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SUMMARY

Uncertainty is an inherent property of the environ-
ment and a central feature of models of decision-
making and learning. Theoretical propositions sug-
gest that one form, unexpected uncertainty, may be
used to rapidly adapt to changes in the environment,
while being influenced by two other forms: risk and
estimation uncertainty. While previous studies have
reported neural representations of estimation uncer-
tainty and risk, relatively little is known about unex-
pected uncertainty. Here, participants performed
a decision-making task while undergoing functional
magnetic resonance imaging (fMRI), which, in com-
bination with a Bayesian model-based analysis,
enabled us to separately examine each form of un-
certainty examined. We found representations of un-
expected uncertainty in multiple cortical areas, as
well as the noradrenergic brainstem nucleus locus
coeruleus. Other unique cortical regions were found
to encode risk, estimation uncertainty, and learning
rate. Collectively, these findings support theoretical
models in which several formally separable uncer-
tainty computations determine the speed of learning.

INTRODUCTION

In both our physical and social environments, we frequently

encounter demanding situations in which optimal performance

depends on our ability to maintain accurate internal representa-

tions of the statistics of those unstable environments. This is a

complex task because samples from an unstable environment

may vary in their relevance for predicting future outcomes. For

example, if the statistics underlying the environment have

changed, then recently acquired samples are more representa-

tive of the new environment than old samples and should be

weighted accordingly. It has been emphasized (Behrens et al.,

2007; Yu and Dayan, 2005) that uncertainty may be used to

the advantage of learners, allowing them to optimally weigh

new data against old when updating their beliefs. One approach,
which could be regarded as a formof novelty detection, suggests

that learners quantify at each time point the likelihood that the

statistics underlying the environment have changed based on

the current sample (Nassar et al., 2010; Payzan-LeNestour and

Bossaerts, 2011; Yu and Dayan, 2005). This quantity, termed

unexpected uncertainty, can be used to flexibly modulate the

weight given to new data as evidence for such a change varies.

The computation of unexpected uncertainty is nontrivial,

because improbable data samplesmay be attributed to a change

in the statistics underlying the environment, or alternatively to the

known unreliability of predictive relationships, dubbed expected

uncertainty (Yu and Dayan, 2005). Importantly, the definition of

unexpected uncertainty does not imply that the agent is unaware

that his environment is subject to change. Instead, a data sample

with high unexpected uncertainty indicates that it is surprising

given the cue-outcome association acquired through sampling,

even when expected uncertainty, or the known, learned unreli-

ability of this association, is accounted for.

One form of expected uncertainty is risk, or the inherent

stochasticity of the environment that remains even when the

contingencies are fully known. For example, when sampling

from an environment in which reward is delivered 50% of the

time versus one in which reward is delivered 95% of the time,

risk is higher in the former case. The perceptions of risk and un-

expected uncertainty are antagonistic (Yu and Dayan, 2005) in

the sense that when risk is high, as in the former case, changes

in the environment are hard to detect and hence, unexpected

uncertainty is low, whereas when risk remains low, as in the latter

example, changes in the environment lead to strong increases

in unexpected uncertainty.

Unexpected uncertainty is also influenced by estimation

uncertainty or the imprecision of the learner’s current beliefs

about the environment (Chumbley et al., 2012; Frank et al.,

2009; Payzan-LeNestour and Bossaerts, 2011; Prévost et al.,

2011; Yoshida and Ishii, 2006), which is also referred to as

second-order uncertainty (Bach et al., 2011). If beliefs are ac-

quired through learning as opposed to instruction, this quantity

decreases with sampling. When estimation uncertainty is high,

improbable samples may be partially attributed to the agent’s

inaccurate beliefs about the structure of the environment, rather

than to a change in that structure.

Recent behavioral work suggests that subjects’ choices may

indeed reflect a learning scheme that makes use of unexpected
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Figure 1. Task Illustration, Behavioral

Model Comparison, and BOLD GLM Sche-

matic

(A) Illustration of task. On free choice trials partic-

ipants chose one of two cue stimuli within 2 s of

cue onset. The chosen cue probabilistically deliv-

ered an outcome of +V1, �V1, or no change after

a 4 s delay. Each trial was followed by a variable

length ITI. Forced choice trials were also included,

on which only a single cue was available for play.

(B) Bayesian information criterion (BIC) values of

the benchmark RL model relative to the Bayesian

model. Each point represents a single participant,

with a point above the line indicating greater evi-

dence for the Bayesian model.

(C) Schematic of GLM used in analysis of BOLD

data; columns denote onset regressors, white

boxes denote parametric modulators.

See also Figure S1.
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uncertainty (Nassar et al., 2010; Payzan-LeNestour and Bos-

saerts, 2011). In addition, recent studies tracking pupil size

dynamics (Nassar et al., 2012; Preuschoff et al., 2011) demon-

strated a correlation of unexpected uncertainty with phasic

changes in pupil diameter. Although it has been noted (Yu,

2012) that the action of the cholinergic system also influences

pupil size, this modulatory effect was attributed (Nassar et al.,

2012) to the activity of the locus coeruleus (LC), a nucleus in

dorsorostral pons whose neurons represent the sole source of

noradrenaline to the cerebral cortices, cerebellum, and hippo-

campus (Aston-Jones and Cohen, 2005; Moore and Bloom,

1979). Transient shifts in the activity of LC during contingency

changes in a target reversal task with nonhuman primates

(Aston-Jones et al., 1997) have also been noted; specifically a

transition from the phasic mode, characterized by both relatively

low baseline firing rate and high phasic responsiveness to task-

relevant stimuli, to the tonic mode, characterized by both

relatively high baseline firing rate and diminished phasic respon-

siveness to task-relevant stimuli. Finally, pharmacological acti-

vation of the noradrenergic system in rats has been found

to speed behavioral adaptation to changes in environmental

contingencies (Devauges and Sara, 1990) whereas noradren-

ergic, and not cholinergic, deafferentation of rat medial frontal

cortex has been found to impair it (McGaughy et al., 2008). These

finding are consistent with the theoretical claim that signaling

of unexpected uncertainty is mediated by the action of the

noradrenergic modulatory system (Yu and Dayan, 2005).

