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The transition from algorithm to retrieval
in memory-based theories of automaticity

BRIAN J. COMPTON and GORDON D. LOGAN
University of Illinois, Urbana, Illinois

Two memory-based theories of automaticity were compared. The mixture model and the race
model both describe automatization as a transition from algorithmic processing to memory
retrieval. The mixture model predicts that, with training, the variability of reaction time will
initially increase, and later decrease in a concave downward manner, whereas the race model
predicts the variability will decrease only in a concave upward manner. The mixture model predicts
that using both algorithm and retrieval on a single trial will be slower than using the algorithm
alone, whereas the race model predicts the reverse. The experiments used an alphabet arithmetic
task, in which subjects verified equations of the form H + 3 = K and made subjective reports
of their strategies on individual trials. Both the variability of reaction times and the pattern
of reaction times associated with the strategy reports supported the race model.

Memory-based models of automaticity describe novice
performance as govemed by relatively slow algorithmic
computations and that expert performance is govemed by
much faster memory retrieval processes. In these models,
automatization is a transition from algorithm-based per­
formance to memory-based performance. At issue in this
paper is the process by which the transition occurs.

Two different mechanisms for the transition from al­
gorithm to memory have been proposed. In the mixture
model, only one process, either algorithmic or memorial,
is selected for the initial attempt at obtaining the solution
on a given trial. The transition then reflects a shift in the
probability of initially selecting retrieval as opposed to
selecting the algorithm. In the race model, both the al­
gorithm and memory retrieval operate simultaneously, and
the selection of the process is determined by the outcome
of arace, in real time, between the two processes. The
transition reflects a shift in the probability that retrieval
will win the race.

In one version of a mixture model, the determination
of whether to use an algorithm or to retrieve the answer
is made before the process itself (be it algorithmic or
memorial) is executed. At the onset of training, all trials
are solved by the algorithm. As training progresses, the
probability that a trial will be solved by retrieval increases.
Although performance on a single trial is determined by
only one process, performance over a number of trials
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reflects a mixture ofthe two processes. In this simple mix­
ture model, only one process is to be used on a particular
trial. Such a model is overly simplistic, since it does not
consider the possibility that subjects may sometimes use
the counting algorithm as a backup strategy if memory
retrieval fails to produce an acceptable answer.

The mixture model that will be considered in this paper
is an elaboration of the simple mixture model. The elabo­
rated mixture model is similar to a leaming mechanism
proposed by SiegIer (1987, 1988; Siegier & Shrager,
1984) as part of a theory of children 's acquisition of arith­
metic skills. In Siegler's model, children first try to
retrieve the answer to a given problem; if that fails, they
use an algorithm to compute the answer. If the trial is
presented very early in training, retrieval will not be at­
tempted before the algorithm is executed. Training serves
to strengthen the memory representation for a given
problem, which increases the probability that retrieval will
be used successfully the next time the problem is
presented.

The elaborated mixture model borrows the notion that
a single process is initially selected and is followed by
a backup process when it is unsuccessful. This mixture
model differs from the simple one in that both algorith­
mic and memorial processes can operate in sequence on
a single trial. As in the simple model, however, the two
processes never operate simultaneously. This stands in
contrast to the race model, in which the algorithmic and
memorial processes operate in parallel.

Dur intention was to test mixture models in general
rather than Siegler's model in particular. There are many
important aspects of Siegler's model besides the mixture
hypothesis; it is not clear that the idea of mixture is es­
sential to his model. It may be possible to reformulate
it as a race model. Thus, rcsults that reject a mixture
model in favor of a race model need not be viewed as
rejecting Siegier 's model in general.
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quickly, and the finishing time of the fastest trace becomes
increasingly constrained by the finishing times of other
fast traces and, as a result, variability is reduced. Logan
(1988) has shown that, under the race model, the stan­
dard deviation of reaction time decreases as apower func­
tion of the number of instances, with an exponent equal
to the exponent for the power function reduction in mean
reaction time. The formula for the variance of reaction
time under the race model is:

Alphabet Arithmetic
The present experiments used an alphabet arithmetic

task (Logan & Klapp, in press). Subjects determined
whether equations of the form H + 3 = K were true or
false (this one is true since K is 3 letters down the alphabet
from H). Alphabet arithrnetic is an analogue of the ac­
quisition of addition skills in children. It allows adults to
perform as novices in the task domain, in a situation simi­
lar to that of a child learning to add for the first time.

where N is the number of instances and c is a constant
reflecting the learning rate. The power function reduc­
tion predicted by the race model implies that the function
relating variance to practice will be concave upward.

