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On the Relation Between Production and Verification Tasks
in the Psychology of Simple Arithmetic
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Most theories of arithmetic assume that verification tasks are performed by producing an answer
and comparing it with the presented answer. Verification is production plus comparison. We
tested this hypothesis by imposing delays between arithmetic arguments and answers, in theory
imposing delays between production and comparison. Long delays should absorb effects on
production, and reaction time, from the onset of the answer, should reflect only comparison. Six
experiments were conducted, three with addition and three with multiplication. Experiments 1
and 2 used experimenter-imposed delays; Experiments 3 and 4 used subject-imposed delays. In
Experiments 5 and 6, subjects uttered the sum or product before exposing the answer. In
Experiments 1-4, argument magnitude affected reaction time, even at the longest delay; in
Experiments 5 and 6, argument magnitude effects were reduced. These results are contrary to
the hypothesis that verification is production plus comparison and consistent with the idea that
verification involves comparing the equation as a whole against memory.

The psychology of simple arithmetic is based primarily on
two main tasks, production, and verification. In production
tasks, subjects are presented with a pair of digits and are asked
to produce, usually by uttering aloud, their sum, product, or
difference. For example, a subject presented with 3 x 5 =
would be expected to utter "fifteen." By contrast, in verifica-
tion tasks, subjects are presented with an equation containing
a pair of digits and their putative sum, product, or difference
and are asked to indicate whether the equation is true or false.
For example, a subject presented with 3 x 5 = 17 would be
expected to respond "false." This article concerns the relation
between these tasks.

In both tasks, reaction times vary substantially as the mag-
nitudes of the digits are varied, and the patterns of variation
are the primary evidence for models of the underlying repre-
sentations and processes. The major competitors are counting
models (Groen & Parkman, 1972), table-search models (Ash-
craft & Battaglia, 1978; Geary, Widaman, & Little, 1986),
and associative network models (Ashcraft, 1982, 1987; Camp-
bell, 1987a, 1987b; Siegler, 1988). In these theories, the mag-
nitude of the digits (arguments) determines the amount of
computation or the difficulty of retrieval, so argument mag-
nitude is the major independent variable. The magnitude of
the answer or the difference in the magnitude of the true
answer and the presented answer is often treated as a second-
ary independent variable whose effects reflect processes that
operate after computation or retrieval. These subsequent
processes are a nuisance made necessary by the requirement
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to measure overt behavior and are not directly relevant to the
representation of arithmetic knowledge.

This approach assumes that production and verification
tasks are essentially the same up to the end of the computation
or retrieval stage and then begin to differ because of their
response requirements. Verification involves production plus
comparison. That is, subjects verify by producing the sum,
product, or difference of the two digits and comparing that
value to the presented answer. This perspective makes a
number of predictions, some of which were tested in previous
experiments and some of which are tested here.

The hypothesis that verification is production plus compar-
ison predicts that the magnitudes of the arguments will have
the same effects in the two tasks. The evidence is mixed—
sometimes argument magnitude effects are the same (Ash-
craft, Herman, & Bartolotta, 1984), and sometimes they are
not (Campbell, 1987b). But even if the evidence is clear, it
would be hard to interpret. Argument magnitude may affect
production and verification in the same way for different
reasons. The various models mimic each others' predictions
about argument magnitude effects (see e.g., Ashcraft & Bat-
taglia, 1978; Miller, Perlmuter, & Keating, 1984; Zbrodoff,
1979), and it is conceivable that one process may underlie
production (e.g., counting) while another underlies verifica-
tion (e.g., retrieval). One cannot tell from the effects of argu-
ment magnitude.

The hypothesis also predicts, following Sternberg's (1969)
additive factors logic, that factors that affect the first (com-
putation or retrieval) stage of a verification task will not
interact with factors that affect the second (comparison) stage.
In particular, the magnitude of the arguments, which affects
computation or retrieval, should not interact with factors that
affect the comparison stage. The evidence here is mixed. On
the one hand, Groen and Parkman (1972; Parkman, 1972;
Parkman & Groen, 1971) found no interactions between
argument magnitude and the difference between true and
false answers, and Geary et al. (1986) found no interaction
between argument magnitude and split (i.e., the difference
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between "close" and "distant" wrong answers, e.g., 3 + 4 = 9
vs. 3 + 4 = 19). But on the other hand, Ashcraft and Stazyk
(1981), Stazyk, Ashcraft, and Hamann (1982), and Campbell
f 1987b) found interactions between problem size and split
(also see the present experiments).

The interactions are troublesome. The most straightforward
interpretation under the additive factors logic is that argument
magnitude and split affect the same stage. This suggests that
one (arithmetic) stage rather than two may underlie verifica-
tion, which is inconsistent with the hypothesis that verification
is production plus comparison (which implies two arithmetic
stages). However, the interactions can also be interpreted as a
failure of the assumption of selective influence, which asserts
that factors affect one and only one stage. Perhaps split affects
production as well as comparison. Campbell (1987b) provided
some evidence consistent with this interpretation. He showed
that the presentation of an answer can prime production,
speeding it if the answer is correct and slowing it if the answer
is incorrect. A violation of selective influence need not chal-
lenge the hypothesis that verification is production plus com-
parison; it weakens only arguments based on additive factors
arguments. Other theories that assume two underlying stages
may be able to accommodate these results (cf. McClelland,
1979;Schweickert, 1983).

The most serious challenge to the hypothesis that verifica-
tion is production plus comparison comes from experiments
suggesting that subjects may evaluate the equation as a whole
and make their decision without computing or retrieving the
true answer. For example, subjects may determine whether
the answer is plausible given the arguments, therefore rejecting
extreme splits very quickly (Ashcraft & Stazyk, 1981; also see
Restle, 1970) or rejecting false problems quickly when most
are true for the opposite operation (e.g., 3 x 4 = 7; 3 + 4 =
12; Zbrodoff & Logan, 1986). Another example is Krueger's
(1986; Krueger & Hallford 1984) demonstration of quick
rejection of false problems that violate parity rules: The sum
of two digits is even if both addends are even or if both
addends are odd but not if one is even and one is odd (so 2
+ 2 = 5 can be rejected quickly); the product of two digits is
odd only if both the multiplier and the multiplicand are odd
(so 2 x 2 = 5 can be rejected quickly).

These effects may reflect deliberate "side-stepping" strate-
gies by which subjects exploit their knowledge of arithmetic
and their knowledge of task constraints to avoid producing
and comparing. In that case, verification performance would
be a mixture of production-plus-comparison and side-step-
ping strategies. In principle, it should be possible to isolate
trials based on production and comparison because the strat-
egies cannot work for all equations (e.g., plausibility judg-
ments may not discriminate true problems from near misses,
false problems that are not true for other operations, or false
problems that do not violate parity rules). Alternatively, the
effects may reflect the use of a different retrieval mechanism,
one that compares the equation as a whole against memory
and evaluates the goodness of match or "resonance" instead
of retrieving a true answer to compare with a presented one.
In principle, such a retrieval mechanism could work for all
arithmetic problems (as long as true problems match memory
better than false ones), so verification performance need not

involve any trials in which subjects produce and compare. It
may prove difficult to distinguish a mixture of production-
plus-comparison and side-stepping from resonance; to do so
is beyond the scope of this article, though we offer some
speculations about memory retrieval in the General Discus-
sion. For the present, our main goal is to distinguish these
two alternatives on the one hand from the possibility that
verification is based only on production and comparison.

The present experiments were designed to test the hypoth-
esis that verification is production plus comparison. The idea
underlying each experiment was to impose a delay between
the presentation of the arguments and the answer. If verifi-
cation involves production plus comparison, then the effects
of factors that affect production (i.e., computation or retrieval)
should diminish as the delay increases, whereas factors that
affect the subsequent comparison should have the same effects
regardless of delay. The idea follows the PERT logic of
Schweickert (1978, 1983) and Pashler (1984): At short delays,
the comparison process must wait for computation or retrieval
of the true answer to finish, and that should take longer the
more difficult the computation or retrieval (i.e., the larger the
magnitudes of the arguments). However, at long delays, even
the most difficult computation or retrieval will have had time
to finish before the answer is presented, so there would be no
need for the comparison process to wait. The effects of argu-
ment magnitude should diminish and ultimately disappear as
delay increases. On the other hand, the effects of the difference
between the true answer and the presented answer (i.e.. true
vs. false and split) should be the same at all delays because
the comparison process is essentially the same—subjects com-
pare the computed or retrieved answer with the presented
one.