Despite this accumulating behavioral and psychophysical

evidence for unexpected uncertainty, to our knowledge, no study

to date has directly investigated the neural substrates of unex-

pected uncertainty in human subjects. To that end, we present

results from a study in which participants underwent functional

magnetic resonance imaging (fMRI) while they played a six-

armed restless bandit decision task in which the payoff probabil-

ities of the bandit arms changedwithout notice and hence, unex-
192 Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc.
pected uncertainty fluctuated constantly.

To properly distinguish between changes

in unexpected uncertainty and changes in
the probability of a jump, or volatility (Behrens et al., 2007; Bland

and Schaefer, 2012), we kept the latter constant. We applied a

model-based Bayesian learning algorithm (Payzan-LeNestour

andBossaerts, 2011) to track subjects’ estimates of the outcome

probabilities on each arm. This algorithm provides a principled

way to measure unexpected uncertainty, as well as estimation

uncertainty and risk, while specifying how they should influence

the rate of learning. Given the complex interrelations between the

different components of uncertainty, we included each of the

uncertainty signals in our fMRI analysis to minimize potential

confounds. We also controlled for changes in the learning rate,

because its strong dependence on unexpected uncertainty

would otherwise mean that neural activity superficially corre-

lating with unexpected uncertainty could merely reflect generic

changes in the learning rate.

We hypothesized that we would observe separately iden-

tifiable neural effects of unexpected uncertainty, estimation un-

certainty, and risk. We predicted that unexpected uncertainty

would be encoded at the time of outcome along with the learning

rate, as these signals are needed for the purpose of updating

values to guide choice on subsequent trials (Figure 1C). In

particular, we aimed to test for activity reflecting unexpected

uncertainty within the noradrenergic brainstem nucleus locus

coeruleus. Several studies from the neuroeconomics literature

have reported neural correlates of risk during choice in insular

cortex/IFG (d’Acremont et al., 2009;Huettel et al., 2005;Preusch-

off et al., 2008), but also anterior cingulate (Christopoulos et al.,

2009), striatum (Hsu et al., 2005), and intraparietal sulcus (Huettel

et al., 2005). Moreover, other studies have reported activation

correlating with the degree of ambiguity present in a decision-

gamble (Hsu et al., 2005) or the degree of estimation uncertainty

in a learning task (Bach et al., 2011; Behrens et al., 2007; Chumb-

ley et al., 2012; Prévost et al., 2011). However, such studies have

typically used discrete variations in risk and estimation uncer-

tainty, or have limited their attention to specific brain regions,



Figure 2. Unexpected Uncertainty

(A) SPM showing negative effect of unexpected

uncertainty at time of outcome at posterior

cingulate [PCG; peak at x,y,z =�8,�34,44]; pFWE <

0.05 after extent thresholding.

(B) Bar plot shows average effect of low, medium,

and high unexpected uncertainty at left middle

temporal gyrus. To generate this, trials were

sorted according to their unexpected uncertainty

value into one of three equal-sized bins, which

were then fitted to the BOLD signal. Error bars

represent SEM.

(C) SPM showing negative effects of unexpected

uncertainty at time of outcome at left middle

temporal gyrus [MTG; peak at x,y,z =�44,�78,26],

bilateral postcentral gyrus [PCG; peaks at x,y,z =

�58,�28,46; x,y,z = 54,�24,20], left hippocampus

[Hi; peak at x,y,z = �28,�36,�10], posterior

cingulate [PCG; peak at x,y,z = �8,�34,44], and

left posterior insula [Ins; peak at x,y,z =�42,�6,2];

pFWE < 0.05 after extent thresholding.

See also Figure S3 and Table S1.
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while the present task design permits full parametric variation of

these signals in a naturalistic learning environment.

We were also interested in the role played by the limited set

of cortical regions that have been shown to project directly to

locus coeruleus in rats and nonhuman primates; those areas

being anterior cingulate cortex, dorsomedial and dorsolateral

prefrontal cortex, and orbitofrontal cortex (Arnsten and Gold-

man-Rakic, 1984; Aston-Jones et al., 2002; Jodo et al., 1998).

It has been suggested (Aston-Jones and Cohen, 2005) that

descending projections from these prefrontal regions mediate

the influence of important task-related information on the activity

of locus coeruleus.We hypothesized that estimation uncertainty,

which interacts with unexpected uncertainty to drive learning,

might be encoded in these prefrontal areas, giving it the

potential to influence the computations there. Alternatively,

unexpected uncertainty signals may be computed in these

prefrontal regions and subsequently relayed to locus coeruleus.

Given the broad distribution of our regions of interest, a whole-

brain imaging approach was used to test for regions yielding

correlations with our uncertainty signals.

RESULTS

Behavioral
Consistent with prior findings (Payzan-LeNestour and Bos-

saerts, 2011), the Bayesian learning model fit choices better

than the benchmark reinforcement learning model for the

majority (89%) of participants (Figure 1B) after the free parame-

ters of both models were optimized for each participant. A one-

tailed paired t test on the differences of the goodness-of-fits

(Bayesian information criterion [BIC]) found the fit of the Bayesian

model to be significantly better (p = 0.0012; n = 18). As a consis-

tency check, we fitted the parameters across subjects by mini-

mizing the negative log-likelihood of the choice data pooled

over all the participants. The results obtained were consistent

with those reported here.
Neuroimaging
We did not observe a significant blood oxygen level-dependent

(BOLD) response at our significance threshold of pFWE < 0.05

to two of our regressors of interest, namely estimation uncer-

tainty at phasic outcome and learning rate at tonic outcome

(see Table S1, available online, for coordinates of all significant

activations).