Thus, mixture models and race models can be distin­
guished in two ways: First, race models predict that varia­
bility will decrease monotonically with practice, whereas
mixture models predict an increase, then a decrease, vari­
ability with practice, provided that the algorithm
dominates early in practice and retrieval dominates later.
Second, and more generally , race models predict that the
function relating variability to practice will be concave
upward, whereas mixture models predict it will be con­
cave downward. This can be tested by examining the sign
of a quadratic trend fitted to the practice data. Such a
procedure involves finding the standard deviation of reac­
tion time at several different points in training, multiply­
ing these values by the coefficients for a quadratic trend,
summing the results, and examining the sign of the sum.

Race models can also be distinguished from mixture
models by examining reaction times associated with sub­
jective reports of strategy. In the mixture model, the al­
gorithm and memory retrieval operate sequentially
whenever they are both used on a single trial. Conse­
quently, the mixture model should predict that reaction
times on trials for which the subject reports both count­
ing and remembering will be slower than reaction times
on trials for which the subject reports counting only, since
the former condition represents two separate processes
in sequence, whereas the latter represents only one. In
contrast, the race model predicts that reaction times on
trials for which the subject reports both counting and
remembering will be faster than reaction times for the
"pure" counting case, since, under the race formulation,
counting and remembering operate in parallel, and
memory can only serve to speed up trials on which it is
used.
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The race model is a component of Logan's (1988) in­
stance theory of automatization. In instance theory, each
exposure to astimulus adds another memory trace whose
retrieval will be initiated the next time the same stimulus
is presented. As the number of relevant memory traces
increases, the probability increases that one of them will
win the race against the algorithrn. With enough train­
ing, the set of instances will be so large that a memory
trace will produce the fastest response on virtually every
trial.

The present experiment distinguishes race models from
mixture models by examining changes in the variability
of reaction time and by examining the pattern of reaction
times associated with strategy reports. Although many
other models of practice have been proposed (Anderson,
1982; Crossman, 1959; MacKay, 1982; Newell & Rosen­
b100m, 1981; Schneider, 1985), the mixture model was
chosen for comparison because it makes predictions that
most closely parallel those of the race model. 1 Both
models make specific, parallel, but opposite, predictions
about variability of reaction time, which allows the two
models to be clearly differentiated. The mixture and race
models each assurne that reaction times are selected from
stable parent distributions of algorithrn and memory
finishing times that do not change over practice. Changes
in performance are caused by changes in the probability
of using one process or the other.

The mixture model predicts that, at the onset of train­
ing, subjects will use the algorithrn on all trials and that
the variability of reaction times for the first trials will be
equal to that of the algorithrn. After training, as the rele­
vant memory representations become strengthened, most
trials will be solved by memory retrieval, and the varia­
bility of reaction time will approach the variability for
memory retrieval alone. However, during the transition
from counting to remembering, the variability should in­
crease, and then decrease, as the probability of remem­
bering increases from zero to one. The formula for the
variance of reaction times under the mixture model is:

tfmix = p<faJg + (1-p)tfmem + p(1-p)(}lalg - ~mem)2.

(1)

The increase in variability can be seen only if subjects
use the algorithrn predominantly early in practice and
memory retrieval predominantly later in practice.
However, the mixture model makes a more general
prediction that can be tested, even if one process or the
other predominates throughout the practice period. It re­
quires only that the probability of using one process, as
opposed to the other, changes during practice. The quad­
ratic component in Equation 1 implies that the function
relating variance to practice will be concave downward.