Thus, the hypothesis that verification involves production
plus comparison predicts (a) an interaction between delay and
argument magnitude and (b) no interaction between delay
and the split (i.e., the difference between the true answer and
the presented one). Failing to find an interaction between
delay and argument magnitude or finding an interaction
between delay and split or both would falsify the hypothesis.
Six experiments were conducted to test these predictions.
Three involved addition and three involved multiplication.
In two experiments (one addition and one multiplication),
the delay between the arguments and the presented answer
was controlled by the experimenter, and in four experiments
(two addition and two multiplication) the delay was controlled
by the subject.

Experiments 1 and 2

In the first two experiments, subjects were presented with
two single-digit arguments and an operation symbol (addition
in Experiment 1, multiplication in Experiment 2), which were
followed by a putative answer at a delay randomly chosen by
the experimenter. The major independent variables were ar-
gument magnitude, split, and delay. Argument magnitude has
been manipulated several ways in the literature (e.g., the
minimum argument, the sum of the arguments, the sum of
the arguments squared) to test various models of the under-
lying computation or memory retrieval (see e.g., Ashcraft,
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1987; Groen & Parkman, 1972). We chose to manipulate it
in a theoretically neutral manner, grouping problems into
three different levels: those in which both arguments were 5
or smaller, those in which both arguments were 6 or larger,
and those in which one argument was 5 or smaller and the
other was 6 or larger. "Tie" problems, in which the arguments
were identical (e.g., 2 + 2, 3 x 3, etc.) were excluded because
they often do not show argument magnitude effects (Groen
& Parkman, 1972). In our problem size manipulation, the
extreme groups did not overlap by any of the conventional
measures of problem size based on argument magnitude, so
all theories would predict longer reaction times for the larger
problem sizes.

We chose three different levels of split: 0 (correct equations),
2, and 12. The contrast between the zero split and splits of 2
and 12 is the familiar contrast between true and false re-
sponses; the former should be faster than the latter. The
contrast between splits of 2 and 12 should vary the ease of
discrimination; the former should be harder and thus slower
than the latter. We chose splits of 2 and 12 to maintain the
parity relation between arguments and answers (Kxueger,
1986; Krueger & Hallford, 1984) and to vary the difference
between true and presented answers over a broad range to
maximize the effect.

We used five different delays between arguments and an-
swers: 0, 250, 500, 750, and 1,000 ms. The 0-ms delay
mimicked standard verification tasks in that the arguments
and answer appeared simultaneously. The 1,000-ms delay was
intended to provide sufficient time for subjects to compute or
retrieve the true answer before the putative answer appeared:
Reaction times for production tasks with adults are typically
less than 1,000 ms (Campbell, 1987a, 1987b; Campbell &
Graham, 1985; Zbrodoff & Logan, 1986), and reaction times
for verification tasks, which by hypothesis include production
time plus the time required for comparison, typically range
from 900 to 1,200 ms (Ashcraft & Battaglia, 1978; Ashcraft
& Stazyk, 1981; Zbrodoff & Logan, 1986). The points between
the 0- and the 1,000-ms delays were intended to capture the
transition from performance based entirely on verification to
performance based on production followed by comparison.

Furthermore, we conducted two control experiments in
which subjects saw two numbers, one corresponding to the
true sum or product of the arguments used in Experiments 1
and 2 and the other corresponding to the putative sums or
products presented in Experiments 1 and 2. The design of
these number comparison experiments was the same as the
arithmetic ones—we manipulated problem size, split, and
delay. One control experiment (Experiment la) used the
numbers from the addition experiment, and one (Experiment
2a) used the numbers from the multiplication experiment.
The idea was to mimic the comparison between the computed
or retrieved sum or product and the presented one in the
arithmetic conditions by presenting the numbers that subjects
would have come up with and by having subjects compare
them with the putative answers used in the experiments. If
subjects in the arithmetic tasks performed by computing or
retrieving and then comparing, their performance at asymp-
tote should not differ from the performance of these control
subjects.

Also, the controls were intended to deal with a necessary
confound between problem size and numerical magnitude:
The larger the arguments, the larger the numbers to be com-
pared, and larger numbers may take longer to compare than
smaller ones. Thus, there may be a residual effect of problem
size at the longest delay even if subjects had computed or
retrieved the sum or product to compare with the presented
answer. The number-comparison control provides a way to
assess the magnitude of this effect.

These controls require a strong version of the assumption
of pure insertion, which underlies subtractive methods for
analyzing reaction time (Donders, 1868/1969): The processes
in the number comparison tasks must be identical to those in
the arithmetic tasks except for the computation or retrieval
of a sum or product. Any other differences between the tasks
will invalidate the comparison. And other differences are
likely. For example, number comparison can be performed
by comparing the physical characteristics of the stimuli, in-
dependent of their meaning as numbers (cf. Posner & Mitch-
ell, 1967). A literal physical matching strategy is not possible
in the arithmetic task, although subjects may mimic physical
matching by generating "images" of the correct answer to
compare "physically" with the presented answer (cf. Posner
& Boies, 1971). However, the contrast between tasks may still
be informative if the assumption of pure insertion is relaxed
a little.

We present the data and interpret them as if the assumption
of pure insertion were true, but we have no strong commit-
ment to the assumption. Conclusions from the number com-
parison task were usually consistent with conclusions from
the arithmetic tasks, and most of the points can be made
without reference to number comparison. We need not rely
on the data, but we present them because they are interesting
nevertheless.

Method

Subjects. Each experiment and each control condition employed
a separate group of 16 subjects recruited from introductory psychol-
ogy classes or the general student population. There were two exper-
iments and two control conditions for a total of 64 subjects. Intro-
ductory psychology students received class credit for participating;
other subjects received $3.50.

Apparatus and stimuli. The stimuli were displayed on IBM or
Amdek monochrome monitors controlled by IBM PC/XT computers
programmed to measure time in milliseconds and to synchronize
timing with the raster scan of the monitors. Responses were collected
on the computers' keyboards; subjects pressed the "/" key or the "\"
key, which were the rightmost and leftmost keys on the bottom row
of the PC/XT keyboard.

The stimuli were equations representing all combinations of the
digits 1 through 9 except for ties (e.g., 3 + 3, 4 x 4, etc.). The
arguments were ordered according to their magnitude in such a way
that the smaller argument occupied the first (leftmost) position in the
equation and the larger occupied the second (center) position. Thus,
only half of the possible permutations of the arguments were used
(e.g., we used 1 + 9, 2 x 9, etc., but not 9 + 1, 9 x 2). In total, there
were 36 combinations of arguments.

True equations included the true sum (Experiment 1) or product
(Experiment 2) of the arguments; false equations included either the
true sum or product plus 2 or the true sum or product plus 12. Each
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of the 36 combinations of arguments occurred twice with a split of 0
(true equations), once with a split of 2, and once with a split of 12 to
equate the number of true and false responses. This resulted in a set
of 144 equations, which appeared at each of the five delays for a total
of 720 trials.

Three levels of problem size were distinguished: (a) problems with
arguments no larger than 5, (b) problems with one argument 5 or
smaller and one argument 6 or larger, and (c) problems with argu-
ments no smaller than 6. There were 10 different combinations of
arguments in the first and third level and 16 in the second level,
When combined with the split manipulation, there were 20 true
equations in the first and third levels and 32 true equations in the
second level. There were 10 false equations at each split value in the
first and third level and 16 at each split value in the second level.

The five delays were 0, 250, 500, 750, and 1,000 ms, defined
relative to the onset of the arguments. Thus, in the 0-ms delay, the
arguments and answer appeared simultaneously, and in the 250-ms
delay, the arguments appeared 250 ms before the answer. The argu-
ments remained on the screen throughout the delay interval, and
they remained on the screen when the answer was presented. After
the answer appeared, the intact equation remained on the screen until
the subject responded. Then the screen went blank for a 1,000-ms
intertrial interval.

A total of 720 trials were required to complete the design of the
arithmetic experiments. The order of splits, problem sizes, and delays
was randomized separately for each subject.

Each trial began with a 500-ms warning interval in which two lines
of five dashes separated by spaces (e.g., ) were presented
in the center of the screen, one line above and one line below the line
on which the equation was to appear. After 500 ms elapsed, the
fixation display was extinguished and replaced by the arguments for
that trial, arranged so that the entire equation would be centered on
the screen. The equations were displayed horizontally so that the
second argument appeared in the central position in the display. Each
equation included the two arguments, the relevant operation symbol
(+ for Experiment 1, X for Experiment 2), an equals {=) symbol, and
the putative answer. The argument display included one argument, a
space, the operation symbol, a space, the second argument, a space,
and the equals symbol; the answer display included the whole equa-
tion (there was a space between the equals symbol and the answer).
Each equation occupied seven or eight character spaces on the screen,
depending on whether the answer involved one or two digits. This
corresponded to 2.3 or 2.5 cm, which corresponded to 2.2" or 2.4° of
visual angle when viewed at a distance of 60 cm.

