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Automatizing Alphabet Arithmetic: I. Is Extended Practice Necessary
to Produce Automaticity?
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Four experiments tested the necessity of extended practice in producing automaticity in an
alphabet-arithmetic task in which subjects verified equations of the form A + 2 = C, asking
whether C was two letters down the alphabet from A. Experiment 1 trained subjects on 40
alphabet-arithmetic facts for 12 sessions, demonstrating that extended practice was sufficient to
produce automaticity. Experiment 2 produced the same degree of automaticity in a single session
by having subjects rote memorize 6 facts, suggesting that extended practice is not necessary.
Experiments 3 and 4 explored procedural differences between Experiments 1 and 2 to determine
what was responsible for the large difference in the time required to develop automaticity.
Experiment 3 compared learning rates with different numbers of facts (6, 12. and 18), and found
learning rate to depend on the number of presentations of individual items, not on the number
of items to be learned. Experiment 4 compared learning by performing the task (as in Experiment
1) with learning by remembering the facts (as in Experiment 2) and found no important
differences between them. The results of all 4 experiments cannot be predicted by approaches
that define automaticity in terms of resources or by listing properties, although they are readily
predictable from theories that assume memory retrieval is the process that underlies automaticity.

Is extended practice necessary to produce automaticity?
Can automaticity to be produced without it? Extended prac-
tice is certainly sufficient. Many of the properties of automa-
ticity can be produced by extended practice (e.g., Logan, 1978;
Shiffrin & Schneider, 1977) or by using materials such as
familiar words that have a history of extended practice outside
the laboratory (e.g., Neely, 1977). However, sufficiency does
not imply necessity. Existing data provide no answer.

Common theoretical approaches to automaticity provide
no answer either. Approaches that define atuomaticity in
terms of manifest properties, such as speed, effortlessness, and
autonomy (property-list approaches), are stipulative or de-
scriptive but not predictive (e.g., Hasher & Zacks, 1979;
LaBerge & Samuels, 1974; Shiffrin & Schneider, 1977). They
provide no underlying mechanism from which predictions
about the properties of automaticity or necessity of extended
practice can be deduced.
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Approaches that define automaticity in terms of resource
theory specify an underlying mechanism, arguing that auto-
matic processing is (relatively) resource free (e.g., Logan, 1978;
Posner & Snyder, 1975). The resource mechanism allows
properties of automaticity to be deduced: Automatic process-
ing is fast because it is not limited by the availability of
resources; automatic processing is effortless because effort is
proportional to the amount of resources required; and auto-
matic processing is obligatory because control is exerted pri-
marily by allocating resources, and a process that does not
require resources cannot be controlled by allocating resources.
However, resource theories do not specify a learning mecha-
nism and so cannot make predictions about the necessity of
extended practice (or anything else) in producing automatic-
ity. The answers they provide are to questions other than the
one that concerns us here.

Answers are available in several modern theories that argue
that the process underlying automaticity is memory retrieval:
According to these theories, performance is automatic when
it is based on direct-access, single-step retrieval of solutions
from memory rather than some algorithmic computation
(Logan, 1988b; Newell & Rosenbloom, 1981; Rosenbloom &
Newell, 1986; Schneider, 1985; Schneider &Detweiler, 1987).
Automatic processing is fast because memory retrieval must
race with the algorithm, and the algorithm "screens out" slow
and ineffective retrievals. Automatic processing is effortless,
relative to the algorithm, because memory retrieval wins the
race only when it is reliable enough for solutions to "pop into
mind" easily. Automaticity processing is obligatory because
memory retrieval is obligatory; memory retrieval wins the
race only when associative strength is high and the conditions
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for retrieval are near optimal (for discussion of these points,
see Logan, 1988a, 1988b; Schneider, 1985).

Automaticity-as-memory theories argue that having traces
readily available in memory is a necessary condition for
producing automaticity regardless of the amount of practice.
Extended practice may be sufficient to produce automaticity
insofar as it guarantees that traces will be available, but is not
necessary. A sufficient number of traces could be made avail-
able by other methods (e.g., deliberate memorization) in a
relatively short period of time. What matters is having traces
available in memory; how they got there is less important.
Extended practice may strengthen automaticity by adding
even more traces to memory, and performance may continue
to improve indefinitely, but in theory, extended practice is
not necessary to produce automaticity (for further discussion
of this theme, see Klapp, Boches, Trabert, & Logan, 1991;
Logan, 1985).

The purpose of this article is to investigate the necessity of
extended practice in producing automaticity. We report four
experiments on automatizing performance on a novel task we
call alphabet arithmetic. The first experiment was a conven-
tional automaticity experiment, demonstrating that extended
practice is sufficient to produce important characteristics of
automaticity in this task (also see Klapp et alM 1991). The
second experiment provided a test of the necessity of extended
practice. Subjects learned alphabet-arithmetic facts by rote
memorization and were tested for automaticity in a single
session. Evidence of automaticity in a single session would be
evidence against the necessity of extended practice. Experi-
ments 3 and 4 explored procedural differences between Ex-
periments 1 and 2 to determine what was responsible for the
vast differences in the time required to produce automaticity.
Experiment 3 examined the effects of the number of items to
be learned, and Experiment 4 examined the method of learn-
ing (rote memorization vs. learning by performing the task).

Automaticity and Arithmetic

Children's acquisition of skill at mental addition is a para-
digm case of automaticity. Typically, children learn to add
with a general counting algorithm, based on knowledge of the
sequence of numbers, in which they increment a counter
successively by ones for each unit of each addend (Groen &
Parkman, 1972). With some experience, they streamline the
algorithm, beginning their count with the larger addend and
incrementing the counter once for each unit of the smaller
addend (the min strategy; see Groen & Resnick, 1977). The
counting algorithm is general in that it allows them to add
any two numbers, provided they apply it correctly. With
further experience, however, they memorize the sums of all
possible pairs of single digits, and retrieve the sums directly
from memory instead of counting (Ashcraft, 1987; Siegler,
1987), By the time they reach adulthood, addition displays
many of the properties of automaticity: It is fast, effortless,
and obligatory (LeFevre, Bisanz, & Mrkonjic, 1988; Zbrodoff
& Logan, 1986). The primary evidence that skilled addition
depends on memory retrieval is phenomenological (most
aduJts think they add by remembering sums), but there are a
number of associative interference and facilitation effects that

appear in adults' and older children's data but not in younger
children's data, evidencing a transition from counting to
remembering (for a review, see Ashcraft, 1982).

There are a number of problems involved in using addition
to study the acquisition of automaticity: First, the transition
from counting to remembering occurs in young children—in
some cases as early as the second grade—whose reaction time
performance is notoriously slow and variable. Second, the
transition is most apparent in comparing children at different
age levels, and that comparison is confounded with large
changes in base reaction time. For example, first graders may
take twice as long to perform a task as fifth graders (Kail,
1986, 1988). Theoretically interesting effects are often small
compared with such large differences in base reaction time.
Third, the amount of practice with addition is largely un-
known and difficult to control for practical and ethical rea-
sons. It may vary substantially between individuals in the
same grade.

Alphabet Arithmetic

To circumvent these problems, we developed an alphabet-
arithmetic task in which adults learned to add digits to letters
of the alphabet to produce other letters of the alphabet. Adult
subjects were required to verify equations of the form A + 2
= C, indicating whether C was two letters down the alphabet
from A. Like numerical addition, this task is initially per-
formed by a counting algorithm in which subjects count
through the alphabet from the initial letter (e.g., A) for a
number of steps determined by the digit addend (e.g., 2) to
recover the true sum of the letter and digit (e.g., C), which
they compare with the presented sum and report a match or
a mismatch. Like counting with numbers, this counting al-
gorithm requires knowledge of the alphabet sequence and the
ability to count through the sequence. In principle, any letter
and digit can be added by this algorithm, just as any two
numbers can be added by the number-counting algorithm
and in principle, the counting algorithm can be replaced by
memory for alphabet-arithmetic facts, just as number count-
ing is replaced by memory for numerical sums.

Alphabet arithmetic can be studied with adults whose re-
action times are fast and relatively invariant (compared with
children's), whose base reaction times are not likely to change
much over the course of the experiments, and whose experi-
ence with the task can be controlled precisely. The counting
algorithm can be identified readily in reaction time data: It
predicts a linear increase in reaction time as a function of the
magnitude of the digit addend, which determines the number
of counting steps through the alphabet. Our data show that
the slope of the function is typically 400 to 500 ms per count.
Memory can be identified almost as clearly in reaction time
data: The memorability of problems should not depend on
the magnitude of the digit addend, so performance based on
(automatic) memory retrieval should produce a slope of zero
in the linear function relating reaction time to the magnitude
of the digit addend. Moreover, memory-based performance
should be fast compared with algorithm-based performance,
because in theory subjects should not switch to memory until
memory is faster and more reliable than the algorithm (see
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Logan, 1988b; Schneider, 1985).' The process of automati-
zation should be revealed as a reduction in slope and an
increase in speed over practice. Also the counting algorithm
and memory retrieval are phenomenologically distinct: Sub-
jective reports can supplement the analyses of reaction time
to document the development of automaticity (see Experi-
ment 1; also see Compton & Logan, in press).