The race model also predicts that, at the onset of train­
ing, the variability will be equal to that of the algorithrn
alone. However, the race model predicts that variability
will decrease with training, and never increase; as more
instances are added to memory, more traces are retrieved

ciface = N'"2Ctfmem, (2)



In both alphabet arithmetic and regular addition, the
learner already possesses knowledge about the relevant
sequence of numbers or letters and has the ability to count
through that sequence. This information allows the sub­
ject to use a counting algorithm, in which the sum of the
addends is obtained by counting through one or both ad­
dends. A sirnilarcounting algorithm is used by novice sub­
jects in the alphabet arithmetic task (see Logan & Klapp,
in press).

An advantage of alphabet arithmetic is that different
strategies for performing the task are empirically and
phenomenally distinct. When the counting algorithm is
used, the number of counting steps is determined by the
size of the digit addend, and reaction time is alinear func­
tion of the digit addend, with a slope of 400-500 msec
per counting step. The slow, serial counting process is
readily detectable by subjects. When alphabet arithmetic
is solved by remembering, the magnitude of the digit ad­
dend no longer affects performance (the slope approaches
zero) and subjects experience the answer "popping into
their heads" (Logan & Klapp, in press).

The present experiments used a probe procedure to in­
vestigate how subjects' strategies changed with practice.
On a subset ofthe trials, a probe was presented that asked
subjects how they solved the preceding problem and that
provided different response options. The probe procedure
allowed the data from the main experiment to be grouped
by strategy so that competing predictions of the race model
and the mixture model could be evaluated.

In the main experiment, the response options were:
counting, remembering, or counting and remembering at
the same time. We have had extensive experience with
the task and are in agreement that these three strategy pos­
sibilities can be differentiated phenomenally. The
legitimacy of these strategy report options is also sup­
ported by an open-ended strategy report procedure con­
ducted by Logan and Klapp (in press).

To address the possibility that the response options
provided in the main experiment did not allow subjects
to accurately report the strategies they had used, a follow­
up experiment was conducted that was identical to the
main experiment in all respects, except that eight, rather
than three, response options were provided. This foIlow­
up experiment replaced the "counted and remembered at
the same time" report option of the main experiment with
four more detailed options, as weIl as providing two new
catchall report options.

The present experiments used a single-session experi­
ment to investigate the acquisition of automaticity . Lo­
gan and Klapp (in press) have shown that it is the num­
ber of exposures to specific items, rather than the total
amount of training, that is important in determining when
automatization has been attained. In this experiment, a
small problem set (six true and six false problems) allowed
each problem to be presented 36 times in a single ses­
sion, which should be sufficient for automaticity to de­
velop, given the results of Logan and Klapp (in press).
Consequently, results from a single-session experiment
should generalize to multiple-session experiments.
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Subjects
The subjects in the main experiment were 36 introductory psy­

chology students from the University of lllinois, who received course
credit for their participation. The subjects in the follow-up experi­
ment were 18 introductory psychology students, who received course
credit, and members of the university community, who were paid
for their participation.

Apparatus aod Stimuli
Tbere were nine stimulus sets, each consisting of 12 equations,

6 true and 6 false. The stimulus sets differed in the set of letter
addends they contained and in the way letter addends were com­
bined with digit addends. Tbree stimulus sets used the letters A
through F, three used G through L, and three used M through R.
The same three digit addends were used in all sets: 2, 3, and 4.
Different stimulus sets that shared the same set of letter addends
had different mappings of letter addend to digit addend.

Within each stimulus set, the set of six true equations included
six different letter addends, which were combined with the three
digit addends to create six unique equations. Tbe answer for each
true equation was the correct sum of the letter and digit addends
(e.g., H + 3 = K). The six false equations were identical to the
true equations, except that the answer was the sum of the letter and
digit addend plus one letter (e.g., H + 3 = L).