The number comparison experiments were constructed in the same
way as the arithmetic experiments except that only two numbers
appeared on the screen. The number on the left was the true sum
(Experiment 1 a) or product (Experiment 2a) of the arguments and
was displayed in the same fashion as the arguments. That is, it
replaced the fixation display and remained on the screen throughout
the delay interval. An equals symbol appeared with the first number
and remained on the screen throughout the trial. The first number
and the equals sign remained on the screen when the second number
appeared; the intact equation remained on until the subject re-
sponded.

In the number comparison experiments, split and delay were
defined in the same way as in the arithmetic experiments. Problem
size was defined in terms of the arguments that generated the left-
hand number. This resulted in some overlap between the first and
second levels and second and third levels of problem size (e.g., 4 + 5
= 9 from the first level and 3 + 6 = 9 from the second level; 4 + 9 =
13 from the second level and 6 + 7 = 13 from the third level).
However, there was no overlap between the first and third levels.
Again, 720 trials were required to complete the design, and the order
of splits, problem sizes, and delays was randomized separately for
each subject.

Procedure. Subjects were tested individually, one to a computer.
In some cases, only 1 subject was tested at a time; in other cases, 2
subjects were tested simultaneously on separate computers facing
orthogonal walls in the testing room.

The instructions began by describing the events on a trial. Subjects
were told that the arguments would sometimes appear before the
answer and that they should respond "true" or "false" as quickly and
accurately as possible after the answer appeared. Half of the subjects
pressed the "/" key for true equations and the "\" key for false
equations, and half did the opposite. Subjects were told to rest the
index fingers of their right and left hands on the keys throughout the
experiment in order to respond as quickly as possible. The program
paused every 72 trials to allow the subjects to rest if they wished to
do so. When they were ready to resume, they pressed the space bar
(following an instruction on the screen), and the next block began.

Design and data analysis. The addition and multiplication ex-
periments involved a 3 (problem size) x 3 (split) x 5 (delay between
problem and answer) design with repeated measures on each factor.
Mean reaction times and error rates were calculated for each subject
for each cell of the design, and the reaction times were subjected to
analyses of variance (ANOVAS). Error rates were too low to be analyzed
statistically but showed no evidence of speed-accuracy trade-offs that
would compromise the interpretation of the reaction times. Our
analysis of split effects does not distinguish the component due to the
difference between true and false equations from the component due
to the difference between near {off by 2) and distant (off by 12) false
equations. It was not necessary to distinguish these effects for our
purposes; both reflect the comparison stage. However, we provide the
means and the MSe terms so that interested readers can separate the
effects themselves.

The number comparison experiments involved the same 3 x 3 x
5 design. They were analyzed separately in one set of ANOVAS,
paralleling those used for the arithmetic studies, and they were
analyzed together with the appropriate arithmetic study in another
set of ANOVAS, which included task (arithmetic or number compari-
son) as a between-subjects factor.

Results1

Experiments J and 2, Performance was highly accurate,
averaging 96.5% correct in the addition task and 95.5%
correct in the multiplication task, so the analyses focused on
reaction time. Accuracy correlated negatively with reaction
time, r = —.711 for addition and r = -.812 for multiplication,
so analyses of accuracy would be redundant with reaction
time analyses.

The major experimental manipulations were successful in
both experiments: Reaction time increased with problem size:
For problem sizes of 1, 2 and 3, the means were 649, 702,
and 693 ms in addition, F{2, 28) - 10.11, p < .01, MSC =
15,170.67, and 672, 726, and 738 ms in multiplication, /(2,
28) - 46.09, p < .01, MS, = 5,881.21. The consistent differ-
ence between problem sizes of 1 and 3 replicates standard
results. Problem size 2 was not midway between problem
sizes 1 and 3 because of the assignment of digit arguments to
problem size. Problem size 1 arguments were always smaller
than problem size 3 arguments; problem size 2 was con-
structed by combining one argument from the problem size
1 range with one from the problem size 3 range. Whether

1 Experiment 1 involves addition; Experiment 2 involves multipli-
cation; Experiment la involves number comparison using addition;
Experiment 2a involves number comparison using multiplication.
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problem size 2 is more like 1 or 3 depends on which of the
arguments dominates retrieval.

Reaction time was influenced by the split. For splits of 0
(true), 2 (false), and 12 (false), mean reaction times were 649,
753, and 674 ms in addition, F(2, 28) = 44.44, p < .01, MSe

= 15,833.92, and 667, 757, and 756 in multiplication, F(2,
28) = 65.87, p < .01, MS, = 9,686.64. The largest difference
was between true and false equations (split of 0 vs. 2 or 12),
replicating standard results. The difference between splits of
2 and 12 was significant in addition, F{\, 28) — 47.30, p <
.01, but not in multiplication, F{1, 28) < 1.

Reaction times decreased substantially as the delay between
the problem and the answer increased. For delays of 0, 250,
500, 750, and 1,000 ms, the means were 920, 705, 614, 593,
and 575 ms in addition, F{4, 56) = 330.09, p < .01, MSe =
8,914.03, and 946, 736, 650, 620, and 607 ms in multiplica-
tion, F{4, 56) = 324.34, p < .01, MSe = 9,398.04. In both
cases, the data appear to be approaching an asymptote at the
longest delay, so there should have been plenty of time for
production to occur, if it occurred at all. The difference
between the 750- and 1,000-ms delays was not significant (p
< .05) by Fisher's least significant difference (LSD) test in
addition (LSD = 22 ms) or in multiplication (LSD = 23 ms).
Moreover, mean reaction time at the 0-ms delay was less than
1,000 ms for both addition and multiplication. In theory, that
reaction time represents the time for production plus the time
for comparison, so the time for production alone must have
been less than 1,000 ms. These main effects set the stage for
the theoretically important analyses, the interactions among
problem size, split, and delay.

The interaction between problem size and delay is presented
in Figure 1. The addition data appear in the top panel, and
the multiplication data appear in the bottom panel. According
to the hypothesis that verification is production plus compar-
ison, there should be a strong interaction between problem
size and delay so that the problem size effect should disappear
at asymptotic delays. The data provide mixed support for the
hypothesis. On the one hand, both sets of data show a reduc-
tion in the problem size effect as delay increased, consistent
with the hypothesis, but the problem size effect was still
substantial at the 1,000-ms delay, where reaction times were
at asymptote, contrary to the hypothesis. In addition, reaction
times for problem sizes 1, 2, and 3 were 865, 953, and 941
ms, respectively, for the 0-ms delay and 555, 584. and 586
ms, respectively, for the 1,000-ms delay. In multiplication,
reaction times for problem sizes 1, 2, and 3 were 891, 970,
and 977 ms, respectively, for the 0-ms delay and 581, 609,
and 631 ms, respectively, for the 1,000-ms delay. The inter-
action between problem size and delay was significant in
addition, F(&, 112) = 2.90, p < .05, MS, = 4,411.78, and in
multiplication, F(fi, 112) = 2.57, p < .05, AfSe = 3,069.60,
though neither effect was very strong. The simple main effect
of problem size at the 1,000-ms delay was significant in
addition, F(2, 224) = 4.60, p < .05, MSe = 3,143.80, and in
multiplication, F(2, 224) = 7.41, p < .01, MS, = 4,070.73.

The interaction between split and delay is presented in
Figure 2. The addition data appear in the top panel, and the
multiplication data appear in the bottom panel. According to
the hypothesis that verification is production plus compari-
son, there should be no interaction between split and delay.
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Figure 1. The effect of problem size on reaction time as a function
of delay for the addition task (Experiment I: solid lines, top panel)
and the number comparison task with addition numbers (Experiment
la: broken lines, top panel), for the multiplication task (Experiment
2: solid lines, bottom panel), and for the number comparison task
with multiplication numbers (Experiment 2a: broken lines, bottom
panel).

Contrary to the hypothesis, the data from both experiments
show an interaction; the split effect decreased with delay. In
addition, reaction times for splits of 0, 2, and 12 were 887,
1,043, and 861 ms, respectively, at the 0-ms delay and 546,
615, and 592 ms, respectively, at the 1,000-ms delay, F(8,
112) = 12.35, p < .01, MS, = 4,560.33. In multiplication,
reaction times for splits of 0, 2 and 12 were 869, 1,015, and
1,030 ms, respectively, at the 0-ms delay and 574, 641, and
640 ms, respectively, at the 1,000-ms delay, F(§, 112)= 5.03,
p<.0\,MSe = 4,722.98.