Experiment 1

In the first experiment, subjects performed the alphabet-
arithmetic task for 16 sessions. They began with 12 sessions
of training on 40 facts, learning to add the digits 2, 3, 4, and
5 to the first or second 10 letters of the alphabet. The 13th
session involved transfer to the untrained half of the alphabet
to test the specificity of what they learned in the first 12.
Automaticity-as-memory theories predict item-specific learn-
ing and, thus, poor transfer to untrained items. Session 14
returned them to baseline, using only the facts learned in the
first 12 sessions.

Session 15 involved the whole alphabet (all 20 letter ad-
dends), randomly mixing trained and untrained items. Its
purpose was to test an intentionality criterion of automaticity.
According to Logan's (1988b) instance theory, memory re-
trieval is obligatory, occurring whether or not the subject
intends it. Subjects may intend to rely on memory retrieval
on Sessions 12 and 14, when only old items are presented,
but they must intend to count on Session 15 because memory
retrieval will not support responses to new items. If retrieval
is obligatory, old items should be processed automatically
even when subjects are prepared to count. There should be
no loss of automaticity for old items on Session 15 (relative
to Sessions 12 and 14).

Session 16 was conducted 1 month after Session 15 as a
test of the retention of automaticity. Common lore and a few
experiments (Feustal, Shiffrin, & Salasoo, 1983; Healy, Fen-
drich, & Proctor, 1990; Kolers, 1976) suggest that automatic
skills are retained for long periods of time. The intention here
was to see whether the automaticity acquired in the training
period would survive a month of inactivity.

In addition to performing the alphabet-arithmetic task,
subjects recited the alphabet aloud as quickly as possible each
day, and their recitation rate was calculated. One purpose was
to provide a control measure of the speed at which subjects
could sequentially access the alphabet to compare with their
counting rates in alphabet arithmetic. Previous research has
shown that subjects take 100 to 125 ms per letter to recite the
alphabet, both overtly and subvocally (Landauer, 1962). Pilot
data suggested that early in practice, alphabet-arithmetic
counting rates were around 400 ms per count. If training
simply increased the rate of sequential access to the alphabet,
then after practice the alphabet-arithmetic counting rate
should approach but not exceed the alphabet recitation rate.
However, if training permits retrieval of sums from memory
(and retrieval time is the same for all sums regardless of digit
addend), then the alphabet-arithmetic counting rate should
approach 0 ms per count, exceeding the recitation rate by a
wide margin.

A second purpose of the overt recitation controls was to see
whether training on alphabet arithmetic affected subjects'
ability to access the alphabet sequentially. One interpretation
of automatizing alphabet arithmetic is that the links between
successive letters of the alphabet become strengthened by
training, so subjects can access the next letter in the sequence
more rapidly. If that were the case, we may find the overt
recitation rate speeding up as subjects gain skill on the alpha-
bet-arithmetic task.

At the end of each session (except for Session 15) we asked
subjects whether they performed the task by counting or
remembering, and we asked them to estimate the proportion
of trials performed by counting and remembering. These
subjective reports were used to converge on conclusions drawn
from the reduction in estimated counting rates, as evidence
of the switch from counting to remembering with practice
predicted by automaticity-as-memory theories.

Method

Subjects. The subjects were 8 graduate and undergraduate stu-
dents from Purdue University who were paid $3.50 per session for
participating.

Apparatus and stimuli. The stimuli were presented on a Digital
Equipment Corporation VT240 monochrome monitor controlled by
a PDP 11/23 laboratory computer. Responses were recorded on the
keyboard associated with the monitor. The stimuli were capital letters,
digits, the plus symbol (+), and the equal sign (=). During training
(Sessions 1-12, 14, and 16), the letter addends were A through J for
half of the subjects and K. through T for the other half. In transfer
sessions (Sessions 13 and 15), the other half of the alphabet was used.
For all subjects in all sessions, the digit addends were 2, 3, 4, and 5.
The "answers" were either the correct sum of the letter and digit
addends or the sum plus one letter (e.g., A + 2 = D) or the sum
minus one letter (e.g., A + 2 = B). The equations were presented
horizontally in the center of the monitor screen. Each symbol (letter,
digit, +, =) was separated by a space, so the entire equation occupied
eight character spaces on the screen.

Procedure. Each session involved 480 trials. All sessions except
Session 15 involved six replications of 80 problems, produced by the
factorial combination of 10 letter addends, 4 digit addends, and true
versus false. Session 15 involved three replications of 160 problems
formed by the factorial combination of 20 letter addends (10 trained
and 10 untrained), 4 digit addends, and true versus false. Each trial
began with a fixation point exposed for 500 ms in the center of the
screen. It was extinguished and replaced immediately by an equation,
which remained on the screen until the subject responded. When the
subject responded, the equation was extinguished, and the screen
remained blank for a 1.5-s intertrial interval. Subjects were allowed
brief breaks every 120 trials.

1 Note that memory-based performance can be faster than algo-
rithm-based performance even if memory-retrieval time is not faster
on average than algorithm-completion time. In Logan's (1988b)
instance theory, several memory traces race against the algorithm and
the fastest "runner" wins. Memory-based performance depends on
the distribution of minima sampled from the original retrieval-time
distribution, and the distribution of minima will necessarily be faster
than the parent distribution from which minima are sampled. The
minimum retrieval times can be much faster than the algorithm even
if the mean retrieval time is slower.
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Subjects recited the alphabet out loud six times each session: three
times before performing the alphabet-arithmetic task and three times
afterward. They were told to proceed through the alphabet as quickly
as they could but to say each letter distinctly. At the end of the
session, after their final recital of the alphabet, subjects estimated the
percentage of trials on which they solved the alphabet-arithmetic task
by counting and the percentage they solved by remembering the
answer. They were not told that their percentages should add up to
100.

Subjects were given complete instructions on the first session and
reviews as needed on subsequent sessions. Initially, the alphabet-
arithmetic task was described as an analog of numerical addition, and
the procedure of counting through the alphabet was described to
them using an example from the untrained half of the alphabet. They
were told they would see equations and their task was to indicate
whether or not the equation was true by pressing one key or the
other. They were told to respond as quickly as possible but to keep
their error rate below 10%. Then they began the task with no practice
or warm-up.

Half of the subjects were trained on the first half of the alphabet
(the letters A through J), and half were trained on the second half
(the letters K through T). Half had false problems in which the
answers were true plus one letter (e.g., A + 2 = D), and half had false
problems in which the answers were true minus one letter (e.g., A +
2 = B). Half pressed the right key to indicate the equation was true
and the left key to indicate it was false, and half did the opposite.
These counterbalanced conditions were combined factorially, and 1
subject was assigned to each combination of conditions.

Subjects were trained on one half of the alphabet for 12 sessions,
transferred to the other half on Session 13, returned to the trained
half on Session 14, and transferred to a random mixture of trained
and untrained problems on Session 15. Session 16 was scheduled 30
days after Session 15, and involved the half of the alphabet experi-
enced during training. The procedure was the same each session. We
forgot to ask subjects to distinguish between trained and untrained
stimuli in their subjective reports on Session 15, so we discarded their
estimates.

Data analysis. The data were analyzed in several analyses of
variance (ANOVAs). Reaction time data for Sessions 1 and 12 were
compared i n a 2 x 4 x 2 x 2 (Sessions x Addend x True vs. False x
Groups[false answers true plus 1 or true minus 1]) ANOVA. Slopes
of the linear function relating reaction time to the magnitude of the
digit addend were analyzed in a 12 X 2 X 2 (Sessions X True vs. False
x Groups [true plus 1 vs. true minus 1 ]) ANOVA. Reports of counting
and remembering were analyzed in separate 12x2 (Session x Groups
[true plus 1 vs. true minus 1]) ANOVAs. Transfer to new items on
Session 13 was analyzed in a 3 x 2 x 2 (Session 12 vs. 13 vs. 14 X
True vs. False x Groups [true plus 1 vs. true minus 1]) ANOVA. The
effects of mixing old and new hems on Session 15 were analyzed in
a 2 X 2 x 2 (Old vs. New X True vs. False x Groups [true plus 1 vs.
true minus 1]) ANOVA on the slopes and a 4 x 2 x 2 x 2 (Addend
x Old vs. New X True vs. False x Groups [true plus 1 vs. true minus
1]) ANOVA on reaction times. Retention of automaticity on Session
16 was tested in a 2 x 2 x 2 (Session 14 vs. 16 x True vs. False x
Groups [true plus 1 vs. true minus 1]) ANOVA on the slopes and in
separate 2 x 2 (Session 14 vs. 16 X Groups [true plus I vs. true minus
1]) ANOVAs on reports of counting and remembering.

Results and Discussion
Training (Sessions 1-12). Accuracy was high, averaging

94.5% over the 12 training sessions. Accuracy did not vary
much with digit addend (96%, 95%, 93%, and 94% for
Addends 2-5, respectively), true versus false equations (95%
vs. 94%, respectively), or practice (95% on average in Session

1 vs. 94% on average in Session 12). No ANOVAs were
performed on the accuracy data because there were no im-
portant trends apparent in the means and because accuracy
was so near ceiling.

