)

The distribution function for minima drawn from » samples
from a Weibull distribution can be obtained by substituting
Equation 2 into Equation 4:

Fi(x)

I — fexp{—x]}"

1 — exp[—n(x)]

I — exp[—(n""x)]

= F(n'x). (5)

A more general result can be obtained by substituting Equa-
tion 3, which represents the generalized Weibull distribution,
into Equation 4 to yield

Fix) = | — exp[—(n""(x=b)/a)]. (6)

Equations 5 and 6 demonstrate that the distribution of
minima sampled from a Weibull remains a Weibuil with the
scale reduced by a factor of n~'/¢. This is an important result.
The fact that the distribution of minima sampled from a
Weibull remains a Weibull means that the Weibull is stable
with respect to the minimum (see Gumbel, 1958). This means
that once minima of samples drawn from any parent distri-
bution become Weibull, they will remain Weibull thereafter.
After that point, the Weibull will provide an accurate descrip-
tion of practice data. If one assumes that the distribution of
retrieval times and the distribution of algorithm finishing
times are both distributed as Weibull (i.e., the Weibull distri-
bution applies throughout practice), Equation 6 should pro-
vide a good approximation to practice data from the begin-
ning to the end of the experiment. The fits reported later rest
on this assumption.

The fact that the distribution of minima remains a Weibuil
with its scale reduced by a power function is also very impor-
tant. It implies that

wo=n"y

and

g = n_l/L.U.

The mean and the standard deviation of the distribution of
minima both decrease as a power function of practice with
the same exponent, —1/c. This prediction was tested and
confirmed by Logan (1988) and Kramer et al. (1990).

The power function reduction in mean and standard devia-
tion is beginning to be taken seriously theoretically: First,
Cohen et al. (1990) were able to account for this result with a
connectionist model by choosing parameters appropriately,
but it did not follow as a necessary consequence of their
assumptions. They noted that some parameter values pro-
duced different exponents for means and standard deviations.
Second, J. R. Anderson (1992) noted that his ACT* theory
predicts a similar result because it assumes an exponential
distribution of reaction times and the mean of the exponential
distribution equals the standard deviation. So the standard
deviation will decrease as a power function of practice just as
the mean does. However, Anderson’s theory necessarily
makes two predictions that are not borne out by data: It
predicts that the mean will equal the standard deviation, and
it predicts that the reduction in the mean will equal the
reduction in the standard deviation. In virtually every data
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set the mean is larger than the standard deviation (typically 3
to 5 times as large), and the reduction in the mean is much
larger than the reduction in the standard deviation (see, e.g.,
Kramer et al., 1990; Logan, 1988).” This article goes beyond
means and standard deviations to predict a power function
reduction in the entire distribution of reaction times.

The fact that the distribution of minima remains the same
with its scale reduced is important because it means that the
instance theory is able to predict the power function without
adding new parameters to the distribution. The generalized
distribution of minima in Equation 6 has only three param-
eters, just like the generalized Weibull distribution in Equa-
tion 3. The power function enters the equation as an inde-
pendent variable (n) raised to an exponent (1/c) that is the
reciprocal of the exponent of the Weibull distribution (c).
There is no need to add free parameters. In this article, I take
seriously the fact that the exponent of the power function is
the reciprocal of the exponent of the Weibull distribution,
This is the central result in the article: The shape of the power
function is determined by the same parameter that determines
the shape of the reaction-time distribution. Thus, the instance
theory predicts power function learning, and it predicts the
shape of the power function.

These predictions can be illustrated by examining Figures
1 and 2. Minima sampled from a Weibull distribution with
exponent ¢ in Figure 2 will speed up as a power function of
practice with exponent 1/¢ in Figure 1. The constraint is easy
to see: For example, the minimum of samples drawn from
the Weibull with the exponent of 1 in Figure 2 will approach
asymptote after relatively few samples, producing a sharply
inflected learning curve described by the power function with
the exponent of 1 in Figure 1. By contrast, the minimum of
samples drawn from the Weibull with the exponent of 4 in
Figure 2 will approach asymptote more slowly, producing a
more gradual learning curve described by the power function
with the exponent of 0.25 in Figure 1. The next three sections
describe tests of these assumptions in real data.

Testing the Theory

The instance theory predicts that (1) the entire distribution
of reaction times should decrease as a power function of the
number of training trials, (2) reaction times at all stages of
practice will be distributed as a Weibull whose scale reduces
as a power function of practice, and (3) the exponent for the
power function reduction will be the reciprocal of the expo-
nent for the Weibull distribution. These predictions address
learning rather than performance. They assume that memory
retrieval is the only source of variability in the data. They
assume that residual processes such as sensory registration
and motor execution, which are usually treated as intercept
parameters, contribute no varability to the data. Strictly
speaking, the predictions could hold if such processes took
constant amounts of time and so added no vanability. How-
ever, the predictions should still be valid if the variability
produced by intercept processes is small in relation to the
variability produced by memory retrieval.”

The first prediction was tested in two ways. First, separate
power functions (i.e., Equation 1) were fitted to quantiles of

reaction-time distributions, and their exponents were com-
pared. According to the instance theory, the exponent should
be the same for each quantile. Second, constrained power
functions were fitted to all of the quantiles simultaneously.
Each quantile was allowed to have a separate asymptote (@)
and multiplicative parameter (b), but each quantile was re-
quired to share a common exponent (¢). The quality of this
fit was compared with the quality of the separate fits. The
instance theory predicts no difference.

The second prediction was also tested in two ways. First,
separate Weibull distributions (i.e., Equation 3) were fitted to
the empirical distributions at each stage of practice. The
instance theory predicts that the scaling parameters of the
Weibull distributions (a and b) should decrease as power
functions of practice and that the exponent (the shape param-
eter ¢) should remain constant. Power functions (Equation 1)
were fitted to the parameters to test the former prediction,
and the Weibull exponents were compared to test the latter.
Second, constrained Weibull distributions were fitted to all
the practice data simultaneously. Each stage of practice was
allowed to have separate scaling parameters, but every stage
was required to share a common exponent. The quality of
this fit was compared with the quality of the separate fits.
Instance theory predicts no difference.

The third prediction was tested in two ways as well. First,
the reciprocals of power-function exponents generated in tests
of the first prediction were compared with the Weibull distri-
bution exponents generated in tests of the second prediction.
The instance theory predicts close agreement. Second, the
entire data set was fitted by a single Weibull distribution
whose scale decreased as a power function of practice (i.e.,

2], R. Anderson (1992) suggested that his model may be general-
ized to produce gamma distributions of reaction times. A gamma
distribution is the sum of # identical exponential distributions. It has
two parameters: #, the number of exponential distributions contrib-
uting to the sum, and A, the rate parameter for the exponential
distributions. Its mean is n/A, and its standard deviation is Vn/x (for
further details, see Johnson & Kotz, 1970, chap. 17). The coefficient
of variation—the ratio of the standard deviation to the mean—is
Vn/n. It depends only on the number of exponentials contributing
to the sum and not at all on the rate parameter. This is an advantage
for Anderson, because his strengthening mechanism influences A and
not n. Consequently, strengthening will affect the mean and the
standard deviation proportionally. However, the real data again pre-
sent a problem. The coefficient of variation in real data is typically
0.2 t0 0.4. In the counting data analyzed later, for example, the mean
coefficient of variation was 0.342. In order for a gamma distribution
to produce that coefficient of variation, » would have to equal 8 or
9. If # is interpreted as the number of steps or stages underlying the
reaction process, this is not an acceptable value in Anderson’s theory.
In his theory, production composition reduces the number of steps
or stages to 1. In order to adapt his theory to the constraints of the
data, Anderson would have to adopt a different interpretation for ».

31 performed simulations to evaluate the effects of variability of
the intercept processes on the instance theory predictions. The results
of those simulations are described briefly in the Discussion sections
of the alphabet-arithmetic data and the counting data. In general, the
predictions were fairly robust with respect to variability in the inter-
cept processes.
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Equation 6). The exponent for the power function was con-
strained to be the reciprocal of the exponent for the Weibull
distribution. The instance theory predicts that this constrained
fit should be as good as the less-constrained fits generated in
the tests of the first and second prediction.

The different tests involve vastly different numbers of pa-
rameters. At one extreme, the unconstrained power function
fits require three parameters for each quantile, and the un-
constrained Weibull fits require three parameters for each
stage of practice. The more quantiles analyzed and the more
stages of practice that are distinguished, the greater the num-
ber of parameters. At the other extreme, the constrained
Weibull power-function fits require only three parameters no
matter how many quantiles or stages of practice there are.
These fits, predicted by the instance theory, offera remarkably
parsimonious description of the data.

The predictions were tested in data from two experiments,
one on alphabet arithmetic and one on dot counting. Each
experiment provided six separate data sets.

Alphabet Arithmetic

Alphabet-Arithmetic Task

I tested the predictions first using distributions of reaction
times from an alphabet-arithmetic task. The means, standard
deviations, accuracy scores, and ancillary data were reported
by Compton and Logan (1991). The focus here is on the
distributions.

In the alphabet-arithmetic task, subjects were asked to
verify equations of the form A + 2 =Cand B+ 3 =F. In
essence they were asked whether C is 2 letters down the
alphabet from A (it is) and whether F is 3 letters down the
alphabet from B (it is not). Subjects performed this task
initially by counting through the alphabet beginning with the
first letter for a number of steps determined by the digit
addend and then comparing the computed answer with the
presented one. Their reaction times increased linearly with
the magnitude of the digit addend (which determines the
number of counting steps) with a slope of 400 ms to 500 ms
per count. With practice, however, subjects came to remem-
ber which equations were true and which were false, and they
relied on retrieving solutions from memory to perform the
task rather than counting through the alphabet (Compton &
Logan, 1991; Logan & Klapp, 1991). Thus, practice at alpha-
bet arithmetic produced the transition from (counting) algo-
rithm to memory retrieval that the instance theory identifies
as automatization.