The interaction between problem size and split was signif-
icant in addition, F(2, 28) = 7.27, p < .01, MS, = 3,749.04,
but not in multiplication, F{2,28) = 1.55, ns, MS, = 6,857.33.
The interaction in addition is contrary to an additive-factors
interpretation in which problem size and split affect different
processing stages.

Experiments la and 2a. The data from the number com-
parison experiments are plotted (in broken lines) along with
the data from the arithmetic experiments (solid lines) in
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Figure 2. The effect of split on reaction time as a function of delay
for the addition task (Experiment 1: solid lines, top panel) and the
number comparison task with addition numbers (Experiment la:
broken lines, top panel), for the multiplication task (Experiment 2:
solid lines, bottom panel), and for the number comparison task with
multiplication numbers (Experiment 2a: broken lines, bottom panel.)

Figures 1 and 2. Accuracy was high, averaging 98.5% for
addition numbers and 98.7% for multiplication numbers, and
was negatively correlated with reaction time, r ~ -.234 for
addition numbers and r = -.267 for multiplication numbers.
Analyses of variance on the reaction times revealed main
effects of problem size [for the addition numbers, F(2, 28) —
31.38, p< .01, MSe = 2,170.53; for the multiplication num-
bers, F(2, 28) = 31.20, p < .01, MS, - 2,184.40], main effects
of split [addition numbers, F(2, 28) = 33.67, p < .01, MS, =
7,044.52; multiplication numbers, F(2, 28) = 34.00, p < .01,
MSe = 6,939.12], and main effects of delay [addition numbers,
F{4, 56) = 106.67, p < .01, MSe = 3,164.03; multiplication
numbers, F(4, 56) = 107.11, p < .01, MS, = 3.166.40]. The
interaction between problem size and delay was not significant
in either task; the interaction between split and delay was
significant for addition numbers, F($, 112) = 2.71, p < .01,
MS, = 1,989.84, and for multiplication numbers, F($, 112)
= 2.66, p < .05, MSe = 1,980.77.

The number comparison results are interesting in contrast
with the arithmetic results: According to the hypothesis that

arithmetic verification is production plus comparison, arith-
metic subjects ought to be comparing an internally generated
number with the presented answer at the longest delay, just
as number comparison subjects compare an encoded number
with a presented one. Thus, reaction times should not differ
between the tasks, and the effects of split and problem size
should not differ between tasks. Differences at the asymptotic
delay would be evidence against the hypothesis that verifica-
tion is production plus comparison.

Addition reaction times converged on number comparison
reaction times at the longest delay (575 vs. 573 ms, respec-
tively), but multiplication reaction times were still longer than
number comparison reaction times (607 vs. 569 ms, respec-
tively), F(\, 28) = 16.55, p < .01, MS* = 6,282.22. In the
addition task, the split effect had the same form as the
corresponding number comparison task, but it was larger,
/•'(2, 56) = 7.01,7? < .01, MSB = 11,477.24. In multiplication,
the split effect had a different form from the one observed in
number comparison, F(2, 56) = 11.48, p < .01, MSC =
8,312.88. There was no difference between splits of 2 and 12
in multiplication, whereas in number comparison (and in-
deed, in the arithmetic and number comparison experiments
with addition), splits of 12 were responded to faster than splits
of 2.

The problem size effect at the longest delay was larger in
arithmetic than in number comparison for both addition and
multiplication, though the difference was not significant in
either task; in addition, F(2, 224) < 1, MS* = 3,224.22; in
multiplication, F\X 224) = 2.02, MSe = 2,546.74. One cannot
accept the null hypothesis with confidence because the differ-
ences (e.g., between the largest and smallest problems) were
larger in the arithmetic tasks than in number comparison.
Also, the problem size effects at the 1,000-ms delay were
significant in the arithmetic tasks (see the above analyses of
simple main effects) but not in the number comparison tasks
[for addition numbers, F(2, 112) = 2.86, p < .10, MS, =
2,036.30; for multiplication numbers, t\2, 112) = 2.62, p <
.10, MSC = 2,023.87].

Discussion

The hypothesis that verification is production plus compar-
ison predicts that effects of factors that affect production
should be absorbed by delay as delay increases, whereas the
effects of factors that affect comparison should remain con-
stant over delay. In both experiments, problem size effects,
which ought to reflect a production factor, decreased with
delay as predicted, but they did not disappear as predicted at
the asymptotic delay. In both experiments, split effects, which
ought to reflect a comparison factor, decreased with delay,
contrary to prediction.

The hypothesis that verification is production plus compar-
ison was also tested by comparing arithmetic performance
with performance on a number comparison task. The number
comparison task can be interpreted as representing the com-
parison stage in arithmetic verification. By hypothesis, arith-
metic performance at the asymptotic delay reflects only com-
parison, so that performance should not differ from number
comparison performance at the asymptotic delay. There were
many similarities between arithmetic and number compari-
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son performance, but important differences were observed.
Arithmetic performance approached number comparison per-
formance in the addition task but not in multiplication. Split
effects were larger in the arithmetic tasks than in number
comparison, and they were qualitatively different in multipli-
cation and number comparison. Finally, problem size effects
were larger in arithmetic than in number comparison.

The bulk of the evidence seems to be against the hypothesis
that verification is production plus comparison. The interac-
tion between split and delay suggests that the presented answer
influences the computation or retrieval that underlies verifi-
cation, having more of an influence the earlier it appears in
the process (cf. Campbell, 1987b). The failure to eliminate
problem size effects suggests that the arguments continue to
have an effect even when enough time has passed to have
retrieved or computed their sum or product. One possibility
is that the arguments and the answer act jointly as retrieval
cues and that the verification decision is based on the amount
of "resonance," or degree of match with memory (i.e., true
equations would resonate more or match better than false
equations). We will describe this idea in more detail in the
General Discussion. For now, it serves as an instantiation of
the view that verification performance may be based on the
equation as a whole; this contrasts with the hypothesis that
verification is production plus comparison, which assumes
that the arguments and the answer are processed separately
(in separate stages). The remaining experiments attempted to
separate the processing of the arguments and the answer in
order to see under what conditions the hypothesis that veri-
fication is production plus comparison may be true.

Delay effects require a different interpretation if subjects
compare the equation as a whole against memory. Delay
cannot absorb production time because nothing is produced.
So why should reaction time decrease as delay increases? One
possibility is that delay absorbs the time required to encode
the digit arguments. Subjects must form an internal represen-
tation of the arguments and the operator symbol, and there
is evidence that the time required to encode digit arguments
contributes significantly to arithmetic verification time (Geary
et al., 1986). Also, there is evidence from other paradigms
that delay can absorb encoding time (Posner & Boies, 1971).
The present data provide further support: The benefit from
encoding can be estimated roughly as the difference between
reaction times at the 0- and 1,000-ms delays. In the number
comparison tasks, where only single digits are encoded, this
difference was 114 ms for the addition numbers and 107 ms
for the multiplication numbers. In the arithmetic tasks, where
two digits and the operator must be encoded, the difference
was 345 ms for addition and 339 ms for multiplication. The
latter is roughly three times the former, as if about 100 ms of
benefit were gained from encoding each digit or symbol. These
results may not rule out alternative interpretations, but they
do encourage further investigation of the hypothesis that delay
absorbs encoding time.

Experiments 3 and 4

In Experiments 3 and 4, the delay between the arguments
and the answer was controlled by the subject rather than the
experimenter. The arguments were displayed on the screen

until the subject pressed the space bar on the computer
keyboard, whereupon the answer was presented. The subject
then pressed one of two keys to indicate whether the equation
was true or false, as in the previous experiments. We imposed
a brief delay (0, 125, 250, or 500 ms) between the pressing of
the space bar and the presentation of the answer in order to
absorb any refractory effects of pressing the space bar and to
allow subjects to become prepared for the answer. Experiment
3 used addition and Experiment 4 used multiplication. Prob-
lem size and split were manipulated in the same way as in
Experiments 1 and 2.

The idea behind these experiments was to separate produc-
tion and comparison in time and to measure the duration of
each stage independently. The time between the onset of the
arguments and the pressing of the space bar reflects the
duration of the production (computation or retrieval) stage;
the time between the onset of the answer and the pressing of
the "V or "/" key reflects the duration of the comparison
stage. If production and comparison were in fact separated by
this procedure, then variables that affect production should
affect only the time to press the space bar, and variables that
affect comparison should affect only the time to press an
answer key. That is, problem size should affect space-bar
reaction times but not answer-key reaction times, and split
should affect answer-key reaction times but not space-bar
reaction times.

