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We define a process as autonomous (a) if it can begin without intention, and (b) if it can run on to

completion without intention. We develop empirical criteria for determining whether a process can

begin without intention, for determining whether it begins in the same way without intention as it

does with intention, and for determining whether it can run on to completion without intention once

it begins. We apply these criteria to assess the autonomy of the processes underlying simple mental

arithmetic—the addition and multiplication of single digits—and find evidence that simple arithmetic

may be only partially autonomous: It can begin without intention, but does not begin in the same

way without intention as with intention and does not run on to completion without intention. This

conclusion suggests there may be a continuum of autonomy, ranging from completely autonomous

to completely nonautonomous.

Introspection suggests that some processes may be autonomous
in that they begin without intention whenever a relevant stimulus
appears and run on to completion ballistically, despite our best
efforts to inhibit them. The purpose of this article is to explore
the concept of autonomous processing, relating it to current ideas
about automaticity and modularity. We develop criteria for de-
termining the extent to which a process is autonomous, and we
use the criteria to assess the autonomy of the processes underlying
simple mental arithmetic—the addition and multiplication of
single digits. Our results address some aspects of current con-
troversies in arithmetic and automaticity, and we suggest some
resolutions.

Concept of Autonomy

Autonomy and Intentionality

The concept of autonomy is linked to the concept of inten-
tionality, so we define a process as intentional if it is executed
as part of a plan for achieving a goal (see Dennett, 1978; Reason
& Myceilska, 1982; Shaffer, 1976). We define a process as au-
tonomous if it can (a) begin without intention, triggered by the
presence of a relevant stimulus in the task environment, and (b)
run on to completion ballistically once it begins, whether or not
it is intended.

We do not assume that intentional processing and autonomous
processing are mutually exclusive. For example, the autonomous
processes underlying skilled typing can be recruited intentionally
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for the purpose of typing a letter. What makes a process auton-
omous is that it need not be intentional; it should be capable of
beginning and running on to completion without intention.
Moreover, some processes may be more autonomous than others.
The degree to which a process is autonomous may be defined
by the extent to which it can begin and run on to completion
without intention. Thus, we consider autonomy to be a contin-
uum along which processes may differ rather than a strict di-
chotomy. This definition allows us to develop criteria for assessing
the extent to which a process is autonomous.

Autonomy and Automaticity

The concept of autonomy is closely linked to the concept of
automaticity, which is derived from natural language in which
it describes performance that is skilled, habitual, and stereotyped.
Modern theorists have sharpened the concept somewhat, arguing
that automatic processes are fast, effortless, unconscious, and
autonomous (e.g., Hasher & Zacks, 1979; LaBerge & Samuels,
1974; Logan, 1980; Posner & Snyder, 1975; Shiffrin & Schneider,
1977). There appears to be a general belief that automaticity is
a unitary phenomenon. This implies that all of these properties
should co-occur in a truly automatic process. However, there are
no strong theoretical reasons to believe in the unity of automa-
ticity. The idea that the various properties should co-occur has
not been deduced from established theoretical principles, al-
though a number of theorists (e.g., Hasher & Zacks, 1979; Logan,
1980; Posner & Snyder, 1975) have asserted it as if it were fact.
Indeed, Regan (1981) and Paap and Ogden (1981) recently chal-
lenged the empirical basis for believing in the unity of automa-
ticity, creating a controversy that remains unresolved (Kahneman
& Treisman, 1984; Logan, 1985a).

In view of the controversy over the unity of automaticity, it
seems appropriate to investigate its various properties separately.
Autonomy, especially, warrants separate investigation. It is usually
operationalized rather narrowly as Stroop-type interference,
which as we show may lead to misinterpretation (also see
Kahneman & Treisman, 1984). The concept needs to be devel-
oped further and applied to a broader empirical base. Moreover,
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separate investigation of each property of automaticity may clar-

ify the issue of co-occurrence, perhaps resolving the controversy.

Autonomy and Modularity

Autonomy has also been discussed in the context of theorizing

about the possible modular organization of mental processes (e.g..

Chomsky, 1980; Fodor, 1983). Fodor's (1983) idea is that many

mental processes may be modular in that they are domain-spe-

cific, their computations are mandatory, and they have only lim-

ited access to information that might be relevant (i.e., they are

informationally encapsulated). Modular processes are contrasted

with central processes that are not domain specific (i.e., they

may be used in a variety of domains), their computations are

optional, and they have access to any information that might be

relevant (i.e., they are informationally unencapsulated).

The idea that modular processes are mandatory suggests they

are autonomous by our definition. However, modular processes

have many properties besides autonomy (Fodor listed nine). Thus,

autonomy and modularity are not identical; all modular pro-

cesses may be autonomous, but all autonomous processes need

not be modular.

More generally, autonomy is a property of modularity, just as

it is a property of automaticity. Thus, autonomy can be studied

separately from modularity, just as it can be studied separately

from automaticity. The case for modularity is primarily theo-

retical, and it should be possible to test the theoretical claims

empirically. Developing empirical criteria for assessing autonomy

would be an important step in that direction.

Autonomy and Arithmetic

We chose mental arithmetic as a domain in which to investigate

autonomy for several reasons. Arithmetic is a symbolic activity

that is well learned and used extensively in everyday life. Thus,

it may be representative of other high-level cognitive activities

to which we would like our conclusions to generalize. Arithmetic

is attractive theoretically because there are several alternative

theories of the underlying processes, and our results address some

aspects of the controversy. According to some theories, simple

arithmetic operations like addition and multiplication of two

digits are atomic in that they represent a single step in compu-

tation (e.g., direct access retrieval of an association; see Thorn-

dike, 1922; Winkelman & Schmidt, 1974). According to others,

simple arithmetic operations are nonatomic because they can be

broken down into simpler operations, such as counting (e.g.,

Groen & Parkman, 1972;Parkman&Groen, 1971) or sequential

memory search (e.g., Ashcraft & Battaglia, 1978; Ashcraft &

Stazyk, 1981). Atomic operations seem more likely to be auton-

omous than nonatomic operations (i.e., sequences of atomic op-

erations), so evidence on the autonomy of simple arithmetic op-

erations can bear on this issue.

Criteria for Assessing Autonomy

Our definition suggests that autonomy can be assessed by de-

termining whether a process can begin and run on to completion

without intention. We can determine whether a process can begin

without intention with the Stroop task or one of its modern vari-

ants. Stroop (1935) showed that subjects' ability to process one

dimension of a multidimensional stimulus is impaired if another

dimension conveys meanings that conflict with the meaning of

the intended dimension. For example, it takes longer to say that

the word "green" is written in red ink than to say that the word

"most" is written in red ink. However, a Stroop effect does not

mean that unintended processing is exactly the same as intended

processing.1 Stroop tasks test the null hypothesis that unintended

processes will not begin without intention; they do not test the

null hypothesis of no difference between intended and unintended

processes (see Kahneman & Treisman, 1984).