In Compton and Logan’s (1991) experiment, 36 subjects
served in one 432-trial session. They saw 12 stimuli altogether
(2 Examples x 3 Digit Addends X True vs. False). Each
stimulus was presented 36 times, 6 times in each of 6 blocks.
Previous research suggested that 36 presentations would be
enough to produce automaticity with 12 stimuli (see Logan
& Klapp, 1991, Experiment 3). The mean reaction times,
presented in Figure 3 as a function of digit addend and
practice block, confirm this suggestion. In the first block,
reaction time increased linearly with digit addend with a slope

Block by Addend

4000 A
3750 A
3500
3250
3000
= 2750 -
.S 2500
E 2250
2000
1750 -
1500
1250 -

/
—_—

-]
6

1000 T

2 3
Digit Addend

s

Figure 3. Mean reaction times for each practice block as a function of the magnitude of the digit
addend in the alphabet-arithmetic task. (The data are from Compton & Logan, 1991.)
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of 469 ms per count. By the sixth block, reaction time
decreased considerably, and the slope was only 17 ms per
count (for further details, see Compton & Logan, 1991).

Reaction-time distributions were constructed for each com-
bination of digit addend and true versus false response for
each practice block. This resulted in six distributions at each
of six levels of practice, providing six data sets in which to
test the instance theory’s predictions. Each subject contributed
12 trials to each distribution at each level of practice. The
distributions were averaged over subjects by calculating quin-
tiles (i.e., the value of the 10th, 30th, 50th, 70th, and 90th
percentiles) for each subject and averaging the quintiles over
subjects (see Ratcliff, 1979; Thomas & Ross, 1980).

Power function fits. The first prediction was that the entire
distribution of reaction times should decrease as a power
function of practice. This implies that the different quantiles
of the distribution should all be well fit by power functions
and that the exponent, ¢, should be the same for each quantile.
Power functions (i.e., Equation 1) were fitted to each quintile
of the practice data in each combination of digit addend and
true versus false equation using STEPIT (Chandler, 1965).
Measures of goodness of fit are presented in Table 1. The
predicted and observed values are plotted in Figure 4.

The data were well fit by power functions, confirming the
first part of the prediction. This is to be expected. The 30
points in each panel were fitted by 1S parameters, 2 scaling
parameters, and 1 exponent for each of the five quintiles. This
is a large number of parameters for a small number of data
points, so the fits should be good. The question is whether
the power functions for the different quintiles had the same
exponent. The values averaged over digit addend and true
versus false were —.576, —.640, —.641, —.660, and —.883 for
Quintiles 1 to 5, respectively. The three middle quintiles were
roughly equal, but the lowest and highest quintiles were more
discrepant.

Table 1

Measures of Goodness of Fit and Exponent Parameter (c) for
Fits of Equation 1 to Quintiles of Reaction-Time
Distributions from Alphabet-Arithmetic

Data of Separate and Constrained

Power Functions

True False
Digit addend Digit addend

Measure 2 3 4 2 3 4 M

Separate power functions
rmsd 19 48 30 30 25 50 34

r 999 998 999 999 999 998 999
¢ .881 613 607 731 593 .647 .679

Constrained power functions
rmsd 54 103 151 71 68 168 95

r 996 991 993 994 996 983 .992
¢ 597 459 471 549 415 466 493
Note. Separate power functions have separate exponents and scaling

parameters; constrained power functions have the same exponent but
are _allpwed different scaling parameters; rmsd = root-mean-square
deviation between predicted and observed values.

Are these differences significant? STEPIT offers no measure
of the standard error of the values of the fitted parameters, so
the significance of these differences could not be tested di-
rectly. Instead, a one-way analysis of variance (ANOVA) was
performed on the exponents with quintile as the independent
variable and the six combinations of digit addend and true
versus false as subjects. The main effect of quintile approached
significance, F(4, 25) = 2.70, p < .06, MS. = .0307, which
suggests that the differences between quintiles may be reliable,
contrary to the predictions of the instance theory.

Another way to test the significance of the differences
between the exponents is to see whether the fit is worse when
the exponent for each quintile is constrained to be the same.
Consequently, the data were fitted again. This time the power
functions for each quintile were allowed to have separate
scaling parameters (i.e., ¢ and b), but each quintile was
constrained to have the same exponent. The fits of these
constrained functions are plotted in Figure 5. Measures of
goodness of fit and the exponents of the fitted functions are
presented in Table 1.

The data were well fit by constrained power functions.
Inspection of the fits reveals no systematic deviations. The
fits are not as good as those produced by unconstrained power
functions. The squared product-moment correlations be-
tween predicted and observed values were slightly lower, and
the root-mean-square deviations between predicted and ob-
served values increased by a factor of nearly 3, but the fits
were still quite good. Moreover, these fits required fewer
parameters than the unconstrained fits. The constrained fits
in each panel of Figure 5 required 11 parameters, 2 scaling
parameters for each function, and 1 common exponent,
whereas the unconstrained fits in Figure 4 required 15. The
constrained fits provide a more economical description of the
data.

The important point tq be taken from Figure 5 is that in
each panel, the five functions all have the same shape. They
differ only in scale. All five functions share the same exponent,
¢; they differ only in the scaling parameters, a and b.

Weibull distribution fits. The second prediction was that
changes in reaction time with practice could be described by
a single Weibull distribution whose scale decreased as a power
function of practice. Separate Weibull distributions (Equation
3) were fitted to the quintiles from each practice block in each
combination of digit addend and true versus false equation
using STEPIT. The fits were unconstrained in that each
distribution was allowed to have a separate exponent and
separate scaling parameters in each practice block. Measures
of goodness of fit are presented in Table 2. Observed and
predicted values are plotted in Figure 6.

The fits to the unconstrained Weibull distributions were
good. The 30 points in each panel were fitted by 18 parame-
ters, | exponent, and 2 scaling parameters for each of the six
blocks of practice. With so many parameters and so few data
points, good fits are to be expected. Again, the question is
whether the Weibull distributions retained the same shape
but contracted as a power function of practice. The shape is
determined by the exponent; if the shape remained constant
across practice, then the exponent should remain the same.
The average exponents across digit addends and true versus
false equations were 1.316, 1.392, 1.222, 1.159, 1.069, and
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Figure 4. Power functions from Equation 1 (lines) fitted to quintiles of the distributions (dots) of
alphabet-arithmetic reaction times as a function of practice for each combination of digit addend and
true versus false equation. (The five power functions in each panel were allowed to have separate
exponents and scaling parameters.)

1.009 for Practice Blocks 1 to 6, respectively. The significance The main effect of practice block approached significance,
of these differences was assessed with a one-way ANOVA F(5, 30) = 2.45, p < .06, MS,. = .0520, which suggests that
with practice block as the independent variable and the six the shape changed over practice, contrary to the predictions
combinations of digit addend and true versus false as subjects. of the instance theory.
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Figure 5. Power functions from Equation 1 (lines) fitted to quintiles of the distributions (dots) of
alphabet-arithmetic reaction times as a function of practice for each combination of digit addend and
true versus false equation. (The five power functions in each panel were allowed to have separate scaling
parameters but were constrained to have the same exponent.)

Did the scaling parameters decrease as a power function of  (Equation 1, fitted by STEPIT): For a and b, respectively, r*
practice, as the instance theory predicts? The values averaged was .9931 and .9997 and rmsd was 45 ms and 4 ms. These
over digit addend and true versus false are plotted in the top fits confirm the prediction of the instance theory.
panel of Figure 7. Both the a and b values decreased over Next, the data were fitted to the Weibull distributions
practice. Both reductions were well fit by power functions (Equation 3) that were allowed to have separate scaling param-
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Table 2

Measures of Goodness of Fit and Exponent Parameter (c) for
Fits of Equation 3 to Quintiles of Reaction-Time
Distributions from Alphabet-Arithmetic

Data of Separate and Constrained

Weibull Distributions
True False
Digit addend Digit addend
Measure 2 3 4 2 3 4 M
Separate
rmsd 11 28 16 18 21 23 20
r’ 999 999 999 999 999 999 999
¢ 1.035 1.113 1.346 1.147 1.178 1.350 1.195
Constrained

rmsd 34 70 53 69 58 61 58
r 998 996 998 995 997 998 .997
¢ 1.104 1.141 1.536 1.266 1.281 1.515 1.307

Note. Separate Weibull distributions have different exponents and
scaling parameters; constrained Weibull distributions have different
scaling parameters but a common exponent; rmsd = root-mean-
square deviation between predicted and observed values.

eters for each practice block but were constrained to have a
common exponent. Observed and predicted values are plotted
in Figure 8. Measures of goodness of fit are presented in Table
2.

The fit was almost as good as the unconstrained fit. The
squared product~-moment correlation between observed and
predicted values was nearly identical, and the root-mean-
square deviations between predicted and observed values
increased by 38 ms, on average. Constraining the shape of the
distributions to be the same across practice had little effect on
the goodness of fit. Again, fewer parameters were required for
the constrained fits (13 parameters including 2 scaling param-
eters for each practice block and 1 exponent) than for the
unconstrained fits (18 parameters). Apparently, the variation
in exponents in the unconstrained fits was not very important.

The important point to be taken from Figure 8 is that the
relative spacing of the lines representing each practice block
is constrained to be the same. For example, the ratio of the
distance from the bottom to the top line to the distance from
the bottom to the middle line is the same for each practice
block. Thus, the shape of the fitted distribution (i.e., the
parameter ¢) is constrained to be the same, differing only in
scale (i.e., a and b).

The scaling parameters of the constrained Weibulls, aver-
aged over digit addend and true versus false, are plotted in
the bottom panel of Figure 7. Both g and b decreased as
power functions of practice; R* was .995 and .997 for a and
b, respectively; rmsd was 35 and 15 for a and b, respectively.
The close fits of the power functions are consistent with the
predictions of the instance theory.

Constrained power-function Weibull fits. The third predic-
tion was that the exponent of the power function should be
the reciprocal of the exponent of the Weibull distribution.
This was tested in three ways. First, the reciprocals of the

exponents from the unconstrained power-function fits (M =
1.502) were compared with the exponents from the uncon-
strained Weibull fits (M = 1.195). The significance of the
difference was assessed with a ¢ test for paired observations
that compared the reciprocal of the average power function
exponent in each combination of digit addend and true versus
false with the average value of the Weibull exponent for the
corresponding combination. The result was significant, #(5) =
4.00, p < .05, MS. = .0769.