Mean reaction times for true and false equations are dis-
played as a function of the digit addend for the 1st and 12th
session in Figure 1. There is a sharp contrast between sessions
both in overall reaction time, F(\, 6) = 118.90, p < .01, MSe

= 667,426.50, for main effect of sessions, and in the effect of
digit addend, F(3, 18) = 45.58, p < .01, MSt = 60,032.26, for
Sessions x Addend interaction. In the first session, reaction
time increased strongly with the magnitude of the digit ad-
dend. The function was clearly linear, with a slope of 486 ms
per count; the linear trend was highly significant, /-"(I, 18) =
313.59, p < .01, MSe = 60,032.26. By the 12th session, the
function flattened considerably. The slope reduced to 45 ms
per count and the linear trend was not significant, F(l, 18) =
2.62, MSt = 60,032.26. These data suggest relative extremes
of automatization: Session 1 performance was dominated by
the counting algorithm, whereas Session 12 performance was
dominated by memory retrieval. Subjective reports were con-
sistent with this analysis. Subjects reported counting 93% of
the time in Session 1 and 28% in Session 12; they reported
remembering 7% of the time in Session 1 and 64% in Session
12.

The transition between Session 1 and Session 12 is shown
in Figure 2, which plots the slopes of the linear function
relating reaction time to the magnitude of the digit addend
each session. On average, at least, the transition was gradual,
/111, 66) = 27.84, p < .01, MSe = 13,223.14. The slope
decreased quickly in the first few sessions and appeared to
reach asymptote by the 12th session. The reduction in slope
could be interpreted as an improvement in the speed of the
counting algorithm instead of a transition from counting to
remembering. However, three sets of data argue against im-
proved counting. First, the slopes on Session 12 averaged 45
ms per count, which is too fast to be mediated by sequential
access to the alphabet, as measured by the rate of reciting the
alphabet. Mean recital rates were calculated by dividing the
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Figure 1. Mean reaction times for Sessions I (top lines) and 12
(bottom lines) in Experiment 1 as a function of digit addend (true vs.
false equation is the parameter; true = solid lines, false = broken
lines).
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Figure 2. Mean slopes of the linear function relating reaction time
to the magnitude of the digit addend in Experiment 1 as a function
of training sessions. (True vs. false equations is the parameter; true =
boxes; false = stars. Solid lines connect points that represent training
on the initial 10 problems; coarsely broken lines connect points that
represent performance on the 10 new problems. Finely broken lines
connecting triangles represent the mean rate per letter of reciting the
alphabet overtly.)

mean of the six recital times each day by 26. Recital rate
averaged 115 ms per letter on Session 12, r(7) = 2.57, p < .05,
MSe = 27.13.

Second, subjects reported having experienced a transition
from counting to remembering. The average percentage of
trials counted and remembered are plotted for each session
in Figure 3. Reports of counting dropped steadily from Session
1 to 12, F(ll , 66) = 28.35, p < .01, MSt = 130.29, while
reports of remembering increased steadily, F(\ 1, 66) = 20.60,
p<.01,MSB= 140.40.

Third, the means and standard deviations of reaction times
decreased as power functions of the number of presentations,
and both power functions had the same exponent, as predicted
by the instance theory of automatization (also see Cohen,
Dunbar, & McClelland, 1990). The fits are reported in detail
in Logan (1988b). The instance theory describes performance
as a race between the algorithm and each trace of each prior

100-1

o 8 0 -

REPORTS OF COUNTING VS. REMEMBERING

REMEMBERED
COUNTED

NUMBER OF TRAINING SESSIONS

Figure 3. Mean reports of percentage of trials counted (solid lines)
and remembered (broken lines) in Experiment 1 as a function of
session.

exposure to an item in memory; the first one to finish deter-
mines reaction time. On the wth presentation, there are n
runners in the race (i. e., one algorithm and n - 1 memory
traces). Assuming the same distribution of retrieval times for
each trace and a roughly similar distribution of finishing times
for the algorithm, the problem amounts to selecting the
minimum of n samples from the same distribution and ana-
lyzing how the minimum behaves as n increases. This is a
well-studied problem in the statistics of extreme values, and
it is possible to prove that for distributions like reaction time
distributions, the entire distribution of minimum values de-
creases as a power function of n. This implies that the mean
and standard deviation will decrease as power functions of n
with the same exponent. The prediction is developed formally
in Logan (1988b). For now, the important point is that the
prediction follows from the theory's assumptions about mem-
ory retrieval and the transition from the algorithm to memory
retrieval with practice.

The data from Addends of 2, 3, and 4 were well fit by
power functions constrained to have the same exponent,
consistent with the instance theory. The data from Addend 5
were less well fit, primarily because they showed a disconti-
nuity after about 24 exposures (after Session 4; see Logan,
1988b, Figures 9 and 10). The discontinuity can be seen in
the slopes plotted in Figure 2: The slope dropped 121 ms
from Session 4 to Session 5, the largest session-to-session drop
in the training period. No theory of automatization, including
the instance theory, can account for this discontinuity because
they all predict power-function reductions in mean reaction
time, and power functions are continuous.

An explanation for the discontinuity came from subjective
reports: Subjects reported developing mnemonics to commit
the Addend 5 problems to memory to avoid counting. Thus,
Addend 5 problems may have been encoded with more
effective mnemonic strategies than Addend 1 to 4 problems.
There may have been a shift from relatively "automatic"
encoding of the counting episode to deliberate mnemonic
encoding strategies around Sessions 4 and 5. It is not clear
why this would have happened between Sessions 4 and 5.
Subjects served in four sessions a week, so Sessions 4 and 5
were typically separated by a weekend, which may have
provided time for reflection on how to deal with the task.
Regardless, a shift in mnemonic strategies during automati-
zation is broadly consistent with the idea that memory un-
derlies automaticity. It suggests intriguing possibilities for
future experiments.

Transfer to new items (Sessions 13-15). On Session 13,
all subjects switched to items from the untrained half of the
alphabet. The slope, plotted in Figure 2, increased from 45
ms on Session 12 to 373 ms on Session 13. Reports of
counting rose from 28% on Session 12 to 85% on Session 13;
reports of remembering dropped from 64% to 13%. Appar-
ently, subjects reverted to counting with the new items. (Ac-
curacy remained relatively constant, increasing only slightly
from 94% on Session 12 to 95% on Session 13.)

The differences between new items on Session 13 and the
old items on Sessions 12 and 14 were documented by ANO-
VAs: A main effect of sessions was found in an ANOVA on
the slopes (Sessions 12, 13, and 14 x True vs. False), F(2, 12)
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= 28.54, p < .01, MS* « 19,808.01, in an ANOVA on reports
of counting (Sessions 12, 13, and 14 x True Plus 1 vs. True
Minus 1 Groups), F(2, 12) = 58.53, p<.01, MSe= 153.26,
and an ANOVA on reports of remembering (Sessions 12, 13,
and 14 x True Plus 1 vs. True Minus 1 Groups), F(2, 12) —
35.51, p<.0\,MSe= 199.83.

The difficulty with new items is not consistent with the idea
that subjects learned to count faster in the first 12 sessions. If
they had, they could have counted new items as easily as old;
transfer should be near perfect. The data are more consistent
with automaticity-as-memory theories, which predict poor
transfer to new items (subjects learn only the items they
experience; only those or closely similar items will evoke
responses from memory).

Even though transfer was poor, some transfer was observed.
The slope on Session 13 (373 ms) was midway between the
slope on Session 2 (421 ms) and the slope on Session 3 (340
ms). It did not approach the initial value in Session 1 (486
ms). Subjective reports of counting and remembering on
Session 13 also fell between the values observed on Sessions
2 and 3 and were less extreme than the values observed on
Session 1. Subjects may have learned to count more rapidly
in the first few sessions, or they may have learned mnemonic
strategies during training that they applied immediately to the
new problems in Session 13.

On Session 14, all subjects returned to baseline, experienc-
ing six more presentations of the items on which they were
originally trained. The slope dropped to 51 ms, not different
from the 45-ms value observed on Session 12 (see Figure 2).
Reports of counting dropped to 25%, while reports of remem-
bering rose to 65%, very close to Session 12 values (see Figure
3). Mean accuracy was 95%.

The purpose of Session 15 was to determine whether mem-
ory retrieval met the intentionality criterion of automaticity.
According to Logan's (1988b) instance theory, retrieval is
obligatory, occurring whether the subject intends to retrieve
or intends to count. New and old items were mixed randomly
on Session 15 so that subjects would begin each trial with the
intention to count. If retrieval is obligatory, old items should
be processed just as automatically on Session 15 as on Session
14 when subjects likely intended to remember. Slopes on
Session 15 were calculated separately for old and new items,
and the slope for old items was 69 ms per count, not signifi-
cantly larger than the 51-ms value observed on Session 14.
These data are consistent with the idea of obligatory retrieval.
Apparently, automaticity was sustained.

The slope for new items on Session 15 was 189 ms per
count, between the values observed on Sessions 5 and 6. The
slope for new items was not significantly larger than the slope
for old items in an analysis of slopes, F(l, 6) = 1.89, MS* =
60,320.93, but it is hard to have confidence in the null
hypothesis given the large difference. In another analysis,
mean reaction times were significantly longer for new than
for old items, F(l, 6) = 64.77, p < .01, MSe = 128,311.06.
Mean accuracy was 96% for new items and 96% for old items.

Retention (Session 16). Session 16 was scheduled 1 month
after Session 15. All subjects were tested on the half of the
alphabet on which they were initially trained. The slopes rose
from 51 ms per count on Session 14 (the last full session with

the initially trained items) to 109 ms per count on Session 16
(see Figure 2). The difference approached statistical signifi-
cance, F{\, 6) = 4.68, p < .10, MS* = 5,631.89. Reports of
counting increased from 25% on Session 14 to 46% on Session
16, F(\, 6) = 8.74, p < .05, MS* = 192.29, and reports of
remembering decreased from 65% to 49%, F(l, 6) = 3.89, p
< .10, MSK = 267.40 (see Figure 3). Mean accuracy was 95%.

