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Many situations require people to stop or change their current thoughts and actions.
We present a theory of the inhibition of thought and action to account for people's
performance in such situations. The theory proposes that a control signal, such as
an external stop signal or an error during performance, starts a stopping process
that races against the processes underlying ongoing thought and action. If the
stopping process wins, thought and action are inhibited; if the ongoing process
wins, thought and action run on to completion. We develop the theory formally
to account for many aspects of performance in situations with explicit stop signals,
and we apply it to several sets of data. We discuss the relation between response
inhibition and other acts of control in motor performance and in cognition, and
we consider how our theory relates to current thinking about attentional control
and automaticity.

Thought and action are important to sur-
vival primarily because they can be controlled;
that is, they can be directed toward the ful-
fillment of a person's goals. Control has been
a central issue in the study of motor behavior
since the turn of the century (e.g., Sherrington,
1906; Woodworth, 1899; see Gallistel, 1980,
for a review), and it has been important in
psychology since K. J. W. Craik's seminal pa-
pers in 1947 and 1948. Students of motor be-
havior have not forgotten the importance of
control and have developed sophisticated the-
ories that integrate behavioral and physiolog-
ical data (e.g., Feldman, 1981; Kelso & Holt,
1980; Navas & Stark, 1968; Robinson, 1973;
Young & Stark, 1963). However, psychologists
have strayed from the path somewhat over the
years,

Craik's papers, which described the human
performer as an engineering system, provided
a framework in which to study tracking tasks
and stimulated interest in the (possibly inter-
mittent) nature of the control system in such
tasks. This approach kindled interest in the
psychological refractory period (e.g., Hick,
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1949; Vince, 1948), which led to the formu-
lation of single-channel theory (Davis, 1957;
Welford, 1952). In the hands of Broadbent
(1958) and others, single-channel theory was
extended to deal with many diverse phenom-
ena of attention, and dominated theories of
attention for nearly 20 years. The extended
single-channel theory attracted the interest of
cognitive psychologists who dealt primarily
with tasks other than tracking, and, in their
hands, control became less important than did
other issues such as memory (Norman, 1968),
expectancy (LaBerge, 1973), selectivity (Treis-
man, 1969), and time sharing (Posner & Boies,
1971). Single-channel theory was replaced by
capacity theory (Kahneman, 1973) and mul-
tiple-resource theory (Navon & Gopher, 1979),
and little attention was paid to problems of
control (but see Broadbent, 1977; Reason &
Myceilska, 1982; Shallice, 1972; more gen-
erally, see Gallistel, 1980; Kimble & Perlmuter,
1970; Miller, Galanter, & Pribram, 1960;
Powers, 1978),

Recently, cognitive psychologists have be-
come interested in control once more, in the
guise of research on automaticity and skill (e.g.,
Anderson, 1982; Hasher & Zacks, 1979; Lo-
gan, 1978; Posner, 1978; Shiffrin& Schneider,
1977), but the studies bear little resemblance
to the early fruits of Craik's seminal thinking
and even less resemblance to studies of motor
behavior. Whereas the earlier studies in Craik's
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tradition and the studies of motor behavior
focused on how a process is controlled and on
what variables are adjusted to achieve control,
modern studies of automaticity are often con-
cerned with determining whether a process is
controlled and what classes of processes might
be automatic.

In this article, we attempt to bridge the gap
between studies of motor control and studies
of cognitive control by presenting a framework
within which control can be understood from
either perspective and by developing a formal
model of a simple act of control that is relevant
to both domains. We believe that control can
be understood in terms of the interaction be-
tween an executive system that forms inten-
tions and issues commands to realize the in-
tentions, and a subordinate system that inter-
prets the commands and carries them out. The
behavior of the executive in this interaction
can be viewed as a series of acts of control,
which can be analyzed behaviorally.

There are probably many different acts of
control, each designed to solve a particular
problem. The act of control that we chose to
study is the ability to inhibit thoughts and
actions when they are no longer relevant to
the current goals. Inhibition is not likely to
be the only act of control in the executive's
repertoire, but it is important in motor control
(e.g., stopping ourselves from batting a baseball
pitched outside the strike zone) and in cog-
nitive control as well (e.g., suppressing an ir-
relevant thought or an inappropriate remark).
So it seemed to be a good place to begin bridg-
ing the gap between the two domains. Our
investigation focused on three issues that con-
cern both domains.

1. Measuring the difficulty of control. It is
important to determine whether one situation
is easier or harder to control than another and
to determine when two situations are equally
difficult to control. The theory provides a ra-
tionale and methods for comparing the ability
to control in different subjects, strategies, con-
ditions, or tasks.

2. Measuring the latency of control. An act
of control, like any other act, must take time.
The theory provides methods for measuring
the latency of control even when the act of
control is not directly observable.

3. Measuring the ballistic component of the
process being controlled. Some components of

a process may be ballistic in the sense that
they cannot be inhibited once they begin; they
must run on to completion before they stop.
The theory suggests ways to detect the presence
of ballistic processes and to measure their du-
ration.

The plan of this article is to introduce the
stop-signal procedure as a paradigm for study-
ing control, and then to present the theory and
its predictions. The theory is shown to account
for the basic findings in the stop-signal para-
digm. It is developed further to suggest ways
to measure the difficulty and the latency of
control and to estimate the duration of the
ballistic component. Deeper predictions that
test the basic assumptions of the theory are
then developed and tested. Finally, we suggest
ways of extracting more information from
limited data by theory-based extrapolation.
The theory is then generalized to other tasks
and paradigms, and common themes running
through the literature on control are discussed
in terms of the theory.

The Stop-Signal Paradigm

The theory focuses on the stop-signal par-
adigm, in which subjects are given a primary
task to perform and, on occasion, a stop signal
is presented that tells them not to respond on
that trial. Many investigators have studied the
stop-signal paradigm for various reasons. Stu-
dents of the psychological refractory period
have found that responses to signals to stop a
movement or to change some of its parameters
may not be subject to the same refractory de-
lays as are responses to other types of signals
(e.g., Bartlett, Eason, & White, 1961; Brebner,
1968;Gottsdanker, 1966; Harrison, 1960;Sla-
ter-Hammel, 1960; Vince & Welford, 1967;
Welford, 1952), a finding which has been im-
portant in shaping current theories of atten-
tion. Some investigators have used stop signals
to learn about catch trials in reaction time
tasks (e.g., Grice, Hunt, Kushner, & Morrow,
1974; Grice, Hunt, Kushner, & Nullmeyer,
1976; LaBerge, 1971; Oilman, 1973), and still
others have been interested in stopping for its
own sake (e.g., Ladefoged, Silverstein, & Pap-
cun, 1973; Lappin & Eriksen, 1966; Logan,
1981, 1982, 1983; Logan, Cowan, & Davis,
1984). Although a fair amount is known in
each of these domains, there is no general the-
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ory of the acts of control they require, and it
is not obvious how the specific treatments
would generalize beyond their own limited
domains. This article is intended to provide
such a theory.

The major dependent variable in the stop-
signal paradigm is the probability of inhibiting
the response to the primary task or, equiva-
lently, the probability of responding to the pri-
mary task given that a signal has occurred.
We are also concerned with the latency of re-
sponses when no stop signal is presented (no-
signal reaction times), with the latency of re-
sponses that escape inhibition (signal-respond
reaction times), and with the latency of the
internal response to the stop signal (stop-signal
reaction times).

We illustrate the stop-signal paradigm and
describe its major findings by describing an
experiment we performed to obtain detailed
data for analysis in later sections of this article.
Some of the major findings can be seen in the
data directly; others cannot be seen without
a model or theory to guide interpretation. We
present results until no more can be elucidated
without the model, and, at that point, we in-
troduce the model, apply it to the basic find-
ings, and develop it to reveal the less perspicu-
ous findings that are nonetheless important.

Method

Subjects. Three adult subjects performed the task for
six 1-hour sessions each. All of the subjects had extensive
experience with the stopping task prior to the experiment.

Apparatus and stimuli. The stimuli for the choice re-
action time task were the letters A-X, printed in capitals
by illuminating about 20 points in a 5 X 7 matrix on a
computer-controlled cathode-ray tube. Viewed at a distance
of 60 cm, each letter subtended .43° X .57° of visual angle.

Each trial began with a fixation point illuminated for
500 ms. It was then extinguished and followed by the letter
for that trial, which was exposed for 500 ms. After the
letter, the screen was blank for a 2-s intertrial interval.
Subjects responded to the letter by pressing one of two
telegraph keys with the index and middle fingers of their
right hands.

The stop signal was a 500-ms 900-Hz tone presented
through a speaker behind the cathode-ray tube at a com-
fortable listening level. When a stop signal occurred, it
occurred at one of 10 delays, 50, 100, 150, 200, 250, 300,
350, 400, 450, or 500 ms after the onset of the letter for
that trial.

Procedure. The choice task involved classifying single
letters drawn from a set of four. Two of the letters were
assigned to one response and two were assigned to the
other response. A different set of four letters was used
each session to keep reaction time relatively constant. Two

subjects had the first four letters of the alphabet on the
first session, the second four on the second session, and
so on (i.e., ABCD, EFGH, IJKL, etc.), and one subject
had the opposite (i.e., UVWX, QRST, MNOP, etc.).

Each letter was presented 200 times in a session, for a
total of 800 trials. The stop signal occurred on 25% of
the trials (i.e., 200 times per session), equally often at each
delay (i.e., 20 times per delay per session), and equally
often with each letter at each delay (i.e., 5 times per letter
per delay per session). Within these constraints, the order
of letters, stop signals, and stop-signal delays was random.
A separate random order was prepared for each subject
each session.

The first session was considered practice, and data from
it were not analyzed. Data for each subject were collapsed
across the last five sessions and entered into the analyses
described below.

Results and Discussion

Inhibition functions. The probability of re-
sponding when a stop signal occurred is pre-
sented for each subject as a function of delay
in Figure 1. There are 10 points for each sub-
ject, and each point is based on 100 obser-
vations.

The probability of responding given a stop
signal increased with stop-signal delay for each
subject. This finding is typical of the literature:
Similar results have been found in studies of
eye movements (Lisberger, Fuchs, King, & Ev-
inger, 1975), typewriting (Logan, 1982), simple
reaction time (Lappin & Eriksen, 1966; Oil-
man, 1973; Logan, Cowan, & Davis, 1984),
choice reaction time (Logan, 1981, 1983; Lo-
gan et al., 1984), arm movements (Henry &
Harrison, 1961), and anticipatory responses
(Slater-Hammel, 1960). We are concerned with
the form of the inhibition function and how
it depends on parameters of the primary-task
reaction time distribution and the stop-signal
reaction time distribution.

Primary-task reaction time. The mean and
standard deviation of the reaction times and
the error rate from the trials on which no stop
signal was presented are displayed in Table 1.
Each datum in the table is based on 3,000
observations.

Subjects differed in primary-task reaction
time, and the differences were reflected in the
inhibition functions: At a given delay, the
probability of responding given a stop signal
was generally higher for subjects with faster
primary-task reaction times. This is also typ-
ical of findings in the stop-signal paradigm.
In general, the probability of responding given
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Figure 1. The probability of responding given a stop signal—P(respond|signal)—as a function of stop-signal
delay for subjects J. M., G. L., and J. C.

a stop signal is higher the faster the primary-
task reaction time whether reaction time varies
due to differences between individuals (Lis-
berger et al., 1975), differences between strat-
egies (Lappin & Eriksen, 1966; Logan, 1981;
Oilman, 1973), differences between conditions
(Logan, 1981, 1982, 1983), or differences be-
tween tasks (Logan et al., 1984). The model
shows that much of the differences between
inhibition functions can be accounted for by
differences in primary-task reaction time.