We also ran two number-comparison control experiments
in which the true sums (Experiment 3a) or products (Experi-
ment 4a) of the arguments were compared with the putative
answers to control for differences in numerical magnitude
and to provide a baseline for assessing split and problem size
effects in the arithmetic tasks. Subjects saw one number and
an equal sign and then pressed the space bar when they were
ready for the number corresponding to the answer.

Method

Subjects. Each experiment used a separate group of 16 subjects
from introductory psychology or the general student body. A total of
64 subjects were tested. Introductory psychology students received
course credit for participating; the others were paid $3.50.

Apparatus and stimuli. The apparatus and stimuli were the same
as those used in the previous experiments. Each trial began with the
500-ms fixation display used in Experiments 1 and 2, which was
extinguished and replaced by the arguments, operator symbol, and
equals symbol for that trial. The arguments were displayed until the
subject pressed the space bar. Then, after a delay of 0, 125, 250, or
500 ms, the answer was added to the display, and the entire equation
remained on the screen until the subject responded. Again, the
intertrial interval was 1,000 ms.

As in the previous experiments, factorial combination of problem
size and split resulted in 144 trials, and the set of 144 was replicated
at each delay between the space bar response and the onset of the
answer. This resulted in a total of 576 trials. A different random order
of problem size, split, and delay was constructed for each subject.

Procedure. Subjects were instructed as in the previous experi-
ments, except that they were told that the arguments would remain
on the screen until they were ready for the answer. They were told to
press the space bar with the thumb of their right or left hand when
they were ready for the answer and to respond to the equation as a
whole by pressing the "\" or "/" key with the index fingers of their
left or right hands as quickly and accurately as possible. They were
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told to rest their index fingers on the response keys throughout the
experiment. Half of the subjects pressed "/" for true equations and
"V for false equations, and half did the opposite.

As before, the program paused for a break every 72 trials, and
subjects resumed the experiment by pressing the space bar.

Design and data analysis. The reaction time data were analyzed
in several ways. Times to press the space bar were analyzed in a 3
(problem size) x 3 (split) within-subjects design, and subsequent
reaction times to the complete equation were analyzed in a 3 (problem
size) x 3 (split) X 4 (delay between space bar response and onset of
the answer) within-subjects design. Responses to the first and second
displays were compared in a 3 (problem size) x 3 (split) x 2 (first vs.
second display) design, collapsing over delay for responses to the
second display.

Number comparison reaction times were analyzed in a similar
fashion. Number comparison reaction times were contrasted with
arithmetic reaction times in a 3 (split) X 3 (problem size) within-
subjects design, with tasks as a between-subjects variable. The con-
trasts between tasks focused on reaction times to the second display
because those were the reaction times that were supposed to be
equivalent under the hypothesis tiiat verification is production plus
comparison.

Results2

Experiments 3 and 4. Reaction times to the first and
second displays are presented as a function of split and
problem size in Table I. The left panels contain data from
the addition task; the right panels contain data from the
multiplication task. The tables also contain accuracy data for
reaction times to the second display.

Reaction times to the first display averaged 610 ms in the
addition task and 639 ms in the multiplication task. First-
display reaction times were affected by problem size [for
addition, F(2, 28) = 8.22, p < .01. MS, = 7,566.13; for
multiplication, F(2, 28) = 4.51, p < .05, MSC = 25,840.00]
but not by split [for addition, F{2y 28) < 1, MSC = 1,690.68;
for multiplication, F(2, 28) < 1, MSe = 6,561.48]. These
effects suggest that the experiment was successful in separating
production from comparison; the factor that should reflect
production affected reaction time, whereas the factor that
should reflect comparison did not.

Reaction times to the second display averaged 592 ms in
addition and 590 ms in multiplication. These values were
close to reaction times at the longest experimenter-imposed
delay in Experiments 1 and 2 (575 ms for addition and 607
ms for multiplication). The similarity suggests that subjects
in the present experiments were in the same state of prepara-
tion after pressing the space bar as subjects in the previous
experiments were at the asymptotic delay. But did the space-
bar method separate comparison from production?

Second-display reaction times were affected by split [for
addition, F(2, 28) = 17.84, p < .01, MSe = 4,878.25; for
multiplication, F(2, 28) 54.68, p < .01, MSe = 1,885.28], as
would be expected if second-display reaction times reflected
only comparison. However, problem size effects were also
significant [for addition, F(2, 28) = 14.89, p < .01, MS, =
1,781.11; for multiplication, F{2, 28) = 24.71, p < .01, MSe

= 3,172.18], which is contrary to the hypothesis that second-
display reaction times reflect only comparison.

In ANOVAS comparing first-display reaction times to second-
display reaction times, there were significant interactions be-
tween display and split [for addition, /-"(2, 28) = 9.89, p < .01,
MS, = 4,025.04; for multiplication, F(2, 28) = 12.59, p < .01,
MSe = 4,818.38], indicating that split affected only second-
display reaction times. The same ANOVAS showed nonsignifi-
cant interactions between display and problem size [for ad-
dition, _F(2, 28) < 1, MS, = 3,644.33; for multiplication, F(2,
28) < 1, MS, = 14,195.88], indicating that the problem size
effects were similar in magnitude for both displays, contrary
to the hypothesis that second-display reaction times reflect
only comparison. It appears as if subjects repeated the whole
verification process when the second display appeared.

Second-display reaction times were also affected by the
delay between the pressing of the space bar and the appearance
of the answer. For addition, the means were 648, 600, 581,
and 568 ms for the 0-, 125-, 250-, and 500-ms delays, F(3,
42) = 36.13, p < .01, MSC = 4,964.63; for multiplication, the
means were 636, 606, 585, and 586 ms, ^(3, 42) = 20.91, p
< .0l,MSc - 3,919.10. There were no significant interactions
among delay, split, and problem size.

Experiments 3a and 4a. Number comparison reaction
times are presented in Table 2. The left panel contains data
from the addition numbers; the right contains data from the
multiplication numbers. First-display reaction times averaged
490 ms for the addition numbers and 532 ms for the multi-
plication numbers. There were no significant effects of prob-
lem size or split in the first-display reaction times.

Second-display reaction times averaged 570 ms for addition
numbers and 543 ms for multiplication numbers. These
values are close to the values at the longest experimenter-
imposed delay in Experiments la and 2a (573 ms for addition
numbers; 569 ms for multiplication). Again, this suggests that
the space-bar method can induce the same state of preparation
as experimenter-imposed delays.

Second-display reaction times were affected by split [for the
addition numbers. F(2y 28) = 26.16,/>< .01, MSe = 5,128.09;
for the multiplication numbers, F(2, 28) = 17.11, p < .01,
MS? = 8,066.20] but not by problem size [for the addition
numbers, F(2, 28) < 1, MSt = 2,719.39; for the multiplication
numbers, F(2, 28) - 1.81, MSe = 2,583.28]. Second-display
reaction times were strongly affected by the delay between the
space-bar response and the onset of the answer. In addition,
the means were 603, 578, 565, and 563 ms for the 0-, 125-,
250-, and 500-ms delays, F{3, 42) - 14.73, p < .01, MS, =
3,371.50; in multiplication, the means were 576, 544, 541,
and 542 ms, F(3,42) = 13.88,/? < .01, MSe = 2,952.07. Delay
did not interact with problem size in either experiment. Delay
did not interact with split for addition numbers, but it did for
multiplication numbers, F(6, 84) = 3.03, p < .01, MSe =
1,373.99. The interaction reflected a reduction in the magni-
tude of the split effect as delay increased, though the relative
ordering of the different conditions remained the same (i.e.,
split 0 < split 12 < split 2).

2 Experiment 3 involves addition; Experiment 4 involves multipli-
cation; Experiment 3a involves number comparison using addition;
Experiment 4a involves number comparison using multiplication.
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Table 1
Reaction Times (RT, in ms) to First and Second Displays and Accuracy (Ace.) for Second Displays in the Addition
and Multiplication Tasks From Experiments 3 and 4

Problem size in addition Problem size in multiplication

Split

0
2
12

M

0
2
12

M

RT

569
550
586

569

533
623
560

562

1

Ace.

97
95
97

RT

620
635
626

625

589
662
584

606

2

Ace.

95
94
98

RT

638
638
626

635

589
660
593

608

3

Ace. M

First display
609
608
613

Second display
95 570
93 648
98 579

RT

596
570
576

585

503
588
597

548

1

Ace.

98
99
98

RT

663
630
679

659

563
633
630

598

2

Ace.

97
96
96

RT

660
672
685

672

588
677
648

625

3

Ace.