Thus, the Stroop effect allows us to distinguish processes that

are not autonomous from processes that are either partially or

completely autonomous. We can distinguish processes that are

partially autonomous from processes that are completely auton-

omous by (a) determining whether the probability that a process

begins is the same under different conditions of intention, and

(b) determining whether the process runs on to completion once

begun, despite efforts to inhibit it. A completely autonomous

process should begin to the same extent under all conditions of

intention and run on to completion ballistically. A process that

meets both of these criteria can be considered completely au-

tonomous; a process that fails one or both can be considered

partially autonomous. The first criterion can be tested by deter-

mining whether Stroop-type interference can be modulated by

manipulating subjects' intention to engage the processes that

produce the interference (e.g., Logan, 1980; Logan & Zbrodoff,

1979). The second can be tested by changing subjects' intentions

about completing problems and then testing to see whether they

completed the underlying processing by comparing their memory

for problems they intended to complete with memory for prob-

lems they did not intend to complete (e.g., Logan, 1983, 1985b).

Initiation Without Intention

If a process is autonomous, it should begin whenever an ap-

propriate stimulus appears, independent of intentions. We used

an arithmetic version of the Stroop task to determine whether

the processes underlying simple mental arithmetic can be initi-

ated without intention. Subjects verified simple arithmetic equa-

tions of the form a + b = c and a X b = c. Half of the equations

were true (e.g., 3 + 4 = 7; 3 X 4 = 12) and half were false. Some

of the false equations, called associative lures, would have been

true had subjects performed a different arithmetic operation (e.g.,

3 + 4 = 12; 3 X 4 = 7), and the remaining false equations, called

nonassociative lures, would not have been true under any con-

ventional arithmetic operation (e.g., 3 + 4 = 8 ; 3 X 4 = 11).

1 For example, it may be possible to activate a semantic network un-

intentionally, but the unintentional activation may not be as strong or

extensive as intentional activation would be. Only a small amount of

activation may be necessary to produce a Stroop effect (Kahneman &

Treisman, 1984). Alternatively, a semantic network may be activated to

the same extent with and without intention, but it may be less likely to

be activated without intention than with intention. The Stroop effect may

result from unintentional activation on a relatively small number of trials

(Kahneman & Treisman, 1984). By contrast, we would expect a com-

pletely autonomous process to produce the same amount and extent of

activation with and without intention, and we would expect the probability

of activation to be the same with and without intention.
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If simple arithmetic processes possess some degree of auton-

omy, then the irrelevant operation in the associative lures should

be initiated by stimulus presentation and evoke tendencies to

say the equation is true. These tendencies should interfere with

the appropriate response, increasing reaction time (RT) and error

rate. The nonassociative lures should evoke no such tendencies,

and so should be responded to faster and more accurately than

the associative lures. This associative confusion effect (i.e., the

difference in RT and error rate to associative vs. nonassociative

lures) should indicate the extent to which simple arithmetic pro-

cesses can be initiated without intention.2

Winkelman and Schmidt (1974) were the first to report as-

sociative confusions in mental arithmetic, presenting a small set

of addition and multiplication equations to a small number of

well-practiced subjects. Zbrodoff (1979) found associative con-

fusions between addition and multiplication in grade school

children, and Findlay (1978) found associative confusions be-

tween addition and subtraction in grade school children. These

demonstrations of associative confusion allow us to reject the

hypothesis that simple arithmetic processes are not autonomous,

leaving two possibilities: Simple arithmetic processes may be

partially autonomous or completely autonomous.

The experiments reported in this section were designed to

replicate the associative confusion effect, thus demonstrating that

arithmetic may be at least partially autonomous. They were de-

signed also to manipulate subjects' intentions to process the ir-

relevant arithmetic operation to see whether arithmetic is com-

pletely autonomous or only partially autonomous.

Experiments 1 and 2

The first two experiments manipulated the relevance of the

irrelevant operation. Simple addition and multiplication verifi-

cation problems were presented in pure blocks, in which only

one operation was relevant for the entire set of blocks, and in

mixed blocks, in which the relevant operation varied randomly

from trial to trial. In pure blocks, subjects should never intend

to perform the irrelevant operation, whereas in mixed blocks

they must intend to perform one operation as often as the other.

If simple arithmetic processes are completely autonomous, they

should begin to the same extent in pure blocks as in mixed blocks,

so the associative confusion effect should be the same in pure

and mixed blocks. However, if simple arithmetic processes are

only partially autonomous, they may be suppressed more when

they are less relevant to intentions; thus, the associative confusion

effect should be smaller in pure blocks than in mixed blocks.

Winkelman and Schmidt (1974) found that the associative

confusion effect was just as strong in pure blocks as in mixed

blocks, but they used a restricted set of equations (i.e., 3*3, 4*3,

3*5,4*5, and 5*5, where * is + or X) and compared pure versus

mixed blocks within subjects. Possibly, different results would

emerge if the entire set of single-digit equations were tested, and

if pure and mixed blocks were manipulated between subjects

(see Poulton, 1982). Accordingly, we used equations representing

all possible pairs of single digits, and we compared pure versus

mixed blocks between subjects.

Experiment 1 examined simple addition, and Experiment 2

examined simple multiplication.

Method

Subjects. A separate group of 16 undergraduates served in each of
the pure-blocks conditions in Experiments 1 and 2. Another group of 16
undergraduates served in the mixed-blocks condition, contributing their

addition data to Experiment 1 and their multiplication data to Experiment
2. All subjects served to fulfill course requirements or for monetary com-
pensation.

Apparatus and stimuli. The stimuli were equations of the form

mb = c, where a and b are single digits from I to 9 and * is either + or

X. All possible pairs of the digits 1 through 9 were used, except for 2*2,
for which associative lures could not be constructed. For the addition

task, 80 true equations were formed such that cwas the sum of a and i;

80 associative lures were formed such that c was the product of a and b

(e.g., 3 + 4 = 12); and 80 nonassociative lures were formed such that c
was neither the sum nor the product of a and 6 (e.g., 3 + 4 = 8). Similarly,

for the multiplication task, 80 true equations, 80 associative lures (e.g.,
3 X 4 = 7), and 80 nonassociative lures (e.g., 3 X 4 = 1 1 ) were formed.
In both the addition and multiplication tasks, the c terms for the non-

associative lures were chosen to match the difference or split between the
left and right sides of the associative lures. This was necessary because
some associative lures had large splits (e.g., 9 + 9 = 81,9x9 = 18), and

the split is known to affect RTs in arithmetic inequality judgments (Mover
and Landauer, 1967; Restle, 1970) and in false responses in arithmetic
verification tasks (Ashcraft & Battagb'a, 1978). By equating the mean

split in the set of nonassociative lures with the mean split in the set of
associative lures, we removed a potential source of confounding.

Each equation was typed on a horizontal line, photographed, and
mounted on the center of a 35-mm slide, where it appeared as black
characters on a white background. Two instances of each true equation

were made to equate the number of true and false equations (i.e., 160 of
each). The slides were rear projected onto an opaque screen by a carousel
slide projector (Kodak Model 650H) equipped with a tachistoscopic
shutter (Uniblitz Model 26). A second projector, equipped with a similar

shutter, exposed a blank white field whenever a stimulus was not exposed
to maintain a constant level of luminance. Viewed at a distance of 75
cm, each digit subtended 0.76° of visual angle vertically and 0.54° hor-

izontally. Each symbol (+, X, and =) subtended 0.54 X 0.54°. Equations
with single-digit c terms subtended 3.82° horizontally, whereas equations
with two-digit c terms subtended 4.43° horizontally.