Signal-respond reaction times. Reaction
times from trials on which a signal occurred
but subjects responded anyway are presented
in Table 2. In each subject's data, signal-re-

Table 1
Mean Reaction Time, Standard Deviation, and
Proportion of Errors From Trials on
Which No Stop Signal Occurred

Measure

Mean RT
SD of RT
P (error)

J. M.

482
110

.01

Subject

G. L.

452
50

.04

J. C.

378
58

.02

spend reaction times were faster than no-signal
reaction times, and signal-respond reaction
times increased with stop-signal delay. Both
of these findings are consistent with the lit-
erature, whenever signal-respond reaction
times have been reported (Lappin & Eriksen,
1966; Lisberger et al., 1975; Logan, 1981,
1983; Logan et al., 1984). These effects, too,
follow from the model.

The results presented so far are all that can
be extracted from the data without a model
or theory to guide interpretation. We now turn
to the model and apply it to the data.

The Horse-Race Model

The model accounts for response inhibition
in the stop-signal paradigm in terms of a "horse
race" between two sets of processes, one that
generates a response for the primary task and
one that responds to the stop signal: If the
primary-task process finishes before the stop-
signal process, the response is executed; if the
stop-signal process finishes before the primary-
task process, the response is inhibited. To
model this situation, the finishing times of the
primary-task process and the stopping process
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Table 2
Mean Reaction Times From Trials on Which Stop Signal Occurred but the Subject
Responded (Signal-Respond Trials)

Stop-signal delay

Condition

Observed
Predicted

50

617
315

100 150

— 365
— 305

200

356
315

250

J. M.

371
361

300

397
382

350

415
420

400

444
442

450

441
464

500

455
461

Mean

434
434

Observed
Predicted

337
293

G. L.

Observed
Predicted

391
312

438
325

428
340

378
378

423
418

447
438

440
449

457
449

454
450

451
452

445
441

J. C.

351
302

362
315

349
347

372
359

384
372

375
376

371
378

380
378

390
378

374
366

Note. Mean = mean weighted by frequency of occurrence.

are assumed to be independent random vari-
ables, and this complicates the situation. Re-
sponse inhibition is stochastic, reflecting the
probability that the stopping process finishes
before the primary-task process. The model
developed below spells out the implications of
these relatively simple assumptions, showing
how they account for factors affecting the
probability of inhibition and how they can be
exploited to estimate parameters of the stop-
ping process and the ballistic component of
the primary-task process.

The basic predictions of the model can be
seen clearly in the situations depicted in Figure
2. The top panel shows a hypothetical distri-
bution of primary-task reaction times, the on-
set of the stimulus for the primary task, the
onset of the stop signal, and the point in time
at which the internal response to the stop signal
occurs. For the present, to simplify the pre-
sentation, we talk as if the latency of the re-
sponse to the stop signal does not vary and as
if there were no ballistic phase. Later, we show
that the picture does not change substantially
when these factors are included in the model.

According to the horse-race model, response
inhibition depends on the relative finishing
times of the stopping process and the primary-
task process. This is represented in the top
panel of Figure 2 by the vertical line extending
upward from the point at which the response

to the stop signal occurs. On the left side of
the line, the response to the primary task is
faster than the response to the stop signal, and
the subject responds. The area to the left of
the line represents the probability of respond-
ing to the primary task given a stop signal.
On the right side of the line, the response to
the stop signal is faster than the response to
the primary task, and the subject inhibits his
or her response. The area to the right of the
line represents the probability of inhibition.
Most of the variance in the probability of in-
hibition can be accounted for in terms of rel-
ative finishing time, as we see below.

Inhibition Functions

The model accounts for the inhibition func-
tions by asserting that stop-signal delay biases
the relative finishing time of the stopping pro-
cess and the primary-task process, handicap-
ping the race in favor of one process or the
other. The effect can be seen in Figure 2 by
comparing the top panel with the second panel.
In the second panel, the stop signal has been
delayed, relative to the top panel, so the re-
sponse to the stop signal cuts off more of the
primary-task reaction time distribution, re-
ducing the probability of inhibition and in-
creasing the probability of responding given a
signal. It is easy to see that if the stop signal
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occurs early enough, the response is always
inhibited, and that if the stop signal occurs
late enough, the response is always executed.
The points in between trace out the inhibition
function.

To lay a groundwork for the later analyses,
let us formalize this account. Let T be a ran-
dom variable representing the finishing time
of the primary-task process. T is distributed
by the distribution /(/), so that
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Figure 2. Graphic representation of the assumptions and predictions of the horse-race model, indicating
how the probability of inhibiting a response—P(inhibit)—and the probability of responding given a stop
signal—/"(respond)—depend on the distribution of primary-task reaction times, stop-signal reaction time,
and stop-signal delay.
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1 f(t)dt.1

It has a mean T and variance a2 given by

J°

-,
and - rI, - T)2f(t)dt.

Now, let fd be the stop-signal delay and let
ts be the time between the stop signal and the
inhibition of the response (i.e., stop-signal re-
action time). Here, fs is taken to have a fixed
value that is independent of td (but see Ap-
pendix). A response occurs if the random vari-
able Tis less than the sum £d + ts. Thus, Pr(t^),
the probability that a response occurs given a
stop signal, depends on the stop-signal delay,
tA, in the following manner:

J ls+ld

f(t)dt. (2)

Note that varying td produces an inhibition
function corresponding to the cumulative dis-
tribution of/(?)•

Primary-Task Reaction Time

The model also accounts for the effects of
primary-task reaction time in terms of biasing
the relative finishing times of the stopping pro-
cess and the response-generation process. This
can be seen in Figure 2 by comparing the top
panel with the third panel. In the third panel,
primary-task reaction time is delayed relative
to the top panel, so a stop signal at the same
delay cuts off less of the distribution in the
third panel than in the top panel, increasing
the probability of inhibition and decreasing
the probability of responding given a stop sig-
nal. It is easy to see that for any given delay,
the probability of inhibition is higher and the
probability of responding given a signal is lower
the longer the primary-task reaction time.

Signal-Respond Reaction Time

The model also predicts that signal-respond
reaction times will generally be faster than no-
signal reaction times, and will increase with
stop-signal delay. These effects can be seen in

Figure 2. The mean signal-respond reaction
time represents the mean of the portion of the
primary-task reaction time distribution that
is to the left of the line representing the internal
response to the stop signal. It is necessarily
faster than the mean of the no-signal reaction
times because it excludes the longer tail of the
primary task distribution, whereas the no-sig-
nal mean includes the whole distribution. The
increase in signal-respond reaction time with
delay occurs because the internal response to
the stop signal cuts off more of the primary-
task reaction time distribution as delay in-
creases, including progressively longer reaction
times in the calculation of the mean.

More formally, the mean signal-respond re-
action time, Tr, is

i r*
^rv^d/ *^~"°o

tf(t)dt. (3)

It is necessarily shorter than the mean no-
signal reaction time,

f = Pr(/d)rr ^•(Orff

f oo
f(t)dt

>Tr

because fs + td is always greater_than fr. More-
over, as /d increases, so will Tr, approaching
the mean no-signal reaction time in the limit.

The expression for the mean signal-respond
reaction time represents a prediction from the
model that can be tested against our data.
Given the observed no-signal reaction time
distribution and the probability of responding
given a signal, we can estimate the mean signal-
respond reaction time for any given delay by
rank ordering the no-signal reaction times and
taking the mean of the fastest n of them, where
« is the number of reaction times in the em-
pirical distribution multiplied by the proba-
bility of responding given a signal at that delay.

We calculated the predictions at each delay
for each subject. They are presented in Table

1 Note that the lower limit on this integral—as with all
other integrals of reaction time distributions-—is taken to
be negative infinity. This was done to make the equations
less complicated. The negative reaction times it allows
may either be taken as resulting from anticipatory responses
or be excluded by stipulating that/(0 = 0 for / < 0.
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2 with the observed values. Visual inspection
suggests a close match for subjects J. M. and
G. L. for delays with more than 10 reaction
times going into the mean (delays of 250 ms
or more for J. M. and 200 ms or more for
G. L.). The last column in the table shows the
means across delay, weighted by the number
of observations at each delay. Again, J. M. and
G. L. show a close match between prediction
and observation. For subject J. C, the pre-
dicted reaction times underestimated the ob-
served ones at all but two delays, and the dif-
ference remained, although somewhat atten-
uated, in the means weighted by the number
of observations at each delay. The underesti-
mation could be due to variance in the stop-
signal reaction times, or to a tendency to pull
responses when the signal occurred (cf. Rab-
bitt, 1978), resulting in reaction times that are
less forceful and slower than they should be.
Note, however, that the discrepancy between
prediction and observation is not large. Taken
together with the good agreement in subjects
J. M. and G. L., the results are encouraging.

Stop-Signal Reaction Time

The model also suggests a way to estimate
the reaction time of the internal response to
the stop signal at any given delay. All that we
need to know is the probability of responding
given a stop signal and the distribution of no-
signal reaction times. We can then integrate
the no-signal reaction time distribution from
negative infinity until the integral equals the
probability of responding given a stop signal.
The value of the abscissa at that point rep-
resents the point in time at which the internal
response to the stop signal occurred (i.e., 4 +
;d). Subtracting out stop-signal delay, tA, yields
stop-signal reaction time, ts. In Figure 2, this
amounts to moving a vertical line across the
primary-task reaction time distribution until
the area to the left of the line equals the prob-
ability of responding given a signal, then read-
ing off the value of the time axis, and then
subtracting out the stop-signal delay.

More formally, we can estimate stop-signal
reaction time as r(td) - fd, where r(td) is defined
as the point on the cumulative no-signal re-
action time distribution that is equal to Pr(td).
That is

/

K'd)

-QO
/«<*. (4)

This estimate assumes that stop-signal reaction
time is a constant. Later we treat it as a random
variable and show that the estimate given here
is a good first approximation to the mean of
the random variable (see Appendix). Accepting
the arguments in the Appendix, we can use
Equation 4 to calculate estimates from the
data. The procedure is relatively simple: No-
signal reaction times are rank ordered, and
then the time at which the response to the
stop signal occurred is set equal to the «th
reaction time, where n is the number of re-
action times in the empirical no-signal dis-
tribution multiplied by the probability of re-
sponding given a signal at that delay. We then
subtract out stop-signal delay and are left with
the estimate of stop-signal reaction time.

Stop-signal reaction times were estimated
in this manner at each delay for each subject.
They are displayed in Table 3. The estimates
ranged from 150 ms to 300 ms, with a mean
close to 200 ms. These values are about what
might be expected for simple reaction time to
a tone presented by itself (Woodworth &
Schlosberg, 1954), and are much faster than
simple reaction time to a tone presented con-
currently with another task (Logan, Zbrodoif,
& Fostey, 1983; Posner & Boies, 1971). To-
gether, these constrasts suggest that there was
no interference between the stopping process
and the primary-task process; stop-signal re-
action time was more like single-task reaction
time than like dual-task reaction time. This
is important because it is consistent with the
assumption of the model that the stopping
process and the primary-task process are in-
dependent.

It is also worth noting that the stop-signal
reaction times observed here were consistent
with estimates from a wide variety of tasks
(see Table 6 on p. 316), including eye move-
ments (Lisberger et al., 1975), typewriting
(Logan, 1982), speech (Ladefoged et al., 1973),
and step tracking (Vince, 1948; Vince & Wei-
ford, 1967). The different tasks must tap a
very general control process.