Unexpected Uncertainty at Outcome
Tonic activity at outcome correlated significantly (pFWE < 0.05)

and negatively with unexpected uncertainty in posterior cingu-

late cortex, bilateral postcentral gyrus, left middle temporal

gyrus (MTG), left hippocampus (Hi), and left posterior insula

(Ins) (Figure 2). In separate analyses, we included unexpected

uncertainty as a modulator of (1) phasic activity at outcome

presentation and (2) the 1.5 s period while the outcome was

on-screen. The BOLD responses we found overlapped with

those illustrated in Figure 2, but were weaker and less exten-

sive (Figure S3).

In order to test for the effect of unexpected uncertainty at locus

coeruleus, we employed a preprocessing and analysis proce-

dure optimized for this location (see Experimental Procedures).

We applied a small volume correction to the results of this

analysis using an anatomical mask of human locus coeruleus

in MNI space, generated by Keren et al. (2009) from high resolu-

tion T1-weighted MR imaging of the brainstem. This mask

served the dual purpose of correcting the activations for multiple

comparisons and delineating the locus coeruleus—a nucleus

that is difficult to discriminate on standard T1-weighted images.

Following correction, we observed a significant (pFWE < 0.05,

SVC) negative response in left LC to unexpected uncertainty

(Figure 3). The activity in this cluster does not extend significantly

into surrounding pontine structures and the peak of this cluster

before masking matches that of the masked cluster at a strict

(pUNC < 0.0002) uncorrected threshold (see Figure S2 for axial

slices illustrating activation in pons).
Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc. 193



Figure 3. Unexpected Uncertainty in Locus Coeruleus

SPM showing negative effect of unexpected uncertainty (magenta) at locus

coeruleus [LC; peak at x,y,z, = �2,�37,�17; pUNC < 0.001], and anatomical

ROI (blue) of locus coeruleus taken from Keren et al. (2009).

See also Figure S3 and Table S1.

Figure 4. Estimation Uncertainty

(A) SPM showing effect of estimation uncertainty at time of cue at anterior

cingulate [AC; peak at x,y,z = 0,10,54]; pFWE < 0.05 after extent thresholding.

(B) Bar plot shows the average effect of low, medium, and high estimation

uncertainty at anterior cingulate. To generate these plots, trials were sorted

according to their estimation uncertainty value into one of three equal-sized

bins, which were then fitted to the BOLD signal. Error bars represent SEM.

(C) SPMshowing effects of estimation uncertainty at time of cue at intraparietal

sulcus [IPS; peak at x,y,z = �42,�40,52], bilateral middle occipital gyrus

[MOG; peak at x,y,z = 38,�88,6], striatum [St; peak at x,y,z = 8,�2,12], bilateral

middle frontal gyrus [MFG; peaks at x,y,z = �34,58,10; x,y,z = �52,10,38;

x,y,z = 48,36,24; x,y,z = 30,�4,64], and anterior cingulate [AC; peak at x,y,z =

0,10,54]; pFWE < 0.05 after extent thresholding. Activation increased linearly in

estimation uncertainty at all regions, with the exception of a cluster at right

MFG [x,y,z = 30,�4,64].

See also Table S1.
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Estimation Uncertainty at Cue
Phasic activation correlated significantly and positively (pFWE <

0.05) with estimation uncertainty of the chosen option in intra-

parietal sulcus (IPS), bilateral middle occipital gyrus (MOG)

with activation extending bilaterally into parahippocampal

gyrus, striatum (St), bilateral middle frontal gyrus (MFG), and

anterior cingulate (AC). With the exception of a cluster at right

MFG [x,y,z = 30,�4,64], activation increased linearly in estima-

tion uncertainty at all regions (Figure 4).

Areas correlating with unexpected and estimation uncertainty

are also shown overlaid on the same figure in Figure 5 in order

to illustrate more clearly the differential activation patterns asso-

ciated with each.

Risk at Cue
Phasic activation correlated significantly and positively (pFWE <

0.05) with the risk of the chosen option at cue presentation

in right inferior frontal gyrus (IFG) and bilateral lingual gyrus

(LG). These activations were found to increase linearly in risk

(Figure 6). A subsequent analysis did not find a modulation

by risk of activity in the period between cue and outcome

presentation.

Learning Rate at Outcome
The learning rate at outcome correlated significantly (pFWE <

0.05) with phasic BOLD activity in cuneus (Figure 7). We also

tested whether subjects’ BOLD activity in this cluster was a

better predictor of learning than the model-derived Bayesian

learning rate, by extracting an averaged and normalized BOLD

time course from the cuneal cluster and substituting it for the

Bayesian learning rate in our model. The goodness of fit (log-

likelihood) of this modified model was poorer than that of our

original Bayesian learning model. This remained the case when

the BOLD time course was high-pass filtered before inclusion

in the learning model and when free parameters were included

to scale and offset the BOLD time course.

Expected Value at Cue
In order to confirm that our model was also capturing neural cor-

relates of expected value as shown in many previous studies

(FitzGerald et al., 2009; Hampton et al., 2006; Plassmann et al.,

2007) we tested for areas correlating with the expected value

of the chosen option at cue presentation. Although we did not
194 Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc.
find significant effects at our whole-brain significance threshold,

for this analysis we could motivate a focused region of interest

analysis because such signals are consistently reported in the

ventromedial prefrontal cortex (vmPFC). We therefore corrected

for small volume within a sphere of radius 5 mm centered on the

average of the peak coordinates of previously reported vmPFC

activations to expected value, taken from Valentin et al. (2007).

Consistent with these prior studies, we found significant corre-

lation (pFWE < 0.05) in the vmPFC with the expected value of

the chosen option.

Outcome Value
Finally, we tested for regions encoding the value of the outcome.

While the phasic effect of outcome value was not strong enough

to survive our whole-brain significance threshold, there is a large

body of literature reporting activation of the ventral striatum in

response to appetitive and aversive outcomes (Delgado et al.,

2000, 2008; Elliott et al., 2000; O’Doherty et al., 2004). We there-

fore applied a small volume correction bilaterally at the ventral

striatum using coordinates taken from Di Martino et al. (2008)

and found significant effects (pFWE < 0.05) of outcome value at

both left and right ventral striatum.