Each trial began with a 0.5-s foreperiod during which a 1000-Hz tone
sounded as a warning signal. The equation was then exposed for 1 s,

followed by a 3-s intertrial interval. Subjects responded by pressing one

of two telegraph keys mounted in a panel in front of them. A key press
stopped a millisecond timer, which began when the equation was first

exposed, and illuminated a light so the experimenter could tell which

key had been pressed.
Procedure. Each subject completed 320 trials, divided into four blocks

of 80. Within each block, there were 40 true equations and 40 false

equations, 20 of which were associative lures and 20 of which were non-

2 We call the difference in RT to associative versus nonassociative lures

the associative confusion effect to be consistent with the terminology
introduced by Winkelman and Schmidt (1974). In the Stroop literature,
such differences in RT are often called interference effects, and in the
memory literature error data are often interpreted as confusion effects.
However, the choice of terminology seems to depend on rather loose

conventions rather than strict theoretical distinctions. For example, in-
terference has been proposed as a source of error (forgetting) in both
long- and short-term memory. Moreover, many students of RT consider
speed and accuracy to be different aspects of the same underlying phe-

nomenon. Indeed, performance differences between associative and non-
associative lures manifest themselves in accuracy data as well as in RT
data (see Tables 1 and 2).
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associative lures. The order of trials was randomized within these con-

straints.

In the pure-blocks conditions, the order of stimuli in each block was

fixed. There were two orders of trials within each block; half of the subjects

received each order. The order of blocks varied between subjects according

to a balanced 4 X 4 Latin square; 4 subjects received each order. Assign-

ment to orders of blocks and orders of trials within blocks was orthogonal.

In the mixed-blocks condition, two complementary orders were con-

structed by substituting addition equations for multiplication equations

and vice versa. In each order, half of the trials in each block of 80 involved

addition, and half involved multiplication. Within each type of equation,

there were 20 true equations, 10 associative lures, and 10 nonassociative

lures in each block. Half of the subjects received each order of trials

within blocks. The order of blocks varied between subjects according to

a balanced 4 X 4 Latin square. Assignment to orders of blocks and orders

of trials within blocks was orthogonal.

Half of the subjects in each condition pressed the key under their

dominant hand to indicate the equation was true, and pressed the key

under their nondominant hand to indicate the equation was false; the

other half did the opposite. The assignment to response-mapping con-

ditions was orthogonal to the assignment to orders of blocks and trials

within blocks.

Subjects were told that their task was to verify simple arithmetic equa-

tions. Pure-blocks subjects were told whether they would see addition or

multiplication equations; mixed-block subjects were told they would see

both. The response-mapping rules were described, and subjects were told

to respond as quickly as possible without making too many errors. Brief

rests were given between each block of 80 trials.

Results and Discussion

Mean RTs in the pure- and mixed-blocks conditions of the

addition and multiplication tasks are presented in Table 1 along

with the corresponding error rates. RTs to true equations were

faster than RTs to false equations, reflecting a general tendency

to be faster with affirmative responses. RTs to associative lures

were 37 ms slower than RTs to nonassociative lures, on the av-

erage, reflecting an associative confusion effect.

Intending to perform only one operation had strong effects; it

reduced mean RT and reduced the magnitude of the associative

confusion effect. In both addition and multiplication, the asso-

ciative confusion effect was weaker in pure blocks, in which only

one operation was relevant, than in mixed blocks, in which both

operations were relevant (15 ms vs. 60 ms).

Associative confusions seemed stronger in the multiplication

task than in the addition task: The effect was larger on the average

in multiplication than in addition (48 ms vs. 28 ms), but the

difference was largely due to the negligible associative confusion

effect in pure addition (—4 ms).

These effects were confirmed in separate analyses of variance

(ANOVAS) performed on RTs to false equations. In the addition

task, the main effect of associative confusion was significant, F( 1,

30) = 12.61, p < .01, MS, = 889.27, as was the main effect of

pure versus mixed blocks, F(\, 30) = 12.09, p < .01, MS, =

35376.57, and the interaction between associative confusion and

pure versus mixed blocks, P(l, 30) = 16.91, p < .01, MS, =

889.27.

In the multiplication task, the main effect of associative con-

fusion was significant, F(l, 30) = 35.63,p< .01, MS, = 1049.51,

as was the main effect of pure versus mixed blocks, F(l, 30) =

6.92, p < .05, MS, = 28801.74, but the interaction between

Table 1

Mean Reaction Times, Standard Deviations, and Proportion

of Errors in Experiments I and 2

Experiment 1:
Addition

Condtion

Correct

equations

Associative
lures

Nonassociative
lures

Confusion
effect

Measure

RT
SD
P(E)
RT
SD
P(E)
RT
SD
P(E)

RT
P(E)

Pure

748
179
.05

797
166
.05
801
167
.05
-4
.00

Mixed

897
185
.07

991
158
.09

934
155
.03
57
.06

Experiment 2:
Multiplication

Pure

797
183
.04

871
184
.04
837
164
.03
34
.01

Mixed

853
167
.04

996
161
.06

934
154
.02
62
.04

Note. RT = Reaction time (in ms); SD = standard deviation (in ms);
P(E) = proportion of errors.

associative confusion and pure versus mixed blocks only ap-

proached significance, F(1, 30) = 2 . 8 7 , p < . I I , M S , = 1049.51.

The experiments demonstrated a Stroop-like associative con-

fusion effect in mental arithmetic, replicating previous research

(Findlay, 1978; Winkelman & Schmidt, 1974; Zbrodoff, 1979),

allowing us to reject the hypothesis that the irrelevant operation

cannot begin without intention. The associative confusion effect

was also modulated by intentions, allowing us to reject the hy-

pothesis that intention has no effect on the initiation of the ir-

relevant operation, which suggests that the underlying processes

are not completely autonomous.

The negligible associative confusion effect in the pure addition

blocks suggests that the irrelevant multiplication operation cannot

be completely autonomous, but it need not mean that multipli-

cation is not at all autonomous. Stroop interference depends on

the proportion of trials in which the different dimensions have

conflicting interpretations (Greenwald & Rosenberg, 1978; Lo-

gan, 1980; Logan & Zbrodoff, 1979; Logan, Zbrodoff & Wil-

liamson, 1984), so the pure addition results may reflect the fact

that 50% of the lures were associative, rather than the lack of

autonomy of the irrelevant multiplication operation. Experiments

3 and 4 varied the relative frequency of associative lures to assess

this possibility.

Experiments 3 and 4

The next two experiments manipulated the salience of the

irrelevant operation by varying the relative frequency of asso-

ciative versus nonassociative lures. For some subjects, 80% of

the false equations were associative lures, whereas for other sub-

jects 20% of the false equations were associative lures. In other

Stroop-like tasks, subjects responded to variation in the relative

frequency of conflicting stimuli by varying their intentions to

process the irrelevant dimensions (Logan, 1980; Logan & Zbro-

doff, 1979; Logan et al., 1984), sometimes basing their responses

entirely on the irrelevant dimension (Logan & Zbrodoff, 1982).