The slope on Session 16 was between the values observed
on Sessions 7 and 8; reports of counting were between the
values observed on Sessions 8 and 9; and reports of remem-
bering were close to the value on Session 9. This suggests a
loss of four or five sessions of training over the retention
interval or, conversely, a savings of eight or nine sessions.
These estimates are necessarily variable, however, and cannot
support firm conclusions. We may have observed some loss
of automaticity; we did observe substantial retention (cf.
Feustal et al.,1983; Healy et al., 1990; Kolers, 1976).

Conclusions. Several aspects of the data provide evidence
of the development of automaticity in the alphabet-arithmetic
task, suggesting that it reflects a transition from an initial
counting algorithm to memory for past problems. First, the
slope decreased from 486 ms per count on the first session to
45 ms per count on Session 12. Counting produces a substan-
tial slope; remembering produces a slope of zero, provided all
items are equally memorable. Second, subjective reports in-
dicated a transition; reports of counting dropped and reports
of remembering increased from Sessions 1 to 12. Third,
transfer to new items was poor, as would be expected if
subjects had memorized only the items they experienced
during training. Fourth, in another report, the means and
standard deviations from the first 12 sessions of the present
experiment were well fit by power functions constrained to
have the same exponent, as predicted by the instance theory
of automatization (Logan, 1988b), reflecting a transition from
an initial algorithm to memory-based responding. Finally,
when old and new items were mixed randomly in Session 15,
subjects maintained their speed and flat slopes for the old
items, while they responded more slowly and with steeper
slopes to new items, suggesting that the retrieval of old facts
was obligatory, as the instance theory predicts (Logan, 1988b).

The data were characteristic of automatization in that
automaticity took a long time to develop, as it does in other
paradigms with other stimuli (e.g., Shiffrin & Schneider,
1977). Extensive practice may be typical of situations in which
automaticity is observed, and it may be sufficient to produce
automaticity in many cases, but it is not necessary, according
to automaticity-as-memory theories. What is necessary is
having traces available in memory, and that may occur after
one trial or 10,000 trials.2 It may not matter much how the

2 There are two senses in which performance could be automatic
after one trial, depending on whether automaticity is assessed trial by
trial or session by session: Trial-based automaticity follows from
Logan's (1988b) instance theory in which traces race against the
algorithm. Random variability could allow a single trace to beat the
algorithm on a single trial. Performance on that trial would be
considered automatic, even though performance on subsequent trials
may not be (i.e., the algorithm may be faster than memory retrieval
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traces got there. They may have been acquired through ex-
perience on the task or by rote memorization. (This insight
motivated the next experiment.) Extensive practice may guar-
antee enough exposure that traces are available in memory,
but it is not logically necessary.

Experiment 2

Experiment 2 asked whether extended practice is necessary
to develop automaticity, and whether practice on the task
itself is necessary. Subjects were trained on alphabet-arith-
metic facts, but not by performing the verification task. They
learned the facts by rote memorization and then transferred
to the verification task. The slope of the function relating
verification time to the magnitude of the digit addend was
the primary index of automatization. Half of the subjects
verified the facts they had just learned; half verified untrained
facts. If practice on the (verification) task itself is necessary
for automatization, there should be no difference between
groups. Both groups should produce large slopes on the order
of those observed in Session 1 of Experiment 1. However, if
practice on the task is not necessary, if having the facts in
memory by other means is sufficient, then the group with
trained facts should show flat slopes characteristic of auto-
maticity, similar to those observed in Sessions 12 and 14 of
Experiment 1, whereas the group with untrained facts should
show steep slopes.

The hypothesis that extensive practice is necessary was
tested by limiting training to one session. The whole experi-
ment—training and transfer—was finished in less than an
hour. The training itself took less than 15 min. That is two
orders of magnitude less than training in many studies of
automaticity (e.g., Shiffrin & Schneider, 1977). If several
hours of practice are necessary for automatization, then both
groups should show steep slopes like those in Session 1 of
Experiment 1. However, if only practice sufficient to commit
the items to memory is necessary, then automaticity should
occur. The group with trained facts should show a shallow
slope; the group with untrained facts should not.

Method

Subjects. The subjects were 16 Introductory Psychology students
from California State University, Hayward, who participated as one
option of a course requirement. All claimed to be native speakers of
English.

Apparatus and stimuli. The stimuli were presented on the mon-
itor of an Apple II computer. Responses were recorded from the F
and J keys on the computer keyboard. The stimuli were the letters B,

on subsequent trials). Session-based automaticity is a more conven-
tional definition in which performance must be based on memory
retrieval for the vast majority of trials to be considered automatic.
Nevertheless, performance could be automatic in the session-based
sense after a single trial if subjects rehearsed the solution between
trials (or committed it to memory in some other manner) so that
enough traces were available on subsequent trials for memory to win
the majority of the races. Session-based automaticity may be implau-
sible after a single trial, but it is not in principle impossible.

N, H, and T, the digits 2, 3, and 4, the plus symbol (+) and the equal
sign (=) displayed horizontally in the center of the screen as in
Experiment 1. The letters were divided into two sets (B and N vs. H
and T) and paired with each digit addend to produce two sets of six
facts. In the verification task, each fact was paired twice with its true
answer and once with an answer that was true plus one (e.g., B + 2
= E) and once with an answer true minus one (e.g., B + 2 = C),
producing two sets of 24 items.

In the verification task, each trial began with the display "GET
READY" for 1.3 s, followed by a blank display for 1.3 s, and then
the problem which remained on until the subject responded. A
feedback display appeared immediately after the response, containing
"CORRECT" or "ERROR" as appropriate. If reaction time was less
than 3 s, the display "TIME WAS GOOD" appeared below the
accuracy feedback. For reaction times betweeen 3 and 4.6 s, the
display was "TIME WAS OK, BUT SHOULD BE FASTER." Slower
responses received "TIME WAS TOO SLOW." The feedback display
remained on for 2.5 s and was followed by a 3.5-s interval between
trials in which the display was blank.

Each letter and digit subtended about 0.6 degrees of visual angle
on the CRT.

Procedure. Subjects were trained one of the two sets of six facts.
Half of the subjects were trained on one set and half on the other.
Subjects were shown a list of the six facts in their set, and were told
that the facts had been generated by the counting algorithm used in
Experiment 1: counting up the alphabet a number of steps determined
by the digit addend. They were asked to study the list until they had
mastered all six facts. Then they were tested with a set of six "flash
cards" presenting the letter and digit addends of each fact, to which
the subject was to respond by uttering the correct answer (e.g., if
given B + 2 = ?, the subject would say D). The six cards were shuffled
to randomize their order, shown one at a time to the subject, then
shuffled and shown again as many times as necessary for the subject
to pass through the deck three times in succession without error.

Subjects were then pretrained for responding on the verification
task. They were tested on 20 trials in which the word yes or no
appeared in the center of the screen. Half of the subjects in each
group were instructed to press the F key if yes appeared and the J
key if no appeared, and half were told the opposite. After pretraining,
they were tested with the flash cards until a criterion of three succes-
sive error-free passes through the six facts had been achieved for a
second time. After a brief rest, subjects received one more pass
through the six flash cards just before the transfer task. The maximum
time spent studying the facts was about 15 min.

At transfer, subjects performed the verification task on the com-
puter. Half of the subjects were tested on the facts on which they
were trained and half were tested on untrained facts. Each subject
performed 48 verification trials.

Results and Discussion

Each subject experienced eight trials at each combination
of digit addend and true versus false equation. In an initial
analysis, median reaction times were calculated in each cell
and submitted to a 2 x 3 x 2 (Groups [trained facts vs.
untrained facts] x 3 Addend x True vs. False Equation)
ANOVA. The difference between true and false equations
was not significant, F{\, 14) = 1.67, MSC - 779,971.01, and
there were no significant interactions involving true and false
equations (all Fs < 1.0). Consequently, the data were collapsed
across true and false equations by calculating mean reaction
times at each level of digit addend for each subject. The means
of these means appear in Figure 4.
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The slope of the linear function relating reaction time to
the digit addend was 447 ms per count for the group tested
on untrained facts, slightly larger than the slope observed on
Session 2 of Experiment 1. By contrast, the slope for the group
tested on trained facts was slightly negative (-52 ms), sug-
gesting automaticity. The contrast was confirmed in a 2 x 3
(Group [trained facts vs. untrained facts] x Addend) ANOVA
on the mean reaction times: The interaction between training
group and addend was significant, F{2, 28) - 8.74, p < .01,
MSe = 121,693.31. A test for linear trend was highly signifi-
cant in the group tested on untrained facts, F(\, 28) = 26.27,
p < .01, but not in the group tested on trained facts, F(l, 28)
< 1, both MSes = 121,693.31. An ANOVA on the median
reaction times produced nearly identical F ratios, supporting
exactly the same conclusions as the ANOVA on the means.

Accuracy was lower for untrained facts than for trained
facts and decreased with the digit addend, particularly for
untrained facts. The means across subjects and true versus
false problems were 92%, 85%, and 82% for untrained facts
with addends of 2, 3, and 4, respectively, and 91% 89%, and
90% for trained facts with addends of 2, 3, and 4, respectively.
Essentially, the accuracy data corroborate the reaction times.