Figure 5. Unexpected Uncertainty and Esti-

mation Uncertainty

SPMs showing effects of estimation uncertainty at

time of cue (green) and negative effect of unex-

pected uncertainty at outcome (red); pFWE < 0.05.
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Prediction Error Modeling
In order to account for variance attributable to prediction error

signaling (Montague et al., 1996; O’Doherty et al., 2004; Schultz

et al., 1997) we ran an additional GLM which included expected

value as a phasic modulator of activity at the time of cue onset

and prediction error, derived from a fitted delta learning rule,

as a phasic modulator at the time of outcome presentation.

Using this model, the results presented above remained sig-

nificant at our whole-brain-corrected threshold. In addition, we

ran a separate analysis testing for the presence of an unsigned

prediction error signal at the time of outcome presentation, but

did not observe a response that survived our significance

threshold.

DISCUSSION

Uncertainty is an inherent feature of real-world interactions with

the environment. While previous studies have revealed neural

correlates of uncertainty, such studies have not determined the

neural correlates of unexpected uncertainty in the brain, a metric

that may mediate rapid adaptation to changes in the environ-

ment. Here, we localized brain activation correlating with unex-

pected uncertainty, separating it from neural activity associated

with risk and estimation uncertainty. We further separated this

from activation arising from changes in the learning rate. By

including all three uncertainty signals and learning rate in one

model, we have ensured that experimental variance is appropri-

ately assigned, thereby enabling the neural substrates of each to

be identified.

We observed significant negative encoding of unexpected

uncertainty in several brain regions at the time of outcome

feedback: the posterior cingulate cortex, a region of postcentral

gyrus, a region of posterior insular cortex, left middle temporal

gyrus, and the left hippocampus. The presence of a specific

unexpected uncertainty signal in a separate network of brain

regions from that engaged by other forms of uncertainty pro-

vides direct experimental evidence in support of theoretical

claims that this specific type of uncertainty is distinct from other

forms of uncertainty such as risk and estimation uncertainty

(Payzan-LeNestour and Bossaerts, 2011; Yu and Dayan, 2005).

It is also important to note that a number of other studies have

reported engagement of one or more of these brain areas in

functions that may relate to or involve unexpected uncertainty,

although this variable was not explicitly measured in those

past studies. For instance, unexpected uncertainty arguably re-

lates to novelty detection, and the hippocampus has previously

been found to play a role in classifying observations into cate-

gories of familiarity and novelty (Rutishauser et al., 2006). A

recent experimental study of behavioral adaptation in humans
(Collins and Koechlin, 2012) suggests that after a contextual

change, humans retrieve from their memory similar contexts

experienced in the past and select the behavioral strategy that

they previously learned to be optimal in that context. The unex-

pected uncertainty signaling we observe is unlikely to reflect the

deployment of such a strategy because the unsignaled changes

in our paradigm typically led to genuinely new situations.

We also observed a significant negative response to unex-

pected uncertainty in the noradrenergic brainstem nucleus locus

coeruleus. This response was localized to locus coeruleus using

an MR template (Keren et al., 2009), despite the decreased

signal-to-noise ratio in the brainstem resulting from the effects

of cardiac pulsation and respiratory movement. The response

is unlikely to be an artifact of motion attributable to increased

physiological arousal as the BOLD effect observed is decreasing

with increasing uncertainty. While previous studies have demon-

strated sensitivity of neuronal responses in locus coeruleus to

unexpected changes in reward contingencies in rats and

nonhuman primates (Aston-Jones et al., 1997; Bouret and

Sara, 2004) and have attributed phasic changes in pupil diameter

in human subjects correlating with unexpected uncertainty to the

action of locus coeruleus (Nassar et al., 2012; Preuschoff et al.,

2011), this finding represents neural evidence in humans for

the claim that brain regions containing noradrenergic neurons

are involved in the representation of unexpected uncertainty

(Yu and Dayan, 2005). The neurophysiological literature (Aston-

Jones et al., 1999; Bouret and Sara, 2005) has noted a distinction

between the phasic and tonic modes of LC activity. While the

phasic mode has been associated with enhanced task engage-

ment and performance, the tonic mode has been associated

with increased distractibility, the shifting of attention, and explor-

atory behavior (Aston-Jones and Cohen, 2005; Aston-Jones

et al., 1994; Rajkowski et al., 1992). In addition, shifts fromphasic

to tonic LC mode have been noted during contingency changes

in a target reversal task with nonhuman primates (Aston-Jones

et al., 1997). In our task, however, a contingency change may

not precipitate the shifting of attention to previously irrelevant

task stimuli or engagement in exploratory behavior, as may be

the case in a target-reversal paradigm; rather it is possible that

the contingency change signaled by high unexpected uncer-

tainty brings about increased engagement with the outcome

stimuli for the purpose of learning and thus recruitment of phasic

LCmode, characterized by both relatively low baseline firing rate

and high phasic responsiveness to task-relevant stimuli. Given

that our BOLD signal appears to be more sensitive to baseline

activity as opposed to phasic responsiveness, this effect

could potentially manifest in the sustained decrease in BOLD

signal that we observe under conditions of high unexpected

uncertainty. Further investigation is required, however, to fully
Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc. 195



Figure 6. Risk

(A) SPM showing effects of risk at time of cue at right inferior frontal gyrus [IFG;

peak at x,y,z = 56,16,�6] and bilateral lingual gyrus [LG; peaks at x,y,z =

18,�52,�2; x,y,z = �26,�56,�16]; shown at pFWE < 0.05 after extent thresh-

olding.

(B) Bar plot shows the average effect of low, medium, and high risk at inferior

frontal gyrus. To generate this, trials were sorted according to their risk value

into one of three equal-sized bins, which were then fitted to the BOLD signal.

Error bars represent SEM.

See also Table S1.

Figure 7. Learning Rate

Effect of learning rate at time of outcome at cuneus [CUN; peak at x,y,z =

�2,�86,22]; pFWE < 0.05 after extent thresholding.