Second, the reciprocals of the exponents from the con-
strained fits were compared (mean reciprocal of power func-
tion exponent = 2.058; mean Weibull exponent = 1.307).
Here, the reciprocal of the constrained power function expo-
nent in each combination of digit addend and true versus
false was compared with the constrained Weibull exponent
for the corresponding combination. Again, the result was
significant, #5) = 6.48, p < .01, MS. = .1158.

Third, Equation 6 was fitted to the data from each combi-
nation of digit addend and true versus false. Equation 6 uses
only three parameters to capture simultaneously the shape of
the reaction-time distribution and the shape of the learning
curve. Two of the three parameters are scaling parameters,
bringing the predicted values into the range of the observed
values. The third parameter determines the shape of the
distribution, and its reciprocal determines the shape of the
learning curve. Thus, the quality of the fit of Equation 6 bears
on the prediction that the exponent of the power-function
learning curve should be the reciprocal of the shape-determin-
ing exponent of the Weibull distribution.

The observed and predicted values are plotted in Figure 9.
Measures of goodness of fit and parameters of Equation 6 are
presented in Table 3. The fits were quite good. Root-mean-
square deviation was much larger than in the previous fits,
and the product-moment correlation was lower, although it
was still quite high. These differences are remarkable consid-
ering that only 3 parameters were required for the fits in each
panel of Figure 9, in comparison with the 11 to {8 parameters
required for the previous fits. Three parameters are not many
to predict 30 data points.

The important point to be taken from Figure 9 is that in
each panel, the shape of the five functions is constrained in
two dimensions. As with the power function fits, each of the
functions has the same shape over blocks, differing only by a
change in scale. As with the Weibull distribution fits, the
spacing within blocks is constrained to be the same over
blocks except for a change in scale. But unlike the previous
fits, the samg factor—the exponent c—constrains both the
shape and the spacing of the functions.

Close inspection of Figure 9 reveals some systematic devia-
tions from predictions, particularly for Addend = 4 data. In
the bottom two panels, some of the empirical functions seem
to decrease faster over blocks than the theoretical functions.
For example, in the Addend = 4, False data, the observed
values for the 70th percentile fall close to predicted values for
the 70th percentile in the first practice block but end up close
to predicted values for the 50th percentile in the sixth practice
block.

I suspect these discrepancies are due to contamination from
the counting algorithm used in the first few blocks. Compton
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Figure 6. Weibull distributions from Equation 3 (lines) fitted to quintiles of the distributions (dots) of
alphabet-arithmetic reaction times as a function of practice for each combination of digit addend and
true versus false equation. (The five functions in each panel were allowed to have separate scaling

parameters and separate exponents.)

and Logan (1991) probed subjects on one sixth of the trials
and asked them to report how they performed the task. In the
first block, subjects reported counting 46% of the time. This
value dropped to 7% by the sixth block. Counting is slower

than memory retrieval, particularly when the digit addend is
large, so the tendency to count early in practice may artificially
inflate the early portion of the learning curve. Because there
were so few data points, there was not much to be done about
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this in this data set. I attempted to remove data that were
dominated by the algorithm in the next data set.

Discussion

Each of the three predictions of the instance theory received
some support. First, the distribution of reaction times de-
creased as a power function of practice. Each quintile was
well fit by a power function (Equation 1), as the theory
predicts. The exponents of power functions fitted to quintiles
separately were not identical, but the fit was reasonably good
when all quintiles were constrained to have the same expo-
nent. Second, the distribution of reaction times in each prac-
tice block was well fit by a Weibull distribution (Equation 3).
The theory predicts this for extended practice and assumes it
for earlier stages of practice. The exponents of Weibull distri-
butions fitted to each practice block separately were not
identical, but the fit was good when all blocks were con-
strained to have the same exponent. Moreover, the scaling

parameters decreased as power functions of practice, as the
theory predicts. This was true for both the constrained and
unconstrained fits. Third, the reciprocals of the exponents of
the power functions differed from the exponents of the Wei-
bull distributions in both the constrained and unconstrained
fits, contrary to the instance theory prediction. However,
reasonable fits were obtained when all quintiles and all prac-
tice blocks were fitted simultaneously with the constraint that
the reciprocal of the exponent of the power function equal
the exponent of the Weibull (Equation 6). This is consistent
with the instance theory prediction.

How is one to interpret the cases in which instance theory
predictions were not confirmed? Do they falsify the theory,
or do they fail to test it appropriately? I would like to believe
the latter. The predictions that failed to be confirmed all
involved comparisons of exponents over quintiles or practice
blocks or both. The problem may be that the exponents were
estimated from too few data points to be reliable. Power
function exponents were estimated from six data points;
Weibull exponents were estimated from five. It is easy to fit
three-parameter functions to five or six data points, but the
best-fitting parameters may be affected by random fluctua-
tions in the data as much as the underlying processes.

Some evidence for this interpretation is available in the
analyses presented so far: The predictions of the theory were
confirmed more readily when the fits were constrained than
when they were unconstrained. The constrained fits brought
more data points to bear on the estimation of parameters
than did the unconstrained fits (i.e., 30 instead of 5 or 6).
Further evidence will be obtained in the next set of experi-
mental data. Unconstrained power functions will be based on
12 data points rather than 6, and unconstrained Weibull
distributions will be based on 10 data points rather than 5. If
the paucity of data points was responsible for the failed
predictions in the current data set, the predictions should be
confirmed more readily in the next one.

The instance theory predictions may also fail because the
theory fails to take into account “intercept” processes, such
as those involved in perceptual registration and motor exe-
cution, that may affect the distribution of observed reaction
times. In its present form, the theory assumes that intercept
processes are negligible or constant in duration, and that is
not likely to be true. Although a theory of perceptual and
motor processes is beyond the scope of this article, I performed
some simulations to see whether variability in intercept proc-
esses could account for the failures of the instance-theory
predictions. The memory process was represented as a race
between N traces (N varied from 1 to 12). N samples were
taken from the same Weibull distribution, and the smallest
one of them was chosen to represent the retrieval time. This
retrieval time was then added to a sample from a single
(different) Weibull distribution, which represented the dura-
tion of the intercept processes, to produce a simulated reaction
time. This procedure was performed 10 times for each value
of N. The simulated reaction times were rank ordered to
estimate deciles of the reaction-time distribution. This process
was replicated 1,000 times so that each decile was based on
1,000 observations. Then separate power functions (Equation
1) were fitted to each of the deciles separately, and separate
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Figure 8. Weibull distributions from Equation 3 (lines) fitted to quintiles of the distributions (dots) of
alphabet-arithmetic reaction times as a function of practice for each combination of digit addend and
true versus false equation. (The five functions in each panel were allowed to have separate scaling
parameters but were constrained to have the same exponent.)

Weibull distributions (Equation 3) were fitted to each of the
12 levels of practice.

I performed several simulations, varying the parameters of
the memory distribution and the intercept distribution, to try
to produce the failures of instance-theory predictions observed

with the alphabet-arithmetic data. The parameter space was
not searched systematically, so it is hard to say how charac-
teristic the results were, but some combinations of parameter
values produced failures of prediction as observed. In partic-
ular, the Weibull exponents decreased with practice, the power



896 GORDON D. LOGAN

6500 -  ADDEND = 2, TRUE: WEIBULL FIT
o 5500 4
= J
£ 4500 A
w 4
=
= 3500 +
z 4
=}
5 2500
<
W] q
x
1500 -
500 T T — T T T ™ T T 1
0 8 10
PRESENTATION BLOCK
6500~  ADDEND = 3, TRUE: WEIBULL FIT

REACTION TIME IN MS

8 10
PRESENTATION BLOCK
6500, ADDEND = 4, TRUE: WEIBULL FIT
%)
=
z
L
=
=
e
S
=
Q
<
Lad
o
—
8 10

4
PRESENTATION BLOCK

6500~  ADDEND = 2, FALSE: WEIBULL FIT

REACTION TiME IN MS

PRESENTATION BLOCK

6500~  ADDEND = 3, FALSE: WEIBULL FIT

REACTION TIME IN MS

<
oo
@
o

PRESENTATION BLOCK

6500 — ADDEND = 4, FALSE: WEIBULL FIT

REACTION TIME IN MS

4

T T T

4
PRESENTATION BLOCK

Figure 9. Weibull distributions from Equation 6 (lines) fitted to quintiles of the distributions (dots) of
alphabet-arithmetic reaction times as a function of practice for each combination of digit addend and
true versus false equation. (The five functions in each panel were fitted with the same scaling parameters

and the same exponent.)

function exponents increased over decile, and the reciprocals
of the power function exponents overestimated the Weibull
exponents, as they did in the alphabet-arithmetic data, in the
following cases: (1) memory Weibull with ¢ = » = 1,200 and
¢ = 1.5; intercept Weibull with ¢ = b = 600 and ¢ = 1; (2)

memory Weibull with @ = b = 1,200 and ¢ = 2.5; intercept
Weibull with @ = b = 600 and ¢ = 1; and (3) memory Weibull
with @ = b = 1,200 and ¢ = 3; and intercept Weibull with a
= b = 600 and ¢ = 2. The important factor seems to be that
the intercept distribution is more sharply skewed (i.e., ¢ is
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smaller) than the memory distribution. Early in practice, the
memory distribution dominates the intercept distribution in
determining the shape of the reaction-time distribution. As
practice progresses, the memory distribution shrinks (follow-
ing a power function), and eventually, the intercept distribu-
tion dominates the memory distribution. The reaction-time
distribution initially resembles the memory distribution and
finally resembles the intercept distribution, which accounts
for the reduction in the Weibull exponent. The power func-
tion exponent may increase with decile because the largest
changes occur in the higher deciles. These conclusions are
highly speculative. More analysis will be necessary to confirm
them. However, the simulations do demonstrate that varia-
bility in intercept processes may account for the failure of the
instance theory predictions.

Counting Dots

Counting Task

The second data set came from a dot-counting task reported
in Lassaline and Logan (1991). Subjects saw 6 to 11 dots
presented in random positions in a 7 X 7 grid and reported
the numerosity by pressing keys. Four subjects were tested for
13 sessions each consisting of 480 trials. In all, there were 30
dot patterns, 5 at each numerosity level, and subjects saw
each pattern 16 times per session for 12 sessions for a total of
192 exposures. In Session 13, subjects were transferred to new
patterns to determine whether they could generalize what they
had learned in Sessions 1 to 12. Lassaline and Logan focused
their analyses on slopes of linear functions relating reaction
time to numerosity. It is well established that reaction times
increase linearly with numerosity, for levels of numerosity
above the subitizing range, with slopes of 300 ms to 400 ms
per item (e.g., Chi & Klahr, 1975; Jensen, Reese, & Reese,
1950; Mandler & Shebo, 1982).