These results suggest that automaticity can be attained with
less than 15 min of training, and that automaticity can be
obtained without practice on the criterion task as long as the
relevant facts are in memory. Both results are predictable
from automaticity-as-memory theories. They claim that hav-
ing traces available in memory is necessary for automaticity
to occur; they do not claim that any particular route to
memory is necessary' or any particular "consolidation period"
is necessary.

The present results are remarkable in contrast with Exper-
iment 1. In less than an hour, these subjects were able to
attain a level of automaticity that took Experiment 1 subjects
12 sessions (5,760 trials) to attain. The experiments differed
in two important respects: how many facts were learned and
how the facts were learned. There were 40 facts to learn in
Experiment 1 (counting only true equations) and 6 in Exper-
iment 2. It may take more time to learn 40 facts than to learn
6, hence the difference in the apparent rate of automatization.
Experiment 3 addressed this possibility.

ONE-HOUR AUTOMATICITY

3000

^ 2000

1000 -

JN'RAINED

TRAINED

3 4
DiGlT ADDEND

Figure 4. Mean reaction times for trained (solid line) and untrained
(broken line) facts in Experiment 2 as a function of digit addend.

The method of learning was different in Experiment 1 and
Experiment 2. In Experiment 1, subjects learned the facts
while performing the task (learning by doing), whereas in
Experiment 2 subjects learned the facts by rote memorization.
Rote memorization may be a more effective way to learn the
facts than learning by doing. Experiment 4 addressed that
possibility.

Experiment 3

Experiment 3 had two main purposes. The first was to
determine whether the rate of automatization depends on the
amount to be learned. Subjects in Experiment 2 had only six
items to learn, whereas subjects in Experiment 1 had 40. In
Experiment 3, different groups of subjects learned 6, 12, and
18 alphabet-arithmetic facts by performing the verification
task. Subjects practiced for several sessions until each fact had
been presented in its true and its false version 96 times (for 6
and 12 facts) or 80 times (for 18 facts). In Experiment 1,
performance approached asymptote after 72 presentations of
each item, so the practice schedules in this experiment should
be sufficient to produce automaticity. The slopes of the func-
tions relating reaction time to the magnitude of the digit
addend were analyzed to assess learning rates.

The second purpose of Experiment 3 was to assess the effect
of similarity on transfer to facts not experienced in training.
Subjects trained on 6 facts and 12 facts were transferred to a
set of 18 facts. Six were old facts, experienced in training (old
digits, old letters), 6 were new facts about the six old letters
(new digits, old letters), and 6 were new facts about six new
letters (new digits, new letters). The contrast between old-old
and new-new items replicates the transfer conditions in Ex-
periment I, where poor transfer was found to new items from
the other half of the alphabet. The contrast between new-old
and new-new items tests the effect of similarity. New-old
items share letter addends with old-old items, and so should
be similar to old-old items; new-new items share no letter
addends with old-old items, and so should be dissimilar. If
similarity facilitates learning (e.g., by providing an existing
associative structure on which to build new associations), then
new-old slopes should be shallower than new-new slopes.
New-old slopes may even approach old-old slopes. However,
similarity could also inhibit learning (e.g., by providing more
opportunities for interference), so new-old slopes may be
even steeper than new-new slopes (cf. Campbell, 1987). Fail-
ure to find a similarity effect could mean that new-old items
were not sufficiently similar to evoke facilitation or interfer-
ence or that facilitation balanced interference.

The transfer conditions also provided replications of the
transfer conditions in Experiment 1. The contrast between
old-old and new-new items was the same as the contrast in
Experiment 1. The fact that old-old and new-new items were
randomly mixed replicates the conditions of Session 15 in
Experiment 1 in which old and new items were randomly
mixed. This provided us with another opportunity to test the
intentionality criterion of automaticity to determine whether
old problems can be solved by retrieval even when new
problems require counting.
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Method

Subjects. The subjects were 27 undergraduate and graduate stu-
dents at the University oflllinois who served in five 1-hr sessions for
$20.

Apparatus and stimuli. The stimuli were displayed on Amdek
Model 300 monochrome monitors controlled by IBM PC-XT com-
puters. Letters and digits were 5 x 5 mm on the monitor screen.
Equations were arrayed horizontally as in the previous experiments.
Each trial began with a fixation display formed of two rows of nine
dashes (-), one above and one below the line on which the equation
was to appear, centered on the screen. After 500 ms, it was extin-
guished and replaced by an equation, which remained on until the
subject responded. After the response, the screen went blank for a
2.5-s intertrial interval (ITI). Subjects responded by pressing the
"slash" keys {/ and \), which were the rightmost and leftmost char-
acter keys on the bottom row of the XT keyboard.

Nine stimulus sets were formed by combining three numerical
addends (2, 3, and 4) with three sets of six consecutive letters (A-F,
G-L, and M-R). In each set, each digit addend appeared once with
two letters (e.g., A + 2, B + 3, C+ 4, D + 2, E + 3, F + 4). Over all
sets, each digit appeared with each letter equally often. False equations
were formed by presenting answers that were true plus one letter (e.
g., B + 3 = F).

Procedure. Each session involved 576 trials with brief rests every
72 trials. The number of practice sessions varied with the number of
facts to be learned. Six-fact subjects practiced for two sessions, expe-
riencing 96 exposures of the true and the false versions of each of the
six facts. A different set of six facts was assigned to each of the 9
subjects in the group. Twelve-fact subjects practiced for four sessions
to experience 96 exposures of the true and false versions of their 12
facts. The 12 facts were about different letters. Each subject was
assigned two different sets of 6 facts about two different sets of 6
letters (e.g., one set from A-F and one from G-L). The nine sets of
6 facts were paired arbitrarily to produce nine pairs of sets with this
characteristic, and a different pair was assigned to each of the 9
subjects in the group. Eighteen-fact subjects practiced for five sessions
and experienced 80 exposures to true and false versions of their 18
facts. The 18 facts were about different letters. The nine sets of 6 facts
were collapsed into three sets of 18, and each set was assigned to 3 of
the 9 subjects in the group.

At transfer, 6-and 12-fact subjects were tested on 18 facts: 6 old
facts experienced in training (old-old); 6 new facts about old letters
(new-old); and 6 new facts about new letters (new-new). Six-fact
subjects were tested for three sessions to complete their series of five;
12-fact subjects were tested for one session. Only the first session of
transfer was analyzed.

Subjects were instructed as in Experiment I.

Results and Discussion

Training. Learning rate can be assessed in two ways: in
terms of sessions of practice or trials per item. Typically,
learning is assessed as a function of sessions of practice,
disregarding how often the items appeared in each session.
According to automaticity-as-memory theories, this is inap-
propriate. The crucial variable is the number of trials per
item, which reflects the opportunity to have memorized the
items. When the conditions being compared involve the same
number of items, the two methods of assessing learning rate
are equivalent. However, when different numbers of items
are learned, as in the present experiments and in the contrast

between Experiments 1 and 2, trials per item is the more
appropriate analysis. To illustrate the importance of this
point, we analyzed learning rates both ways. The slope of the
linear function relating reaction time to the magnitude of the
digit addend was calculated for true and false equations for
each subject. The means across subjects in each group are
plotted as a function of practice sessions in Figure 5 and as a
function of trials per item in Figure 6. Each point in each
figure represents the mean of eight presentations of each item.
The top panel in each figure contains the slopes for true
equations; the bottom panel contains the slopes for false
equations.

The plot against sessions in Figure 5 shows orderly differ-
ences as a result of the amount to be learned. Six facts
approach asymptote before 12 facts; 12 facts approach asymp-
tote before 18. The differences disappear and lose their order-
liness in the plot against trials per item in Figure 6. (Differ-
ences between conditions in the initial eight presentations
presumably reflect random variation.) These impressions were
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confirmed by a 3 x 1 0 x 2 (Groups [6, 12, and 18 facts to be
learned] x Practice Blocks [defined as trials per item] x True
vs. false) ANOVA on the slopes. Neither the main effect of
groups, F( 2, 24) < 1, MSe = 637,902.39, nor the interaction
between groups and presentations, ^(18, 216) < 1, MSC =
49,659.84, was significant.

Accuracy was high, averaging 96%. It was not affected
much by digit addend (97%, 96%, and 95% for 2, 3, and 4,
respectively) or by amount to be learned (97%, 96%, and 95%
for 6, 12, and 18 facts, respectively). No interesting trends
were apparent, so accuracy was not analyzed further.

The pattern of the reaction time data is consistent with
automaticity-as-memory theories, which assert that learning
rate is determined primarily by trials per item, not the total
amount of practice on the task. The results suggest that the
different rates of automatization observed in Experiments 1
and 2 may have been due to the different number of items to
learned (40 vs. 6).

Transfer. The slopes from the first transfer session are
shown for the 6-fact group and the 12-fact group in Table 1.
For both groups, the old-old slopes were shallow and close to
the values observed at the end of training, which is consistent
with the intentionality criterion of automaticity. Apparently,
subjects dealt with old-old problems by retrieving facts from
memory even though they had to count to solve new prob-
lems.

New-new slopes were substantially steeper than old-old
slopes, replicating Experiment 1 in showing a lack of transfer.
Lack of transfer is predicted by automaticity-as-memory the-
ories, which assume that subjects leam specific responses to
specific items. New-old slopes were very close to new-new
slopes, suggesting no facilitation or interference as a result of
similarity. These conclusions were confirmed by a 2 x 3 x 2
(Groups [6 vs. 12 fact] x 3 Condition [old-old vs. old-new
vs. new-new] x True vs. False Equations) ANOVA on the
slopes. The main effect of condition was significant, F{2, 32)
= 17.61, p< .Q\,MSC = 95,381.47, but a contrast comparing
old-new and new-new slopes was not, F(\, 32) < 1.