In the present experiments, if the frequency of associative lures

were high enough, subjects could decide whether the equation
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was true for addition or for multiplication, and then compare

their decision with the relevant operation, responding "yes" if

they matched and "no" if they did not. In pure blocks, they

could make the comparison in memory; in mixed blocks, they

would have to encode the operator symbol (+ or X) to determine

which operation was relevant. In both pure and mixed blocks,

this strategy may be faster than the instructed strategy of deciding

whether the equation was true or false for the operation indicated

by the operator symbol, so subjects may deliberately (i.e., inten-

tionally) exploit it to maximize performance.

Thus, manipulating the relative frequency of associative lures

may be a way to manipulate subjects' intentions. If the irrelevant

operation is completely autonomous, it should be initiated to

the same extent in all conditions, and the relative frequency of

associative lures should not affect the magnitude of the associative

confusion effect. However, if the irrelevant operation is only par-

tially autonomous, the relative frequency of associative lures may

affect the magnitude of the associative confusion effect.

In addition to manipulating the relative frequency of associa-

tive lures, we repeated the pure- versus mixed-blocks manipu-

lation from Experiments 1 and 2. We felt it was important to

replicate the reduction in the associative confusion effect in pure

blocks because it was not observed by Winkelman and Schmidt

(1974).

Experiment 3 examined addition, and Experiment 4 examined

multiplication.

Method

Subjects. A separate group of 20 undergraduates served in each of
the pure-blocks conditions of Experiments 3 and 4. Another group of 24
undergraduates served in the mixed-blocks conditions, contributing their
addition data to Experiment 3 and their multiplication data to Experiment

4. No subject had served in Experiments 1 and 2. Each subject served
to fulfill course requirements of for monetary compensation.

Apparatus and stimuli. These were the same as in Experiments 1
and 2.

Procedure. Each subject completed 160 trials, divided into two blocks
of 80. Within each block, there were 40 true equations and 40 false

equations. In the 80% associative lure conditions, there were 32 associative
lures per block (64 in the entire experiment) and 8 nonassociative lures

(16 in the entire experiment); in the 20% associative lure conditions,
there were 8 associative lures per block (16 in the experiment) and 32
nonassociative lures per block (64 in the experiment).

In the pure blocks, the order of trials within blocks was fixed, but the
order of blocks varied between subjects. Half received them in one order,

and half received them in the other. The relative frequency of associative
lures was varied by constructing two parallel sets of blocks, one with
100% associative lures and one with 100% nonassociative lures, and then
exchanging 20% of the incorrect equations. Five nonoverlapping exchanges

were used; two subjects received each one. Half of the subjects pressed
the key under their dominant hand to indicate the equations were true
and half did the opposite.

In the mixed blocks, there were two complementary orders of trials
within blocks (i.e., the addition equations in one were multiplication
equations in the other, and vice versa). The order of blocks varied between

subjects, half receiving one order and half the other. The relative frequency
of associative lures was varied by constructing two parallel sets of blocks
for each order of trials within blocks, one set with 100% associative lures
and one set with 100% nonassociative lures. Six different exchanges of
20% of the incorrect equations were made, three in each order of trials

within blocks, and 4 subjects were assigned to each of them, 2 in the

20% associative lure condition and 2 in the 80% associative lure condition.
Response mapping was varied as in the pure blocks, but it was confounded

with order of blocks.
Subjects were instructed as in Experiments 1 and 2. They were not

told about the associative lures or the frequency with which they would
occur.

Results and Discussion

Mean RTs in the 20% and 80% associative lure conditions and

in the pure- and mixed-blocks conditions are presented in Table

2 along with the corresponding error rates. Again, RTs to true

equations were faster than RTs to false equations. Overall, RTs

to associative lures were 28 ms slower than RTs to nonassociative

lures, replicating the associative confusion effect. The associative

confusion effect was modulated by both manipulations of inten-

tion: It was smaller in the 80% associative lure condition than

in the 20% associative lure condition (—3 ms vs. 57 ms), and it

was smaller in pure blocks than in mixed blocks (7 ms vs. 49

ms). Both of the intentional effects seemed weaker in the mul-

tiplication task than in the addition task. The intentional effects

were most impressive in the 80% associative lure, pure addition

condition, in which they produced a 41-ms reversal of the as-

sociative confusion effect (cf. Logan, 1980; Logan & Zbrodoff,

1979).

These effects were confirmed by separate ANOVAS on RTs to

false equations. In the addition task, the main effect of associative

Table 2

Mean Reaction Times, Standard Deviations, and Proportion

of Errors in Experiments 3 and 4

Pure Mixed

Condition Measure 20% 80% 20% 80%

Experiment I : Addition

Correct
equations

Associative
lures

Nonassociative
lures

Confusion
effect

RT
SD
P(E)
RT
SD
P(E)
RT
SD
P(E)
RT
P(E)

796
193
.07
844
159
.06
832
162
.03
12

.03

925
223
.07
941
175
.04

982
197
.04

-41
.00

1,040
221
.09

1,184
196
.17

1,083
109
.05
101
.12

1,013
191
.06

1,153
196
.07

1,141
179
.02
12

.05

Experiment 2: Multiplication

Correct
equations

Associative
lures

Nonassociative
lures

Confusion
effect

RT
SD
P(E)
RT
SD
P(E)
RT
SD
P(E)
RT
P(E)

884
209
.05

1,002
225
.08

955
206
.02
47
.06

780
185
.04

841
169
.05
831
155
.03
10

.02

1,019
229
.06

1,154
196
.13

1,088
214
.08
66
.05

1,053
217
.05

1,187
207
.07

1,170
184
.05
17

.02

Note. RT = reaction time (in ms); SD = standard deviation (in ms);
P(E) - proportion of errors.
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confusion was significant, F[l, 40) = 5.77, p < .05, MS, =

1657.06, as was the main effect of pure versus mixed blocks,

F(l, 40) = 16.59, p < .01, MS, = 76100.73, but the main effect

of relative frequency of associative lures was not significant, F( 1,

40) = 1.30, MS, = 76100.73. Intentional modulation of the as-

sociative confusion effect was evidenced by a significant inter-

action between associative confusion and pure versus mixed

blocks, P(l, 40) = 16.16, p < .01, MS, = 1657.06, and a signif-

icant interaction between associative confusion and the relative

frequency of associative lures, F([, 40) = 16.72, p < .01, MS, =

1657.06.

In the multiplication task, the main effects of associative con-

fusion, F{1, 40) = 10.23, p < .01, MS, = 2646.93, and pure

versus mixed blocks, F( 1,40)= 17.31, p< .01, MSe = 74324.10,

were significant, but the main effect of relative frequency of as-

sociative lures was not, fi; 1,40) < 1, MS, 74324.10. The evidence

for intentional modulation of the associative confusion effect

was weak: The interaction between associative confusion and

relative frequency of associative lures was marginally significant,

F(l, 40) = 3.78, p < .06, MS, = 2646.93, and the interaction

between associative confusion and pure versus mixed blocks was

null, F(l, 40) < 1, MS, = 74324.10.