See also Table S1.
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characterize how switching of LC mode relates to task demands

and how it may influence the BOLD signal. Another key question

for future research lies in determining which, if any, of the cortical

representations of unexpected uncertainty observed here are

dependent on efferent projection from locus coeruleus. It also re-

mains to be seen whether unexpected uncertainty is computed
196 Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc.
in locus coeruleus or is projected to locus coeruleus from an up-

stream region; although it should be noted that in the current

study we do not find evidence of unexpected uncertainty

signaling in any of the prefrontal cortical regions suggested to

project directly to locus coeruleus.

Estimation uncertainty at the time of cue presentation, as

distinct from unexpected uncertainty and risk, correlated with

activity in several brain structures, most notably in the anterior

cingulate cortex, extending into posterior dorsomedial prefrontal

cortex. The area of cingulate cortex found here overlaps with

that described by Behrens et al. (2007) as correlating with

volatility (i.e., the unconditional probability of a jump), as well

as with estimation uncertainty. This may reflect the correlation

between estimation uncertainty and volatility, as both are

affected by the frequency at which the environment changes.

However, the two are conceptually distinct. In particular, one

distinctive role of estimation uncertainty is to influence the

trial-by-trial assessment of unexpected uncertainty (Payzan-

LeNestour and Bossaerts, 2011).

In addition to responses at anterior cingulate and posterior

dorsomedial prefrontal cortices, we observed encoding of esti-

mation uncertainty bilaterally in dorsolateral prefrontal cortex.

It should be noted that these regions, along with orbitofrontal

cortex, comprise the limited set of cortical regions known to

send strong direct projections to locus coeruleus in nonhuman

primates (Arnsten and Goldman-Rakic, 1984; Aston-Jones

et al., 2002; Jodo et al., 1998), although importantly, evidence

for projections from posterior dorsomedial prefrontal cortex is

weaker than that for other regions (Aston-Jones and Cohen,

2005). In the light of theoretical claims and empirical evidence

that locus coeruleus may signal unexpected uncertainty through

its noradrenergic efferents, allowing it to modulate the rate of

learning (Nassar et al., 2012; Preuschoff et al., 2011; Yu and

Dayan, 2005), our finding suggests a modulatory pathway by

which representations of estimation uncertainty may influence

unexpected uncertainty signaling. However, further research is

required to directly test this hypothesis.

The presence of an estimation uncertainty signal in parts of

the dorsomedial and dorsolateral frontal cortex is consistent

with recent proposals that the prefrontal cortex provides esti-

mation uncertainty signals that are used in directed exploration

schemes (Badre et al., 2012; Cavanagh et al., 2012; Frank

et al., 2009). In previous work (Payzan-LeNestour and Bossaerts,
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2012), participants tended to direct exploration toward bandit

arms with minimal level of estimation uncertainty as well as

toward arms with maximal level of unexpected uncertainty. In

the current learning task, we did not find evidence of this directed

exploration, which may be attributable to the task design; at

most only two bandit arms were available for choice on each trial

in the current task, versus six in the task of Payzan-LeNestour

and Bossaerts (2012). Thus, although the neural representations

of uncertainty we report may support such guided exploration,

we could not directly examine this in the current study.

A region of inferior parietal lobule was also found to track esti-

mation uncertainty. Such a finding relates to previous studies

that have assessed neural correlates of ambiguity during eco-

nomic decision-making (Bach et al., 2011; Huettel et al., 2006).

In those studies, subjects were provided with partial information

regarding the probabilities associated with obtaining a reward

outcome and could not improve their estimate of those probabil-

ities through sampling. In contrast, in our case, estimation uncer-

tainty reduces over trials as the number of samples of an option

increases provided there is no jump in the outcome probabilities.

Although findings of neural overlap must be treated with caution,

by showing that ambiguity and estimation uncertainty do appear

to engage at least partly overlapping regions, our finding sug-

gests that the two may engage similar underlying computational

processes.

Now turning to risk, we found significant correlations with this

variable in inferior frontal gyrus as well as a region of lingual gyrus

bilaterally. In previous studies describing neural representations

of risk, activity has also been reported in the inferior frontal gyrus

(Huettel et al., 2005) and the adjacent anterior insula (Huettel

et al., 2005; Preuschoff et al., 2008). Other studies have reported

activations in additional brain regions not found at our whole-

brain-corrected threshold, including the anterior cingulate cortex

(Christopoulos et al., 2009) and the intraparietal sulcus. Further-

more, we found activity in the lingual gyrus, an area typically not

found to correlate with risk per se, although Callan et al. (2009)

found that lingual gyrus is involved in tracking resolution of un-

certainty, and Bruguier et al. (2010) reported enhanced lingual

gyrus activation when insider trading risk increased in the

context of a financial market. One potential account for the differ-

ences in activation patterns found here is that because we are

modeling other uncertainty components at the same time and

therefore accounting for confounding variance, this confers a

greater sensitivity to uncover signals specifically pertaining to

risk on the present study, as opposed to those confounding vari-

ables. Furthermore, in many previous studies assessing risk

perception, reward probabilities were presented explicitly in a

descriptive fashion (Christopoulos et al., 2009; Huettel et al.,

2005; Preuschoff et al., 2008; also see d’Acremont et al.,

2009), while in our task, neural representations of risk are

acquired through direct sampling from a distribution of reward.

Thus, putative differences between neural systems involved in

descriptive versus experiential learning may account partially

for involvement of distinct brain areas to those found in studies

on risk representations in descriptive tasks.