The slopes from the 13 sessions of Lassaline and Logan’s
(1991) experiment are plotted in Figure 10. The slope for

Table 3

Measures of Goodness of Fit and Parameter Values for Fits
of Equation 6 to Quintiles of Reaction-Time Distributions
from Alphabet-Arithmetic Data for Weibull Distributions
Constrained to Have the Same Exponent and the Same
Scaling Parameters

True False
Digit addend Digit addend

Measure 2 3 4 2 3 4 M
rmsd 119 202 174 135 175 214 170
r 979 965 979 979 975 971 975
a 4909 6,337 7,164 5,534 6,631 7,426 6,334
b 656 506 394 575 548 276 493
¢ 1.766 2.040 1.993 1984 2060 2.123 1.994
1/¢ 566 490 502 504 485 471 503

Note. The value of a in the table is N'/* times the value for the
distribution in each practice block; rmsd = root-mean-square devia-
tion between predicted and observed values; ¢ = Weibull exponent;
1/c = power function exponent.
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Figure 10. Slopes of linear functions relating reaction time (RT) to
the number of dots presented in the dot-counting task, plotted as a
function of training session. (The data are from Lassaline & Logan,
1991.)

Session 1 was 324 ms per dot, which is typical of counting
studies. The slope dropped rapidly over sessions, asymptoting
at 17 ms per dot over Sessions 7-12. On Session 13, when
new patterns were introduced, the slope increased to 233 ms
per item, suggesting the item-specific learning that was pre-
dicted by the instance theory.*

Reaction-time distributions were constructed for each nu-
merosity level at each session, thus producing six data sets
each reflecting changes in distributions over 12 practice ses-
sions. Each subject contributed 80 trials to each distribution
at each practice level. The distributions were averaged over
subjects by calculating deciles (i.e., the value of the 5th, 15th,
25th, 35th, 45th, 55th, 65th, 75th, 85th, and 95th percentiles)
for each subject and averaging the deciles over subjects (see
Ratcliff, 1979; Thomas & Ross, 1980).

Power function fits. To test the first instance-theory pre-
diction, the distributions were fitted by power functions
(Equation 1). I allowed the power functions for each decile to
have separate scaling parameters (¢ and b) and separate
exponents (¢). The fits are displayed in Figure 11. Measures
of goodness of fit are presented in Table 4. As with alphabet
arithmetic, the counting data appear to be well fit by power
functions. The 120 data points in each panel of Figure 11 are
fit by 30 parameters, 2 scaling parameters, and 1 exponent
for each function.

The instance theory predicts that the power functions fitted
separately to each decile should have the same exponent. The
exponents averaged across numerosity were —1.082, —1.074,
—.926, —.849, —.780. —.721, ~.660, —.614, ~.591, and —.533
for Deciles 1 to 10, respectively. The exponents decreased in
magnitude as the decile increased, suggesting that the lower
deciles changed at a faster rate than the higher deciles. The
significance of the differences between deciles was tested by a
one-way ANOVA with decile as the independent variable and
the six numerosity levels as “subjects.” The main effect of

* Alphabet arithmetic also shows this item specificity. Transfer to
new items is poor, even after 12 sessions of practice (see Logan &
Klapp, 1991, Experiments 1 and 3).
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SHAPES OF DISTRIBUTIONS AND LEARNING CURVES 899

Table 4

Measures of Goodness of Fit and Exponent Parameter (c) for
Fits of Equation 1 to Deciles of Reaction-Time

Distributions from Dot-Counting Data of

Separate and Constrained Power Functions

Numerosity
Measure 6 7 8 9 10 11 M
Separate
rmsd 31 49 58 99 143 69 75
r? 990 988 991 982 970 992 985
¢ 475 762 705 562 746 1.452 784

Constrained
rmsd 32 57 65 100 148 83 81

r 990 984 988 981 968 987 983
c 351 .561 508  .514 582 1.107 .604
Note. Separate functions have separate exponents and scaling pa-

rameters; constrained power functions have the same exponent but
are allowed different scaling parameters; rmsd = root-mean-square
deviation between predicted and observed values.

decile was not significant, F(9, 50) = 1.68, p < .15, MS. =
.1372, suggesting that the apparent differences did not appear
consistently in the six data sets. Although the differences seem
large and systematic enough to raise doubts about accepting
the null hypothesis, the lack of statistical significance provides
no grounds for rejecting it.

Another way to test the significance of variation in the
power-function exponents is to fit constrained power func-
tions to the data in which the different deciles are allowed to
have separate scaling parameters but are required to have a
common exponent. The predicted and observed values from
these fits are displayed in Figure 12. Measures of goodness of
fit are presented in Table 4.

The constrained power functions fit the data quite well.
The squared product-moment correlation between predicted
and observed values was only slightly lower than the one for
unconstrained power functions and the root-mean-square
deviation between predicted and observed values was only
slightly higher. Only 21 parameters were required for the
constrained fits in each panel of Figure 12: 2 scaling param-
eters for each decile and 1 common exponent. This is 9 fewer
parameters than were required for the unconstrained fits in
Figure 11. The reduction in the quality of the fits is small in
comparison with the reduction in the number of parameters
required. The goodness of fit of power functions constrained
to have the same exponent suggests that variation in the
exponent is not a very important feature of the data.

An important point to be taken from Figure 12 is that the
10 functions in each panel have the same shape, differing only
in scale. All 10 functions share the same exponent, ¢; they
differ only in the scaling parameters, a and b. The fits confirm
the instance-theory prediction that the entire distribution of
reaction times should decrease as a power function of practice.

Weibull distribution fits. A test of the second instance-
theory prediction was done by fitting the Weibull distributions
(Equation 3) to the data for each numerosity level in each

practice session. Predicted and observed values are presented
in Figure 13. Measures of goodness of fit are presented in
Table 5. The fits were quite good, both absolutely and in
relation to the power function fits. The 120 points in each
panel required 36 parameters, 2 scaling parameters, and 1
exponent for each practice session. This is a few more param-
eters than were required for the unconstrained power function
fits, but not many more.

The instance theory predicts that the Weibull exponent
should be the same for each practice session. Averaged across
numerosity, the exponents were 1.374, 1.437, 1.110, 0.967,
0.999, 0.905, 0.837, 0.915, 0.800, 0.888, 0.869, and 0.986 for
Sessions 1 to 12, respectively. As before, the significance of
these differences was tested in a one-way ANOVA with ses-
sions as the independent variable and the six numerosity
levels serving as subjects. The main effect of sessions was
significant, F(11, 60) = 8.19, p < .01, MS. = .0304, suggesting
that the differences in exponents were reliable across nume-
rosity levels, contrary to the instance-theory prediction.

The instance theory also predicts that the scaling parameters
of the fitted Weibull distributions should decrease as power
functions of practice. Power functions were fitted to the mean
values of @ and b, averaged across numerosity level. The
predicted and observed values are plotted in the top panel of
Figure 14. The fits were quite good: For @,  was .935, and
rmsd was 94 ms; for b, ¥ was .993, and rmsd was 13 ms.
These fits confirm the instance theory prediction that the scale
of the Weibull distribution decreases as a power function of
practice.

As a further test of the significance of the variation in
Weibull exponents, the data were fitted by Weibull distribu-
tions (Equation 3) that were allowed to have separate scaling
parameters but constrained to have a common exponent. A
separate fit was carried out for each numerosity level. Pre-
dicted and observed values are plotted in Figure 15. Measures
of goodness of fit are presented in Table 5. The fits were good.
The product-moment correlation between predicted and ob-
served values was almost as large as it was in the unconstrained
fits, and the root-mean-square deviation between predicted
and observed values increased by 18 ms. The 120 points in
each panel of Figure 15 were fitted by 25 parameters, 2 scaling
parameters for each practice session, and 1 common exponent
for all practice sessions. That is 11 fewer parameters than
were required for the unconstrained Weibull fits. The reduc-
tion in goodness of fit is small in relation to the reduction in
the number of free parameters. This suggests that variation in
the exponent of the Weibull distribution across practice is not
very important.

Power functions (Equation 1) were fitted to the scaling
parameters from the constrained Weibull fits, averaged across
numerosity level, to test the instance-theory prediction that
the distribution of reaction times over practice would remain
Weibull with the scale reduced by a power function. Predicted
and observed values are plotted in the bottom panel of Figure
14. Again, the fits were good: For a, r was .960, and rmsd
was 61 ms; for b, * was .986, and rmsd was 24 ms. These fits
confirm the instance-theory prediction.

Constrained power-function Weibull fits. The third in-
stance-theory prediction, that the exponent of the power
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Table 5

Measures of Goodness of Fit and Exponent Parameter (c) for
Fits of Equation 3 to Deciles of Reaction-Time

Distributions from Dot-Counting Data of

Separate and Constrained Weibull Distributions

Numerosity
Measure 6 7 8 9 10 11 M
Separate
rmsd 18 18 30 24 23 33 24
r? 997 998 997 999 999 998 998
c 874 907 1.160 1.129 1.018 .95 1.007
Constrained
rmsd 33 40 41 43 44 48 42
r 989 992 995 997 997 996 994
¢ 1.114 1.148 1.340 1.299 1.312 1321 1.256

Note. Separate Weibull distributions have different exponents and
scaling parameters; constrained Weibull distributions have different
scaling parameters but a common exponent; rmsd = root-mean-
square deviation between predicted and observed values.

function should be the reciprocal of the exponent of the
Weibull distribution, was tested in three ways. First, the
reciprocals of the exponents from the unconstrained power-
function fits (M = 1.441) were compared with the exponents
from the unconstrained Weibull fits (M = 1.007). The signif-
icance of the difference was assessed with a ¢ test for paired
observations that compared the reciprocal of the average
power function exponent at each numerosity level with the
average value of the Weibull exponent for the corresponding
numerosity level. The result was not significant, #5) = 1.96,
p < .20, MS. = .2208, which is consistent with the instance
theory.