The intentional effects (in the addition task, at least) disconfirm

the hypothesis that the processes underlying simple arithmetic

are completely autonomous, suggesting that they may be partially

autonomous.

Discussion of Experiments 1 to 4

Experiments 1 to 4 addressed the autonomy of simple arith-

metic processes by determining the extent to which simple ad-

dition and multiplication processes could begin without intention.

The Stroop-like associative confusion effect observed in each ex-

periment suggests that simple arithmetic processes may be at

least partially autonomous. However, they are not completely

autonomous because the associative confusion effect was mod-

ulated by intentions in each experiment. These general conclu-

sions are qualified somewhat by limitations on the use of Stroop-

like tasks in determining whether processes are completely au-

tonomous.

Intentional modulation of the associative confusion effect could

occur if arithmetic processes were completely autonomous, being

evoked to the same extent or with equal strength in all conditions,

but their output was suppressed or modulated intentionally,

thereby weakening or reversing the associative confusion effect

(cf. Logan, 1980; Seidenberg, Waters, Sanders & Langer, 1984;

more generally, see late-selection theories of attention, e.g., Dun-

can, 1980; Norman, 1968). This interpretation cannot be ruled

out by the present data or by any evidence that intention can

modulate Stroop interference; the modulation could reflect

suppression of the process itself or suppression of the output of

the process. Thus, there appear to be severe limitations on the

use of Stroop-type effects to assess the autonomy of mental pro-

cesses: Stroop-type effects cannot distinguish partially autono-

mous processes from completely autonomous processes (also see

Kahneman & Treisman, 1984).

This limitation discourages us from making strong interpre-

tations of the intentional manipulations and attempting to dis-

tinguish them from alternative interpretations. The experiments

make the general point that intentions can modulate Stroop-

type interference, although they may not distinguish among de-

tailed interpretations. For our purposes, however, the general

point will suffice, subject to the limitation noted previously.

In the pure addition blocks of Experiment 1, there was no

associative confusion effect. This could mean that the irrelevant

multiplication process is not autonomous, or that the intentional

strategies induced by the relative frequency of associative lures

(50%) neutralized the normal associative confusion effect. Ex-

periment 3 addressed this issue by varying the relative frequency

of associative lures. The results can be seen in Figure 1, in which

the associative confusion effects from the pure and mixed blocks

of each experiment are plotted as a function of the relative fre-

quency of associative lures. The figure suggests that the null as-

sociative confusion effect in the pure addition task of Experiment

1 may fall on the same function as the positive and negative

effects observed in the pure addition conditions of Experiment

3. Moreover, the function for the pure addition blocks seems

parallel to the function for the mixed addition blocks. Thus, the

absence of an associative confusion effect in the pure addition

blocks of Experiment 1 probably reflects the particular frequency

of associative lures (50%).

Both of the intentional manipulations had stronger effects in

the addition task than in the multiplication task. Possibly, ad-

dition is more autonomous than multiplication, so it may be

initiated without intention more readily than multiplication, and

intrude more when it is the irrelevant operation. Alternatively,

multiplication may be more susceptible to irrelevant influences

than addition is, suffering interference under a wider variety of

conditions. These two interpretations may be difficult to distin-

guish. We provisionally accepted the first interpretation without

any strong commitment to it, and focused the remaining exper-

iments on addition because we thought that addition was more

likely than multiplication to run on to completion hallistically.

Completion Without Intention

If a process is autonomous, it should run on to completion

once it begins, even when there is no intention to complete it.

We tested this hypothesis in the following way: Subjects were

engaged in an arithmetic task, and occasionally a stop signal was

presented, indicating that they should try to inhibit their response

on that trial. Thus, the stop signal caused them to change their

intentions about completing the task. To determine whether the

underlying arithmetic processes went on to completion when

their intentions changed and the overt response was inhibited,

subjects were later asked to recognize the stimuli they had been

processing when they were interrupted (see Logan, 1983). The

idea was that memory would contain a trace of their progress

through the problem, and the trace would be more complete the

closer the underlying thought was to completion. Thus, if the

underlying thought was inhibited with the overt action, the

memory trace should be less complete than a memory trace for

an uninterrupted problem. However, if the thought ran on to

completion ballistically when the action was inhibited, the mem-

ory trace should be just as complete as a trace from an uninter-

rupted problem.

We tested this hypothesis in two ways: First, we compared

memory for stimuli that were presented with a stop signal with
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Figure 1. The associative confusion effect (i.e., RT to associative lures minus RT to nonassociative lures) in

Experiments 1 to 4 as a function of percentage of associative lures. (Arithmetic task [ADD = addition;

MULT = multiplication] and pure versus mixed blocks are parameters.)

memory for stimuli that were presented without a stop signal. If

the underlying processes were inhibited along with the overt re-

sponses, then stimuli presented with a stop signal should be rec-

ognized less accurately than stimuli presented without a stop

signal. If the underlying processes ran on to completion ballisti-

cally when the overt responses were inhibited, then stimuli pre-

sented with a stop signal would be recognized just as accurately

as stimuli presented without a stop signal.

Second, we examined memory performance as a function of

stop signal delay. The earlier the stop signal occurred, the more

likely the response was to be inhibited (see Logan & Cowan,

1984). Thus, if the underlying thought was inhibited with the

overt action, then memory performance should be less accurate

the earlier the stop signal; if the underlying thought ran on to

completion ballistically, then memory performance should be

equally accurate at each stop signal delay.

These predictions test the null hypothesis of no difference in

the probability of completing interrupted versus uninterrupted

processes. They attempt to distinguish completely autonomous

processes from those that are either not autonomous or only

partially autonomous. The stop signal paradigm thus comple-

ments Stroop-type paradigms, which distinguish partially au-

tonomous processes from processes that are not autonomous.

Experiment 5

In Experiment 5, subjects received an orienting block in which

they verified simple arithmetic equations; stop signals occurred

on one third of the trials. Then they received a recognition block

in which their memory for interrupted and uninterrupted equa-

tions was tested.

Method

Subjects. The subjects were 32 undergraduate students who served

to fulfill course requirements or for monetary compensation. None had

served in the previous experiments, and all were naive to the purpose of

the experiment.

Apparatus and stimuli. The stimuli were equations of the form a +

b = c, where a and b are single digits from 1 to 9 and c is either their

sum or their sum plus or minus 1. All possible pairs of digits were used

including 2 + 2. The equations were displayed in a horizontal line on a

point-plot CRT (Techtronix Model 604 equipped with P31 phosphor)

under the control of a PDF 11/03 computer. Viewed at a distance of 60

cm, each digit subtended 0.38° X 0.57° of visual angle, and each symbol

(+ and =) subtended 0.38° X 0.38° of visual angle. Equations with one-

digit c terms subtended 2.71 ° X 0.57° of visual angle and equations with

two-digit c terms subtended 3.28° X 0.57° of visual angle.