Note that the estimated stop-signal reaction
times tend to decrease as stop-signal delay in-
creases. The decrease is not consistent with
the current version of the model, which as-
sumes that ts is constant. However, it need not
be inconsistent with the general assumption
that stopping processes and primary-task pro-
cesses are independent.
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Table 3
Reaction Time to Stop Signal for Each Subject

Subject 50

Stop-signal delay

100 150 200 250 300 350 400 450 500 Mean

J. M.
G. L.
i.C.

286
278
258

246
222

173
213
193

136
207
202

153
209
182

135
200
190

148
209
189

151
159
—

216
130
—

154
—
—

172
206
205

The decrease in stop-signal reaction time
with delay may be a consequence of variability
in stop-signal reaction time: If stop-signal re-
action time had a constant mean and a nonzero
variance, then different portions of its distri-
bution would produce response inhibition at
different delays. At the short delays, nearly all
stop-signal reaction times would be faster than
the primary-task reaction times, whereas at
the long delays, only the fastest stop-signal re-
action times would be faster than the primary-
task reaction times. As a result, the stop-signal
reaction times that produced response inhi-
bition would be longer at the short delays than
at the long delays, just as we observed. How-
ever, this does not prove that the mean stop-
signal reaction time remained constant.2 In
later sections, we estimate limits on the vari-
ance of the stop-signal reaction times and we
relate the delay effects in the stop-signal re-
action times to delay effects in the probability
of inhibition and the signal-respond reaction
times. We find evidence that stop-signal re-
action times may have substantial variance,
and we show that, within limits, the delay ef-
fects conform to the relation specified by the
model.

Inhibition Functions and Primary-Task
Reaction Time

The model predicts that the effects of stop-
signal delay and of primary-task reaction time
can compensate for each other. This can be
seen in Figure 2 by comparing the top panel
with the fourth panel. In the fourth panel,
primary-task reaction time is delayed relative
to the top panel, but the stop signal has been
delayed by a corresponding amount so that
the response to the stop signal cuts off the
same proportion of the distribution in the two
panels, leaving the probability of inhibition
and the probability of responding given a stop
signal unchanged.

In general, the probability of responding
given a signal should not change despite
changes in primary-task reaction time, stop-
signal delay, and so on, as long as the response
to the stop signal occurs at the same point on
the primary-task reaction time distribution in
the different conditions. According to the cur-
rent version of the model, the point on the
distribution at which the reponse to the stop
signal occurs depends on four factors: stop-
signal delay, td; stop-signal reaction time, 4;
and the mean and standard deviation of the
primary-task reaction times, T and a. That
point can be expressed as a Z score:

ZRFT =

It should be possible to account for differ-
ences in inhibition functions due to variation
in parameters of the primary-task reaction
time distribution by plotting the probability
of responding given a signal as a function of
ZRFT. The data from the experiment reported
here are plotted as a function of ZRFT in
Figure 3, using the method described above
to estimate 4. The estimates of 4 were averaged
across delay, and the average value was used

2 The decrease in stop-signal reaction time with delay
may result from the fact that the stop signal "aged" or
became more likely to occur as delay increased. Subjects
may have responded faster to the more probable stop sig-
nals, producing the observed decrease with delay. However,
the aging effect was slight. The probability that a signal
would occur, given that it had not occurred already, was
.025, .026, .026, .027, .028, .029, .029, .030, .031, and
.032 for the 50, 100, 150, 200, 250, 300, 350, 400, 450,
and 500 ms delays, respectively. The difference in prob-
ability between the most likely signal (at the 500 ms delay)
and the least likely signal (at the 50 ms delay) was .007,
a difference that is far too small to affect reaction time.
We feel confident that the decrease in stop-signal reaction
time with delay was not a consequence of aging stop-signal
delays.
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ZRFT = ( RT - DELAY-SSRT ) / SD

Figure 3. The probability of responding given a stop sig-
nal—P(respond|signal)—as a function of the relative fin-
ishing times of the primary-task process and the stopping
process, expressed as a Z score, for subjects J. M., G. L.,
and J. C. (RT = primary-task reaction time; SSRT = stop-
signal reaction time; SD = standard deviation of primary-
task reaction time.)

to calculate each value of ZRFT. Clearly, most
of the differences in the inhibition functions
for the three subjects were absorbed by ZRFT.

The model predicts that inhibition functions
should be aligned when plotted against ZRFT,
but in practice, approximations to ZRFT have
been sufficient. In studies of choice reaction

time (Logan, 1981, 1983), eye movements
(Lisberger et al., 1975), and typewriting (Lo-
gan, 1982), primary-task reaction time minus
stop-signal delay (RT — delay) has been suf-
ficient to bring into alignment inhibition
functions from different subjects or conditions.
The eye-movement and typing data are pre-
sented in Figures 4 and 5, respectively, to il-
lustrate how effectively RT - delay accounts
for differences in the inhibition functions.

Logan et al. (1984) plotted inhibition func-
tions from simple and choice reaction time
tasks against various transformations of delay
to see what was necessary to bring the func-
tions into alignment. The data from their 8
practiced subjects are plotted in Figure 6. The
figure shows that there were large differences
between tasks when the inhibition functions
were plotted against delay, and that most of
the differences were removed by plotting the
functions against RT — delay. Some of the
points from the simple task remained outside
the range of the other points (i.e., five points
from the simple task are to the right of the
main cluster of points), suggesting that no-
signal reaction time does not account for all
of the differences between inhibition functions.
The simple task and the choice task differed
in variance as well as mean no-signal reaction
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Figure 4. Probability of a saccadic response to the first of two successive fixation stimuli—J°(respond|signal)—
in a saccadic step-tracking task, expressed as a function of the delay of the second stimulus in the left panel
and as a function of primary-task reaction time minus delay in the right panel. (H-H = horizontal movement
followed by a horizontal movement; H-V = horizontal followed by vertical; V-V = vertical followed by
vertical. From "Effect of Mean Reaction Time on Saccadic Responses to Two-Step Stimuli With Horizonal
and Vertical Components" by S. G. Lisberger, A. F. Fuchs, W. M. King, and L. C. Evinger, Vision Research,
1975, 15, 1021-1025.)
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WORD FIRST LAST
LENGTH LETTER LETTER

500 650 800 950

STOP-SIGNAL
DELAY

1500 1000 500 0

KEYSTROKE LATENCY MINUS
STOP-SIGNAL DELAY

Figure 5. Probability of typing the first and last letters of a word given a stop signal — /"(respondlsignal) —
as a function of stop-signal delay (left panel) and as a function of keystroke latency minus stop-signal delay
(right panel). (Word length, 3, 5, and 7 letters is the parameter. From "On the Ability to Inhibit Complex
Movements: A Stop-Signal Study of Typewriting" by G. D. Logan, Journal of Experimental Psychology:
Human Perception and Performance, 1982, 8, 778-792. Copyright 1984 by the American Psychological
Association, Inc.)
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time, and the discrepant points reflect the
smaller variance in the simple task. Logan et
al. (1984) tried to take variance into account
by plotting the inhibition functions against (RT
- de\ay)/SD, but as Figure 6 shows, this in-
creased the scatter of the points. The scatter
increased because (RT - delay)/SZ> does not
represent the relative finishing times of the
two processes; it represents the interval be-
tween the beginning of the stopping task and
the end of the reaction time task, and the
model does not predict that the functions will
be aligned when plotted against that interval.
The model suggests that ZRFT is the best way
to account for differences in variance because
it represents relative finishing time, and Logan
et al. (1984) found the best alignment when
they plotted inhibition functions against ZRFT
(see Figure 6). However, the alignment was
not much better than the alignment produced
by plotting the functions against RT - delay,
which suggests that differences in the mean
no-signal reaction time are more important
than are differences in its variance.

Thus, it seems that ZRFT is always suffi-
cient to bring into alignment inhibition func-
tions from different subjects, tasks, conditions,
or strategies, but it is not always necessary.
When the subjects, tasks, and so on produce
primary-task reaction times with similar vari-
ances, and when they do not differ much in
stop-signal reaction time, RT — delay is all
that is necessary to bring the inhibition func-
tions into alignment.

The idea that the model can be used to
account for differences in inhibition functions
(i.e., by plotting them as a function of RFT
and ZRFT) is very important. Inhibition
functions reflect the ability to control, and
comparisons between functions allow us to
compare the ability to control in different in-
dividuals, strategies, tasks, and conditions. If
different inhibition functions can be brought
into alignment by plotting them against
ZRFT, then we can conclude that the situa-
tions that gave rise to them are controlled
equivalently because the same control process
applies to them (i.e., the horse-race model).
We can then ask whether the parameters of
the model are the same for the different func-
tions. If stop-signal reaction time is the same,
we can conclude that the different conditions
are equally difficult to control; if stop-signal

reaction time differs between conditions, then
the condition with the longer stop-signal re-
action time is the more difficult one to control.
It may not, in some cases, be possible to bring
different inhibition functions into alignment
by plotting them against ZRFT. In those cases,
different control processes apply. Typically, one
inhibition function follows the predictions of
the horse-race model, and the other departs
from them substantially. The departure may
indicate the presence of a ballistic process (see
Logan, 1982; also see the General Discussion
section).

Given the importance of using the model
to account for differences in inhibition func-
tions, it is worthwhile formalizing the logic
necessary to do so: A different subject, task,
or condition has a different distribution of pri-
mary-task reaction times,/'(0> and a different
stopping time, t's. The probability that a re-
sponse occurs, f"r('d)> is

/v'

=
v —

f'(i)dt.

Various transformations of td are possible. For
example, suppose we plot Pr against y = tA +
ts, and P'r against y' = tA + t's. Then

and

- r" L

-r»/-c

The two graphs, Pr versus y and P'r versus y',
are the same if and only if the reaction time
distributions f(t) and/'(/) are the same.

More likely, the reaction time distributions
will not be the same. Intuitively, we may split
the difference into difference between the
means, difference between the variances, and
other differences in shape. If the distributions
differ only injheir means, then the plot of Pr
against y — T and the plot of P'r against y' —
f' will be the same. The fact that inhibition
functions for different subjects and conditions
in eye movements (Lisberger et al., 1975) and
for different conditions in typewriting (Logan,
1982) and choice reaction time (Logan, 1981)
line up when plotted as a function of y — f,
suggests that the different conditions and sub-
jects differed only in mean primary-task re-
action time.
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Two distributions may also differ in vari-
ance. If the distributions differ in mean and
variance but are otherwise the same shape,
then the plot of PT against z = (y_— T}ja and
the plot of P'r against z' = (y' - T')/a' are the
same. (The independent variable, ZRFT, dis-
cussed above, is an estimate from the data of
the variables z or z'.) More precise intersubject
comparisons for choice reaction time (Figure
3) and intertask comparisons between simple
and choice reaction time (Logan et al., 1984;
see the present Figure 6) require this trans-
formation to have the same function for the
probability of responding given a stop signal,
indicating that intersubject or intertask func-
tions have the same shape, although the mean
and variance of primary-task reaction time
varies between subjects and tasks.

Independence of Processes

The model assumes that the stopping pro-
cess and the primary-task process are inde-
pendent random variables. The assumption of
independence is important because it simpli-
fies the formal development of the model. It
should not be accepted lightly, however, be-
cause in most dual-task situations the con-
current processes are not independent (e.g.,
Kantowitz, 1974; Welford, 1952). Here we
consider the implications of the independence
assumption and those of some alternatives to
independence.

Independence of processes predicts that no-
signal reaction times and stop-signal reaction
times should not be different from single-task
controls. These predictions have not been
tested explicitly, but nevertheless, the no-signal
reaction times observed in stop-signal studies
are about as fast as reaction times in com-
parable single-task studies and stop-signal re-
action times are about as fast as simple reaction
times to similar stimuli (see e.g., Woodworth
& Schlosberg, 1954). The independence as-
sumption also predicts that signal-respond re-
action times should be faster than no-signal
reaction times and that they should increase
with stop-signal delay. As noted above, both
of these predictions have been confirmed many
times. On the balance, then, the data are con-
sistent with the independence assumption. To
accept the assumption with confidence, how-
ever, we need to show that the data are in-
consistent with alternatives to independence.