94
92
96

M

640
624
647

551
633
625

Number comparison performance was compared with
arithmetic performance in ANOVAS on second-display reaction
times. Arithmetic was slower than number comparison for
both addition and multiplication, but the effect was significant
only in multiplication, h\\, 28) = 4.26, p < .05, MS* —
46,574.13; in addition, F(l, 28) < I, MSe = 62,457.20.
Problem size effects were larger in magnitude in arithmetic
than in number comparison, producing significant interac-
tions in addition, F(2, 56) = 12.15, p < .01, MSe = 1,245.93,
and in multiplication, F(2, 56) = 8.98, p < .01, MSe =
1,762.49. Split effects were larger in arithmetic than number
comparison in addition, F{2, 56) = 3.62, p < .05, MSC =
3,201.21, and were different in pattern in multiplication, F{2,
56) = 6.14, p < .01, MSe = 1,717.54, as was observed in
Experiments 2 and 2a.

Discussion

Experiments 3 and 4 tested the hypothesis that verification
is production plus comparison by attempting to separate

production and comparison in time. The procedure was partly
successful in that reaction times to the first display were
affected by problem size but not split, as they would be if they
reflected only a production-like process. However, reaction
times to the second display were affected by both problem
size and split. If they reflected only comparison, they should
have been affected by split alone. It is as if subjects pressed
the space bar and then compared the equation as a whole
against memory, contrary to the hypothesis that verification
is production plus comparison.

The contrast with number comparison leads to the same
conclusion. If the procedure had separated production from
comparison, second-display reaction times should be the same
for arithmetic and number comparison. But they weren't.
Second-display reaction times were slower in arithmetic than
in number comparison, and problem size and split effects
were larger. Something more was going on than just the
comparison of numbers.

The conclusions with subject-imposed delays between ar-
guments and answer corroborate conclusions with experimen-

Table 2
Reaction Times (RT, in ms) to First and Second Displays and Accuracy (Ace.) for Second Displays in the Number Comparison
Task With Addition and Multiplication Numbers From Experiment 3a and 4a

Problem size in addition Problem size in multiplication

Split

0
2
12

M

0
2
12

M

RT

488
482
487

486

539
601
598

569

1

Ace.

97
96
97

RT

494
487
508

496

543
605
573

566

2

Ace.

96
96
97

RT

485
477
510

489

565
598
573

575

3

Ace. M RT
First display

489 534
482 524
502 548

535

Second display
95 549 513
96 601 556
97 581 547

532

1

Ace.

97
97
97

RT

530
533
540

533

523
572
553

543

2

Ace.

96
96
96

RT

532
528
522

529

529
598
564

555

3

Ace.

96
96
97

M

532
528
537

522
575
555
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ter-imposed delays. This is remarkable because subject-im-
posed delays require a voluntary response before the answer
appears, whereas experimenter-imposed delays do not. One
might expect more active preparation when a voluntary re-
sponse is required to signal the end of it, but apparently, there
was little difference. In both cases, subjects seemed prepared
to compare the equation as a whole.

Subject-imposed delays pose the same problem as experi-
menter-imposed delays: What were subjects doing during the
delays if not producing an answer? Moreover, if answers were
not produced, why should problem size have affected first-
display reaction times? Again, we suggest that subjects en-
coded the arguments and the operation symbol. The problem-
size effect may be open to many interpretations. One consist-
ent with the encoding hypothesis is that encoding time for
digits in equations is affected by associative connections be-
tween the digits and the equation, just as encoding time for
letters in words depends on associative connections between
letters and words (e.g., McClelland & Rumelhart, 1981).
Digits in small-problem-sizc equations should be more
strongly associated than digits in large-problem-size equations
(Ashcraft, 1987; Campbell, 1987b; Siegler, 1988), and their
encoding should benefit more from the stronger associations.
Encoding should be faster for small problems sizes—hence,
the problem-size effect in first-display reaction times. Whether
this problem-size effect would be the same as the one pro-
duced in response to the equation as a whole is an open
question, the answer depending on detailed assumptions
about the underlying process. We offer some speculations in
the General Discussion.

Experiments 5 and 6
Experiments 1-4 failed to provide any support for the

hypothesis that verification is production plus comparison.
Instead, they support views in which the entire equation is
compared against memory. One surprising result was that
subjects seemed to prefer evaluating the equation as a whole,
showing evidence of having done so even when substantial
delays were interposed—by the experimenter or by them-
selves—between the arguments and the answer. This prefer-
ence probably reflects a strategic choice by the subjects be-
cause they all could produce sums and products if they wished
to. What is interesting is the strength of their preference for
this strategy. Experiments 5 and 6 were designed to test the
limits of this preference by requiring subjects to produce the
correct sum or product and masking the arguments before
the answer appeared. This procedure guaranteed that subjects
had the correct sum or product in mind before the answer
appeared, and it prevented subjects from seeing the equation
as a whole. Under these circumstances, subjects should aban-
don the strategy of comparing the whole equation, choosing
instead to compare the produced answer with the presented
one.

The experiments used the subject-imposed delay procedure
of Experiments 3 and 4. Subjects were required to say the
sum (Experiment 5) or product (Experiment 6) of the argu-
ments out loud before pressing the space bar. Also, when the
answer appeared, masks (#s) appeared in the positions that
the arguments occupied, so the arguments and the answer
never appeared simultaneously.

The requirement to complete the utterance of the answer
before pressing the space bar resulted in long and excessively
variable space-bar latencies, which made interpretation very
difficult. Consequently, our predictions addressed reaction
times to the answers. If subjects compared the answer against
the sum or product they produced before pressing the space
bar, there should be no effect of problem size in the answer
reaction times. However, if they still preferred to compare the
equation as a whole against memory, then problem size
should affect the answer reaction times, and the magnitude
of the effect should be about the same as in Experiments 3
and 4.

Method

Subjects. Each experiment used a separate group of 16 subjects
from introductory psychology classes or the general student body, for
a total of 32 subjects. Introductory psychology students received
course credit for participating; the others were paid $3.50.

Apparatus and stimuli- These were the same as in Experiments 3
and 4, except that a string of five number signs (i.e., #####) appeared
in place of the arguments and operation symbol in the answer display.
The string was constructed in such a way that the first number sign
covered the first argument, the third number sign covered the oper-
ation symbol, and the fifth number sign covered the second argument.

Procedure. The procedure was the same as in Experiment 3 and
4, except that subjects were told to utter the correct sum or product
of the arguments out loud before pressing the space bar. To prevent
confusion or interference from answers uttered by other subjects,
only 1 subject was tested at a time, unlike the previous experiments.
There was no formal check to ensure that subjects did completely
utter the answer before pressing the space bar. We observed each
subject for the first few trials to be sure they followed instructions
and that they all spoke before pressing the space bar at that time. In
most cases, we could hear the utterance and the click of the space bar
from the office adjoining the testing room, and they seemed to be
synchronized appropriately.

Design and data analysis. Reaction times were analyzed as in
Experiments 3 and 4. First-display reaction times were analyzed in a
3 (problem size) x 3 (split) within-subjects design, though these data
were not easily interpretable, given the requirement to utter the
response out loud before pressing the space bar. Second-display
reaction times were analyzed in a 3 (problem size) x 3 (split) x 4
(delay between space-bar response and onset of second display)
design. They were also compared with second-display arithmetic
reaction times from Experiments 3 and 4 and with second-display
number comparison reaction limes from Experiments 3a and 4a, in
3 (problem size) X 3 (split) within-subjects designs, with experiments
as a between-subjects factor.

Results

Reaction times to the first and second displays are presented
as a function of split and problem size in Table 3. The left
panel contains data from the addition task; the right panel
contains data from the multiplication task. The table also
contains accuracy data for responses to the second display.

Reaction times to the first display are difficult to interpret
because subjects were required to utter the sum or product
before pressing the space bar, and subjects may have varied
widely in the criteria they used to decide when to press the
space bar. Some may have waited until the utterance was
complete; others may have pressed the space bar in synchrony
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Table 3
Reaction Times (RT, in ms) to First and Second Displays and Accuracy (Ace.) for Second Displays in the Addition
and Multiplication Tasks From Experiments 5 and 6

Problem size in addition Problem size in multiplication

Split

0
2
12

M

0
2
12

M

RT

816
824
819

819

527
621
596

567

1

Ace.

97
95
98

RT

949
968
928

949

551
654
589

586

2

Ace.

96
95
98

RT

960
931
931

946

562
624
585

583

3

Ace.

95
96
98

M

1

RT

First display
911 1,121
908 1,111
893 1,138

Second <
547
633
590

1,123

iisplay
586
640
638

613

Ace.