The stop signal was a 500-ms, 900-Hz tone played through a speaker

behind the CRT at a comfortable listening level. When it occurred, it

occurred 100, 300, 500, or 700 ms after the onset of the equation.

Each trial began with a fixation dot illuminated in the center of the

screen for 500 ms. After it was extinguished, the equation for that trial

was exposed for 1,500 ms. After the equation extinguished, the screen

remained blank for an intertrial interval of 1,000 ms in the orienting

task and 2,000 ms in the recognition task.

In both tasks, subjects responded by pressing the leftmost or rightmost

of a panel of eight telegraph keys mounted on a panel in front of them.

The computer recorded which key was pressed and the time when it was

pressed.
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Procedure. Each subject completed two blocks of trials, one for the

orienting task and one for the recognition task. The orienting block con-

sisted of 48 trials, half with true equations and half with false equations.

The 48 equations were sampled randomly from the set of 81 possible

equations, and a different random sample was prepared for each subject.

Stop signals occurred on 16 trials, 4 at each delay, 2 with true equations,

and 2 with false equations. The assignment of stop signals and stop signal

delays to equations was random, and a different random assignment was

made for each subject.

The recognition block consisted of 64 trials, each one with a different

equation. Half of the equations had been presented in the orienting trials

(old equations) and half had not (new equations). Half of the old equations

came from stop signal trials and half from no-signal trials. The order of

equations was randomized separately for each subject.

Half of the subjects responded "yes" by pressing the leftmost key and

"no" by pressing the rightmost key, and half did the opposite. The same

mapping rules were used in the orienting task (where "yes" meant the

equation was true) and in the recognition task (where "yes" meant the

equation had been presented before).

Subjects were instructed before each block. In the orienting task, they

were told to respond to the equations as quickly and accurately as possible.

Once they understood what to do, the stop signal was described and they

were told to inhibit their response to the equation if they heard it. Subjects

were not told about the recognition task until after the orienting block

was complete so we could measure incidental learning. In the recognition

block, subjects were told to decide whether they had seen each equation

before in the orienting block and to indicate their decision by pressing a

key when the equation was extinguished. (We did this to ensure they had

sufficient time to remember the equation.) They were told that half of

the equations were old and half were new.

Results

Orienting task. The mean probabilities of responding given

a stop signal are presented in Table 3. On the average, subjects

responded on 30.5% of the stop signal trials and inhibited their

responses on 69.5%. The probability of responding given a stop

signal increased with stop signal delay for both "yes" and "no"

responses, as in previous stop signal studies (e.g., Logan, 1983,

1985b; Logan & Cowan, 1984).

On the no-signal trials, the mean RT was 980 ms for "yes"

responses and 1,158 ms for "no" responses. Ninety-four percent

of "yes" responses were correct, and 92% of "no" responses were

correct.

Recognition task. The mean hit rates for stop signal trials

are presented as a function of stop signal delay in Figure 2 along

with the mean hit rates from no-signal trials and the mean false

alarm rates. Hit rates were much higher for true equations (solid

lines) than for false equations (broken lines), but the false-alarm

rates were higher as well. For both true and false equations, hit

rates were lower for equations that had been presented with a

stop signal than for equations that had not been presented with

a stop signal. For equations that had been presented with a stop

signal, hit rates increased as stop signal delay increased.

These effects were confirmed by ANOVA. The main effect of

equation type (true vs. false) was significant, F(\, 31) = 26.14,

p < .01, MS, = .1337, reflecting the difference in false-alarm

rates [it was not significant when hits minus false alarms were

analyzed, F[l, 31) < 1, MS, = .0246]. It did not interact with

stop signal conditions, F(4,124) < \,MS, = .1049. More germane

to our purposes, the main effect of stop signal conditions was

significant, F(4, 124) = 5.51, p < .01, MS. = .0706. Orthogonal

Table 3

Probability of Responding When Given a Stop

Signal in Experiments 5 and 6

Experi-
ment

5
5
6

Response
type

Yes
No
Vocal

Stop-signal delay (in ms)

100

.185

.110

.093

300

.235

.185

.235

500

.375

.310

.570

700

.655

.390

.813

contrasts revealed a significant linear increase in hit rate with

stop signal delay on stop signal trials, F(\, 124) = 18.16, p <

.01, and a marginally significant difference between no-signal

hit rate and the mean hit rate from stop signal trials, F(l, 124) =

3.63, p<. 10.

Discussion

Subjects were able to inhibit their overt responses to the arith-

metic verification task on 69% of the stop signal trials. The rec-

ognition data suggest that they inhibited the underlying processes

as well as the overt responses. Recognition accuracy improved

substantially as stop signal delay increased, and it tended to be

worse with a stop signal than without one. This pattern of results

confirms the hypothesis that the underlying processes can be

inhibited and disconfirms the hypothesis that the underlying

processes are completely autonomous.

However, the conclusion that the processes underlying the ver-

ification task can be inhibited does not necessarily mean that

simple addition can be inhibited. There is evidence for at least

two stages underlying verification performance (Parkman &

Groen, 1971), computation, in which the arithmetic sum, prod-

uct, and so on, is produced, and comparison, in which the com-

puted sum, product, and so on, is compared with the one pre-

sented (i.e., the c term presented in the equation). It is possible

that subjects complete the computation stage ballistically and

inhibit their responses by stopping the comparison stage or pre-

venting it from beginning. If so, they may associate the a and b

terms because both are relevant to the computation stage. How-

ever, subjects may not associate the presented cterm with the a

and b terms because the c term is relevant to the comparison

stage, which they inhibit. This would impair their ability to rec-

ognize the entire verification equation (a + b = c), producing a

difference between stop signal and no-signal trials and (possibly)

an increase in memory performance with stop-signal delay. Ex-

periment 6 was conducted to rule out this possibility.

Experiment 6

Experiment 6 tested the hypothesis that the processes under-

lying simple arithmetic run on to completion using a production

task. Subjects were given two single digits to add and were asked

to report their sum out loud. Stop signals were presented on one

third of the trials, just as in Experiment 5. After the orienting

task, subjects were asked to recognize the problems they saw in

the orienting task. If the processes underlying simple arithmetic

are completely autonomous, subjects should remember problems
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presented with a stop signal as well as those presented without

a stop signal, and there should be no effect of stop signal delay.

If the processes underlying simple arithmetic are not completely

autonomous, subjects should remember stop signal problems

less well than they remember no-signal problems and memory

for stop signal problems should be better the longer the stop

signal delay.

Method

Subjects, The subjects were 32 undergraduates who served to fulfill

course requirements or for monetary compensation. None had served in

any of the previous experiments, and all were naive to the purpose of the

experiment.

Apparatus and stimuli. The stimuli were problems of the form a 4-

b =, where « and b are single digits from 1 to 9. All possible pairs of

digits were used, including 2 + 2. They were displayed on the apparatus

used in Experiment 5, using the same timing and the same visual angles.

The horizontal extent of the problems was 2.13°.

Subjects responded by shouting the sum of the a and b terms into a

microphone mounted on a headrest, which triggered a voice-activated

relay. The experimenter typed their responses into the computer on each

trial to monitor accuracy.