Second, the reciprocals of the exponents from the con-
strained fits were compared (mean reciprocal of power func-
tion exponent = 1.860; mean Weibull exponent = 1.255).
The reciprocal of the constrained power function exponent at
each numerosity level was compared with the constrained
Weibull exponent for the corresponding numerosity level.
The result was not significant, #5) = 1.97, MS, = .3071, as
the instance theory predicts.

Third, Weibull distributions (Equation 6) constrained to
have the same scaling parameters and the same exponent for
each decile and each practice session were fitted to the data
from each numerosity level. Measures of goodness of fit are
presented in Table 6. Observed and predicted values are
plotted in Figure 16.

The fits were reasonable. Root-mean-square deviations
were much larger than in the previous fits, and the product-
moment correlations were lower, although they were still quite
high. The reduction in goodness of fit is small considering
that only three parameters were required for the fits in each
panel of Figure 16, in comparison with the 21 to 36 parame-
ters required for the previous fits. Three parameters for 120
points is very good.

The point to be taken from Figure 16 is that the shape of
the functions is constrained within and between practice
sessions by a single parameter, ¢. The shapes within each

session are the same except for a change of scale, and the
shapes of each function across sessions are the same except
for a change in scale. This confirms the instance-theory pre-
diction that the shape of the reaction-time distribution deter-
mines the shape of the learning curve.

Inspection of Figure 16 reveals systematic deviations from
predictions. In general, the predictions underestimated the
observed values for the fastest and slowest reaction times (i.e.,
the 5th and 95th percentiles). Also, the predicted functions
(across sessions) were often more sharply curved than the
observed data. Once again, these discrepancies may be due to
contamination from the counting algorithm used in the first
few blocks.

A test of that hypothesis was done by fitting the data again,
dropping out Session 1, then Sessions 1 and 2, and so on,
until the first 6 sessions had been dropped. Table 7 presents
measures of goodness of fit and parameter values averaged
over numerosity for these fits. The measures indicate that
goodness of fit improved substantially (root-mean-square de-
viation dropped to about one-third of its initial value) when
the first 3 sessions were excluded and then did not improve

A, B & C VARIED

PARAMETER VALUE

6 8
PRACTICE SESSION

A & B VARIED, C FIXED

PARAMETER VALUE

—
0 é 4 6 8 10 12
PRACTICE SESSION

Figure 14. The a and b parameters from (top) unconstrained and
(bottom) constrained Weibull distribution (Equation 3) fits to dot-
counting data as a function of practice session. (Lines are predictions
from fitted power functions; points are parameter values.)
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Table 6

Measures of Goodness of Fit and Parameter Values for Fits
of Equation 6 to Deciles of Reaction-Time Distributions
from Dot-Counting Data for Weibull Distributions
Constrained to Have the Same Exponent and

the Same Scaling Parameters

Numerosity
Measure 6 7 8 9 10 11 M
rmsd 85 104 129 198 229 143 148
r 926 947 953 928 923 963 940
a 3,028 4,704 6,145 7,188 8,498 10,893 6,742
b 443 444 378 354 288 509 403
¢ 2264 2,043 2.090 2.223 2.044 1405 2.012
l/¢ 442 489 478 450 489 12 510

Note. The rmsd = root-mean-square deviation between predicted
and observed values; a = N' times the value for the distribution in
each practice session; ¢ = Weibull exponent; 1/c = power function
exponent.

much more when additional sessions were deleted. Dropping
the first 3 or 4 sessions may have been enough to remove the
influence of the counting algorithm. Inspection of Figure 10
indicates that the slope of the function relating reaction time
to numerosity approached asymptote after 3 or 4 sessions.
Subjects may not have counted to assess numerosity after that
point.

Figure 17 displays the fits obtained when the first four
sessions were deleted from analysis. The fits appear better
than the fits to the entire data set plotted in Figure 16.
Specifically, there is less underestimation of the extreme re-
action times, and the curvature of the predicted functions
seems to match better the curvature apparent in the data.

Discussion

The counting data supported each of the three instance-
theory predictions. First, each decile of the reaction-time
distribution was well fit by a power function (Equation 1), as
the theory predicts. The exponents of power functions fitted
to deciles separately were similar, and the fit was good when
all quintiles were constrained to have the same exponent.
Second, the distribution of reaction times in each session was
well fit by a Weibull distribution (Equation 3), as the theory
predicts. The exponents of Weibull distributions fitted to each
practice block separately were not identical, but the fit was
good when all blocks were constrained to have the same
exponent. The scaling parameters decreased as power func-
tions of practice, as the theory predicts. Third, the reciprocals
of the exponents of the power functions did not differ from
the exponents of the Weibull distributions in either the con-
strained or the unconstrained fits, as the instance theory
predicts. Reasonable fits were obtained when all deciles and
all practice blocks were fitted simultaneously with the con-
straint that the exponent of the power function equal the
reciprocal of the exponent of the Weibull (Equation 6). The
shape of the reaction-time distribution appears to determine
the shape of the learning curve.

Note that the instance-theory predictions received more
support in this data set than in the previous one. It may be
that the instance theory applies more readily to dot counting
than to alphabet arithmetic, but I doubt that it does (see
Logan, 1988; Logan & Klapp, 1991). The difference is more
likely due to the broader range of practice and the finer
resolution of the distributions in the counting task. More data
points allow more precise estimates of true parameter values.

The instance theory did not fit the counting task perfectly,
however. There were substantial discrepancies between pre-
diction and observation when the full model, represented by
Equation 6, was fitted to the data (see Figures 16 and 17).
Several factors may contribute to these discrepancies. First,
the fits assumed no change over practice in the distribution
of memory retrieval times or in the distribution of algorithm
completion times. This may strike many readers as implau-
sible. It may be possible to improve the fit by allowing both
memory and the algorithm to improve with practice. How-
ever, there are no guarantees; allowing memory and the
algorithm to change may make the fit worse.

Second, only three parameters were used to fit Equation 6:
two scaling parameters (a and ) and one shape parameter
(¢). On the positive side, these three parameters in principle
could account for an infinite amount of data. The distribu-
tions in each practice session are continuous and so could be
described by an infinite number of data points. Practice could
continue indefinitely. Regardless of the amount of data, how-
ever, only three parameters would be required.

On the negative side, using three parameters to fit the whole
data set assumes that memory retrieval accounts for all of the
variability in reaction time. This seems unlikely. Almost
certainly, there are some sensory and motor “intercept” proc-
esses that add to the mean and the variance of the distribution.
The parameter b can be interpreted as representing the mean
of the intercept processes, but there is no parameter that
represents the variability.

To assess the importance of variability in the intercept
processes, I performed simulations in which an intercept
distnbution was added to a memory-retrieval distribution to
produce distributions of reaction times at various stages of
practice. As before, power functions (Equation 1) and Weibull
distributions (Equation 3) were fitted to the simulated distri-
butions. Ten deciles per session were simulated for 12 sessions,
and each simulation was replicated 1,000 times. This time,
however, I assumed that the intercept processes sped up with
practice. That was reasonable for the counting task because
there were 12 sessions of practice, in comparison with 1
session with the alphabet-arithmetic task. To simulate the
speed-up, the experimenter multiplied the value for the inter-
cept distribution by a power function (N°*, which decreased
from 1 to 0 over practice) before it was added to the value for
memory retrieval that trial.

The main goal of the simulations was to find a combination
of parameters that produced the qualitative pattern of the
failed instance-theory predictions in the data from the count-
ing task. In the counting task, Weibull exponents decreased
over practice (although not significantly), power function
exponents decreased (significantly) as decile increased, and
reciprocals of power-function exponents were (nonsignifi-
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Table 7

Effects of Sessions Dropped on Measures of Goodness of Fit
and Parameter Values Averaged Over Numerosity

(1 to 6) for Fits of Equation 6

Goodness

. of fit Parameter

Sessions

dropped r? rmsd a b ¢ 1/c
0 940 148.10 6,742 403 2.012 510
1 953 95.51 12,987 3565 1370 .738
2 .956 69.28 13,857 576 1.295 776
3 956 53.36 12,452 574 1317 .764
4 951 50.88 11,573 563 1.359 .74l
5 .941 52.57 10,815 553 1.408 .715
6 931 54.41 9,601 538 1472 687

Note. The rmsd = root-mean-square deviation between predicted

and observed values; a = N'/* times the value for the distribution in
each practice session; ¢ = Weibull exponent; 1/c = power function
exponent.

cantly) larger than the corresponding Weibull exponents. Note
that power-function exponents decreased with decile in this
data set, whereas they increased with quintile in the alphabet-
arithmetic data set. I interpret this as an effect of the greater
degree of practice in the counting task.

My exploration of the parameter space was not systematic,
but I was able to find several combinations of parameters that
produced Weibull exponents that decreased over practice and
power function exponents that decreased as decile increased.
One combination that produced these two effects and also
produced reciprocals of power-function exponents that were
larger than the Weibull exponents was the following: memory
Weibull with a = b = 1,200 and ¢ = 1.5; intercept Weibull
with ¢ = b = 600, ¢ = 1; and power-function exponent k =
.5. These simulations demonstrate that it may be possible to
account for the failures of the instance-theory predictions by
adding a variable intercept process to the model and assuming
that the intercept process improves with practice. However,
the simulations do not constitute a theory of the intercept
process. Such a theory is well beyond the scope of this article.

Where does this leave us? I would argue that the fits should
encourage readers to take the instance theory seriously. They
may be incomplete, but they provide a good approximation
to a large number of data points with only three free param-
eters. The power function fits (Equation 1) were better than
the fits to Equation 6 in this data set and the previous one,
and they serve to demonstrate that the whole distribution of
reaction times decreases as a power function of practice. That
remains a fact to be accounted for or predicted by other
theories.

General Discussion

The three fundamental assumptions of the instance theory
(obligatory encoding, obligatory retrieval, and instance rep-
resentation) imply a learning mechanism, whereby the
strength of the response from memory increases with consist-
ent practice. This, together with three supplementary assump-
tions (retrieval time is a random variable; the first instance to
be retrieved governs performance; and the retrieval-time dis-

tribution is the same for all instances), implies that (1) the
entire distribution of reaction times, not just the mean, will
decrease as a power function of practice; (2) the distribution
of reaction times in a well-practiced task will conform 1o a
Weibull distribution; and (3) the exponent of the Weibull
distribution will be the reciprocal of the exponent of the
power function that describes the speed-up in reaction time
(i.e., the shape of the distribution determines the shape of the
learning curve). The fits reported in the last two sections of
this article confirmed all three predictions. In this section, I
ask whether other theories could account for these results.