The stimuli were presented on Amdek 722 color monitors with
a display size of 24 rows x 80 columns, controlled by mM AT
or XT computers. The stimuli were presented horizontallyon the
sereen beginning at row 12, column 35. Each stimulus was an equa­
tion made of a capitaI letter (the letter addend), a plus symbol (-t),
a single numeral (the digit addend), an equals sign (=), and another
capitalletter (the answer). The components of the equation were
separated by single spaces; thus, the entire equation was nine charac­
ters long. Each equation measured 2.5 cm wide x .5 cm high when
presented on the sereen.

Prior to the display of each stimulus, a fixation pattern was dis­
played for 500 msec. This pattern consisted of two rows of five
dashes (-) each, separated by spaces and displayed starting at
row 11, column 35, and at row 13, column 35. The entire fixa­
tion pattern measured 2.6 em wide x 1.5 cm high. Viewing dis­
tance was unconstrained but varied between 40 and 60 cm.

Following the display of the fixation pattern, the sereen was
cleared and the stimulus equation was displayed until the subject
made a response. After the subject responded to the stimulus, feed­
back regarding the correct answer to the problem was given. The
word "True" or "False" was displayed at row 14, column 37,
for 1,000 msec. At this point, the sereen was cleared for 1,000 msec
prior to the beginning of the next trial.

On one-sixth of the trials, a probe was presented immediately
following the subject's response. The probe was a special sereen
asking the subject to report which strategy was used to solve the
preceding trial. In the main experiment, the following probe screen
was displayed, beginning at row 12, eolumn 10, in this format:

What did you do to answer the last problem?
If you counted through the alphabet, type "I"
Ifyou remembered the answer without counting, type "2"
If you eounted and remembered at the same time, type "3"

In the follow-up experiment, the following probe sereen was dis­
played at row 7, eolumn 0, in this format:

What did you do to answer the last problem?
Type: If you:

I eounted through the alphabet only
2 remembered the answer without counting
3 first counted and then got the answer by remem­

bering
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4 tried to remember and then got the answer by
counting

5 tried to count and remember simultaneously, and
got the answer by counting

6 tried to count and remember simultaneously, and
got the answer by remembering

7 used a strategy that is not Iisted above
8 made amistake or do not know how you solved

the problem

The subjeets were told to type their response on the number keys
on the top row of the keyboard. Following the subjeet's response
to this query, the screen was c1eared and the next trial began after
a 2,000-msee delay.

At the end of each 72-trial block, the message "TIME FOR A
BREAK; PRESS ANYKEYTO START" was displayed at row 12,
colurnn 10. The experiment paused during this period; the next trial
began 2,000 msee after the subjeet ended the break by pressing a
key.

The subjeets entered their alphabet arithmetic responses on the
bottom row ofthe computer keyboard by pressingthe "z" and "I"
keys, whichare the leftmost and rightmost keys on an AT keyboard
(nearly so on an XT). One-halfofthe subjeets pressed the "z" key
to indicate a judgment of true and the "I" key for a judgment of
false; one-half did the reverse.

Procedure
The experimental session consisted of 432 trials, divided into six

blocks of 72 trials each. Each block of 72 trials was further sub­
divided into six sub-blocks of 12 trials each. Each sub-block con­
sisted ofthe 12 problems ofthe stimulus set in random order. One
true problem and I false problem was probed in each sub-block.
Each of the 12 problems of the stimulus set was probed once in
each 72-trial block; therefore, at the end of each block, aIl problems
had been probed the same number of times. Each problem was
probed once per block, six times throughout the experiment. In an
entire session, 72 trials were probed (one-sixth of the total).

In the mainexperiment, 4 subjeets were assigned to each of the
nine stimulus sets; in the follow-up experiment, 2 subjeets were
assigned to each of the stimulus sets. For each stimulus set, one­
half ofthe subjects responded "true" with the "z" keyand "false"
with the "I" key, and one-half of the subjeets did the reverse. The
subjeets were required to maintain 85 %accuracy. In the main ex­
periment, the 9 subjeets who failed this criterion were replaced in
their respective conditions with the subjects who passed the error
criterion; in the follow-up experiment, 8 subjeets were replaced
in this manner.