97
97
96

2

RT

1,349
1,352
1,353

1,351

602
670
648

631

Ace.

96
96
97

3

RT

1,495
1,505
1,480

1,494

611
679
661

641

Ace.

95
97
98

M

1,322
1,323
1,324

621
640
650

with their utterance. The first-display reaction times were
substantially longer here than they were in Experiments 3 and
4, averaging 905 ms in addition and 1,323 ms in multiplica-
tion.3 Analyses of variance on the first-display reaction times
yielded significant main effects of problem size [in addition,
F(2, 28) = 8.26, p < .01, MS, = 30,103.02; in multiplication,
F(2, 28) = 27.74, p < .01, MS, = 60,334.54] but no effects of
split [in addition, F(2, 28) < 1, MS, = 3,857.59; in multipli-
cation, F(2, 28) < 1, MS, = 2,629.85].

Reaction times to the second display averaged 579 ms in
addition and 628 ms in multiplication, which were reasonably
close to the values observed in Experiments 3 and 4 (592 and
590 ms, respectively). Second-display reaction times were
affected by split [in addition, F(2, 28) = 38.43, p < .01, MS,
= 9,327.82; in multiplication, F(2, 28) = 36.69, p < .01, MSe

= 5,827.13], reflecting the underlying comparison process.
Problem-size effects were nearly significant in addition, F(2,
28) = 3.23, p < .06, MS, = 4,257.23, and highly significant
in multiplication, F(2, 28) = 9.24, p < .01, MS, = 4,389.74,
which could suggest that the procedure did not separate
comparison from production.

The problem size effects were intermediate between those
observed in previous number comparison experiments (Ex-
periments 3a and 4a) and those observed in previous arith-
metic experiments (Experiments 3 and 4), though they were
closer in magnitude to the number comparison effects. Anal-
yses of variance comparing the present experiments with
number comparison showed significant interactions between
problem size and experiments [for addition numbers (Exper-
iment 3a), F(2, 56) = 3.48, p < .05, MS, = 846.99; for
multiplication numbers (Experiment 4a), F(2, 56) = 6.95,
p < .01, MSC = 875.39]. Analyses comparing the present
experiments with previous arithmetic tasks also showed sig-
nificant interactions between problem size and experiments
[for addition (Experiment 3), F(2, 56) = 4.64, p < .05, MS,
= 1,416.10; for multiplication (Experiment 4), F(2, 56) =
6.56, p < .01, MS, = 1,978.67]. Thus, the procedure appears
to have been somewhat successful in separating comparison
from production.

Second-display reaction times were affected by the delay
between the space-bar response and the onset of the answer.
In addition, the means were 638, 592, 572, and 557 ms for
the 0-, 125-, 250-, and 500-ms delays, F(3, 42) = 80.70, p <
.01, MS, = 2,211.70; in multiplication, the means were 675,
648, 621, and 605 ms, F(3, 42) = 27.24, p < .01, MS, =
5,066.15]. Delay did not interact with split or problem size in
the addition task, but in the multiplication task it interacted
with problem size, F(6, 84) = 2.51, p < .05, MS, = 3,463.14,
and with split and problem size jointly, F(\2, 168) = 2.22,
p < .05, MS, = 2,531.69. In the former interaction, small
problems were always faster than large problems, but inter-
mediate problems were intermediate in speed at short delays
but slower than the other conditions at long delays. The latter
interaction affords no simple description, but it does not
compromise the main conclusions. The interaction between
problem size and split was significant in the addition task,
F(4, 56) = 4.87, p < .01, MS, = 2,974.73, but not in the
multiplication task. No other effects were significant.

Discussion

Experiments 5 and 6 tested the limits of the strategic
preference to evaluate the equation as a whole, observed in

3 The 418—ms difference between experiments in first-display re-
action times is difficult to explain. The experiments were run at
different times—the multiplication experiment in the spring and the
addition experiment in the fall—and it is possible that subtle varia-
tions in the instructions were responsible for the differences. Subjects
were instructed to say the answer out loud before pressing the space
bar, and subjects' criteria for deciding when to press (relative to their
utterance) may have varied between experiments. There was nothing
in the task demands to force a tight coupling between producing the
answer and pressing the space bar, so there was plenty of room for
strategies to operate. Note, however, that these arguments do not
apply to second-display reaction times. There, subjects were in-
structed to respond as quickly and accurately as possible, and this
task demand forced prompt responding.
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the previous experiments. The arguments and answer never
appeared simultaneously, as they had in previous experi-
ments; the arguments were masked when the answer ap-
peared. And subjects had to utter the sum or product out
loud before pressing the space bar, guaranteeing that they had
produced an answer. The question was whether they would
compare that answer with the presented one or compare the
equation as a whole against memory. The evidence suggests
they mostly compared answers: The effects of problem size
on second-display reaction times were small, not much larger
than effects in number-comparison (cf. Experiments 3a and
4a) and substantially smaller than effects in previous arith-
metic experiments (cf. Experiments 3 and 4). However, sec-
ond-display reaction times were longer than number-compar-
ison reaction times, and the second-display problem-size effect
was significantly larger than the number-comparison prob-
lem-size effect. Perhaps the procedure did not remove all of
the differences between tasks.

General Discussion

The experiments were designed to test the hypothesis that
verification is production plus comparison. That hypothesis
predicts a reduction in problem-size effects when a delay is
imposed between the arguments and the answer. The delay
should separate production from comparison and absorb
reaction-time effects of factors like problem size that affect
only production. The experiments provided very little support
for the hypothesis. In Experiments 1 and 2, which used
experimenter-imposed delays, problem-size effects dimin-
ished with delay but did not disappear as predicted. In Exper-
iments 3 and 4, which used subject-imposed delays, large
problem-size effects were observed, contrary to prediction.
Only in Experiments 5 and 6, in which the arguments were
masked and subjects uttered the sum or product out loud
before the answer was presented, were problem-size effects
clearly diminished by delay. Thus, it appears that verification
is not production plus comparison, except in very unusual
circumstances. In verification, subjects seem to prefer to
evaluate the equation as a whole. The data cannot tell us
whether this evaluation occurs on every trial (e.g., if subjects
matched the equation as a whole against memory) or as an
occasional strategy (e.g., mixing production-plus-comparison
with side-stepping strategies), but they rule out the possibility
that verification is based only on production plus comparison.
This conclusion has important implications for current theo-
ries of arithmetic performance and interesting parallels in
other aspects of cognition.

Theories of Arithmetic Performance

Counting models. Counting models must predict that ver-
ification is production plus comparison (e.g., Groen & Park-
man, 1972). They assume that the underlying knowledge
representation is the number line (i.e., 0, 1, 2, 3, . . . ) and
that the "retrieval" process is a counting algorithm. Sums and
products4 are the only information available in counting

models, and the only way to "retrieve" them is by counting.
Thus, the equation cannot be compared as a whole in verifi-
cation tasks, nor can the answer be checked for plausibility.
The sum or product must first be retrieved and then compared
with the presented answer.

In principle, counting could account for our results if we
assumed that subjects repeat the whole verification process
when the answer appears. That is, they count out the sum or
product and compare it with the presented answer. But count-
ing is voluntary and laborious; this assumption seems implau-
sible. Why bother counting again when the answer is already
available?

Table-search models. Table-search models, such as Ash-
craft and Battaglia's (1978) and Geary et al.'s (1986), must
also predict that verification is production plus comparison.
They assume that the underlying knowledge representation is
a table of arithmetic facts in which the rows and columns
represent the digit arguments and the cell entries represent
the sums, products, and so on. The retrieval process is spread-
ing activation, which begins at 0,0 and spreads along the rows
and columns until the sum or product is activated. As in
counting models, sums and products are the only information
available, and they can be retrieved in only one way. The
models lack the flexibility to retrieve information differently
in production and verification.

In principle, table-search models could account for our
results if subjects repeated the retrieval process when the
answer appears. That seems unlikely because they would have
already retrieved a sum or product before the answer ap-
peared, so there would be no point in retrieving a second one.

Associative network models. Associative network models,
such as Ashcraft's (1982, 1987) and Campbell's (1987a,
1987b), also assume that verification is production plus com-
parison. That assumption is explicit in Ashcraft's simulation,
and it is at least implicit in Campbell's verbal descriptions. If
that assumption is the core of their theories, then our results
falsify their models. As with counting and table-search
models, these could be salvaged by assuming that subjects
produced again when the answer appeared, but that seems
implausible. Why produce again when a computed answer is
already available?