I would argue that no other theory predicts these results, in
that they can be deduced from fundamental assumptions.
However, other theories may be able to account for some
aspects of the results, in that they can be implemented in such
a way as to produce the results. This difference is important.
A theory that predicts results must stand or fall on the success
of the prediction. A theory that accounts for results may stand
when prediction fails; it is the implementation, not the theory
itself, that stands or falls with the predictions. Moreover, a
theory that predicts a phenomenon provides a more parsi-
monious account than one that requires arbitrary assumptions
that go beyond its fundamental premises.

Power Law for Distributions

Most theories of skill acquisition and automaticity can
account for the power-function speed-up in mean reaction
time (e.g., J. R. Anderson, 1982; J. R. Anderson & Milson,
1989; Cohen et al., 1990; Crossman, 1959; Logan, 1988;
MacKay, 1982; Newell & Rosenbloom, 1981; Schneider,
1985). Cohen et al. (1990) and J. R. Anderson (1992) have
tried to account for the power-function speed-up means and
standard deviations. But so far, only Logan (1988) provides
an account of the power-function speed-up in the distribution
of reaction times. In this section, I consider how theories
might be modified to account for changes in distributions as
well as means.

Mixture models. In probability mixture models, reaction
time is determined by two parent distributions, one repre-
senting unpracticed performance and one representing well-
practiced performance. Reaction times are sampled from one
distribution with probability p and from the other distribution
with probability 1 — p. If p changes with practice appropri-
ately, mixture models could predict a power-function speed-
up for mean reaction time. Siegler (1987) proposed a model
of children’s acquisition of skill at addition that can be imple-
mented as a mixture model and so could make this prediction.

Probability mixture models cannot account for the power
law for distributions. In mixture models, the distribution does
not contract monotonically with practice as the power law
requires. It first expands and then contracts as practice pro-
gresses (as p goes from O to 1). This can be seen in the
expression for the variance of a mixture distribution (see
Townsend & Ashby, 1983, p. 264):

o'snixlurc = (1 - p)aglowcr + (p)o'%as(cr
+ p(l - p)(uslowcr -

2

ﬂfusler) .
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The third term on the right side of this equation represents
the squared difference between the means of the parent dis-
tributions, multiplied by the product of the probabilities of
sampling them. This term will grow from 0 as p increases
from 0, reaching a maximum when p = .5, and diminish to
0 as p approaches 1. Thus, the distribution will expand and
then contract as p goes from O to 1. Compton and Logan
(1991) tested the variance prediction of mixture models and
found evidence against it.

Mixture models that assume more than two parent distri-
butions lead to the same predictions as long as subjects begin
with one initial distribution and progress through a series of
distributions to one final distribution. Analysis of variance
provides an appropriate analogy: As long as there are differ-
ences between the means of the distributions, the variance
within a single distribution must be smaller than the variance
of the mixture of distributions, just as the mean square within
groups must be smaller than the mean square between groups.
A possible exception would be a model like Crossman’s
(1959), in which several methods are equally likely to begin
with, and practice converges on one of them. In that case,
variance would be maximal initially (when all methods were
equally likely) and would diminish as a single method domi-
nated. Whether the reduction would follow the power law
remains to be seen.

Strength models. Most models account for the power law
for means by assuming that the strength of connections be-
tween stimulus and response (or between internal represen-
tations) increases by a constant proportion of the strength
remaining to be gained. That is,

Strength, = Strength, _ ; + (Strengthmax
~ Strength,—;), (7)

where Strength, is the connection strength on trial #, Strengthyax
is the maximum possible strength, and c is the learning rate,
usually varying between 0 and 1. This idea underties the
strength mechanism in J. R. Anderson’s (1982) model, the
Hebb learning rule used in Schneider’s (1985) model, and the
back propagation algorithm used in Cohen et al. (1990).° In
these models, strength changes quickly early in practice and
slowly later on. Reaction time is assumed to be inversely
related to strength, and this results in a speed-up that follows
the power law.

Most strength models are deterministic rather than stochas-
tic and, therefore, make no predictions about variability. They
cannot account for the power law for distributions without
adding some assumptions, without injecting noise into the
system somewhere. I consider three possibilities: First, noise
can be added to the output of the system. Reaction times can
be computed deterministically and a random variable can be
added to them. If the random variable were selected appro-
priately, this could produce a reaction time distribution with
the right shape. However, adding noise at output is unlikely
to work in general, because there is no mechanism by which
the noise can change with practice. The distribution would
stay the same with practice; only the mean would change.

Second, noise can be added to the input to the system or at
various points along the way. This is the solution adopted by

Cohen et al. (1990) in their model of the Stroop effect. Their
model consists of three layers of nodes, an input layer, a
hidden layer, and an output layer. They add noise to the
second and third layers. In this approach, noise influences
performance by causing momentary fluctuations in activation
level. Noise effects will diminish with practice because there
is a limit to the maximum activation level. Early in practice,
when connections are weak, activation takes a long time to
approach the maximum level, and there is plenty of room for
fluctuations to affect performance. Later in practice when
connection strengths are near asymptote, activation reaches
near-maximum levels very quickly, and there is little room
for random fluctuations to affect performance. Consequently,
the distribution of reaction times will contract as practice
progresses.

There is no guarantee that adding noise in this fashion will
produce the power law for distributions, however. Cohen et
al. (1990) were able to produce power-function learning only
if they fixed connection weights between the first two layers
and allowed weights to change between the last two. Even
then, the match between the exponent for means and standard
deviations (i.e., the fit of the power law for distributions)
depended on the amount of noise they added. With too much
or too little noise, means and standard deviations followed
different power functions. Cohen et al. did not report bound-
ary conditions on successful fits; further research will be
needed to establish them.

J. R. Anderson (1992) added noise to his ACT* model by
treating strength as a rate parameter for an exponential distri-
bution of reaction times. The mean and the standard devia-
tion of the exponential distribution equal the reciprocal of
the rate parameter, so Anderson can explain changes in
means, standard deviations, and entire distributions of reac-
tion time with practice. J. R. Anderson (1982) showed that
strength increases as a power function of practice, so the
mean, standard deviation, and the entire distribution of re-
action times should all decrease as a power function of prac-
tice. However, as I pointed out before, the exponential distri-
bution leads to predictions that are clearly falsified by empir-
ical data (i.e., that the mean should equal the standard
deviation and that the reduction in the mean with practice
should equal the reduction in the standard deviation).
Whether these data falsify an implementation of Anderson’s
model or the model itself remains to be seen. The answer
depends on how central the assumption of exponential distri-
butions is to ACT*. Perhaps some other distribution could be

3 Technically, in the Hebb learning rule and the delta rule used in
back propagation, Strength,.., is defined as the strength required to
produce a desired or optimal output. The delta rule describes the
change in strength between units / and j as follows:

8Strength, = (t; — 0)i;,

where ¢ is the learning rate, ¢, is the desired or target output for unit
J, 0;1s the actual output for unit j, and i is the input from unit i (see
Rumelhart, Hinton, & Williams, 1986). This expression will reduce
to Equation 7 if i; = | and ¢ is interpreted as Strengthmax.
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used instead. Even then, there is no guarantee that other
distributions would lead to appropriate predictions with plau-
sible interpretations (see Footnote 2).

Third, noise may be intrinsic in the input to the system.
Stimuli may vary for a number of reasons, and this variation
may propagate through the system, resulting in variation in
reaction time (see J. A. Anderson, 1991). Variation among
stimuli would be compressed as strength approaches asymp-
tote and so would the resulting variation in reaction time.
With appropriate parameters, the reduction in variation may
follow the power law. Seidenberg and McClelland (1989)
provided an example of the effects of practice on intrinsic
noise in their model of word naming: Words vary in ortho-
graphic regularity and the number of words (neighbors) with
which they share letters. Both of these factors affect the time
it takes to name words, but the effects are much stronger with
low-frequency words than with high-frequency words. Seiden-
berg and McClelland modeled these interactions by varying
strength; differences apparent at low levels of practice dimin-
ished as strength increased. Whether effects like these are
considered noise depends on the investigator’s perspective;
one person’s noise may be another person’s independent
variable. All researchers collapse data across stimuli in some
way or other, so intrinsic noise must be commonplace. In the
fits reported above, for example, I collapsed across stimuli
and small amounts of practice (6 or 16 presentations) to
construct distributions. In principle, stimuli or practice effects
or both could have produced the variation I observed.

It remains to be seen whether the reduction of intrinsic
noise by strengthening will account for the power law for
distributions, but it seems to be the most promising approach.
It is reasonable and realistic to assume variation among
stimuli (or among matches between stimuli and decision
criteria, etc.), in contrast with arbitrary injection of noise into
the system or with the instance theory’s assumption that all
stimuli have the same retrieval-time distribution.

Weibull Distribution

Will other theories of skill acquisition and automaticity
predict that the distribution of well-practiced reaction times
will conform to the Weibull? It seems unlikely that they will
predict it, but they may well account for it. With appropriate
exponents (i.e., between | and 3), the Weibull resembles
typical reaction-time distributions. So to the extent that the
theories can produce reaction-time distributions that resemble
typical ones, they will fit the Weibull.

Probability mixture models may produce Weibull distri-
butions in the initial and final stages of practice (i.e., when
the parent distributions dominate). However, they are un-
likely to produce Weibull distributions at intermediate stages
of processing when the distribution is a mixture of the two
parents. Mixtures of Weibulls are unlikely to be Weibulls.

Strength models may produce Weibull distributions, de-
pending on the nature of the noise that is added to the system
and on the transformation that relates strength to reaction
time. One strategy, used by Cohen et al. (1990), is to use
output strength to drive a random walk, such as Ratcliff’s
(1978) diffusion model. Ratcliff’s diffusion model produces

reaction-time distributions that are well fit by the convolution
of normal and exponential distributions, which in turn is well
fit by the Weibull (see Appendix B).