Finally, we observed activity in cuneus correlating with the

learning rate. Previous studies on the neurobiological bases of

choice under uncertainty also reported cuneus activation (Huet-
tel et al., 2005; Schlund and Ortu, 2010; Volz et al., 2003), but the

activation was not linked to parametric changes in the level of

uncertainty or to changes in the learning rate induced by

changes in uncertainty. One study by Haruno et al. (2004), using

an index of changes in behavior following reinforcement that

could in part reflect learning rate, found activation correlating

with cuneus activity. More generally, the cuneus has been iden-

tified in numerous studies as playing a role in visual attention

and in orienting to stimuli in the environment (Carter et al.,

1995; Corbetta, 1998; Hahn et al., 2006; Le et al., 1998; Talsma

et al., 2010). Our finding may therefore reflect the modulation of

visual attention in line with the rate of learning toward a particular

stimulus. While the present study involved the presentation

of stimuli exclusively in the visual domain, in future it would be

informative to use cue stimuli in other modalities, such as the

auditory domain, in order to ascertain whether brain systems

involved in auditory attention are involved in encoding the

learning rate.

In conclusion, the present study goes substantially beyond

previous studies on uncertainty representations by using a

model-based fMRI procedure in combination with a Bayesian

computational model to establish that each of three unique

forms of uncertainty is encoded in the brain and is associated

with unique neural substrates. More specifically, we have identi-

fied specific regions that are involved in implementing unex-

pected uncertainty in the brain, including posterior cingulate,

parietal cortex, and the hippocampus, as well as the noradren-

ergic brainstem nucleus, locus coeruleus. This provides support

for the theoretical proposal that unexpected uncertainty drives

learning in unstable reward environments. We have also

observed estimation uncertainty signals in prefrontal regions

known to project directly to locus coeruleus, suggesting a neural

pathway by which estimation uncertainty may modulate the

noradrenergic representation of unexpected uncertainty, as

required by our Bayesian learning algorithm. Our findings, there-

fore, demonstrate that the human brain has the capacity to

disentangle uncertainty into its various components, i.e., risk,

estimation uncertainty, or unexpected uncertainty. The resulting

signals affect the learning rate differentially and optimally, in line

with Bayesian learning.
EXPERIMENTAL PROCEDURES

Procedures

Eighteen healthy young adults (mean age = 22.5 years, SD = 2.81 years; nine

males) participated in our neuroimaging study. The imaging data from one

female subject was discarded due to distortions. All participants provided

written informed consent. The study was approved by the Research Ethics

Committee of the School of Psychology at Trinity College Dublin.

Participants were directed to watch online instructions for the task before

the experimental session (the online instructions of the task are available

at http://www.elisepayzan.com/research/experiments/research/). These

instructions told participants that they would be performing a demanding

decision task, described the task and stated that the experiment did not

involve deception. Upon arrival in the lab, participants again watched the

online instructions, after which they completed a multiple-choice question-

naire that checked their understanding of the task. Participants were also

briefed on the payment procedure, including the fact that payment would be

sensitive to task performance. Participants were told that they would complete

four sessions of the task; one training session outside the MRI scanner and
Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc. 197
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three experimental sessions inside the scanner. All participants acknowledged

their understanding and acceptance of these procedures. Subsequently,

participants completed the training session of the task outside the scanner,

comprising 158 trials and lasting 15 min. After a 10 min break, participants

performed the three in-scanner sessions of the task, each lasting �17 min.

On average, participants completed 188 trials during the scanning runs.

Participants received the accumulated outcomes from the four runs of the

task minus an amount that was fixed before the session, but revealed to the

subject only after the task was completed. This was intended to prevent

well-established wealth effects from occurring during the task.

Task and Stimuli

The task (see Figure 1A) was an adaptation of a restless bandit task introduced

in Payzan-LeNestour and Bossaerts (2011) and was presented using JAVA.

Arm pairs were drawn from a selection of three yellow and three blue arms

of differing shapes. On free-choice trials participants could choose between

two displayed arms. On randomly interleaved forced-choice trials, only one

arm was displayed for choice. Free choice trials comprised 95% of trials in

the training session outside the scanner and 75% of trials in the scanner.

This design was chosen to minimize potential confounding factors in our

analysis of the neuroimaging data, because it allowed us to control for activa-

tions specific to the evaluation of nonchosen alternatives. Participants had 2 s

to indicate their choice and were penalized by V1 for each late or incorrect

response. Four seconds after choice, the chosen arm probabilistically deliv-

ered a monetary gain (+V1), a monetary loss (�V1), or nothing. This outcome

was displayed for 1.5 s. Participants were not informed of the outcome

probabilities of each arm. An intertrial interval with a duration drawn from a

uniform distribution with a minimum of 0.5 s and amaximum of 14.5 s followed

each trial.

The outcome probabilities of the arms jumped (changed) regularly, without

notice. Participants were informed that this would occur because previous

work (Payzan-LeNestour and Bossaerts, 2011) suggests that without pro-

viding this information, subjects do not report detecting changes in contin-

gencies. Participants were told that yellow arms had a higher jump probability

than the blue but were not told the jump probabilities, which were 1/4 and 1/16,

respectively. Participants were also informed that if the outcome probabilities

had jumped for one arm, then they had jumped for all arms of the same color.

The yellow and blue groups each contained a high, a medium, and a low risk

arm, where risk refers to the entropy of the outcome probabilities of a arm.

High-risk arms always had probability distributions with maximal entropy (1),

meaning that the probabilities of its three outcome were equal. The low-risk,

low entropy (0.5) arms had a single high probability outcome but the identity

of this outcome changed with each jump in the probabilities. The medium-

risk arm had entropy of 0.75. Participants were not told the risk levels of the

arms but were told that the arms’ risk levels were fixed across the task.

Thus, when a jump occurred, the three outcome probabilities simply permuted

within each arm.

Imaging Procedures

Magnetic resonance imaging was carried out with a Philips Achieva 3T

scanner with an eight-channel SENSE (sensitivity encoding) head coil.