The first major alternative to independence
is the possibility that the stopping process and
the primary-task process race against each
other but share limited resources, so that the
two processes cannot function at the same time
without interfering with one another. The pat-
tern of interference depends on the subject's
strategy for allocating resources. We consider
two possibilities: First, subjects may allocate
resources dynamically, dividing them among
the processes that demand them, changing the
allocation as new processes enter the com-
petition. In the stop-signal task, all the re-
sources may be allocated to the primary task
at the beginning of a trial (or for the duration
of a no-signal trial), but if a stop signal occurs,
some resources may be taken away from the
primary task and allocated to the stopping task.
Under this strategy, the stopping process would
be operating with less resources than it needed,
so stop-signal reaction times should be elevated
substantially. The primary-task process would
be operating with less resources on stop-signal
trials than on no-signal trials, so signal-respond
reaction times should be substantially longer
than no-signal reaction times. Also, the sooner
the stop signal occurred, the sooner the pri-
mary task would have to operate with reduced
resources, and so signal-respond reaction times
should be longer the earlier the delay (i.e., sig-
nal-respond reaction times should decrease
with stop-signal delay). All of these predictions
have been disconfirmed by our data and by
previous data (Lappin & Eriksen, 1966; Logan,
1981, 1983; Logan et al. 1984), so this alter-
native to independence can be safely ruled out.

Second, subjects may fix the allocation of
resources to the two processes at the beginning
of each trial and maintain it rigidly throughout
the trial, independent of stimulus events. Un-
der this strategy, the primary-task process
would be operating with less resources than it
needed on no-signal trials as well as on stop-
signal trials, so there should be no difference
between no-signal reaction times and signal-
respond reaction times. Both should be ele-
vated substantially above single-task controls,
however. The stopping process would also be
operating with less resources than it needed,
which would elevate stop-signal reaction times.
The comparisons between stop-signal studies
and other single-task studies, though indirect,
tend to rule out this possibility. Thus, resource
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sharing can be ruled out as an alternative to
independence; the data are accounted for bet-
ter by the horse-race model, predicated on the
assumption of independent processes.

Another alternative to independence is the
possibility that subjects make the processes
nonindependent by the strategies they choose
to employ. For example, they may choose to
respond or not to respond before each trial,
independent of stimulus events. Under this
strategy, the probability of responding given a
signal would be the same as the probability of
responding given no signal, and it would not
vary with stop-signal delay. These predictions
have been disconfirmed in every stop-signal
study in the literature; subjects respond on
virtually every no-signal trial and respond less
often on stop-signal trials, and stop-signal delay
has substantial effects on the probability of
responding given a signal.

Subjects may adopt a more subtle version
of this strategy that would be harder to detect:
They may choose to respond regardless of
stimulus events on a certain proportion of the
trials and follow the horse-race model on the
remaining trials. The proportion of trials on
which subjects choose to respond independent
of the stop signal would be the same on stop-
signal trials as on no-signal trials because sub-
jects would have no way of knowing in advance
whether a stop signal was forthcoming. Thus,
reaction times characteristic of responding in-
dependent of the signal would contribute
equally to no-signal and signal-respond re-
action times, diluting the characteristic effects
of the horse race without changing their pat-
tern. It would be difficult to reject this strategy
on the basis of signal-respond and no-signal
reaction times. However, the inhibition func-
tions would be different under this strategy
than under a pure horse race: Under this strat-
egy, the probability of responding given a signal
should never be as low as zero, regardless of
how early stop signals are presented. If there
are enough early delays to define the lower
asymptote of the inhibition function, it would
not be zero as the horse-race model predicts,
but rather, it would equal the proportion of
trials on which subjects chose to respond re-
gardless of the stop signal. The regular inhi-
bition function would be compressed, ranging
from that value to 1.0. A hypothetical inhi-
bition function that would be produced by
this strategy is illustrated in Figure 7.

PROBABILITY
OF RESPONDING
INDEPENDENT OF
STOP SIGNAL

STOP-SISNAL DELAY

Figure 7. A hypothetical inhibition function for subjects
who choose to respond on a certain proportion of trials
regardless of whether there is a stop signal. (The lower
asymptote of the inhibition function reflects the proportion
of trials on which subjects choose to respond regardless
of the signal.)

The data are generally inconsistent with this
prediction. The lower asymptote of the inhi-
bition function, when it has been measured,
is usually close to zero, as the horse-race model
predicts (see the present Figure 1; also see Lo-
gan, 1982; Slater-Hammel, 1960). The only
study in which the strategy might have oc-
curred was reported by Logan (1983, Exper-
iment 6). In that study, mean no-signal re-
action time was 1,126 ms and the mean stop-
signal delay was 400 ms, yet subjects responded
on 40% of the stop-signal trials. It seems likely
that they could have responded less often. The
inhibition function reached its lower asymp-
tote with the probability of responding given
a signal equal to .29, suggesting that subjects
ignored the signal on 29% of stop-signal trials.

In general, however, the data are inconsistent
with the alternatives to the assumption that
the stopping process and the primary-task
process are independent, and they are consis-
tent with the predictions of the horse-race
model, which are predicated on the assump-
tion of independence. It seems reasonable to
conclude, then, that the assumption is war-
ranted.

The Complete Model

In this section, we present a deeper analysis
of the horse-race model, exploring the con-
sequences of nonzero variance in stop-signal
reaction time and including the mean and
variance of the duration of the ballistic phase
in the analysis. We develop and test predictions
that are not immediately obvious in the ap-
proximations to the complete model we pre-
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sented earlier, and we provide methods for es-
timating stop-signal reaction time from inhi-
bition functions and estimating complete
inhibition functions from partial functions
obtained empirically.

When stopping time and the ballistic process
are included as random variables, the formal
model becomes much more complicated.

1. Response is now made up of two pro-
cesses: an early process that can be inhibited,
and a subsequent ballistic process that cannot
be inhibited once it has been started. Both
processes are assumed to be stochastic. The
early process is represented by a random vari-
able TI, distributed by fi(t), and the ballistic
process is represented by a random variable
T2, distributed byf2(t). The complete response
process has mean reaction time given by

f = f i + f 2

and variance given by

a1 = or? + a\.

(5)

(6)

2. The stopping process, which inhibits the
response, is taken to be stochastic. It is rep-
resented by a random variable Ts, distributed
by/s(0-

3. The response is inhibited if the stopping
process terminates before the early process,
that is, if

Now, using these assumptions, we can deduce
several conclusions.

Inhibition Functions Revisited

Now we are prepared to analyze inhibition
functions more deeply in terms of the complete
model. First, we define the inhibition function
for the complete model, then we consider how
it is related to signal-respond reaction times
and stop-signal reaction times, and finally, we
treat it as a cumulative distribution and use
its moments to estimate parameters of the
stopping process and the ballistic phase of the
primary-task process.

The inhibition function is defined by cal-
culating the probability that a response occurs,
Pr('d), as a function of stop-signal delay, ta .

=
«/«

f
oo /*oo

/,(/) fs(u)dudt
-oo vt~td

Joo f*u

fM
-00 v — 0

Mt)dtdu. (7)

Relations between inhibition functions, sig-
nal-respond reaction times, and stop-signal re-
action times. According to the model, the
probability of inhibition, no-signal reaction
time, and stop-signal reaction time all depend
on stop-signal delay, td . We have already seen
how the probability of inhibition depends on
td. Now let us consider the others. First, con-
sider the signal-respond trials. Two quantities
can be measured: fr, which is the mean signal-
respond reaction time we denned earlier in
Equation 3, and (Tr), which is the mean re-
action time for all trials on which a stop signal
occurred, taking RT = 0 for those trials when
no response occurs. Thus, (Tr) is the sum of
the reaction times divided by the number of
trials on which a stop signal occurred at a
given delay, td (i.e., -Pr(rd)fr = <rr>). Let us
examine (rr). Because the ballistic process
occurs on each trial where a response occurs,

r> = <rlr> + <r2r>
f2. (8)

We can calculate (rlr) from the distributions
f\ and/s

<^ir> = f tfMfs(u)du dt
Jt<u-Hi

J oo fu+td

fM tfi
-OO v — oo

Next, consider the trials on which stopping
occurs. Analogous to Tr and (rr), there are
two quantities Ts and (!TS) with

<rs> = Ps(/d)fs.

We can calculate (Ts) from the distributions
/i and/;:

= f uf
Jt>u+t&

du

= r m P 'd u
V— OO v— OO

f,(f)fj,u)dt du
Both (Tir) and <rs) depend on stop-signal
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delay, td, so that we may differentiate them
with respect to td:

-- f"~ J-< td)du.

Adding the two derivatives, we get

= td I /S(M)/,(M + td)du
J — 03

. dPM

(11)

dtA
(12)

where the last step follows from differentiating
Equation 7. This identity cannot be checked
in its present form because neither (7"ir) nor
(rs) is observable. However, (rr) is. Define
for the random variable Ts a quantity analo-
gous to Tr. That is,

T's= Ts+ T2,

which augments the stopping time by the same
ballistic process that occurs with a response.
The reason for this definition will become clear
below where methods of estimating (r's) are
discussed.

<rr> (13)
because Pr(td) + Ps(td) = 1 . T2 is assumed not
to depend on stop-signal delay in any signif-
icant way, so that

dtA dtd
(14)

This expression is important because it pre-
dicts a relation between inhibition functions,
signal-respond reaction times, and stop-signal
reaction times. We cannot test the prediction
as it is stated now because we do not know
the form of the distribution functions that are
being differentiated. However, we can test a
special case of the relation in the following
manner, without knowing the form of the
functions.

Looking at the data, find a range of stop-
signal delays /do < td < td\ for which the prob-
ability of responding given a signal increases
linearly. No theoretical significance is attached
to the linearity; it is just a phenomenological
description of the data. Over this range we can
regress P,(td) against td, finding constants A
and B such that

Pr(td) = Atd + B f d o<

There is also a boundary condition

P,(td0) = Afd0 + B. (15)

We can substitute this expression into Equa-
tion 14 and integrate from td0 to td:

f'd d fd

— [<rr> + <r.>w/d =
JidO "ld JtdO

,> - [<rr>0 -t- <r.>0]

<rr>
[<rr>0 o]. (16)

Thus, within the interval tdo < td < td}, the
sum (rr) + (n), represented as quadratic in
td, has a leading term which is exactly one
half the linear term in /V^a)- As with the linear
form of Pr(td), no theoretical significance
should be ascribed to the quadratic form of
this equation. It is, once again, a phenome-
nological description of the data. The argu-
ment given here runs, in essence: if you de-
scribe one set of data, Pr(^d)» by a given form,
a linear function of td, and if the horse race
holds, then when you describe another set of
data, <rr) + (r's), in a given form, a second
order function of td, then certain quantitative
relations must hold between the two forms.
We show, for our data on choice reaction time,
that these quantitative relations hold.

We estimate (T^.) using Pt(td), the proba-
bility of responding when the stop-signal delay
is tA, and P(T < t0), the probability that the
reaction time, on trials where no stop signal
is given, is less than t0. We measure (T's) using
the method that assumes that the variance in
the stopping process is zero (see Equation 4),
which is equivalent to the lowest order ap-
proximation to the estimate derived when
stopping time is allowed to vary (see Appen-
dix), minus the lowest order correction. We
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estimate A from P,(td), Equation 15, and from
<rr) + (T'sy, Equation 16, using the estimate
described above.