Prior to the experimental session, each subjeet was given instruc­
tions on how to perform the alphabet arithmetic task and how to
make the strategy report on the probe trials. The subjects were given
an example of both a true and a false equation and shown how the
truth value of these equations canbe deterrnined by counting through
the alphabet. The subjeets were told to answer the problems as
quickly and as accurately as possible and to take only short breaks
between blocks.

Data Analysis
Only correet responses were included in the data analysis. Trials

in which reaction time exceeded 10,000 msec were judged to be
errors, regardless of the actual response made. An average of 1.1 %
of trials per subjeet in the main experiment and 1.2 % of trials per
subjeet in the follow-up experiment were excluded from analysis
for this reason. Reaction times for probed and nonprobed trials were
analyzed. Error rates were calculated for both probed and nonprobed
trials in each combination of addend and true/false conditions. Dis­
tinctions between the mixture model and the race model were made
by analyzing the variability of reaction time and the pattern of reac­
tion times associated with strategy reports as they changed over

blocks. The validity of the subjeetive reports in the first experi­
ment was determined by way of a comparison of the digit addend
slope of the nonprobed trials and an estimate of that slope that used
of data from the probed trials.

RESULTS AND DISCUSSION

Nonprobed Trials
Tab1e 1 showsthe percentages correct for each block,

addend, and true-or-false condition in the main experi­
ment. Tab1e 2 showsthe samedata for the follow-up ex­
periment. There was no evidence of a speed-accuracy
trade-off. Mean reaction times for the nonprobed trials
are shown for each block in Figure 1, with asolid 1ine
indicating results from the main experiment anda dashed
line indicating results fromthefollow-up experiment. The
decrease in reaction time over blocks was significant in
the mainexperimentfF(5,150) = 134.08,p < .01, MSe
= 917,765] andalsoin the follow-up experiment [F(5,60)
=48.64,p < .01, MSe = 1,303,707]. This result is con­
sistent with a primary measure of automatization, the
power function speedup in reaction time (Newell &
Rosenb1oom, 1981).

The effect of digit addend was significant in the main
experiment [F(2,60) = 15.26, P < .01, MSe =

Table 1
Percentages Cerreet for Nonprobed Trials by Digit Addend and

True/False Condition for Main Experiment

Training True/False Digit Addend
Block Condition 2 3 4

I T 89 88 82
F 90 85 82

2 T 95 92 92
F 95 87 91

3 T 97 94 95
F 94 90 94

4 T 95 95 93
F 95 93 96

5 T 96 96 98
F 95 97 95

6 T 96 95 95
F 94 95 96

Table 2
Percentages Correct for Nonprobed Trials by Digit Addend and

True/FaIse Condition for Follow-up Experiment

Training True/False Digit Addend
Block Condition 2 3 4

I T 89 86 87
F 91 86 84

2 T 92 97 92
F 96 92 87

3 T 96 93 89
F 96 92 87

4 T 98 87 97
F 96 95 92

5 T 94 93 97
F 95 92 94

6 T 91 89 94
F 91 89 94
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Memory

1,404,970] and in the follow-up experiment [F(2,24) =
18.31,p< .01, MSe = 667,801]. Also, theeffectofdigit
addend changed with training. Figure 2 shows reaction
time by digit addend for each block, with the solid line
indicating the main experiment and the dashed line indicat­
ing the follow-up experiment. This pattern suggests that
subjects made a transition from an algorithmic counting
process to a retrieval process in a single session (also see
Logan & Klapp, in press). In the first block of the main
experiment, when subjects reported counting on many
trials, the slope was 487 msec per count. In Block 6, the