The new-old and new-new slopes for the 12-fact subjects
were 161 ms smaller than the new-old and new-new slopes
for the 6-fact subjects, F(l, 32) = 9.74, p < .01, MS* =
95,381.47, suggesting some general transfer resulted from the
two extra sessions on the task. Because there was no difference
between new-old and new-new slopes, the reduction probably
reflects improvement in the counting algorithm. Similar im-
provement was suggested in Experiment 1, but it could not
be tested as directly.

Overall accuracy averaged 92.5%. It was higher for old-old
problems (97%) than for old-new {91%) and new-new (89%)
problems, reflecting trends in the reaction-time data. It was
slightly higher for the 12-fact group (93.5%) than for the 6-
fact group (91.6%), perhaps reflecting a general practice effect
on accuracy regulation (cf. Rabbitt, 1981).

Experiment 4

In Experiment 4, learning by rote memory and learning by
performing task were compared directly. AH subjects saw
alphabet-arithmetic equations followed by their truth value
(the word true or false written under the position the equation

Table 1
Slopes (in ms per Addend) From First Transfer Session of
Experiment 3

Truth

True
False

M

True
False

M

Old-old

64
91
78

113
36
75

Old-new

6 problems
377
435
406

12 problems
324
192
258

New-new

463
408
436

304
221
263
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occupied) after the subject responded. Half of the subjects—
the learn-by-doing subjects—were told to verify the equations,
pressing different keys to indicate whether the equation was
true or false. For learn-by-doing subjects, the truth value
provided feedback about the correctness of their response.
The other half of the subjects—the learn-by-remembering
subjects—were told to memorize the equations, learning
which were true and which were false. They examined the
equations and pressed the space bar to reveal the truth value.
For learn-by-remembering subjects, the truth value was the
"response" to be associated with the equation "stimulus" in a
classic paired-associate anticipation paradigm. The number
of exposures and the nature of the exposures were the same
for learn-by-doing and learn-by-remembering subjects. They
were then transfered to a common verification task to assess
what they had learned and to compare the learning methods.

Experiment 4 manipulated the number of facts to be
learned, replicating parts of the first session of Experiment 3.
Half of the subjects learned 6 facts and half learned 18 facts.
As in Experiment 3, automaticity as memory predicts more
learning (flatter slopes) with 6 facts than with 18 because there
are more trials per item with 6 facts. The number of facts to
be learned was crossed with learning method to test the
interaction. Automatic!ty-as-memory theories predict no in-
teraction. Memory should depend on the number of presen-
tations regardless of how those presentations were made.

Method

Subjects. The subjects were 72 undergraduate and graduate stu-
dents at the University of Illinois who served in a single 1-hr session
for $3.50. They were divided into four groups of 18 subjects.

Apparatus and stimuli. The apparatus and stimuli were the same
as in Experiment 3, except that the word true or false appeared one
line below the position occupied by the equation and remained
exposed for 500 ms after a response was made.

Procedure. The experiment involved 432 training trials and 144
test trials for a total of 576 trials. Brief rests were allowed every 72
trials. There were four groups of subjects formed from the factorial
combination of learning method (learn by doing vs. learn by remem-
bering) and number of facts to be learned (6 vs. 18). The nine sets of
6 facts used in Experiment 3 were used again. Two subjects in each
6-fact group were assigned to each of the nine sets. For the 18-fact
groups, sets of 6 facts were combined to produce three different sets
of facts about the 18 different letters. Six subjects in each 18-fact
group were assigned to each of these sets. Six-fact subjects had 36
exposures to the true and false versions of each fact during training;
18-fact subjects had 12 exposures.

Learning method determined the training task. Learn-by-doing
subjects performed the verification task, just as subjects did in Exper-
iments 1 and 3. They were instructed in the same way as subjects in
previous verification-task experiments. In addition, they were told
that truth values would appear briefly after each equation, which they
could use as feedback if they wished. Learn-by-remembering subjects
were told to learn each fact and remember whether it was true or
false without computing the answer, and to press the space bar when
they remembered or when they knew they could not remember. They
were told to try to associate the equation with the truth value that
appeared after they pressed the space bar.

After 432 training trials, all subjects were switched to a transfer
task in which they verified the equations they were trained on. Learn-
by-doing subjects simply continued to verify; learn-by-remembering

subjects were given the same instructions about the verification task
that learn-by-doing subjects received initially before beginning the
task.

Results and Discussion

Training. Learn-by-remembering subjects differed from
learn-by-doing subjects in several respects. Their reaction
times were generally faster, they were less affected by the truth
of the equation, and they were less affected by the magnitude
of the digit addend. These differences were tested separately
for the 6- and 18-fact groups. In the 6-fact groups, learn-by-
remembering reaction times were 986 ms faster than learn-
by-doing reaction times in the first training block (i.e., the
first four presentations of each item), and the difference
diminished to 120 ms by the ninth block. The difference
between true and false equations was 54 ms in the learn-by-
remembering group and 186 ms in the learn-by-doing group.
The slopes of linear functions relating reaction time to the
magnitude of the digit addend are plotted as a function of
practice block (top panel of Figure 7). Slopes were shallower
for learn-by-remembering subjects and were less affected by
practice block.

I n a 2 x 9 x 3 x 2 (Groups [learn by doing vs. learn by
remembering] x Training Block X Digit Addend x True vs.
False) ANOVA, the main effect of groups did not reach
significance, F(l, 34) = 2.85, p < .11, MS* - 15,585,952.59,
but there were significant interactions between groups and
training blocks, F(8, 272) = 2.56, p < .05, MS, =
1,702,185.90, and between groups and truth, F( 1,34) = 10.36,
p < .01, MSe = 204,259.62. The interaction between groups
and addend was marginally significant, F(2, 68) = 3.00, p <
.06, MS, - 668,179.47, and the interaction between groups,
addend, and block was not significant, F(16, 544) = 1.07,
MS, = 174,658.88. However, in a 2 x 9 x 2 (Groups [learn
by doing vs. learn by remembering] x Training Block x True
vs. False) ANOVA on the slopes, which tested the crucial
linear trends, the main effect of groups was significant, F([,
34) = 5.97, p < .05, MSe = 334,471.59, and the interaction
between training blocks and groups was marginally signifi-
cant, F(8, 272) = 1.91, p < .06, MSe = 85,532.74.

Also significant in the ANOVA on reaction times were the
main effects of blocks, F (8, 272) = 54.72, p < .01. MS, =
1,702,185.90, truth, F(\, 34) = 34.12, p < .01, MS, =
204,259.62, and addend, F(2, 68) = 11.20, p < .01, MS, =
668,179.47, and the interaction between block and addend,
F(16, 544) = 3.24, p < .01, MS, = 174,658.88.

In the 18-fact groups, learn-by-remembering subjects were
328 ms faster than learn-by-doing subjects. The difference
between true and false equations was 150 ms in learn-by-
remembering subjects and 286 ms in learn-by-doing subjects.
The slopes of linear functions relating reaction time to the
magnitude of the digit addend are plotted in the bottom panel
of Figure 7. They were generally shallower for learn-by-
remembering subjects but changed in the same manner over
(four-presentation per item) blocks.

In a 2 x 3 x 3 x 2 (Groups [learn by doing vs. learn by
remembering] x Training Blocks x Digit Addend x True vs.
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Figure 7. Mean slopes of the linear function relating reaction time
to the magnitude of the digit addend in the training blocks of
Experiment 4 for subjects trained on 6 (top panel) and 18 (bottom
panel) facts under learn-by-doing (solid lines) and learn-by-remem-
bering (broken lines) instructions. (True vs. false equations is the
parameter: true = boxes; false = triangles.)

False) ANOVA, the main effect of groups did not reach
significance, F(\, 34) = 2.72, p < .11, A/5C = 6,416,588.03,
nor did the interaction between groups and blocks, F(2,
68) < 1, but the interaction between groups and truth was
significant, F([,34) = 5.11, p < .05, MS, = 146,305.57, and
the interaction between groups and addend was marginally
significant, F(2, 68) = 2.48, p < .10, MS, = 415,440.11. In
addition, there were significant main effects of block, F{2,
68) = 116.75, p < .01, MSe = 546,600.84, truth, F{\, 34) =
52.50, p < .01, MSt - 146,305.57, and addend, F(2, 68) -
48.50, p < .01, MS, = 415,440.11, and a significant interaction
between block and addend F(4, 136) = 3.99,/? < .01, MS, =
114,187.86.

These data suggest that learn-by-doing subjects performed
differently than learn-by-remembering subjects during train-
ing. Learn-by-remembering subjects may have been faster,
less affected by the truth of the equation, and less affected by
the digit addend because they did not use the counting algo-
rithm that learn-by-doing subjects were forced to use (at least

in the initial blocks). It is possible that learn-by-remembering
subjects counted occasionally, because their slopes were
greater than zero, but they did not count as often as learn-by-
doing subjects.