We fit the functions to the data of each
subject individually. For subject J. M., the in-
hibition function was relatively linear from
the 200-ms delay to the 450-ms delay. Re-
gressing the probability of responding against
delay in that range yielded a slope of .00372.
Regressing the quantity />s(?d)(stop-signal re-
action time) + Pr(*d)(signal-respond reaction
time) against delay squared in the same range
yielded a slope of .00180. The ratio of the
former slope to the latter was 2.07, compared
to the ratio of 2.0 predicted by the model.

For subject G. L., the inhibition function
was relatively linear from the 150-ms delay to
the 350-ms delay. Regressing the probability
of responding against delay in that range
yielded a slope of .00512. Regressing the
quantity />s(;d)(stop-signal reaction time) +
Pr(td)(signal-respond reaction time) against
delay squared in the same range yielded a slope
of .00241. The ratio of the former slope to the
latter was 2.12, compared to the ratio of 2.0
predicted by the model.

For subject J. C., the inhibition function
was relatively linear from the 100-ms delay to
the 300-ms delay. Regressing the probability
of responding against delay in that range
yielded a slope of .00422. Regressing the
quantity /"^(stop-signal reaction time) +
.PiOdXsignal-respond reaction time) against
delay squared in the same range yielded a slope
of .0018. The ratio of the former slope to the
latter was 2.34, compared to the ratio of 2.0
predicted by the model.

For each subject, the 95% confidence limits
for the slope of the linear function relating the
probability of responding to t& contained the
value corresponding to twice the slope of the
quadratic function relating (r£> + (rr) to td.
Thus, the observed inhibition functions, signal-
respond reaction times, and stop-signal reac-
tion times were related in a way that was not
significantly different from the relation pre-
dicted by the model.

Inhibition functions as cumulative distri-
butions. Finally, we use the model to estimate
some parameters of the latency distributions
of stopping and ballistic processes. To do so,
consider the probability that a response will
occur given a stop signal at delay t&. We have

written it as PT(td), and we can see that it has
the following properties:

1. As td -» -oo, Pr(40 -» 0. That is, if the
stop signal occurs early enough, no response
occurs.

2. As /„ —> +00, Pr('d) -> 1. That is, if the
stop signal occurs late enough, there is always
a response.

3. O^P r(O<: 1.
4. If t'd > td, then Pt(t'd) ;> Pr(td); P, (td) is

monotonic, increasing with td. That is, the
later the stop signal occurs, the greater the
probability of a response.

These properties indicate that we can treat
P,(td) as the cumulative distribution of a ran-
dom variable TA. Td will be distributed by the
function <jt(td), defined by

dt

<t>(td) may be calculated directly from experi-
mental data. Td has a mean and variance cal-
culated from 0(;d) in the usual way:

= f t<t>(t)dt
•/ —oo

JOO

(t - fd.
-oo

(17)

We will want to compare these quantities to
properties of the reaction time distribution for
trials on which no stop signal occurs. For these
responses, which consist of an early plus a
ballistic component, the cumulative distri-
bution, P(T < t) = F(t), is given by

F(t)= fJt'+
/.OW) dt'dt".

The corresponding density function f(t) is

fa) = - o
Now, we wish to compare the moments off(t)
with those of 0(r). They are all easily calculated
from experimental data.

First, calculate 0(0- Differentiating Equa-
tion 7, we get

/*0

v— o
(18)
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From Equation 18 we get the mean

JOG /»OO

-00 J-00

and the variance

i = r (t- fd)
2 r

v — oo v — oo
+

Table 5
Estimates of the Standard Deviation
ofTa Distribution

Measure

Full function
TA Median (slope)
Median (interpolation)

J. M.

75
107
69

Subject

G. L.

62
78
5!

J.C.

77
95
51

By comparison,

f = I"" * f
«/ — OO v —

= fl + f2,
and

a2

-J>
T)2 M?m - t')dt'dt

= <r? +

Consider the quantity f - Td = T2 + fs.
The horse-race model predicts it to be greater
than zero because both T2 and fs are greater
than zero. It also provides an upper limit for
both T2 and fs. That is,

and
0 <: f-i :£ f - Td

0<; f s < f - fd.

We estimated the mean of the 7^ distri-
bution for each of our subjects, and used the
estimate to calculate T2 + Ts. The estimates
of T2 4- !fs are presented in Table 4 with other
estimates of stop-signal reaction time. Note

Table 4
Estimates of Stop-Signal Reaction Time Plus the
Duration of the Ballistic Component from the
Primary-Task Reaction Time Distribution and
from the Mean and Median of the TA Distribution

Measure

RT (distribution)
7"d Mean

Median (slope)
Median (interpolation)

J. M.

172
164
158
156

Subject

G. L.

206
182
206
210

J. C.

205
180
199
202

(7 — CTS

that the values calculated from the TA distri-
bution are somewhat smaller than the values
calculated previously from the primary-task
reaction time distribution for all three subjects,
but they are still relatively close.

Consider the quantity
Its sign shows which of the stopping and bal-
listic processes has the smaller variance. Fur-
thermore, because both variances must be
greater than zero, its absolute value represents
a lower limit for the magnitude of the larger
variance.

We estimated the variance of the TA distri-
bution for each subject. The square roots of
the values (i.e., standard deviations) are pre-
sented in Table 5 together with other estimates
of the standard deviation of Td (see below).
For subjects G. L. and J. C, the TA distribution
was more variable than the primary-task re-
action time distribution, suggesting that the
variance of their stop-signal reaction times was
larger than the variance of their ballistic com-
ponents. The lower limits on the standard de-
viation of their stop-signal reaction times were
37 ms and 51 ms, respectively. For subject
J. M., the primary-task reaction times were
more variable than the Td distribution, sug-
gesting that the variance of the ballistic com-
ponent was larger than the variance of the
stop-signal reaction times. The lower limit on
the standard deviation of her ballistic process
was 80 ms.

Thus, consideration of the two distributions
yields a prediction and various limits on pa-
rameters of the stopping and ballistic distri-
butions. The limits may be regarded as esti-
mates, so that the numbers so derived should
be compared with expected magnitudes to
provide a further test of the reasonability of
this analysis. Calculation of moments could
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easily be pushed to moments higher than the
second. It is unlikely, however, that data of
quality high enough to justify the effort will
be available.

Parameterizing the Model

The theoretical development of the model
did not assume that the various distributions
had any particular form (i.e., normal, expo-
nential, etc.). This makes the model very gen-
eral. The moments of the different processes
can be calculated, whatever form the distri-
butions may take. However, the analysis re-
quires very high-quality data. The moments
must be calculated from the inhibition func-
tions, treated as cumulative distributions, and
few studies can provide sufficient data to do
so. To estimate the distribution tj>(t), some stop
signals must occur so early that subjects never
respond and some must occur so late that sub-
jects always respond. Moreover, there must be
many delays in between these extremes to cap-
ture the shape of the distribution with any
fidelity. Only one study in the literature has
used an appropriate range of delays (Slater-
Hammel, 1960).

These considerations make it difficult to ap-
ply the model to data and extract all of the
information that is potentially available. One
way around this difficulty is to assume par-
ticular forms for the various distributions.
Then the assumed distributions can be fitted
to the data and the parameters of the fitted
distributions can be used to calculate the pa-
rameters of the model. Under some assump-
tions, it may not even be necessary to fit the
assumed distributions to data; characteristics
of particular distributions can be exploited to
calculate parameters of the model directly
from the data.

Consider, for example, the distribution <£(/).
If we assume it to be symmetrical (e.g., normal,
t), then the mean and the median are identical.
Under the assumption that the empirical
function relating the probability of inhibition
to stop-signal delay is the cumulative form of
(j>(t), we can estimate the median (and hence
the mean) of <XO by finding the stop-signal
delay at which subjects inhibit their responses
50% of the time. This value can then be entered
into the equations for the model to calculate
the latency of the stopping process and the

d_uration of the ballistic component (i.e., Ts +
T2). Note that the parametric analysis does
not require a complete inhibition function;
the only requirement is that the empirical in-
hibition function passes through the point at
which 50% of responses are inhibited. Nearly
all of the studies in the literature provide data
for which this is true (see Table 6, rows 1, 3,
8, 9, 10, 17, 18, and 19).

To illustrate, we estimated the median of
the Td distribution for each subject by cal-
culating it from the regression equation re-
lating the probability of responding given a
signal to delay and by interpolating from the
two points on the inhibition function that
bounded it. These values were then subtracted
from the mean primary-task reaction time to
estimate T2 + fs. The estimates are presented
above in Table 4 along with estimates from
the primary-task reaction time distribution
and the mean of the T& distribution calculated
previously.

First, note that the values were about the
same whether the median was estimated from
the regression equation, which used several
points on the inhibition function, or from in-
terpolation, which used only two points. This
suggests that the median can be estimated rea-
sonably from only two points on the inhibition
function, and nearly all of the studies in the
literature provide data sufficient to do at least
this. Second, note that the estimates from the
median are relatively close to the estimates
from the primary-task and Td distributions.
For subjects G. L. and J. C, the estimates
from the medians were closer to the estimates
from the primary-task distribution than to es-
timates from the Td distribution; for subject
J. M., the estimates from the median were
closer to the estimates from the Td distribution.

If we assume a particular symmetrical dis-
tribution (e.g., normal), then we can calculate
the variance from the empirical function re-
lating the probability of inhibition to stop-
signal delay. In symmetrical distributions, the
variance is proportional to the value of the
ordinate at the median of the distribution or,
equivalently, to the value of the slope of the
cumulative distribution at its median. For the
normal distribution,

slope at median =
1
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and for the rectangular distribution,

slope at median =

These formulas can be used to calculate es-
timates of the variance of the Td distribution
from estimates of the slope of the inhibition
function around the point where 50% of the
responses are inhibited. Of course, one must
know the form of the distribution to select the
appropriate equation or one must be willing
to assume a particular form. In either case, it
is possible to estimate the variance of the TA
distribution without a complete inhibition
function; all that is required is a function that
passes through the point at which 50% of the
responses are inhibited.

We assumed that the TA distribution was
normal and estimated its variance in two ways.
First, we calculated it from the slope of the
regression equation relating the probability of
responding given a signal to delay to illustrate
an estimate derived from several points on the
inhibition function. Then, we estimated the
variance by calculating the slope of the inhi-
bition function between the two points that
bounded the median. The square root of the
values for each subject (i.e., standard devia-
tions) are presented above in Table 5 along
with estimates calculated previously from the
whole Td distribution. For all three subjects,
the three estimates were relatively similar. The
estimates from the regression equation led to
the same conclusions as did the estimates from
the whole Td distribution. For G. L. and J. C.,
stop-signal reaction times were more variable
than the ballistic process, but for J. M., the
ballistic process was more variable. However,
the estimates based on interpolation led to dif-
ferent conclusions for subject J. C. The ballistic
phase seemed more variable than the stop-
signal reaction times, whereas the opposite was
true with the other estimates.

The parametric analysis described here may
be appropriate in most of the domains that
have been studied in the literature. Most of
the inhibition functions plotted in this article
seem normal, or at least, reasonably sym-
metrical. Thus, it may be possible to apply
the model in all its detail to rather scanty data,
as long as the tasks are sufficiently similar to
the tasks studied previously. When exploring

new domains where little is known in advance
about the forms the various distributions are
likely to take, the full-scale, nonparametric
analysis should be applied (also see Logan et
al., 1984).

General Discussion

A major justification for developing a model
of performance in the stop-signal paradigm
was to answer three general questions about
control. In this section we review the answers
that the model provides, and then consider
ways in which the model might be generalized
so that it can be applied to situations other
than the stop-signal paradigm. After that, we
conclude with a discussion of how the model
fits into current thinking on the nature of con-
trol, attention, automaticity, and skill.