Models that assume intrinsic noise may not produce Wei-
bull distributions very easily. In principle, intrinsic noise can
be attributed to systematic variation within the stimulus do-
main. This is a conceptual advantage over noise injected
arbitrarily into the system. However, constraints on the stim-
ulus domain must determine the distribution of intrinsic
noise, and those constraints may not produce Weibull distri-
butions of reaction times. There are fewer theoretical degrees
of freedom with intrinsic noise than with arbitrary noise, and
that may work against the theory.

Shapes of Distributions and Learning Curves

Will other theories of skill acquisition and automaticity
predict that the shape of the distribution determines the shape
of the learning curve? It is not likely. This prediction seems
to be unique to the instance theory. Other theories may be
able to account for the power law for distributions and the
Weibull shape of reaction-time distributions. But I suspect
other theories would have a hard time producing power law
fits with exponents that equal the reciprocal of the exponent
of the Weibull distribution of reaction times. The instance
theory predicts that constraint because learning derives from
assumptions about reaction-time distributions (i.e., learning
reflects the outcome of a race between n samples drawn from
the same distribution). In other theories, the assumptions that
produce learning are separate from the assumptions about
noise that produce reaction-time distributions. There is no
necessary relation between them. It may be possible to select
parameters such that the shape of the distribution is correlated
with the shape of the learning curve, but it seems unlikely
that the relation would be deterministic as it is in the instance
theory. Other theories may account for the constraint, but it
seems unlikely that they would predict it.

The constraint between the shape of the retrieval-time
distribution and the shape of the learning curve is easy to
grasp intuitively in the framework of the instance theory.
Distributions shaped like the exponential, in which the min-
imum value is the modal value, should produce sharply
inflected learning curves because few samples would be re-
quired to converge on the minimum value. By contrast,
distributions shaped like the normal, in which the modal
value is far from the minimal value, should produce more
gradual learning curves because many samples would be
required to converge on the minimum. It seems unlikely that
other theories could account for the constraint in a manner
that is as intuitively compelling as the instance theory’s ac-
count.

Conclusion

The data presented in this article demonstrate that (1) the
distribution of reaction times decreases as a power function
of practice, (2) the distribution of reaction times is well
described by the Weibull, and (3) the shape of the reaction-
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time distribution determines the shape of the learning curve.
All of these results were predicted by the instance theory. The
ability to predict these results is a significant strength of the
instance theory. The predictions derive from the fundamental
assumptions, and the theory must stand or fall on the success
of the predictions. The results suggest that the theory stands.
Other theories may be able to account for some or all of these
results, but so far, no theory predicts them by deduction from
fundamental assumptions.

The results are important apart from their relevance to the
instance theory. They generalize the power law to distribu-
tions, whereas previously it applied only to mean reaction
times. They demonstrate a constraint between reaction-time
distributions and learning curves that may prove to be a
fundamental phenomenon in automaticity and skill acquisi-
tion, heretofore undiscovered. It is relatively easy to generate
models that predict power function reductions in mean reac-
tion time. It is harder to predict the power law for distributions
and harder yet to predict the constraint between distributions
and learning curves.

The discovery of these phenomena also constitute a signif-
icant strength of the instance theory. The worth of a theory is
measured, in part, by its ability to generate new predictions
and reveal new phenomena. The instance theory led to the
discovery of the power law for distributions and the constraint
between shapes of distributions and shapes of learning curves.
If these phenomena are as fundamental as 1 suspect they may
be, the instance theory will have been worthwhile, even if it
is ultimately falsified on other grounds.
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Appendix A

Power Function Predictions for Nonidentical Distributions

The power function proofs assume that the retrieval times for the
various traces in the race come from identical independent distribu-
tions. Identity is a strong assumption. It requires that the distributions
have the same form and the same parameter values, which seems
unlikely to be true in practice. In this section, I attempt to generalize
the proof to independent distributions of the same form with different
parameter values. Thus, the distributions need not be identical; they
need onty come from the same family. That may be a more plausible
assumption than complete identity, especially considering the flexi-
bility of families of distributions such as the Weibull (see Appendix
B).

Weibull Distributions With Fixed Exponents

It is possible to prove mathematically that the distribution of
minima sampled from independent Weibull distributions with iden-
tical exponents but different scaling parameters (different values of
a) will decrease asymptotically as a power function of the number of
samples.*' The proof assumes that the additive constant, b, is zero.
The multiplicative constant, a, can vary randomly.

I begin by restating the proof for independent, identically distrib-
uted Weibull distributions. Let X(a, ¢) denote a Weibull distributed
random variable:

F(x) =Prob{X(e, ¢} = x} = | ~ exp[—ax‘],
which is essentially Equation 4 with ¢ = o™ and b = 0. Let Xnin(N,
a, ¢) denote the minimum of N independent identically Weibull-
distributed random variables, X(«, ¢), Xaa, ¢), -+, XMa, ¢), with

common parameters « and ¢. For the random variable Xmn(N, a, ¢)
one has

N
Prob{X (N, , ¢)>x} =11, Prob[X(«, ¢) > x]
N
=11, exp[~ax‘]=exp{-Nax], (Al)

which means it is Weibull-distributed with parameters (N, ¢):

Prob{Xmin(N, o, ¢) < x} = 1 — exp[~Nax‘]. (A2)

The pth quantile of this distribution is X,(N, a, ¢). It is obtained
by choosing a value of p (0 < p < 1) and solving Equation A2 for x:

p=1—exp[—Nax]
1 — p=exp[—Nax]
log(1~p)=—Nax‘
log(1—p)/(—Na) = x°
x = {log(1=p)/(=Na)}"/* = X,(N,  ¢).

With a little rearrangement,
XN, a, ¢) = N"{log(1—p)/—a}'’. (A3)

According to Equation A3, as N increases, X,(N, «, ¢) decreases
strictly proportionally to N™'¢, each quantile of the distribution
decreases as a power function of N with an exponent equal to the
reciprocal of the exponent for the original Weibull distribution. This
is essentially what I showed earlier in Equation 6. It follows that all &
moments about zero of this distribution will also decrease as power
functions of N with exponents equal to —k/c, where c is the exponent
the original Weibull distribution.

Now I generalize this proof to nonidentical distributions: Suppose
that the exponent c is fixed but the values a;, - - -, ay for N Weibull-
distributed random variables are selected at random and independ-
ently from a certain population of « values. This makes the selected
«; a random variable with Prob(e; < o*) being a fixed value for any
given o*, independent of / and N. Let E(a) denote the mean value of
« in the population.

Let Xumin{a, - - -, an, ¢) denote the minimum of N random variables
selected in this fashion. For any particular choice of ay, - - -, ay ODe
has (by analogy with Equation A1)

Prob{Xminlai, < - -, an, ) >x} = 1:1, Prob{X{e, ¢)>x}
N
=II, exp[~a:x‘] = exp[—Z,a{x)],

. . . . . . N
which is Weibull-distributed with parameters (Z,a, ¢):

N
Prob{Xmin(a1, - - -, an, ) = x} = 1 —exp[—Z,a{x)].

Al T would like to thank Ehtibar Dzhafarov for providing this proof.



912

STANDARD DEVIATION OR MEAN STANDARD DEVIATION OR MEAN STANDARD DEVIATION OR MEAN

STANDARD DEVIATION OR MEAN

GORDON D. LOGAN

T "
40 50

T T

40 50

T
40 50

T
50

1200 A B, AND C FIXED 1200~ A FIXED, B AND C VARIED
é j
1000 % 1000
[+
o |
800 z 800
<]
2 |
500 3 6004
1 & |
4
00 O 400
<<
g g
200
T
04— . ;
0 10 40 50 R S S ‘ "
NUMBER OF PRESENTATIONS NUMBER OF PRESENTATIONS
1200 A AND B FIXED, C VARIED 1200 B FIXED, A AND C VARIED
4 |
w
1000 = 10004
@« B
[}
800 z 800
<]
e j
<
600 5 600+
4 o 1
400+ 2 400
L = 1
1 S
1 o
|
0 . ; M 0 — e
0 10 40 S0 0 10 20 30
NUMBER OF PRESENTATIONS NUMBER OF PRESENTATIONS
1200 A AND C FIXED. B VARIED 1200 C FIXED, A AND B VARIED
] z ]
| 5
1000 } = 1000 4
« ]
Q
800 Zz 800
j : ]
b
600 S 600
4 =) i
400 S 400+
1 g 1
200 £ 2004
1 E:
wn A
0+ T T v T T 0 . - T .
0 10 40 50 ) 10 20 30
NUMBER OF PRESENTATIONS NUMBER OF PRESENTATIONS
1200 8 AND C FIXED, A VARIED 12004 A B. AND C VARIED
3 z
] =0
1000 A = 1000
@
4 (&) I
800 - z 8001
p = 1
600 S 600+
4 (=Y 4
2 4004}
400 o e:(
14 2 )
200 \\——»‘_,___ Z 200
4 wn « M
o} T T T T T T T 0 T T T J
0 10 20 30 40 50 0 10 20 30 40
NUMBER OF PRESENTATIONS NUMBER OF PRESENTATIONS
Figure A]1.  Power functions (lines) fitted to means (top line in each panel) and standard deviations

(bottom line in each panel) of simulated data (dots) sampled from Weibull distributions in which
parameters were fixed or free to vary. (The two functions in each panel were allowed to have different
asymptote and multiplicative parameters but were constrained to have the same exponent.)
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By analogy with Equation A3, the pth quantile of this distribution is
N
Xlay, - -, ax, )= {log(1-p)/—Zai} . (A4)

Now, ZNw; can be rewritten as Na, where & is the mean of ay, - -,
ax (because by definition, @ = =Ne,;/N). This can be substituted into
Equation A4 to yield

XAy, - - -, aw, ¢) = {log(1=p)/~N&}'"
= N-Yellog(1—-p)/—a}'. (AS)

Unlike the quantiles described in Equation A3, the quantiles
described in Equation A5 do not decrease strictly proportionally to
N~V because the value of & will generally change as N increases. It is
well-known, however, that as N increases, & converges to E(a) both
“in probability” and “almost certainly.” The former means that for
any positive £, however smail,

Prob{la— E(a)] <&} — 1.