Transfer. In the transfer block, all subjects performed the
same verification task. Mean reaction times for true and false
equations are plotted for each group as a function of the digit
addend in Figure 8. The 6-fact groups are in the top panel
and the 18-fact groups are in the bottom panel. As in Exper-
iment 3, the number of facts had a strong effect on the amount
of learning manifest in a single session: The functions for the
18-fact groups were higher and steeper than functions for the
6-fact groups. Thirty-six exposures were more effective than
12. The most important result was that learning method had
very little effect on performance. Overall reaction times were
slightly longer for learning-by-remembering subjects than for
learning-by-doing subjects, but the pattern was the same. In
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Figure 8. Mean reaction times in Experiment 4 as a function of
digit addend for subjects trained on 6 (top panel) and 18 (bottom
panel) facts under learn-by-doing (solid lines) and learn-by-remem-
bering (broken lines) instructions. (True vs. false equations is the
parameter: true = boxes; false = stars.)
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both learning methods, 18-fact groups were slower and steeper
than 6-fact groups.

These conclusions were confirmed by a 2 x 2 x 3 x 2
(Groups [learn by doing vs. learn by remembering] x 6 vs. 18
facts to be learned x Addend x True vs. False Equations)
ANOVA on mean reaction times. Learning method had very
little effect on performance. Reaction time was significantly
longer for the 18-fact groups than for the 6-fact groups, F
(1,68) = 41.21, p < .01, MSC = 934,841.07. The main efTect
of digit addend was significant, F(2, 136) = 7.12, p < .01,
MSe = 89,492.36, as was the interaction between digit addend
and number of facts to be learned, F(2, 136) = 6.37, p < .01,
MSe = 89,492.36. Reaction times were significantly slower
for learn-by-remembering than for learn-by-doing subjects,
F(l, 68) = 5.26, p < .05, MSe = 934,841.07, but more
important, there were no significant interactions involving
learning method.

Accuracy averaged 93.4% overall. The 6-fact groups were
slightly more accurate than the 18-fact groups (94.5% vs.
92.4%). The learn-by-doing groups were about as accurate as
the learn-by-remembering groups (94.3% vs. 93.6%).

The similar effects of learning method suggest that how the
facts got into memory was not very important; what mattered
was the availability of the facts in memory. Number of facts
to be learned or, equivalently, the number of presentations of
each fact affected availability in the same way for both learn-
ing methods. The results suggest that the different rates of
automatization observed in Experiments 1 and 2 were not
due to differences in learning method. Although learning by
remembering produced automaticity in one session in Exper-
iment 2 and learning by doing produced automaticity in 12
sessions in Experiment 1, the difference was most likely due
to differences in the number of facts to be learned (6 vs. 40).

General Discussion

Experiment 1 demonstrated the automatization of alphabet
arithmetic in several ways: Reaction time sped up as a power
function of practice (as reported in Logan, 1988b), the slope
of the function relating reaction time to the magnitude of the
digit addend decreased by an order of magnitude, and subjects
reported large reductions in the difficulty of the task (remem-
bering was much easier than counting). Several pieces of
evidence suggested that a transition from counting to remem-
bering underlaid the automatization: Standard deviations
were fit by power functions with the same exponent as the
reaction times (as reported in Logan, 1988b), confirming a
prediction of the instance theory (also see Cohen et al., 1990).
The asymptotic slopes were twice as fast as overt recitation
rates, suggesting that performance no longer depended on
sequential access to the alphabet. Subjects reported counting
less often and remembering more often as practice progressed.
Furthermore, transfer to new items was poor, suggesting that
subjects memorized only the items they experienced during
training.

Characteristically, automaticity took a long time to develop
in Experiment 1: It took 12 sessions of practice on the task.
The remaining experiments showed that neither extended
practice nor practice on the criterion task were necessary for

automaticity to develop, testing predictions derived from
automaticity-as-memory theories. Experiment 2 produced au-
tomaticity (a flat slope) in a 1-hr session by having subjects
rote memorize the facts. Experiments 3 and 4 tested two
procedural differences between Experiments 1 and 2. Exper-
iment 3 compared learning rates with different numbers of
facts (Experiment 1 required 40 facts; Experiment 2 required
6). It showed the rate of automatization was the same for 6,
12, and 18 facts when assessed per presentation of each item.
Because 6 facts can be presented more often than 18 facts in
a single session, there was a greater change in performance
over sessions the smaller the number of facts to be learned,
which accounts for the difference between Experiments 1 and
2. Experiment 4 compared learning by doing (the procedure
in Experiment 1) and learning by remembering (the procedure
in Experiment 2) directly, and showed no important differ-
ences in subsequent performance.

Property Lists, Resources, and Automaticity as
Memory

The experimental results were predicted by theories that
assume that memory is the process underlying automaticity.
According to those theories, performance is automatic when
it is based on single-step, direct-access retrieval of a solution
from memory; in principle, that can occur after a single
exposure. The theories also imply that having traces available
in memory is necessary for automatic performance. It is not
necessary that the traces were put into memory in the course
of performing the task. Other routes to memory, such as rote
rehearsal, may be sufficient.

The results do not rest easily with property-list approaches.
Extended practice is characteristic of automaticity and figures
prominently on property lists (e.g., Hasher & Zacks, 1979;
Schneider, Dumais, & Shiffrin, 1984), and practice on the
criterion task is implicitly important. Property-list approaches
provide no learning mechanism and so cannot predict any-
thing about the conditions that produce automaticity. They
describe surface features, not underlying processes, and so
they are limited in explanatory power.

Property-list approaches have not done well in other inves-
tigations of automaticity. Several studies have shown that the
properties of automaticity do not cooccur as property-list
theories imply they should. For example, Regan (1981), Paap
and Ogden (1981), and Kahneman and Chajzyck (1983)
showed that obligatory processes can be effortful, whereas
property-list theories imply that obligatory processes should
be effortless (see, e.g., Hasher & Zacks, 1979). There appear
to be no properties that are individually necessary and jointly
sufficient to define automaticity, which has led some investi-
gators to challenge the utility of the concept (Cheng, 1985;
Ryan, 1983) and others to propose intermediate states of
automaticity that possess some properties but not others
(Kahneman & Treisman, 1984; Zbrodoff & Logan, 1986).

The problem may lie with the method of defining auto-
maticity and not with the concept of automaticity itself. In
general, property-list approaches offer little conceptual coher-
ence and suggest only limited avenues of research. Properties
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often appear on the list by stipulation rather than by deduc-
tion. The theories do not explain why automaticity should
have the properties it has or why the properties should go
together. Thus, they offer no explanation of exceptions to co-
occurrence, when they are observed. By contrast, theories that
define automaticity in terms of underlying processes allow us
to deduce the properties of automaticity and explain why
certain properties should appear together and others should
not. In principle, at least, they offer ways to explain excep-
tional cases. Murphy and Medin (1985) made this point more
generally in discussing how categories should be defined:
Theories of underlying processes provide conceptual coher-
ence and define the boundaries of a concept better than lists
of manifest properties. Their logic applies to scientific con-
cepts, like automaticity, as well as the lay concepts with which
they were primarily concerned.

Approaches to automaticity based on resource theory (e.g.,
Logan, 1978; Posner & Snyder, 1975) fare somewhat better
than property-list approaches. They provide a mechanism
from which the properties of automaticity can be deduced.
However, they do not specify a learning mechanism and so
cannot account for the present results except in a post hoc
manner.

Resource-theory approaches do not fare well in other con-
texts either. The explanations they provide are clearest when
only a single resource is assumed (i.e., central processing
capacity; Kahneman, 1973). However, single-resource theo-
ries have been replaced by multiple-resource theories (e.g.,
Navon & Gopher, 1979; Wickens, 1984), which make predic-
tion difficult (see Logan, 1985, 1988a). Moreover, there are
strong arguments against the utility of resource theory; prom-
inent theorists claim there are no resource limitations (e.g.,
Airport, 1980; Navon, 1984; Navon & Miller, 1987). These
challenges to resource theory threaten to remove the core
concept that gives coherence to resource-based theories of
automaticity. Consequently, automaticity-as-memory theo-
ries are becoming more attractive.

Learning by Doing Versus Learning by Remembering

The equivalence of learning by doing and learning by
remembering might have been anticipated from the arithme-
tic literature. Children may learn addition facts as a side effect
of executing a counting algorithm, but they learn multiplica-
tion mostly by rote memorization. Teachers may explain
multiplication as iterative addition to help students grasp the
concept, but they do not expect students to use that algorithm
to multiply, Flash cards and speeded tests are designed to
promote memorization. Interestingly, the associative struc-
tures that underlie multiplication are similar to those that
underlie addition (e.g., Ashcraft, 1987; Campbell, 1987; Sie-
gler, 1987, 1988). Moreover, addition and multiplication
interfere with one another (e.g., 3 + 4 = 12 and 3 x 4 — 7 are
hard to reject because they are true for the opposite operation;
see Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986),
which suggests they are part of the same associative structure.
Apparently, the different learning methods lead to the same
memory representation.

We do not mean to imply that learning by doing and
learning by remembering are exactly equivalent. Certainly,
different mnemonic strategies could make learning by remem-
bering more or less effective than learning by doing, and
learning by doing could be more or less effective depending
on task parameters such as the time between trials. The
important point is that both methods are sensitive to the
number of presentations of individual items, as we saw in
Experiment 4. With enough practice, one method should be
able to reproduce the degree of automaticity attained by the
other.