Issues in the Study of Control

1. Measuring the difficulty of control. The
model suggests a two-step procedure for mea-
suring the difficulty of control. First, we com-
pare inhibition functions and attempt to re-
move differences between them by plotting
them as a function of some transformation of
delay (e.g., ZRFT) that takes into account dif-
ferences in the mean and variance of primary-
task reaction time and differences in stop-sig-
nal reaction time. Functions that cannot be
brought into alignment by these transforma-
tions involve different control processes, and
at least one of them may contain a substantial
ballistic component (see below).

If the different functions can be brought
into alignment, then we take the second step
and compare the parameters of the model.
According to the model, stop-signal reaction
time is the critical parameter. If conditions,
tasks, and so forth, differ in stop-signal reaction
time, the one with the larger value is the more
difficult to control. Estimates of stop-signal
reaction time could differ because of under-
lying differences in the latency of the response
to the stop signal, ts, or differences in the du-
ration of the ballistic component, t2. In both
cases, it seems appropriate to consider the
condition with the longer estimated stop-signal
reaction time the more difficult to control.

Studies that compare inhibition functions
suggest that there are few differences between
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subjects (Lisberger et al., 1975), strategies (Lo-
gan, 1981), tasks (Logan et al., 1984), and
conditions (Logan, 1981, 1982, 1983) that
cannot be removed by transforming delay in
the ways specified by the model. The ability
to inhibit action seems not to vary much be-
tween subjects, tasks, strategies, or conditions,
suggesting that performance is often controlled
rather closely.

We expect that most inhibition functions
can be brought into alignment with the various
tranformations. Stop-signal reaction time,
which enters into the calculation of ZRFT, is
a free parameter that can be set to minimize
the difference between inhibition functions. If
we calculated a different value of stop-signal
reaction time for each delay and used it to
calculate ZRFT for that delay, we could bring
together functions that differed substantially
in shape, trivializing the comparison of in-
hibition functions. However, we have avoided
this trivialization in practice by using the same
estimate of stop-signal reaction time to cal-
culate ZRFT for each delay (see above; also
see Logan et al., 1984). Also, the problem does
not exist in situations in which differences in
mean reaction time are enough to account for
differences in inhibition functions (e.g., Lis-
berger etal., 1975; Logan, 1981, 1982, 1983)
Thus, comparisons of inhibition functions can
be informative.

Estimates of the latencies of various acts of
control were taken from 19 studies in the lit-
erature and presented in Table 6. Studies of
motor control (rows 1-8), reaction time (rows
9-13), and higher cognitive processes (rows
14-19) all yield estimates around 200 ms.
Some of the deviations can be accounted for
in terms of different criteria for deciding
whether a response has stopped (rows 1,2, 14,
15, and 16), and others may reflect different
resource-allocation strategies that place less
importance on stopping quickly (rows 17, 18,
and 19). Possibly, some tasks take longer to
control than do others or some acts of control
may take longer to execute than do others;
these are open questions of future research.
For now, it is interesting that such diverse ac-
tivities can be brought under control in roughly
the same amount of time. This general finding
corroborates the analysis of inhibition func-
tions in suggesting that subjects typically have
very close control over their actions. Some im-

plications of this conclusion are discussed
below.

2. Measuring the latency of control. Esti-
mates of stop-signal reaction time provide a
measure of the latency of control. Stop-signal
reaction time can be estimated by two different
methods, one calculated from the probability
of inhibition and the primary-task reaction
time distribution, and one calculated from the
mean of the inhibition function and the mean
primary-task reaction time. The two methods
yield similar estimates whether they are ap-
plied to the same data (see Table 4) or to dif-
ferent data (compare rows 11, 12, and 13 of
Table 6 with rows 1, 3, 8, 9, 10, 17, 18, and
19). Both methods have advantages and dis-
advantages.

The former method allows us to calculate
stop-signal reaction time at each delay and
thereby assess it as a function of delay. The
observed effects of delay can be compared with
those predicted by the model to test its as-
sumptions (see Relations between inhibition
functions, signal-respond reaction time, and
stop-signal reaction time, above), and the delay
effects can provide information about ballistic
processes in the primary task (see below).
However, the method assumes that there is no
variance in stop-signal reaction time, which is
almost certain to be false. We proved that it
was false in 2 of our 3 subjects (see Tables 3
and 5; also see Logan et al., 1984). We also
showed that the assumption is not very im-
portant: We developed expressions for stop-
signal reaction time in the full model, and
found that the lowest order approximation was
identical to the estimate that assumes no
variance in stop-signal reaction time (see Ap-
pendix).

The second method, using the mean of the
inhibition function and the mean primary-
task reaction time, was developed from the full
model. Its main advantage is that it can be
calculated from rather scanty data (see rows
1, 3, 10, 17, 18, and 19 in Table 6). However,
it yields but one estimate per inhibition func-
tion; it cannot be used to assess the effects of
delay.

In principle, there is no reason why both
methods cannot be used on the same data to
produce converging estimates. Note that in
both methods, the estimate of stop-signal re-
action time includes the latency of the internal
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Table 6
Estimates of Latency of Various Acts of Control (in ms) From Studies in the Literature

Study

1. Henry & Harrison, 1961

2. Megaw, 1972

3. Vince, 1948

4. Vince, in Welford, 1952

5. Vince & Welford, 1967

6. Hick, 1949

7. Newell & Houk, 1983

8. Lisberger, Fuchs, King, &
Evinger, 1975

9. Slater-Hammel, 1960

10. Poulton, 1950

11. Lappin & Eriksen, 1966

12. Logan, Cowan, & Davis, 1984

13. Logan, 1981

14. Ladefoged, Silverstein, &
Papcun, 1973

15. Long, 1976

16. Rabbitt, 1978

17. Logan, 1982

Task

Stopping arm
movement

Error correction
Manual step

tracking

Manual step
tracking

Manual step
tracking

Manual step
tracking

Changing
response force

Changing
constant force

Saccadic step
tracking

Stopping transit
reaction;
Anticipation

1 : Stopping a
complex
response

2: Stopping
simple RT on
catch trials

Stopping simple
RT

Stopping simple
RT

Stopping choice
RT

Stopping choice
RT

Stopping speech

Error detection in
typing

Error detection in
typing

Stopping typing

Stop-signal RT

69"

64

92

241"

363b

Stopping: 347
Speeding: 343

Slowing: 429
304

Increasing: 152

Decreasing: 184

134

166

250-450

208"

224

205

222

1:231
2:212
« 200

449'

1: 166°

2: 198"

1:261C

454°
2: 244C

368"

Method of estimation

RT - Median of rd;
based on time to
onset of deceleration

Time to onset of
deceleration

Time to reversal of
movement

RT - Median of 7d;
based on amplitude

Time until movement
stops

Not described
Not described
Not described
Time until movement

begins
Time until compen-

satory movement
begins

Time until compen-
satory movement
begins

RT - Median of rd

RT - Median of Td

Not described
adequately

RT - Median of Td

RT distribution

RT distribution

RT distribution

RT distribution
RT: distribution
Time spent speaking

after signal

Typing rate X letters
typed after error

Typing rate X num-
ber of letters
typed after error

Typing rate X num-
ber of letters
typed after error

Time spent typing
after signal

RT — Median of Td

Time spent typing
after signal

RT - Median of rd
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Table 6 (continued)

Study Task

18. Logan, 1983 Stopping thought

19. Zbrodoff, Logan, & Barber, 1984 Stopping simple
arithmetic

Stop-signal RT

1 : Category decision 326°
Rhyme decision 360"

2: Category decision 455"
Rhyme decision 423a

Vocal responses 399"

Manual responses 391"

Method of estimation

RT-
RT-
RT -
RT-

RT-

RT -

Median of Ta

Median of TA

Median of TA

Median of TA

Median of TA

Median of Ta

Note. The estimates were calculated by the original investigators and published in their reports unless otherwise noted.
" Calculated from data in published reports.
b Reported in Welford (1952) Table 2.
c Calculated from data not presented in published report.

response to the stop signal and the duration
of the ballistic process. We now turn to pro-
cedures for separating these components.

3. Measuring the ballistic component of the
process being controlled. The estimates of stop-
signal reaction time described above place up-
per limits on the duration of the ballistic com-
ponent, ti, but they are confounded with the
latency of the internal response to the stop
signal, ts. In practice, the confound may not
be much of a problem because situations that
lengthen ;s should be very different from sit-
uations that lengthen t2. Consider, for example,
Logan et al.'s (1984) experiments on simple
and choice reaction time in which stop-signal
reaction time was often found to be faster with
the simple task than with the choice task (see
Table 6, row 12). The difference could mean
that ts was longer in the choice task, as if the
primary task and the stopping task competed
for resources. Alternatively, it could mean that
t-i was longer in the choice task, as if the choice
task had a more substantial ballistic compo-
nent. The former seems plausible and is con-
sistent with existing data (e.g., Logan, 1980),
whereas the latter seems implausible. More
generally, it should be possible to unravel the
confound by manipulating parameters of the
experiment that affect t2 and ts differently.

We can also assess the importance of the
ballistic component by examining the effects
of delay on stop-signal reaction time and by
examining inhibition functions. If some com-
ponent of a task must run on to completion
before stopping, stop signals presented before
the component finishes should not be effective.

This means that the probability of inhibiting
responses based on the component should be
close to zero and should not increase until
delay is so long that the response to the stop
signal occurs after the component has finished.
Thus, flat inhibition functions suggest the
presence of a lengthy ballistic component (see
Logan, 1982). If stop-signal reaction time can
be measured (e.g., if the task is continuous,
like typing), then the estimates should decrease
linearly with a slope of — 1 as delay increases.
This follows because the stopping process
would have to wait until the ballistic com-
ponent finished, and the waiting time depends
on delay. Note that this prediction is similar
to the predictions for the psychological re-
fractory period made by single-channel theory
(Welford, 1952), although the response to the
stop signal is refractory for different reasons.

Two instances of ballistic processing have
been discovered using this method. Logan
(1982) found that skilled typists tended to type
out the word the and the following space before
stopping, and they tended to complete verbs
with familiar endings (i.e., ed and es). Oth-
erwise, typists seemed able to stop typing at
any point within or between words. Ladefoged
et al. (1973) found evidence that people begin
speaking ballistically. They found that subjects
responded to stop signals presented during
speech in about 200 ms regardless of where
in the utterance the signal occurred, but sub-
jects responded to signals presented before
speech began more slowly and the latency de-
creased with a slope of — 1 until speech began.

However, the findings of Ladefoged et al.
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(1973) may have been an artifact of their
method of measuring stop-signal reaction time.
With their procedure, subjects had to begin
speaking in order to register a stop-signal re-
action time, and their data from signals before
speech began may reflect those trials on which
the response to the stop signal was so slow
that speech could not be inhibited before it
began. Trials on which the response to the stop
signal was faster than the onset of speech would
not contribute to their estimates of stop-signal
reaction time because the speaking response
would be inhibited and no reaction time could
be recorded. Ideally, stop-signal reaction time
could be estimated from the inhibition data,
using the techniques described here, and the
values could be compared with the estimates
from the offset of voicing. Unfortunately, Lad-
efoged et al. (1973) did not present data on
the probability of inhibiting speech before it
began, so this possibility cannot be checked.

ZbrodofF, Logan, and Barber (1984) pre-
sented some data that bear on the issue: They
presented subjects with problems in simple
arithmetic, and had subjects respond by press-
ing keys or by speaking. Stop signals were pre-
sented 100, 300, 500, or 700 ms after the onset
of the problem—well before the response was
expected to occur. If Ladefoged et al. (1973)
interpreted their data correctly, it should have
been more difficult to inhibit the vocal re-
sponse before it began than to inhibit the key
press before it began. However, it was not.
Stop-signal reaction time, estimated from the
inhibition functions in the manner described
above, was 399 ms for vocal responses versus
391 ms for key-press responses (see Table 6,
row 19). Thus, the conclusions of Ladefoged
et al. (1973) that speech cannot be inhibited
before it begins should be regarded with cau-
tion.