Procedure. The procedure was the same as in Experiment 5 (i.e., 48

orienting trials and 64 recognition trials), except that the stimuli were

verification problems rather than true or false equations (i.e., that factor

was collapsed in Experiment 6). In the recognition task, all subjects pressed

the rightmost key to indicate they had seen the problem before and the

leftmost key to indicate they had not.

Subjects were told they would see simple addition problems and then-

task was to add the digits and shout the sum into the microphone. They

were then told about the stop signal and what to do about it, just as in

Experiment 5. The instructions for the recognition block were the same

as in Experiment 5.

Results

Orienting task. The mean probabilities of responding given

a stop signal were presented in Table 3. On the average, subjects

responded on 42.8% of the stop signal trials and inhibited their

responses on 57.2%. As before, the probability of responding

given a stop signal increased with stop signal delay (e.g., Logan,

1983, 1985b; Logan & Cowan, 1984). On no-signal trials, the

mean RT was 857 ms, and the mean accuracy was 95%.

Recognition task. The mean hit rates from stop signal trials

are presented in Figure 3 as a function of stop signal delay along

with the mean hit rate from no-signal trials and the mean false-

alarm rate. Hit rates were much lower for problems that were

originally presented with a stop signal than for those originally

presented without a stop signal. Hit rates for problems that were

originally presented with a stop signal were close to the false-

alarm rate for the first three delays, rising to the level of no-

signal hit rates at the longest delay.

These effects were confirmed by ANOVA. The main effect of

stop-signal conditions was significant, F[4, 125) = 2.61, p < .05,

MS, = 0.062. Orthogonal contrasts showed that the difference

1.0
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§ -6

¥ A

ORIENTING YES • •

ORIENTING NO o o

- NO-SIGNAL

<-NO-SIGNAL

P(FA)

100 300 500 700

STOP-SIGNAL DELAY

Figure 2. Proportion of correct responses (hits) in the memory task of Experiment 5 as a function of stop

signal delay. (The response that was appropriate during the orienting task [solid lines for YES responses;

broken lines for NO responses] is the parameter. Proportion correct from no-signal trials [horizontal lines

marked NO-SIGNAL] and false alarm rates [horizontal lines marked P(FA)] are also plotted.)
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Figure 3. Proportion of correct responses (hits) in the memory task of Experiment 6 as a function of stop

signal delay. (Proportion correct on no-signal trials [horizontal line marked NO-SIGNAL] and false alarm

rate [horizontal line marked P(FA)J are also plotted.)

between the no-signal hit rate and the mean of the stop signal

hit rates was significant, F[l, 124) - 21.30, p < .01, and the

linear trend representing the increase in hit rate with stop-signal

delay was marginally significant, F(\, 124) = 3.00, p <. 10. Fish-

er's Least Significant Difference test was used to compare the

stop signal hit rates at each delay with the false-alarm rate, show-

ing a significant difference only at the longest delay (p < .05).

Discussion

Subjects were able to inhibit their responses in an arithmetic

production task 57% of the time. Memory for problems that had

been presented with a stop signal was substantially worse than

memory for problems that had not been presented with a stop

signal, and memory for stop signal problems tended to improve

as stop-signal delay increased. This pattern of results confirms

the hypothesis that the underlying processes were inhibited along

with the overt responses and disconfirms the hypothesis that the

underlying processes were completely autonomous.

The conclusion that the processes underlying the production

task can be inhibited suggests that the processes underlying simple

addition can be inhibited. In contrast with verification, produc-

tion involves only one major stage of processing, namely, arith-

metic computation (Groen & Parkman, 1972; Parkman & Groen,

1971). It seems unlikely that subjects could produce the present

results by inhibiting any stage other than comparison (see Logan,

1983), so it seems reasonable to conclude that the processes un-

derlying simple addition can be inhibited.

Discussion of Experiments 5 and 6

Experiments 5 and 6 suggested that simple arithmetic pro-

cessed can be inhibited, which suggests they cannot be completely

autonomous. However, this conclusion rests on the validity of

the stop signal paradigm, and it is possible that the response to

the stop signal may have interfered with memory whether or not

the underlying arithmetic processes were inhibited. This appears

to be unlikely. Other stop signal studies suggested that quite

complex thoughts may run on to completion ballistically, unaf-

fected by the requirement to inhibit the overt response: Logan

(1983) had subjects inhibit overt responses occasionally while

they made category and rhyme judgments about pairs of words

that were presented to them. To perform the judgments, subjects

had to encode two simultaneously presented words and discover

the relation between them (e.g., Is PROFESSOR a PROFES-

SION? Does SLEIGH rhyme with PLAY?), yet the memory test

suggested that all of these processes went on to completion when

the overt responses were inhibited. There was evidence that the

thoughts went on to completion even when subjects switched to

a new task when the stop signal was presented (Logan, 1983,

Experiments 3 and 4; see also Experiments 5 and 6). The only

procedure that appeared to inhibit thought was terminating the

display of the word pair and replacing it with a new display

(Logan, 1983, Experiments 5 and 6). Moreover, Logan (1985b)

replicated most of these results with repetition priming instead

of recognition as the index of thought. Thus, it appears that the

response to the stop signal does not interfere with memory; the

present Experiments 5 and 6 are best interpreted as indicating

that simple arithmetic processes can be inhibited.

The conclusion that simple arithmetic processes are not com-

pletely autonomous bears on the interpretation of the intentional

effects in Experiments 1 to 4: Those effects could mean that the

irrelevant arithmetic processes were suppressed or controlled in-

tentionally, or that the processes were completely autonomous
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but their output was suppressed or controlled intentionally. If

the former were true, it should be possible to inhibit the processes;

if the latter were true, it should not be possible to inhibit them.

The evidence from Experiments 5 and 6 is consistent with the

former interpretation but not the latter; the intentional effects

in Experiments 1 to 4 may well mean that simple arithmetic

processes are only partially autonomous.

General Discussion

Experiments 1 to 4 ruled out the possibility that arithmetic

processes were not autonomous by showing that they produced

a Stroop-like associative confusion effect. Experiments 5 and 6

ruled out the possibility that arithmetic processes were completely

autonomous by showing that they could be inhibited at will.

What remains is the possibility that simple arithmetic processes

are partially autonomous, which is what we concluded. This

conclusion has implications for the concept of autonomy and

for issues in the study of automaticity and mental arithmetic.

Assessing Autonomy

In principle, some processes may be completely autonomous,

and others may be completely nonautonomous, so at least two

states are necessary to describe the concept of autonomy. The

present evidence suggests that a third state is necessary to rep-

resent the partial autonomy of processes like simple arithmetic,

so autonomy cannot be a strict dichotomous dimension. Possibly,

there may be degrees of partial autonomy, so that a continuous

dimension may be necessary to describe accurately the concept

of autonomy.3

It is more difficult to assess the autonomy of mental processes

if autonomy is a continuous dimension rather than a dichotomous

one. Different procedures for assessing autonomy generally test

different hypotheses, distinguishing the different end points of

the continuum from intermediate points (also see Kahneman &

Treisman, 1984). For example, Stroop tests distinguish nonau-

tonomous processes from partially autonomous ones, whereas

stop signal tests distinguish completely autonomous processes

from partially autonomous ones. However, different procedures

can be combined in ways that allow a reasonable assessment of

autonomy, as we have tried to do in the present experiments.