Table 3
Percentages Correct for Probed Trials by Digit Addend and

True/False Condition for Main Experiment

Reported True/FalseYigit Addend_

____Strategy __ Condition] 3 4_

Counting T 97 89 86
F 86 89 79
T 96 94 92
F 95 91 92

Counting and T 96 88 88
Memory F 98 94 97

- ---------_.. -

4000

3500

3500

Probed Trials: Subjective Reports
Table 3 shows the percentages correct for each report,

addend, and true-or-false condition in the main experi­
ment. There was no evidence of a speed-accuracy trade­
off. The subjective reports of strategy also indicated a
transition from counting to remembering. Overall, sub­
jects in the main experiment reported counting on 19.6%
ofthe problems, remembering on 56.4% ofthe problems,
and using both counting and memory on 24.0% of the
problems. All 36 subjects reported using memory, 34 sub­
jects reported counting, and 35 subjects reported both
counting and remembering at the same time.

addend slope fell to 18 msec per count, indicating that
digit addend no Ionger had a substantial effect on reac­
tion time. The interaction between block and digit addend
was significant in the main experiment [F(l0,300) =
13.52, P < .01, MSe = 194,144] and in the follow-up
experiment [F(l0,120) = 8.64, p < .01, MSe =
667,801]. The change in the slope of digit addend was
not sudden but occurred gradually across the six training
blocks.

Note that the difference between Addends 3 and 4 dis­
appeared more rapidly than did the difference between
Addends 2 and 3, producing a kind of "dog-leg" non­
linearity in Blocks 3 through 6. This effect follows from
the race model. Memory traces race against the algorithrn
and are more Iikely to win when the algorithm is slow
(i.e., addends of 4) than when the algorithm is fast (i.e.,
addends of 2 and 3). Subjective reports of strategy were
consistent with this interpretation: Subjects reported
responding on the basis of memory on 55 %, 51 %, and
63% of trials for Addends 2, 3, and 4, respectively.

A main effect for true/false problems was seen in the
main experiment [F(l,30) = 39.99, p < .01, MSe =
195,068] and in the follow-up experiment [F(l, 12) =
35.22, p < .01, MSe = 251,170], with true problems
faster. A block X addend x problem set interaction was
seen in the first experiment [F(20,300) = 2.29, p < .01,
MSe = 194, II4] but not in the follow-up experiment. This
interaction seemed to be due to a flatter addend slope in
the first block for the subjects assigned to the first three
problem sets, which used the first six letters of the al­
phabet as letter addends. A block x true/false interac­
tion was seen in the follow-up experiment only [F(5,60)
= 2.95, p < .05, MSe = 130,039]. No other interac­
tions were significant in either experiment.
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Figure 1. Reaction time by block for nonprobed trials. Solid line
shows data from the main experiment; dotted line shows data from
the follow-up experiment.

FJgUre2. Reaction time by digit IIddend for each bIock, nonprobed
trials only. Solid Iines show data from the main experiment; dotted
Iines show data from the follow-up experiment.
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Strotegy Reports by Block

Figure 3. Strategy reports by block for the main experiment. Each
report is shown as aproportion of all reports for eaeh bleck, Non­
probed trials only.

Figure 3 shows the proportion of probed trials in the
main experiment in which subjects reported each strategy,
plotted by block, Since incorrect responses were not ana­
lyzed, the reports are based on slightly different numbers
of trials for each block. Reports of remembering increased
across blocks [F(5, 175) == 43.61,p < .01, MSe == .034].
Reports of counting decreased across blocks [F(5, 175) ==
38.04,p < .01, MS. == .024]. Reports ofboth counting
and remembering increased slightly over Blocks I to 3,
then decreased over Blocks 4 to 6 [F( 5, 175) == 5.44,
P < .01, MS. == .030]. Subjects did not report counting
exclusively in the first block, because a particular problem
may have been probed after it had already been seen as
many as five times, which could allow for memory
retrieval in some cases.

Table 4 shows results for the follow-up experiment. For
each strategy, mean reaction times for correct trials are
shown, along with the percentages correct, averaged over
subjects. The frequency of each report (for correct trials
only, aggregated over subjects) is shown as aproportion
of all correct probed trials. The number of subjects who
made each report at least once on a correct trial is also
shown.