Expanding the Focus of the Model

Our original intention in developing the
model presented here was to describe in gen-
eral the way people take control of their
thoughts and actions. To develop a formal
model, we focused on the stop-signal para-
digm, which involves stopping discrete vol-
untary actions. We now wish to suggest ways
in which the model might be generalized to

other situations that require different acts of
control, to fulfill our original intention.

Continuous versus discrete action. The
model developed so far is addressed to discrete
tasks with discrete responses. It would seem
to be relatively straightforward to generalize
the model to continuous responses. All re-
sponses that involve moving parts of the body
are continuous because physical principles
dictate that the body must move continuously.
The responses in a reaction time task, such as
the one studied here, are discrete only insofar
as a discrete criterion is imposed on the move-
ment, such as the closure of a telegraph key.
The responses seem discrete largely because
we are used to thinking of them as discrete.
On the other hand, properties of seemingly
continuous responses, such as arm move-
ments, are often studied by imposing discrete
criteria, such as a change in direction or ac-
celeration (e.g., Gottsdanker, 1966; Henry &
Harrison, 1961; Newell & Houk, 1983; but
see e.g., Viviani & Terzuolo, 1973). Thus, the
distinction between discrete and continuous
responses seems arbitrary and artificial. There
is no reason why all of the properties of the
model developed here cannot be applied di-
rectly to tasks with so-called continuous re-
ponses.

A potential problem is that the parameters
of the model may depend on the discrete cri-
terion applied to the continuous movement
(see Table 6, rows 1, 2, and 17). For example,
Henry and Harrison (1961) had subjects re-
verse an arm movement on signal, and found
that when the signal occurred 100 ms after
the stimulus to begin the movement, subjects
began decelerating before completing the
movement on 58% of the trials, but they re-
versed the movement before completing it on
only 3% of the trials. Similarly, Megaw (1972)
observed subjects correcting errors in a step-
tracking task by reversing the direction of
movement, and found that subjects began de-
celerating some 28 ms before they reversed
direction.

In situations like these, it would be inter-
esting to plot inhibition functions for several
different criteria. If the different criteria reflect
different portions of the same process, it should
be possible to account for the differences be-
tween the inhibition functions in terms of pa-
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rameters of the reaction time distribution and
parameters of the stop-signal reaction time
distribution for each component. It is beyond
the scope of this article to generalize the formal
model to deal with these complications, but
the basic idea seems worth pursuing.

Continuous tasks. Tasks themselves may
be either discrete or continuous. The distinc-
tion between discrete tasks and continuous
tasks may be fuzzy, but extreme cases are not
difficult to distinguish. Tasks such as choice
reaction time that involve a single stimulus
and a single response are clearly discrete,
whereas tasks such as typing that involve a
chain of stimuli and a chain of responses are
clearly continuous. The model can easily be
generalized from the discrete tasks it was de-
veloped with to continuous tasks, by imposing
discrete criteria on the continuous tasks. For
example, Logan (1982) generated inhibition
functions for typewriting by calculating the
probability of inhibiting particular keystrokes
(the first and the last in a word) as a function
of stop-signal delay (see the present Figure 5).

Continuous tasks are interesting because
they offer a way of estimating stop-signal re-
action time that does not depend on inhibition
functions: The chain of responses stops some
time after the stop signal, and the time between
the onset of the stop signal and the occurrence
of the last response to be emitted can be used
as an estimate of stop-signal reaction time.
Ladefoged et al. (1973) used this procedure
to estimate stop-signal reaction time in stop-
ping speech,3 and Logan (1982) used the pro-
cedure to estimate stop-signal reaction time
in stopping typewriting (see Table 6, rows 14
and 17; cf. rows 15 and 16). Estimates made
in this way are interesting in relation to
estimates made from inhibition functions.
Whereas values calculated from inhibition
functions may overestimate stop-signal reac-
tion time and the latency of the ballistic phase
of the primary task (see Appendix), values cal-
culated from the latency of the last response
after a stop signal may underestimate them.
This follows because subjects could inhibit
their action any time between the last response
after the stop signal and the expected occur-
rence of the next response. Alternatively, in
tasks with complex responses, the component
of the response the experimenter is observing

may not be the last component the subject
executes before stopping (cf. Henry & Har-
rison, 1961). Thus, the time between the stop
signal and the last component of the response
provides a lower limit on stop-signal reaction
time and the duration of the ballistic phase of
the primary task.

Despite the possibility that they may un-
derestimate values calculated from inhibition
functions, estimates from the last response af-
ter the stop signal are important. They are
clearly in the same neighborhood as estimates
from inhibition functions, and they should re-
spond in the same way to the same experi-
mental manipulations. Ideally, they could be
used in conjunction with estimates from in-
hibition functions to test the same hypotheses
and confirm the conclusions.

Thought versus action. The model has fo-
cused on stopping action because action is rel-
atively easy to observe. In principle, the model
can be applied to thought as well. Thoughts,
like actions, can be directed toward goals, and
like actions, thoughts sometimes need to be
inhibited. The model assumes only that two
processes race until the first one finishes; it
does not require that the process being stopped
generates an overt response.

A major problem in extending the model
to the control of thought is that thoughts are
generally not observable. Cognitive psychol-
ogists typically make thoughts observable by
setting a task in which some response is made
contingent on thought and observing the la-
tency and accuracy of the response. This would
be difficult in the stop-signal paradigm when
subjects inhibit their responses. However,
thoughts have other consequences besides gen-
erating overt responses, and those conse-
quences can be observed whether or not a re-
sponse occurs. People generally remember
what they have thought about, and their

3 Since this article went to press, Levelt (1983) published
an important article on error correction in spontaneous
speech. His Figure 4 contains a distribution of the number
of syllables uttered before stopping to correct an error,
which could be used to estimate an analog of stop-signal
reaction time in speech. Unfortunately, Levelt did not
report an estimate of the rate of speech, which is necessary
to convert the distribution into an estimate of stop-signal
reaction time.
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thoughts can be made observable through their
memories.

Logan (1983) did just that. He presented
subjects with pairs of words and had them
make category and rhyme judgments about
them. Occasionally, he presented a stop signal
and told subjects to inhibit their response to
the word pair when they heard the signal. Lo-
gan was interested in whether subjects stopped
thinking about the word pairs when they
stopped their responses to them. To find out,
he tested subjects' ability to recognize words
whose responses they had inhibited as well
as words that received a complete response.
If thoughts were inhibited with their corre-
sponding actions, memory performance
should improve as stop-signal delay increased,
and words whose responses were inhibited
should be remembered less well than words
that received a complete response. However,
if thoughts went on to completion when the
actions were inhibited, memory performance
should not depend on stop-signal delay, and
should be about the same whether or not sub-
jects inhibited their responses.

The data, displayed in the present Figure
8, generally supported the hypothesis that
thoughts went on to completion. Memory per-
formance was independent of delay when sub-
jects stopped their responses on signal (the top
two panels of Figure 8) and when subjects had
to respond overtly to the tone as well as stop
their responses to the word pair (the middle
two panels of Figure 8). Apparently, thoughts
went on to completion when the corresponding
action was inhibited, even when attention was
diverted to a new task. The only way Logan
was able to inhibit thought was to replace the
word pair with another when the stop signal
occurred. Then, memory performance im-
proved as delay increased. The increase was
about the same when subjects made a new
judgment about the new word pair (bottom
left panel of Figure 8) as when they simply
stopped their response to the first pair (bottom
right panel of Figure 8), suggesting that it was
the change in the display that inhibited
thought.

All thoughts do not run on to completion
ballistically. Using a test of recognition mem-
ory, Zbrodoffet al. (1984) found evidence that
the thoughts underlying simple and complex
arithmetic can be inhibited by interrupting

the overt actions that are associated with them.
It is not clear why arithmetic should be dif-
ferent from the category and rhyme judgments
Logan (1983) studied. Perhaps arithmetic is
not as well practiced and so it is less automatic.
In any case, an important goal for future re-
search is to determine what kinds of thoughts
are ballistic and what factors make thoughts
ballistic.

The investigations need not rely on rec-
ognition memory entirely; other tests of mem-
ory can be used to converge on conclusions
drawn from studies of recognition memory.
For example, Logan (1984) used repetition
priming as a test of memory and found results
that agreed in some respects with previous
studies of recognition memory (Logan, 1983)
and disagreed in other respects.

These studies suggest that the horse-race
model can be extended to processes that are
not directly observable, which is an important
development. Of course, it would be premature
to apply the formal model to these domains,
but nevertheless, the studies suggest that qual-
itative analyses can be quite informative.

Broader Implications

The application of the horse-race model to
the stop-signal paradigm and others (see Table
6) suggests that subjects have very close control
over their actions. Typically, they can stop the
current course of action in about 200 ms. The
analysis of inhibition functions showed that
subjects could stop a response up to the point
of executing it; the probability of inhibition
depended on the relative finishing times of the
stopping task and the primary task, not on
their relative starting times (also see Logan,
1981, 1982, 1983; Logan et al., 1984). To-
gether, these conclusions have implications for
the nature of attentional control and the nature
of automaticity, and they suggest further in-
vestigations of acts of control.

Attentional control. In general, the facts
about stopping and changing are consistent
with a late-selection theory of attention (Dun-
can, 1980; Norman, 1968). Late-selection the-
ories propose that attention has its selective,
controlling influence at later stages of pro-
cessing, after stimuli have had complete access
to the semantic system. Attention is necessary
primarily to control access to the motor sys-
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tern, which it does by gating the relevant stim-
ulus information. The late locus of control
would account for the relatively short ballistic
component observed in stop-signal studies; the
ballistic component should take no more time
than a response takes to execute after the com-
mand to execute it has been given (cf. Cher-

nikoff & Taylor, 1952). The late locus of control
would also account for the fact that response
inhibition depends on relative finishing time
rather than on relative starting time; control
is exerted at the point that stimulus infor-
mation reaches the motor system, regardless
of how long it took to get there.
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Figure 8. Inhibition functions for thought and action plotted against stop-signal delay. (Orienting = probability
of responding given a stop signal in the orienting task; signal-respond = probability of recognizing a word
from the orienting task that occurred with a stop signal and received a response; signal-inhibit = probability
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From "On the Ability to Inhibit Simple Thoughts and Actions: I. Stop-Signal Studies of Decision and
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The facts are also consistent with a hier-
archical theory of attention (Broadbent, 1977;
Reason & Mycielska, 1982). Hierarchical the-
ories propose that attention has its selective,
controlling influence by acting as an executive
that gives orders to subordinate systems. The
subordinate systems interpret their orders and
carry them out on their own until they finish
or are countermanded by the executive. A hi-
erarchical system could respond quickly to a
signal to stop by countermanding the orders
to the subordinate systems. The subordinate
systems, having no orders to go on, would
grind to a halt relatively quickly. In principle,
control could be exerted at any point from
stimulus reception to response; the motor sys-
tem would be the last possible point at which
a response could be inhibited, so inhibition
functions would depend on relative finishing
times.