It is tempting to relate the present results to the distinction
between explicit and implicit memory. Explicit memory is
typically observed in recognition and recall tasks, and it is
thought to involve an awareness by the subject that memory
is being used. Implicit memory is typically observed as an
improvement in performance that results from prior experi-
ence with the stimulus, and it is thought to involve no
necessary awareness that memory is being used (for reviews,
see Jacoby & Brooks, 1984; Schacter, 1987). Learning by
remembering seems more likely to involve explicit memory
than implicit memory because subjects consciously memorize
facts for later use. Learning by doing seems more likely to
involve implicit memory because performance improves from
having performed the task before. The equivalence of learning
by remembering and learning by doing is interesting because
it suggests an equivalence of explicit and implicit memory.
Much of the literature addresses differences between them;
we show commonalities.

There are at least three ways in which implicit and explicit
memory could be used in our tasks. First, there may be only
one memory system that is affected in the same way by the
two learning methods. Second, there may be separate memory
systems, one for each learning method, that happen to re-
spond similarly to our experimental manipulations (varying
the number of trials per item and the number of facts to be
learned). Third, there may be separate memory systems, but
each learning method lays down traces in both systems. In
each case, learning by remembering would be equivalent to
learning by doing, but for vastly different reasons. The present
experiments provide no way to distinguish among the cases,
so we can draw no firm conclusions however tempting it
might be to do so.

Single-Step, Direct-Access Retrieval

Automaticity-as-memory theories assume that the process
underlying automatic performance is single-step, direct-access
retrieval. The data seem to provide clear evidence that a
retrieval process is involved in automatized alphabet arith-
metic, but they say nothing, about the number of steps
involved or the nature of the access to retrieved representa-
tions. Possibly more than one step is involved in the retrieval
process, and possibly the representations are not accessed
directly. These are questions for future research.

It seems likely that the retrieval process involves direct
access. Most of the modern, global theories of memory, such
as Ratcliff's (1978), Murdochs (1982, 1983), Hintzman's
(1986, 1988), Shifirin's (Gillund & Shiffrin, 1984; Raaijmak-
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ers & Shiffrin, 1981), and Humphreys, Bain, and Pike's
(1989), assume direct access. At present, there seems to be no
viable theoretical alternative to direct access. Does the re-
trieval process involve a single step? The issue is important
because some acts of retrieval, such as recalling the name of
one's first-grade teacher or one's last phone number seem to
be the antithesis of automaticity: They are difficult, time
consuming, and often unsuccessful.

It is important to distinguish between retrieval tasks, such
as recognition and recall, and the retrieval process that un-
derlies them. Retrieval tasks may be automatic or effortful
depending on what the retrieval process provides. The in-
stance theory of automaticity assumes that the retrieval pro-
cess is obligatory, operating continuously, retrieving whatever
is associated with the cues that are presented to it. Sometimes
the cues are very effective and associates spring readily to
mind. This easy, effortless retrieval is the essence of automa-
ticity according to instance theory. Other times the cues will
be ineffective and nothing will come out of the retrieval
process, as when we try to recall former teachers' names or
old phone numbers. New cues must be formulated and fed
back into the retrieval process until something comes out or
we give up. The process of formulating new cues may be the
effortful step in difficult retrieval tasks; the retrieval process
itself may be effortless.

The single-step nature of the retrieval underlying automa-
ticity may be defined in terms of processing cycles in which
cues are presented to the retrieval process and associates are
retrieved (e.g., Gillund & Shiffrin, 1984; Siegler, 1988). When
many traces are associated with a given cue. at least one of
them is likely to come out in a single cycle. This is likely the
case in well-practiced alphabet arithmetic. What happens if
nothing comes out in response to the cues? It depends on the
retrieval task. In a typical automaticity experiment, subjects
are required to solve a problem. Most likely, they will execute
a problem-solving algorithm at the same time as they attempt
retrieval, and they may rely on the solution the algorithm
produces if retrieval fails without attempting further retrieval.
In recall or recognition experiments, subjects are required to
retrieve something from memory. If retrieval fails, they must
formulate new cues and put them back into the retrieval
process, iteratively, until something comes out. After a num-
ber of unsuccessful cycles—after several steps—they may give
up.

Given this conception, we argue that the automaticity
observed in the present experiments is based on single-step,
direct-access retrieval. Although our experiments cannot dis-
tinguish single-step from multiple-step retrieval, the difference
should be clear conceptually. Perhaps future research will
provide empirical distinctions between them.

Varieties of Automaticity

Automaticity is a broad concept that covers many different
domains. For example, "pop-out" effects in visual search,
priming effects in lexical decision tasks, Stroop effects, se-
quential effects in serial reaction time tasks, and perceptual-
motor skills have all been attributed to automaticity. Can one
theory of automaticity cover all of these domains? Does the

retrieval process that operates in automatic alphabet arith-
metic underlie these different examples of automaticity?

On the one hand, it seems unlikely that automatic alphabet
arithmetic characterizes the variety of paradigms in which
automaticity appears. Alphabet arithmetic involves fact re-
trieval from long-term memory (as evidenced by month-long
retention seen in Experiment 1), possibly from declarative
memory (as suggested by the equivalence of learning by doing
and learning by remembering). It should be easy to model
Stroop and priming effects in a similar manner. However,
pop-out effects seem to depend on the perceptual discrimi-
nability of targets and distractors (Duncan & Humphreys,
1989; Treisman & Gormican, 1988), and sequential effects in
serial reaction time are short lived, presumably depending on
short-term memory (Soetens, Deboeck, & Hueting, 1984). It
seems unlikely that the same memory system underlies these
different phenomena.

On the other hand, it may be possible to model automaticity
in each of these paradigms as retrieval from memory. The
paradigms may differ in the memory systems they tap, but
they all may rely on retrieval of one sort or another. Some
kinds of perceptual discriminations depend on early experi-
ence (e.g., Weisel & Hubel, 1963), and one can view the
effects of that experience as residing in a memory system.
Thus, pop-out effects may be due to rapid retrieval in long-
term perceptual memory. Similarly, sequential effects may
depend on short-term memory. Short-term memory traces of
past responses may race with a response selection process that
applies the instructed mapping rules to govern performance
(e.g.. Fletcher & Rabbitt, 1978; Krueger & Shapiro, 1981). In
addition, perceptual-motor skills may depend on retrieval
from motor memory.

Automaticity as memory may be viewed as a general theory
that can be instantiated in several different ways. There may
be different varieties of automaticity associated with different
memory systems. The substrate on which they operate may
be different, but they all may be characterized as relying on
single-step, direct-access memory retrieval. Whether different
retrieval theories can account for the varieties of automaticity
remains an open question; the answer awaits future research
and serious theoretical development. Moreover, if different
retrieval theories succeed in the different domains, it is not
clear that there will be important commonalities among them
at a more abstract, general level of analysis. Nevertheless, the
possibility of a general, all-encompassing theory is enticing.

Automaticity and Skill

The conclusion that automatization depends on the num-
ber of presentations of individual items rather than the total
amount of practice on the task has interesting implications.
It suggests that automaticity can be attained very quickly if
there is not much to be learned. Even if there is much to be
learned, parts of it can be automatized quickly if they are
trained in isolation. Subjects in Experiment 2 learned six facts
to a criterion of automaticity in about 15 min. This conclusion
has important implications for future studies of automaticity.
It may no longer be necessary to train subjects for several
sessions to produce automaticity; a single session may suffice
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(e.g., Logan, 1990; also see Klapp et al., 1991). Automaticity
experiments can be less costly and less cumbersome to con-
duct. Experiments can be completed quickly, and progress in
understanding automaticity can proceed more rapidly.

The conclusion that automaticity depends on the number
of presentations and not the number of practice sessions raises
an interesting problem: How do we compare the automaticity
of subjects trained for 15 min in Experiment 2 with that of
subjects in Experiment 1 who were trained on 40 facts for
12 h before attaining automaticity? By the zero-slope crite-
rion, performance was automatic in both experiments, yet
subjects in Experiment 1 had automatized more alphabet-
arithmetic facts than subjects in Experiment 2.

We suggest drawing a distinction between automaticity and
skill, in which automaticity refers to the memorability of
individual facts in a domain and skill refers to the proportion
of the domain that is automatized. Thus, individual facts can
vary in their degree of automaticity, and people who know
more facts (who have more facts automatized) are more
skilled. Subjects in Experiment 1 were more skilled alphabet
arithmeticians than subjects in Experiment 2, although their
performance was no more automatic.

This distinction should apply broadly to domains beyond
alphabet arithmetic. For example, a student who knew mul-
tiples of 3 to a criterion of automaticity would be less skilled
at multiplication than one who knew the products of all
combinations of single digits to a criterion of automaticity.
Another student could have skill without a high degree of
automaticity, knowing most of the multiplication facts but
not knowing them well. In principle, the distinction can apply
to less well-defined domains than arithmetic, in which it is
harder to assess complete mastery of the domain. One person
could still know more of the domain than another, and thus
be more skilled; one could know parts of the domain better
than another, and thus be more automatic. Essentially, the
contrast is between breadth and depth of knowledge.

This distinction raises an important practical question: It
may be possible to produce automaticity in a single session,
but what about skill? It probably depends on the domain. In
domains like arithmetic, the facts to be learned are largely
independent, and skill consists primarily in mastering each
separate fact. In that case, single-session automaticity can
portray the essence of skill. However, the facts may be more
interactive in other domains. There may be complex hierar-
chical relations between them that can be appreciated only
when a substantial proportion of the domain is mastered. In
these cases, there may be no substitute for extended practice.
Single facts may be committed to memory in a single session,
but it may take years before the relationships between those
facts arnd the rest of the domain are discovered and committed
to memory.
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