The mean reaction times and proportion of occurrence
for the memory only and counting only trials in the follow­
up experiment closely resembled the results from the main
experiment, However, the other report categories were
used inconsistently, with some subjects making certain
reports many times more frequently than other subjects.
No strategy, other than counting or remembering, was
reported more than 5 % of the time. Only rarely did any
subjects report either using a strategy not listed or not
knowing what strategy they used. One possible explana-
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2
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3348

2023
2159

2764

2089 92
3170 96
1422 98
3084 96

3709

Mean Pereentage Subjects
RT Correct Proportion Reporting

Strategy
Report

Not probed
Count
Memory
Memory, then

count
Count, then

memory
Simultaneous

count and memory;
answer by counting

Simultaneous
count and memory;
answer by memory

Other strategy
Made error

or don't know

tion for this lack of consistency in the pattern of strategy
reports is that individuals differ greatly in the strategies
they use when performing a task such as alphabet arith­
metic. However, given the authors' experience with the
task, it seems more likely that subjects are not able to make
fine distinctions about the strategies they are using when
they both count and remember on the same trial.

Table 4
Results of Follow-up Experiment, Showing Strategy Report Made,
Mean Reaction Time, Percentage Correct, Frequeney of Report
as aProportion of All Reports Made, and Number of Subjects

Making Report at Least Onee

Variance on Nonprobed Trials
The race and mixture models can be distinguished by

the variability of reaction time during the transition from
counting to memory. The variance of reaction time on
nonprobed trials is plotted by block in Figure 4, with the
solid line indicating the main experiment and the dashed
line indicating the follow-up experiment. The decrease
of variance with training was significant in the main ex­
periment [F(5, 150) == 34.59, p < .01, MS. ==
3,126,269,569] and in the follow-up experiment [F(5,60)
== 11.88, p < .01, MS. = 2,584,409,964].

Since the subjects reported counting on slightly fewer
than half of the trials in the first block of the main ex­
periment (45.9%), it was necessary to examine the shape
of the decrease in variance to distinguish between the mix­
ture and the race models. A test for quadratic trend was
performed in the following manner: The variance of non­
probed trials was obtained in each block for each sub­
ject. For each subject, these six values were multiplied
by the coefficients for a quadratic trend (5, -I, -4, -4,
- I, 5) and then summed to obtain a positive or negative
value. This value was positive for 81 % of the subjects
in the main experiment (29 out of36, sign test, p < .01)
and 78% ofthe subjects in the follow-up experiment (14
out of 18, sign test, p < .05), indicating that the vari­
ance decreased in a concave upward manner.

These results support tbe race model, which predicts
that variability will decrease in a concave upward man­
ner, with training, and never increase. They are incon-
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Validity of Subjective Reports
The validity of subjective reports in the main experi­

ment was tested by estimating the addend slope for the
nonprobed trials by combining the slopes of the different
reported strategies, weighted by their frequency of oc­
currence in each block. The first step in creating this slope
estimate was to find, separately for each strategy report,
the slope of reaction time over digit addend, collapsed
over block. The estimated slope was then calculated
separately for each block by weighting the slope cor­
responding to each strategy by its frequency of occurrence
in each block. For example, the estimate for Block I was
made by multiplying the slope for each report type (slope
= 664.24 for counting, -7.73 for memory, 301.45 for
counting and memory) by its proportion of occurrence
in Block I (proportion for counting = .459, memory =
.275, counting and memory = .265, as shown in
Figure 4) and then sumrning these weighted slopes to ob­
tainthe predicted slope for Block I (prediction = 382.64).
This process was repeated for the other five blocks.

The slope estimate is plotted against the slope of the
actual data in Figure 6. The estimate underpredicted the
actual slope in the first blocks and overpredicted it in the
last blocks. This may have been due, in part, to the as­
sumption that the algorithm did not change over practice.
In fact, the reaction times conditionalized on strategy
reports showed that the slope on trials on which subjects
reported counting did decline somewhat over blocks, sug­
gesting the possibility of some process-based leaming. The
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sistent with the mixture model, which predicts an initial
increase in variability, followed by a later decrease that
is concave downward throughout the range of proba­
bilities.