The fact that stop-signal reaction times did
not show the refractoriness typical of many
double-stimulation paradigms (Kantowitz,
1974; Welford, 1952) is easier to reconcile with
hierarchical theories than with late-selection
theories. The data suggest that the system is
refractory to some kinds of signals but not to
others. Stop signals and signals to modify some
parameters of a response appear to have priv-
ileged access to the system, whereas signals
that require an overt response that is suffi-
ciently different from the response to the first
signal appear to have to wait for the system
to deal with them (see Brebner, 1968; Gotts-
danker, 1966; Megaw, 1972, 1974; Vince,
1948; Vince & Welford, 1967). Given that the
same stimulus (e.g., a tone) can be used as a
signal to respond or to stop responding, how
does the system know what kind of stimulus
it is dealing with? In hierarchical theories, the
executive system monitors the consequences
of its commands as well as issues commands
to subordinates. The (executive) system that
decides whether a signal requires privileged
access is different from the (subordinate) sys-
tem that the signal accesses. In late-selection
theories, there is generally one limited capacity
system for monitoring, issuing, and executing
commands. The system that decides whether
a signal requires privileged access is the same
system that the signal accesses; the two pro-
cesses must be time shared, which should pro-
duce refractory delays. Thus, hierarchical the-

ories account for the absence of refractory ef-
fects in stop-signal data better than late-
selection theories do.

The evidence from stop-signal studies may
support hierarchical theories of attention, but
it does not rule out late-selection theories en-
tirely. The treatment here considered modal
models that were abstracted from several dif-
ferent theories. It is entirely possible that
members of each class of theory can be found
that mimic the predictions of at least one
member of the other class. For example, a
late-selection theory could simulate a hierar-
chical system by devoting a fixed portion of
its limited capacity to monitoring and issuing
executive commands. The remaining capacity
could be allocated to the various signals in
accord with commands from the executive
portion. If the portions allocated to the exe-
cutive and subordinate really were fixed, the
two systems would not time share, just as the
executive and the subordinates in a hierar-
chical theory do not time share (cf. McLeod,
1977). Thus, we cannot decide for once and
for all which theory is better.4 However, we
can treat the two classes of theory as frame-
works for organizing data and for asking theo-
retical and empirical questions. From that
perspective, hierarchical theories seem better
than do nonhierarchical theories because they
make it easier to talk about control.

Automaticity and control. Automaticity is
a natural concept. It is part of the nontechnical
vocabulary that lay people use to describe
thoughts and actions that begin and run on
to completion relatively autonomously, with
little conscious effort. Automaticity is also a
scientific concept, part of experimental psy-
chology since the last century (e.g., James,
1890). Modern attempts to understand au-
tomaticity often do so by drawing a contrast
between automatic and "controlled" process-

4 The goals to be attained by performing may force a
hierarchical structure on the system whether or not the
system is hierarchical to begin with. Some goals will be
subordinate to others in achieving the main goal, and the
processing that is directed toward fulfulling the subordinate
goals may be considered subordinate to the processing that
is directed toward fulfilling higher level goals. It may be
difficult to separate the hierarchical goal structure from
the hierarchical processing structure, but in either case,
it would be appropriate to describe performance as hi-
erarchical.
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ing, claiming that automatic processing is fast,
parallel, and relatively immune to dual-task
interference, whereas "controlled" processing
is slow, serial, and subject to severe dual-task
interference (e.g., Hasher & Zacks, 1979; Lo-
gan, 1978; Posner & Snyder, 1975; Shiffrin &
Schneider, 1977). Some even claim that au-
tomatic processes cannot be inhibited once
they begin, whereas controlled processes can
be stopped easily (Hasher & Zacks, 1979; Shif-
frin & Dumais, 1981).5 These modern theories
carry the implication that automaticity and
control are opposites, which is contrary to ev-
idence from stop-signal studies and evidence
from studies of everyday errors.

Stop-signal studies show that highly skilled
actions such as typing and speaking are con-
trolled very closely (Ladefoged et al., 1973;
Levelt, 1983; Logan, 1982; Long, 1976; Rab-
bitt, 1978), yet skilled actions are automatic
by most conventional criteria (i.e., they are
fast, their components run in parallel wherever
possible, and they are not subject to severe
dual-task interference). The time required to
stop typing or speaking is about the same as
the time required to stop much simpler actions
(see Table 6). Apparently, the claim that au-
tomatic processes are hard to inhibit is wrong.

Studies of everyday errors also suggest that
automatic reactions may be controlled. Reason
and Myceilska (1982) report a case in which
a person absentmindedly put coffee into a pot
intended for tea. The erroneous behavior was
automatic by some criteria (e.g., it was clearly
done without intention; cf. Posner & Snyder,
1975), but it was nevertheless controlled. The
person opened a jar and poured coffee from
it into the pot. The movements required to
open the coffee jar were different from the
movements required to open the tea jar, so the
behavior was controlled in the sense that it
adapted to constraints imposed by the jar.
Furthermore, the coffee was poured into the
pot, not spilled haphazardly about the kitchen.
Thus, automatic processes are usually not un-
controlled; the same behavior may be de-
scribed as automatic and controlled.

The relation between control and auto-
maticity can be understood by examining
more closely what is meant by control. In gen-
eral terms, control means directing thought
and action toward a goal (Craik, 1947, 1948;
Miller, Galanter, & Pribram, 1960; Powers,

1978). Thought and action that are directed
toward a goal are controlled by definition, re-
gardless of their speed, susceptibility to dual-
task interference, and so on. Automatic pro-
cesses are controlled insofar as they are en-
gaged to bring about a goal (e.g., we control
the automatic process of typing in order to
write a letter). Current theories of automaticity
seem to address a different meaning of control
that has to do with the amount of work done
by an executive process. The amount of pro-
cessing required to accomplish a goal depends
on the difference between the current state of
affairs and the goal state. Some of the work is
done by the executive and some is done by
the subordinates. According to current theories
of automaticity, work done by the executive
is controlled and work done by subordinates
is automatic. From the present perspective,
this is not correct. All goal-directed activity is
controlled, whether it is carried out by the
executive or by the subordinates. It may be
appropriate to call work done by subordinates
automatic, but it need not be uncontrolled.
The distinction between executive processing
and subordinate processing is important, and
it will certainly spawn more research. However,
it is not a distinction between controlled and
uncontrolled processing.

The perspective adopted here suggests a new
direction for research on automaticity. We can
ask what aspects of the subject's interaction
with the environment are being controlled in
a given task, and we can ask what the subject
does to bring those aspects under control. We
can then determine how much of the work is
done by the executive and how much is done
by the subordinates, and we can ask whether
different divisions of labor would be more ef-
fective. Current studies of automaticity often
ask the last two questions but rarely ask the
first two; early studies in Craik's (1947, 1948)
tradition and modern studies of movement
control often ask the first two questions and
rarely ask the last two. It seems important to
ask all four questions together. The first two

5 Wickens (1939) and Kimble and Perlmuter (1970) have
used inhibitability as a defining characteristic of voluntary
processes, arguing that voluntary processes can be inhib-
ited, whereas involuntary processes cannot. We have no
quarrel with their definition, but we do not believe that
automatic processes are necessarily involuntary.
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provide a context for the last two, making them
more meaningful than they would be alone,
and the last two elaborate the answers given
to first two.

Other acts of control. In this article, we
have focused on inhibition of thought and ac-
tion as acts of the human control system. We
do not mean to imply that inhibition is the
only act of control in the human repertoire;
only that it is relatively simple and it is useful
in controlling the motor system and the cog-
nitive system. How it works together with other
acts of control is an important question for
future research.

The role of inhibition as a control strategy
is perhaps clearer in motor skills, which tend
to be continuous, than in cognitive skills,
which often involve concatenation of discrete
components. Motor skills may often be con-
trolled by setting a reference level or a goal
that subordinate systems try to maintain de-
spite perturbations; inhibition may be used
only when things get out of hand (i.e., when
the subordinate systems cannot compensate
for the perturbations). Alternatively, inhibition
may be employed early in the acquisition of
a motor skill, such as a novice skier deliberately
falling down to prevent disaster on a run de-
signed for experts. It may be replaced by more
sophisticated, less drastic control strategies as
skill develops, such as traversing to control
speed on a steep run. Again, further research
is needed to evaluate these possibilities.

Very little is known about the control of
cognitive processes. Possibly, the control-sys-
tem-engineering approach that has been so
successful in the motor domain may not be
as useful in analyzing cognitive skills. In cog-
nitive skills, achieving a goal is often more of
a problem than maintaining a goal state in
the face of perturbations. Nevertheless, inhi-
bition is an important act of cognitive control,
and future research will determine the extent
to which it is sufficient and the extent to which
it must be supplemented by other acts of con-
trol.
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Appendix

In this appendix, we show that the method of
estimating stop-signal reaction time from the pri-
mary-task reaction time distribution and the prob-
ability of responding given a signal, which assumes
that stop-signal reaction time is constant (see Equa-
tion 4), provides reasonable estimates even if stop-
signal reaction time has nonzero variance. By
Equation 13,

<r;> = <rs> + ps(td)f2,
where (Ts) is the mean stopping time on trials where
stopping occurs, for a given delay td , and T2 is the
mean response time of the ballistic component.
Now, evaluate <(TS).

= f
Ju+

ufs(u)duMt)dt,

where fs(u) is the stopping time distribution and
f\(t) is the distribution of the early process.
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where Ft(t) is the cumulative distribution of the
early process. The stopping time distribution fs(u)
is peaked around its mean, Ts, so that we want to
calculate Ft(u + ?d) in that region. lffs(u) is narrowly
peaked, we may take

Ft(u + ta) = Ft(ft + /d) + (« - fs)F\(fs + ta)

+ second derivative terms.

Substituting in Al and evaluating gives

ufs(u)du(\

- (u - TS)F\(TS + tA)

= fs(i -

All of the terms in A2 are unknown, but we can
calculate most of them from the probability of stop-
ping and the reaction time distribution when no
stop signal is given. From Equation 7, the probability
of stopping is

fs(u)du

J_ fs(u)duF{(u + /„). (A3)

Furthermore, the probability that the reaction time
is less than t0 when no stop signal is given is

P( r< / 0 )= f dt'
Jt+t'<tQ

pOO f*lQ—t

MOdt f{(t')dt'
J— 00 V — 00

= r f2(t)dtFl(t0 - t). (A4)
*/-co

In A3, expand Ft(u + td) about u = Ts; in A4,
expand F,(f0 - t) about t = T2. The rationale for
this step is the expectation that most of the weight
of^(w) is near rs, so that the value of Fr(/d) is most
sensitive to fluctuations of FI(U + 4) in that region.
It is assumed that Ft(u + td) varies relatively
smoothly across the region where J£(M) is significantly
nonzero. Similar considerations apply to A4. Per-
forming the substitutions, we get

= f "
*/-Q

fs(u)du(F,(fs + tA)

(A2)

+ (u - T5)F\(fs - td) + • • • )

= Ft(fs + tA) + second derivative terms (A3)
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as well as

P(T<t0)= r
J-o

or

+ (fa - t)F\(t0 - f2) +

— T2) + second derivative terms.

Note that in both cases, the first derivative term
vanishes. This is important, because it makes the
estimate in Equation 4 better than it might seem
at first glance.

Now, choose f0 so that /Vfe) = P(T < ta), which
makes t0 depend on td. This is precisely the pro-
cedure followed for estimating t, in the case where
the stopping time is assumed to have a fixed value.
The present calculation shows the approximation
is better than it seems to be, owing to the vanishing
first derivative terms. Call the function so derived
/•(/<,) (i.e., r(/d) = t0). Then, ignoring second derivative
terms,

Because F\(t) is monotonic,

f, + td = r(ta) - T2

fs + T2 = r(/d)

Now, substituting A5 into A2,

and using the definition of ( T's~)

= (f. + T2)Ps(td) - al

= (r(fd) - td)Ps(ld) - al

t,)

In this result, all of the components of the first
term, r(fd), Jd, and Ps(/d), can be estimated directly
from the data for each value of stop-signal delay.
The final term, which is a correction to the lowest
order approximation, can be estimated from the
same data. The correction depends on al, which
cannot be measured directly. We derived a limit on
its value in the section on inhibition functions as
cumulative distributions.
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