Possibly, the degree of autonomy can be assessed by the same

methods used to determine whether or not a process is auton-

omous. Intentional manipulations should have weaker effects the

more autonomous the process. For example, in Experiments 1

to 4 irrelevant addition operations were less affected by the in-

tentional manipulations than were irrelevant multiplication op-

erations. Although there were alternative interpretations, these

results could mean that addition is more autonomous than mul-

tiplication. In stop signal studies, the presence or absence of a

stop signal and stop signal delay should have weaker effects the

more autonomous the process (cf. Logan, 1983, 1985b).

Autonomy and Automaticity

Several researchers have investigated the co-occurrence of

properties of automatic processes to assess the internal consis-

tency of the concept of automaticity. For example, Paap and

Ogden (1981) and Regan (1981) found that effortlessness and

autonomy did not co-occur, and they concluded that automaticity

was not internally consistent. The present studies suggest that

the data that Paap and Ogden (1981) and Regan (1981) presented

do not support such strong conclusions, and they suggest more

appropriate ways to assess the internal consistency of the concept

of automaticity.

Consider first whether the data support the conclusions: Paap

and Ogden (1981) operationalized effort in terms of dual-task

interference and autonomy in terms of priming, which may be

considered a kind of Stroop-type effect (see Logan, 1980). Regan

(1981) operationalized effort in terms of a load effect in a mul-

tiple-choice identification task and autonomy in terms of Stroop-

type interference between global and local levels of a bilevel

stimulus. In both cases, the investigators concluded that the pro-

cesses under study were autonomous and effortful, which they

interpreted as evidence against the internal consistency of the

concept of automaticity. The present studies challenge their in-

terpretations in suggesting that Stroop-type effects (and, indeed,

priming effects) do not imply that processes are completely au-

tonomous (also see Kahneman & Treisman, 1984). Thus, it is

possible that the processes that Paap and Ogden and Regan ob-

served were only partially autonomous. Moreover, dual-task ef-

fects and load effects distinguish between processes that are com-

pletely effortless on the one hand and processes that are either

moderately or extremely effortful on the other hand (i.e., a slope

of zero or the absence of dual-task interference may mean that

a process is effortless, but a slope somewhat greater than zero or

a small amount of dual-task interference need not imply that

the process demands a lot of effort). Thus, the processes that

Paap and Ogden and Regan studied may have been moderately

effortful. These possibilities make their evidence a little less im-

pressive: Finding that a partially autonomous process is mod-

erately effortful does not seem like much of a contradiction; the

concept of automaticity may still be internally consistent despite

their evidence.

More generally, the present studies suggest that autonomy

should be construed as a continuous dimension rather than a

dichotomous one, and the same may be true of the other prop-

erties of automaticity. Indeed, speed changes more or less con-

tinuously with practice (e.g., LaBerge & Samuels, 1974), and so

does the degree of effort (e.g., Logan, 1979; Shiffrin & Schneider,

1977). By contrast, Paap and Ogden (1981) and Regan (1981)

seemed to consider effort and autonomy to be dichotomies. If

the properties of automaticity are all continuous rather than di-

chotomous, then co-occurrence of properties is much more dif-

ficult to assess. No theory yet predicts how autonomy and ef-

fortlessness should co-occur at intermediate stages in the devel-

opment of automaticity. Instead, it may be better to focus on co-

occurrence of changes in the properties as automaticity develops

(Logan, 1985a): We would expect a process to become less ef-

3 Note that the degree of autonomy is not defined in terms of the

"amount" of intention that is necessary to ensure that a process will

begin and run on to completion. Rather, the degree of autonomy is defined

in terms of the extent to which a process can begin and run on to com-

pletion without intention. In activation models, the degree of autonomy

is reflected by the strength and the extent of activation without intention.

A process that is activated more strongly or more extensively without

intention would possess a greater degree of autonomy.
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fortful and more autonomous as it becomes faster, and we would

interpret contrary effects, such as an increase in speed and a

concurrent increase in dual-task interference, as evidence that

automaticity is not internally consistent.

Theories of Simple Arithmetic

Some theories assume that simple arithmetic processes are

atomic (e.g., direct-access retrieval of an association from mem-

ory; see Thorndike, 1922; Winkelman & Schmidt, 1974), whereas

other theories assume that simple arithmetic processes are non-

atomic (e.g., counting operations, see Groen & Parkman, 1972;

Parkman & Groen, 1971; or controlled memory search, see Ash-

craft & Battaglia, 1978). Because atomic operations seem more

likely to be autonomous than nonatomic operations, the present

conclusion that simple arithmetic may be partially autonomous

bears on this issue.

One possibility is that there are direct (atomic) associations

between pairs of single digits and their sums, products, and so

on, that become activated independent of intention, but the ac-

tivation is not strong or reliable enough to provide the level of

accuracy required for mental arithmetic. It may be necessary to

supplement the (unintentional) activation that results from mere

stimulus presentation with deliberate (intentional) activation to

attain the required level of accuracy. This would account for the

partial autonomy observed in the present experiments: The un-

intentional activation could produce the associative confusion

effects observed in Experiments 1 to 4, and the additional in-

tentional activation could be withheld to produce the inhibita-

bility observed in Experiments 5 and 6.

Alternatively, direct associations between pairs of single digits

and their sums and products may be supplemented by counting

algorithms or memory-search strategies to attain the required

level of accuracy. The direct associations would produce the ev-

idence for partially autonomous processing in Experiments 1 to

4, and the additional strategies and heuristics would produce the

evidence of intentional control in Experiments 1 to 4 and Ex-

periments 5 and 6.

A third possibility is that memory search or counting may be

partially autonomous and must be supplemented by intentional

activation to produce the required level of accuracy. However, it

seems unlikely that a complex, sequential process can run off

ballistically (see Logan & Barber, 1985). If this possibility is ex-

cluded, then the present experiments provide evidence of direct

(i.e., atomic) associations as a basis for mental arithmetic (also

see Findlay, 1978; Thorndike, 1922; Winkelman & Schmidt,

1974; Zbrodoff, 1979).

Conclusions

The present experiments suggest that the processes underlying

simple arithmetic can begin without intention, although they

may not begin in the same way without intention as they do with

intention. The experiments also suggest that simple arithmetic

processes can be inhibited after they have begun, and hence,
arithmetic processes do not run on to completion without in-

tention. The first conclusion rules out the possibility that simple

arithmetic processes are not at all autonomous, and the second

rules out the possibility that simple arithmetic processes are

completely autonomous. Together, these conclusions suggest that

the processes underlying simple arithmetic may be partially au-

tonomous. More generally, the experiments suggest that auton-

omy should be construed as a continuous dimension rather than

a dichotomous one, and they offer two complementary proce-

dures—the Stroop paradigm and the stop-signal paradigm—to

assess the degree of autonomy of mental processes.
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