The second meaning of convergence (“almost certainly”) is even
stronger:

Probja — E(a)} =1,

that is, with probability 1, for any positive £, however small, one can
find a value of N such that beginning with that value,

& — E(a)] <&

Since the pth quantile X (e, - - -, an, €) is a continuous function
of &, one can conclude that both in probability and almost certainly

Xfas, -+ 5 an, ¢)— N"V{E(@) log(1—p)}'e. (A6)

The right side of Equation A6 decreases strictly proportionally to
N7Y¢ so one can say that X(a), - - -, ax, ¢) decreases asymptotically
proportionally to N~/¢. This means that with N sufficiently large, the
quantiles of a distribution of minima sampled from independent
Weibull distributions with a common exponent but separate scaling
parameters will decrease approximately as a power function of N with
an exponent equal to the reciprocal of the exponent for the Weibull
distribution. It follows that asymptotically, all Xk moments about zero
of this distribution will also decrease as power functions of N with an
exponent equal to —k/c, where ¢ is the exponent for the original
Weibull distributions. Thus, in this case, the assumption of identical
distributions can be relaxed somewhat without changing the power
function prediction.

Weibull Distribution With All Parameters Varying

Unfortunately, it is not easy to generalize the preceding proof for
Weibull distributions with different exponents. As an alternative to
mathematical proof, I performed a number of Monte Carlo simula-
tions with Weibull distributions (i.e., Equation 3) that varied in all
three parameters to test the importance of assuming identical distri-
butions. In each simulation, N independent samples were drawn from
Weibull distributions, and the minimum value was calculated. NV
varied from 1 to 50. Sampling was replicated 1,000 times, and the
mean and the standard deviation of the minimum was calculated as
a function of N. Power functions were fitted to the means and
standard deviations using STEPIT, allowing them to have separate
asymptotes and multiplicative parameters but constraining them to
have the same exponent, as the instance theory predicts.

The Weibull parameters were either fixed or varied. When a and
b were fixed, they were set at 600, which was the mean of the range

of values they took when they varied; when ¢ was fixed, it was set at
2.5, which was the mean value of the range it took when it varied.
When the parameters varied, each of the N samples was drawn from
a distribution with a different parameter value, selected randomly
from a rectangular distribution of parameter values. The parameters
a and b varied between 200 and 1,000; ¢ varied between | and 4. The
range for a and b were representative of the range of fitted values in
the data sets reported in the text. The range for ¢ represents the range
of exponents over which the shape of the distribution varies from
exponential to normal. These ranges produced distributions with
means that ranged from 382 to 2,018 and standard deviations that
ranged from 52 to 1,056. These values spanned the range of means
and standard deviations in the actual data I fitted.

Altogether, eight simulations were performed. In the first simula-
tion, all three Weibull parameters were fixed. In the next three, two
parameters were fixed, and one was allowed to vary (e.g., @ and b
were fixed, and ¢ was allowed to vary). In the next three, one
parameter was fixed, and two were allowed to vary (e.g., a was fixed,
and b and ¢ were allowed to vary). In the eighth simulation, all three
parameters were allowed to vary.

The means and standard deviations from each simulation are
plotted in Figure Al. The points represent the simulated data, and
the lines represent the power function fits. Measures of goodness of
fit and the power-function exponents appear in Table Al. In each
simulation, the fit was excellent. The goodness of fit was not affected
much by variation in the Weibull parameters. When all three param-
eters were fixed, as the power-function proofs assume, = .99997,
and rmsd = 2.2. When all three parameters varied randomly, violating
the assumption of identical distributions, the fit remained excellent:
r* decreased in the fourth decimal place (t0 .9995), and rmsd increased
by 2.7 (to 4.9). There were no systematic effects of varying the Weibull
parameters on the power-function exponents. On average, the expo-
nent was .438 (reciprocal = 2.282) when the Weibuli ¢ was fixed at
2.5; on average, the exponent was .480 (reciprocal = 2.083) when the
Weibull ¢ varied. This difference was not significant, §6) = .44, MS.
= .095. Thus, the assumption of identical distributions does not seem
to be crucial to producing power-function reductions in means and
standard deviations nor does it seem to be crucial in producing the
predicted relation between the exponent of the power function and
the exponent of the Weibull, provided that the form of the distribution
remains the same.

Table Al
Measures of Goodness of Fit for Power Function (Equation 1)
Fits to Means and Standard Deviations of Simulated Data

Fixed Varied r rmsd Exponent
abc none 99997 2.18 .388
bc a .99992 3.11 621
a,c b 99978 3.73 336
a b ¢ .99987 3.88 446
a b, ¢ 99967 4.26 341
b ac .99982 4.46 681
c a b .99978 3.37 408
none abc .99950 4.89 453

Note. Means and standard deviations were fitted simultaneously.
They were allowed to have separate scaling parameters but con-
strained to have the same exponent. The rmsd = root-mean-square
deviation between predicted and simulated values.

(Appendix B follows on next page)
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Appendix B:

Relations Between the Weibull and the Ex-Gaussian

I performed several Monte Carlo simulations comparing the shape
of the Weibull distribution with the shape of distributions formed by
the convolution of the normal distribution with the exponential
distribution. The convolution is called the ex-Gaussian distribution.
It is important because Ratcliff and Murdock (1976) showed that it
provides accurate quantitative descriptions of reaction-time distribu-
tions, and Ratcliff (1978) showed that it provides an accurate descrip-
tion of the finishing-time distribution for certain continuous random
walk (diffusion) models. To show that the Weibull is shaped like the
ex-Gaussian is important because it means that the Weibull can also
provide a good quantitative description of observed reaction-time
distributions.

Mathematically. the ex-Gaussian distribution represents a two-
stage process, in which a sample from a normal distribution is added
to a sample from an exponential distribution. Repeated sampling
leads to a distribution that is characterized by three parameters: 4, o,
and 7. The parameters x4 and ¢ represent the mean and the standard
deviation, respectively, of the normal distribution, and r represents
the reciprocal of the rate constant for the exponential distribution,
which is also the mean and standard deviation of the exponential.
The two-stage character of the ex-Gaussian is meaningful mathemat-
ically but not empirically. In general, data are not consistent with the
idea that the normal distribution represents one processing stage and
the exponential distribution represents another (Ratcliff & Murdock,
1976).

The shape of the Weibull was compared with the ex-Gaussian by
generating quantiles from ex-Gaussian distributions with various
combinations of parameters and fitting the Weibull to the generated
distributions. Each simulation involved generating a distribution of
200 trials in which one sample was drawn from a normal distribution
and another from an exponential distribution and the two were added
together. The 200 data points in each distribution were rank ordered
and reduced to 20 quantiles, representing successive increments of 5
percentile points, beginning with 2.5 (i.e., 2.5, 7.5, 12.5, etc.).

One set of simulations used two values of u (200 ms and 400 ms),
two values of ¢ (50 ms and 100 ms), and two values of + (100 ms and
200 ms). The eight ex-Gaussian distributions formed by combining
these parameters factorially were fit by three-parameter Weibuil
distributions (Equation 3) using STEPIT. Across the eight distribu-
tions, the mean r* between simulated and fitted points was .993, and
the mean rmsd was 11.6 ms. The Weibull parameters were all affected
by variation in the parameters of the ex-Gaussian, in ways that were
readily interpretable: Increasing u, the mean of the normal, increased
b in the Weibull. Both of these parameters represent a kind of

intercept that moves the leading edge of the distribution away from
zero. Increasing o, the standard deviation of the normal, increased a
in the Weibull, which makes sense because both ¢ and g affect the
spread of the distribution. Increasing ¢ decreased b because it broad-
ened the distribution and moved the leading edge closer to zero.
Increasing ¢ also increased the exponent, ¢, of the Weibull. This
follows because the ex-Gaussian is shaped more like the normal as ¢
increases, and the Weibull is shaped more like the normal as ¢
increases. Finally, increasing 7 decreased ¢ in the Weibull. Increasing
7 makes the ex-Gaussian more exponential in shape, whereas decreas-
ing ¢ makes the Weibull more exponential in shape.

Two simulations fitted special cases of the Ex-Gaussian. In one, 7
was set to zero so that the ex-Gaussian would be normal, and in the
other, 1 and ¢ were set to zero so that the ex-Gaussian would be
exponential. Both fits were good (mean 7 = .995, and mean rmsd =
8.5). In the fit to the exponential, ¢ = 1.047, which was close to the
expected value of 1.0; in the fit to the normal, ¢ = 3.480, which was
close to the expected value of 3.6. These fits suggest that the Weibull
can describe a range of reaction-time distributions that is similar to
the range that the ex-Gaussian describes.

Finally, five simulations were performed using parameters from
Ratcliff and Murdock (1976, Table 2 and Figure 14) and four simu-
lations using parameters from Ratcliff (1978, Figure 7). The param-
eters from Ratcliff and Murdock were taken from fits to data, and
those from Ratcliff were taken from fits to theoretical distributions
generated by a continuous random walk (diffusion) process. The u
ranged from 89 ms to 500 ms, ¢ ranged from 22 ms to 37 ms, and =
ranged from 96 ms to 300 ms. The Weibull fits were quite good. The
average r* = .996, and the average rmsd = 9.4 ms.

These analyses suggest that the Weibull may describe reaction-time
distributions nearly as well as the ex-Gaussian does. This is encour-
aging because the instance theory predicts that well-practiced reaction
times should conform to the Weibull and because theoretical calcu-
lations are easier if the Weibull can be used at all stages of practice. I
do not mean to suggest that the Weibull should replace the ex-
Gaussian as a way to describe reaction-time distributions. The ex-
Gaussian is easier to work with. Its mean (¢ + 7) and variance (o® +
%) are easier to compute than the mean (al'(l + 1/¢) + b) and
variance (@’[T(1 + 2/¢) — T(1 + 1/¢)]) of the Weibull.
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1993 APA Convention “Call for Programs”

The “Call for Programs” for the 1993 APA annual convention appears in the October issue
of the APA Monitor. The 1993 convention will be held in Toronto, Ontario, Canada, from
August 20 through August 24. Deadline for submission of program and presentation
proposalsis December 10, 1992. Additional copies of the **Call” are available from the APA
Convention Office, effective in October. As a reminder, agreement to participate in the
APA convention is now presumed to convey permission for the presentation to be
audiotaped if selected for taping. Any speaker or participant who does not wish his or her
presentation to be audiotaped must notify the person submitting the program either at the
time the invitationis extended or prior to the December 10 deadline for proposal submission.