We suspect that the assumption thai verification is produc-
tion plus comparison is not central to associative network
models. Associative network models make three kinds of
assumptions: Assumptions about representation, assumptions
about microprocesses that operate on representations, and
assumptions about macroprocesses that operate on the results
of microprocesses. The models assume that arithmetic knowl-
edge is presented in an associative network, linking digits with
their sums and products. The microprocess that retrieves

4 Existing counting theories apply to addition and not multiplica-
tion. In principle, there could be counting models of multiplication:
Subjects could count in units of the multiplier the number of "counts"
specified by the multiplicand (or vice versa). Thus, one could "count
multiply" 5 times 3 by counting three steps in units of five (i.e., 5,
10, 15; but see Ashcraft et al., 1984, Experiment 2).
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information from the network is activation. Activation flows
along associative links, activating quiescent nodes. The ma-
croprocess "reads" the pattern of activation in the network
and generates the appropriate response. In Ashcraft's and
Campbell's models, the macroprocess retrieves a sum or prod-
uct, selecting the number represented by the most highly
activated node in the network. Another macroprocess com-
pares the retrieved answer with the presented one. We believe
our results challenge the macroprocess assumptions of these
models, yet are quite consistent with the representation and
microprocess assumptions.

A Dual Macroprocess Model of Production and
Verification

Our results can be interpreted in the framework of associ-
ative network models if we assume that production and
verification involve different macroprocesses operating on the
same representations and microprocesses. Activation flowing
through an associative network provides several sources of
information that may be exploited to perform arithmetic
tasks. Production may involve a macroprocess that chooses
the most highly activated node (e.g., Ashcraft, 1987), but
verification depends on a macroprocess sensitive to other
dimensions of activation.

We suggest that verification involves comparing the amount
of activation or "resonance" produced by the equation as a
whole against some criterion, deciding "true" if it exceeds the
criterion, and "false" if it doesn't. In order for this macro-
process to work, true equations must produce more activation
than false ones. That is the case in Ashcraft's simulation, and
it is likely in Campbell's model. A true equation activates a
set of nodes that are strongly and directly linked to each other,
and activation flows among them, reinforcing the activation
in each node. But a false equation activates a set of nodes that
are not strongly associated or directly connected. Activation
flows out through the network, but there is little reinforce-
ment, and thus, less overall activation.

We could model reaction time effects in several ways. One
straightforward alternative is to assume that reaction time is
inversely proportional to distance from the criterion. This
model predicts fast reaction times for high and low levels of
activation and slow reaction times for intermediate levels. As
activation increases, reaction times to false equations should
get slower, and reaction times for true equations should get
faster. The model can predict problem-size effects if activation
is stronger for smaller problems. Ashcraft (1987) lists several
reasons why it should be. The model may also be able to
predict some of the effects associated with side-stepping strat-
egies: The model suggests that the split effect may occur not
because extreme splits are easy to reject but rather because
small splits are hard to reject. The answers in small-split
problems may be more strongly associated with the arguments
than answers in large-split problems because small-split an-
swers are more likely to occur as errors than are large-split
answers (i.e., when we err, we are more likely to be off by a
little than a lot). Frequent errors may become associated with

the arguments strongly enough to ring true when presented
together in an equation and, therefore, take longer to reject
(cf. Campbell & Graham, 1985; Siegler, 1988). Similarly,
errors may obey parity rules more often than not, so quick
rejection of false problems that violate parity rules may also
reflect differences in associative strength. These effects may
not reflect a deliberate side-stepping strategy after all.

The macroprocess could account for our results in two
ways. First, subjects could deliberately instigate the macro-
process when the answer appears, causing a strong problem-
size effect even when a substantial delay occurs between the
arguments and the answer. Unlike the previous approaches,
one could not argue that subjects already produced the answer
and therefore the process is redundant; no answer is ever
produced. The arguments by themselves may prime the net-
work, but they should not activate it enough to reach a
decision. The answer plus the arguments should activate the
network sufficiently.

Second, problem-size effects may be produced when the
answer occurs because of the flow of activation through the
network, quite independent of the person's intentions. The
answer will activate the digits associated with it (e.g., in
multiplication, 12 will activate 6, 2, 4, and 3), and activation
will propagate back through the network from the digits to
the answer, in a loop. The time taken for activation to
propagate back from the digits to the answer should be at
least proportional to the time taken to propagate from the
arguments to the answer in the first place, producing the same
sort of problem-size effect.

There are likely to be many problems with the model of
verification we have sketched. The model must be analyzed
in more detail before we can be sure that it must predict what
we said it predicts. More analysis and perhaps simulation will
be required to see whether the different effects can be pre-
dicted simultaneously when the same assumption about rep-
resentation, microprocess, and macroprocess for the different
effects are used. We might discover better ways to instantiate
the underlying ideas (e.g., using activation levels to drive a
random-walk decision process; see Ratcliff & McKoon, 1988).
But we see a lot of promise in the model sketched so far.

The most important contribution of the model is to provide
a concrete alternative to the idea that verification is produc-
tion plus comparison. There is no production in our model,
only a comparison of the equation as a whole against memory.
The model underscores the idea that production and verifi-
cation depend on different processes and that idea has impor-
tant implications for future studies of arithmetic. It implies
that no single task reflects arithmetic knowledge directly.
Production reflects some aspects of arithmetic knowledge,
and verification reflects others. It implies that different tasks
may give apparently different answers to the same question.
The different macroprocesses may respond differently to the
same manipulation, producing some unsettling failures to
replicate effects across tasks. More generally, it implies that
we cannot learn about arithmetic in general by studying only
verification or only production. We must study both tasks
and understand the relation between them. Understanding
requires a theory of the competence or capacity that underlies
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a variety of arithmetic tasks. The tasks themselves are a surface
manifestation of the underlying essence we are after. We must
learn how the various tasks tap the essence. We must model
the underlying knowledge representation and the processes
that operate on it at micro- and macrolevels.

Resonance and Retrieval in Other Domains

Our two macroprocess model of arithmetic has precedents
in several cognitive domains. Our approach to production
and verification parallels the contrast between recall and
recognition in studies of episodic memory (e.g., Tulving,
1983),5 between fact retrieval and semantic verification in
studies of semantic memory (e.g., Collins & Loftus, 1975),
and between naming and lexical decision in studies of lexical
memory (e.g., Neely & Keefe, in press). Production, like recall,
fact retrieval, and naming, requires a single response to be
retrieved from memory, whereas verification, like recognition,
semantic verification, and lexical decision, can be done by
evaluating the global response of the memory system (e.g.,
does it ring true?). Production, recall, fact retrieval, and
naming involve a one-out-of-many choice, whereas verifica-
tion, recognition, semantic verification, and lexical decision
involve a binary choice. One-out-of-many choices may be
more difficult than binary choices; thus subjects may prefer
verification to production, recognition to recall, and so on.

The similarity of task requirements suggests that similar
theoretical approaches may succeed in the various domains.
The idea that a common representation and microprocess are
accessed by different macroprocesses may extend far beyond
arithmetic. This idea is well developed in formal theories of
memory, such as the SAM (search of associative memory)
model by Shiffrin and his colleagues (Gillund & Shiffrin,
1984; Raaijmakers & Shiftrin, 1981), the TODAM (theory of
distributed associative memory) model by Murdock (1982,
1983), and the matrix model by Humphreys, Bain, and Pike
(1989; Pike, 1984). In these models, the basic memory system
consists of matrices or vectors that represent associations
between the items and various cues. Recall and recognition
tasks access the basic memory system in different ways. In
both tasks, cues presented to the memory system evoke items
and contexts that were associated with them. Recall involves
selecting the most strongly associated item out of all the
evoked alternatives; recognition involves evaluating the global
response of the memory system, summing over all evoked
items. The various authors formalize these assumptions and
show that the same representation and microprocess, coupled
with different macroprocesses, provides an impressive ac-
count of many qualitative and quantitative phenomena in
recall and recognition.

It seems straightforward to adapt one of these models to
arithmetic or to adapt their desirable features to existing
arithmetic models, such as Ashcraft's (1987) or Siegler's
(1988). Most of the memory models deal only with accuracy,
whereas most arithmetic effects appear in reaction time, but
it should not be difficult to develop versions of the models
that predict reaction time. In principle, the resulting theory
would be broad in scope and precise in its predictions, ac-
counting for the effects of the structural variables that have

preoccupied the field so far, as well as the contrasts and
similarities between production and verification revealed in
our research.

5 The literature on recall and recognition contains an analog of the
verification-is-production-plus-comparison hypothesis: The generate-
and-recognize hypothesis claims that people recall by generating
plausible alternatives, attempting to recognize them, and reporting
only the ones that are recognized.
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