T2*-weighted echo-planar volumes with BOLD contrast were acquired at a

30� angle to the anterior commissure-posterior commissure line, to attenuate

signal dropout at the orbitofrontal cortex (Deichmann et al., 2003). Thirty-nine

ascending slices were acquired in each volume, with an in-plane resolution

of 3.5 3 3.5mm and slice thickness of 3.85 mm [TR: 2,000 ms; TE: 30 ms;

FOV: 224 3 224 3 150.15 mm; matrix 64 3 64]. Data was acquired in three

sessions, each comprising 520 volumes. Whole-brain high-resolution T1-

weighted structural scans (voxel size: 0.93 0.93 0.9 mm) were also acquired

for each subject. To account for physiological fluctuations, subjects’ cardiac

and respiratory signals were recorded with a pulse oximeter and a pressure

sensor placed on the umbilical region. Due to a technical problem, cardiac

and respiratory information could not be collected from two subjects.

Behavioral Modeling

Choice was modeled using the softmax choice rule, which has been shown to

capture exploration in restless multi-armed bandits (Daw et al., 2006). As
198 Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc.
inputs, the softmax choice rule uses differences in the estimated values of

the available arms on each trial. We assume that these values are learned

with a model-based Bayesian updating scheme. The Bayesian model used

in this study is described in detail in Payzan-LeNestour and Bossaerts (2011)

and for brevity is not reproduced in full here (details of the Bayesian

learning algorithm are available at http://dx.doi.org/doi:10.1371/journal.pcbi.

1001048). According to this model, the decision maker uses the structure of

our restless multiarmed bandit task to predict trial-by-trial outcomes for all op-

tions. Specifically, the decision maker adjusted the learning rate as a function

of the strength of evidence in favor of a jump in a trial (the unexpected uncer-

tainty). Our model-based Bayesian approach has the advantage of producing

an explicit learning rate, unlike alternative Bayesian procedures. It has also

been shown to fit choices well in our earlier study (Payzan-LeNestour and Bos-

saerts, 2011) where participants had access to all six arms on every trial.

In order to check the goodness of fit of our Bayesian learning scheme, we

benchmarked it against the fit of a simple reinforcement-learning (RL) model,

using a Rescorla-Wagner update rule (Rescorla and Wagner, 1972). In the

benchmark RL model, the estimated value of the chosen bandit was updated

based on the reward prediction error (difference between outcome and

predicted outcome values) and a constant learning rate. While the learning

rate remained constant for a given arm, we allowed for differences across

yellow (more volatile) and blue (less volatile) arms, in accordance with recent

evidence that humans set different learning rates depending on jump fre-

quency or volatility (Behrens et al., 2007). We also tried a learning approach

whereby the learning rate changes proportionally with the size of the reward

prediction error (Pearce and Hall, 1980) but this model performed more poorly

and was discarded.

Both the Bayesian and benchmark RL models were fitted to participants’

choices in the three runs in the scanner (141 free-choice trials) using maximum

likelihood estimation. Estimated parameters were allowed to vary across par-

ticipants. Only one parameter was needed to fit the Bayesian learning model,

namely, the exploration intensity (temperature) of the softmax choice rule. In

the case of the benchmark RL rule, two learning rates (one for each arm color

group) were estimated, as well as the exploration intensity of the softmax

choice rule. For each model we report the BIC, a model evaluation criterion

that corrects the negative log-likelihood for the number of free parameters.

fMRI Preprocessing

Image processing and analysis was performed using SPM5 (Wellcome

Department of Imaging Neuroscience, Institute of Neurology; available at

http://www.fil.ion.ucl.ac.uk/spm). EPI images were slice-time corrected to

TR/2 and realigned to the first volume. Each participant’s T1-weighted

structural image was coregistered with their mean EPI image and normalized

to a standard T1MNI template. The EPI imageswere then normalized using the

same transformation, resampled to a voxel size of 2 mm isotropic, smoothed

with a Gaussian kernel (FWHM: 8 mm) and high-pass filtered (128 s).

In order to test for task-related BOLD signal at locus coeruleus, we adopted

a specialized preprocessing and analysis procedure designed to mitigate

difficulties arising from the size and position of locus coeruleus. Only results

reported in LC were obtained using this procedure. The conventional normal-

ization procedure in SPM5 seeks an optimal whole-brain deformation using a

limited number of degrees of freedom. However, achieving a global optimum

can come at the cost of regional accuracy, and as a consequence, BOLD

effects in small structures such as locus coeruleus may be underestimated

or misattributed to neighboring regions; particularly if extensive Gaussian blur-

ring is applied to the data. We therefore employed a two-stage normalization

procedure designed to maximize intersubject registration, which followed

the slice-timing and realignment steps described above. The first stage of

this procedure comprised a whole-brain diffeomorphic normalization of the

functional and anatomical data into MNI space using the DARTEL algorithm

(Ashburner, 2007), which is not limited by a small number of degrees of

freedom and is thus better at estimating local deformations than both conven-

tional normalization in SPM and regional weighting techniques (Yassa and

Stark, 2009). This procedure resampled the functional data to a voxel size

of 2 mm isotropic and incorporated smoothing with a 1 mm FWHM kernel.

This minimal smoothing was employed in order to avoid aliasing of data. The

second stage of the procedure was an ROI alignment (ROI-AL) (Yassa and

http://dx.doi.org/10.1371/journal.pcbi.1001048
http://dx.doi.org/10.1371/journal.pcbi.1001048
http://www.fil.ion.ucl.ac.uk/spm
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Stark, 2009) procedure using a diffeomorphic implementation (Vercauteren

et al., 2007) of Thirion’s (Thirion, 1998) demons alignment algorithm in the

MedINRIA software package (Version 1.9.0, ASCLEPIOS Research Team).

First, each subject’s brainstem was manually delineated on his/her DARTEL-

normalized anatomical scan. The ventral boundary of this ROI was set at the

last axial slice on which the nodulus of the cerebellum was visible in the fourth

ventricle, whereas the dorsal boundary was set on the most superior slice on

which the crural cistern was visible. Our brainstem ROIs were then registered

with the brainstem ROI of a single subject. The resulting registered brainstem

ROIs were then averaged in SPM5 with ImCalc to create a first model. Subse-

quently, the original brainstem ROIs were registered with this model and the

newly registered brainstem ROIs were averaged to create a second model.