Figure 4. Variance by block, nonprobed trials only. Solid line
shows data rrom the main experiment; dotted line shows data rrom
the rollow-up experiment.

Subjective Reports and Reaction Time
Figure 5 shows the effect, in the main experiment, of

digit addend on reaction time for probed trials, collapsed
over block and broken down by strategy. Count trials
produced the slowest reaction time (3,371 msec) and
steepest slope (664 msec per count), and memory trials
the fastest reaction time (1,531 msec) and flattest slope
(-8 msec per count). Reaction time (2,513 msec) and
slope (301 msec) were intermediate when subjects
reported both counting and remembering. The difference
in mean reaction time between counting and both count­
ing and remembering was significant in the main experi­
ment [1(32) = 5.53,p < .01, MSe = 54]. In the follow­
up experiment, no significant differences in reaction time
were seen between the counting strategy and any of the
four strategy options that involved a combination of count­
ing and remembering.

The intermediate position of the count and memory
trials in the main experiment is consistent with the race
model but not with the mixture model, which predicts that
counting and remembering will take longer than count­
ing only. This pattern of slopes was seen as early as the
first block, in which count trials showed a slow mean reac­
tion time (3,747 msec) and a steep slope (697 msec),
memory trials showed fast reaction times (1,531 msec)
and a relatively flat slope (11 msec), and count and
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Actual Siope vs. Prediction ally involved asking questions after all trials have been
completed (Logan & Klapp, in press). Siegier (1987) clar­
ified the issue by asking subjects to report their strate­
gies immediately after the completion of individual trials.
This approach is likely to yield more accurate reports than
those that query subjects about strategies they have used
over multiple trials (Ericsson & Simon, 1980); this ap­
proach also allows performance to be analyzed by
strategy.

The present experiment also showed that parameters
other than mean reaction time can be useful in discriminat­
ing among models. Research on skill acquisition and au­
tornaticityhas advanced to the state where different models
make virtually the same predictions about mean reaction
time. In many cases, however, they may make different
predictions about reaction time distributions. Our anal­
yses suggest that variability is an important parameter to
predict. In the future, tests of models must be more
detailed and analytic than they have been in the past.
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Figure 6. Estimate of addend slope by block plotted against ob­
served addend slope by block, for the main experiment.

rnixture model and the race model both assume that reac­
tion times are sampled from a stable distribution of al­
gorithm finishing times.

GENERAL DISCUSSION

Three pieces of evidence suggested that automatization,
a transition from algorithmic- to memory-based process­
ing, occurred with training. Reaction times decreased with
training. The effect of digit addend was reduced, and sub­
jective reports of strategy showed a transition from al­
gorithm to memory.

Two mechanisms were considered for the transition
from algorithm to memory. In the mixture model, only
one process operates at a time, whereas in the race model,
the algorithm and memory operate in parallel. Two types
of evidence supported the race model. First, the varia­
bility of reaction times decreased consistently in a con­
cave upward manner, with training, as the race model
predicts, instead of increasing and then decreasing in a
concave downward manner, as the mixture model
predicts. Second, reaction times for trials in which sub­
jects reported counting only were greater than those in
which subjects reported both remembering and counting,
suggesting the parallel nature of the process.

The validity ofthe subjective reports was assessed. An
estimation procedure supported the hypothesis that the
process underlying performance on the nonprobed trials
was composed of the strategies identified by the subjects'
reports mixed in proportion to the number of reports.

The use of strategy reports and the analysis of vari­
ability have only recently been applied to the study of au­
tomaticity and skill acquisition. Several studies have used
subjective strategy reports, but these studies have gener-
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NOTE

I. There are severalwaysto test for mixturemodels,besidesthe vari­
ance tests we propose (see, e.g., Townsend& Ashby, 1984).However,
mostof themdo not compare mixturemodelswith specificalternatives,
such as the race model, so they are not as useful for our purpose as
the tests we propose.

(Manuscript received December 29, 1989;
revision accepted for publication September 7, 1990.)