We repeated these two steps three more times to generate a more accurate

model. The individual displacement fields resulting from the last iteration of

this process were then applied to each subject’s DARTEL-normalized

functional and anatomical scans. The functional data was high-pass filtered

(128 s) before entering the statistical analysis.

fMRI Statistical Analysis

We analyzed the BOLD data using a parametric GLM. This GLM included

parametric regressors constructed from trial-by-trial estimates of the learning

rate and the three uncertainty signals obtained from the Bayesian learning

model (see Figure S1 for illustrations of the temporal dynamics of these

signals). In our behavioral model, unexpected uncertainty measures the

likelihood that a jump has occurred, given the current observation. Risk was

measured as the entropy of the mean posterior outcome probabilities.

Estimation uncertainty was measured as the entropy of the posterior distribu-

tion of the outcome probabilities.

The subject-specific design matrices used in the GLM comprised four

onset regressors (see Figure 1C for a summary): a stick function at the time

of cue presentation (‘‘Phasic Cue’’) modulated by three parametric regressors

encoding the risk and estimation uncertainty of the chosen machine and the

trial type (free choice versus forced choice); a boxcar regressor extending

from the time of cue presentation to the time of outcome presentation (‘‘Tonic

Cue’’) modulated by a parametric regressor encoding the model-derived

expected value of the chosen machine; a stick function at the time of outcome

presentation (‘‘Phasic Outcome’’) modulated by four parametric regressors

encoding the value of the outcome displayed, the learning rate, the estimation

uncertainty of the chosen machine and the trial type; and a boxcar regressor

extending from the time of outcome presentation to the time of cue presenta-

tion on the following trial (‘‘Tonic Outcome’’) modulated by two parametric

regressors encoding the learning rate and the unexpected uncertainty value

of the chosenmachine. Each of our regressors was convolved with a canonical

hemodynamic response function after being entered into SPM5 to generate

a design matrix. Motion parameters estimated during the realignment proce-

dure were also included as regressors of no interest.

Task-related BOLD response in pontine structures may be attenuated by

periodic physiologic noise arising from respiratory motion and cardiac pulsa-

tility. In our analysis of LC activity, we therefore included 13 additional regres-

sors of no interest in our GLM to account for physiological fluctuations (four

related to heart rate, nine related to respiration) which were estimated using

the retrospective image correction (RETROICOR) method (Glover et al.,

2000) with data recorded during the fMRI sequences.

In order to test for a BOLD response specific to unexpected and estimation

uncertainty at outcome presentation, we orthogonalized these uncertainty

regressors with respect to the learning rate regressor, with which they may

be correlated. Thus the learning rate regressor captured all of the common

variance between learning rate and the uncertainty signals, thereby ensuring

that any variance loading on the uncertainty regressors could not be ac-

counted for as reflecting an effect of learning rate per se. It should be noted

that there is a functional relationship between the current level of unexpected

uncertainty and the change of the learning rate—rather than the current level of

the learning rate. This change in learning rate is a deterministic function of the

estimated level of unexpected uncertainty, and updates of the latter depend on

the level of risk and of estimation uncertainty.

Maps of the voxel-wise parameter estimates for the parametric regressors

indicate how the BOLD activity scales with the computational signals. These
subject-level linear contrasts were used in a between-subjects random effects

analysis testing the effect of each regressor across the group. Each partici-

pant’s model fit (log-likelihood) value was adjusted for the number of choice

trials they completed and included as a covariate of no interest. Unless other-

wise stated, we report statistics from whole-brain analyses corrected for

multiple comparisons to pFWE < 0.05, with a cluster spatial extent threshold

of 186 voxels. This threshold was calculated using a Monte Carlo simulation

of activation assuming the null hypothesis, implemented using 3DFWHMX

and AlphaSim (AFNI) (Cox, 1996). In our analysis of LC activity we used an

anatomical mask of human locus coeruleus in MNI space created by Keren

et al. (2009) to verify that BOLD effects fall within the space of the LC.

For each of the areas where activation was found to covary significantly

with a computational signal, we further analyzed whether the BOLD signal

increased linearly in the computational signal. We reasoned that only a linear

effect of an uncertainty measure on the BOLD signal would be evidence that

the area encodes the uncertainty measure and therefore plotted the average

BOLD estimates (corrected for the effect of other regressors) across subjects

on trials in which the uncertainty metric was low, medium, or high (Figures 2, 4,

and 6). These plots were generated using the rfxplot toolbox for SPM5

(Gläscher, 2009). To avoid bias because of reuse of the same data, we used

a leave-one-out cross-validation procedure: the group-level random effects

model was re-estimated 17 times, omitting a different subject each time. For

each subject, the trials were sorted into one of three bins (bins defined at

33rd, 66th, and 100th percentile) according to the value of the uncertainty

signal. We extracted BOLD signals at the coordinates of the local maximum

on the group-level from which the subject was omitted that were nearest to

the coordinates of the full-group maximum. The plots illustrate the average

parameter estimates across subjects.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and one table and can be

foundwith this article online at http://dx.doi.org/10.1016/j.neuron.2013.04.037.

ACKNOWLEDGMENTS

This work was supported by the Science Foundation Ireland grant 08/IN.1/

B1844 and a European Research Council grant (to J.O.D). P.B. and E.P.L.N.

acknowledge the support of the Swiss Finance Institute to the Ecole Polytech-

nique Fédérale Lausanne.

Accepted: April 26, 2013

Published: July 10, 2013

REFERENCES

Arnsten, A.F.T., and Goldman-Rakic, P.S. (1984). Selective prefrontal cortical

projections to the region of the locus coeruleus and raphe nuclei in the rhesus

monkey. Brain Res. 306, 9–18.

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.

Neuroimage 38, 95–113.

Aston-Jones, G., and Cohen, J.D. (2005). An integrative theory of locus

coeruleus-norepinephrine function: adaptive gain and optimal performance.

Annu. Rev. Neurosci. 28, 403–450.

Aston-Jones, G., Rajkowski, J., Kubiak, P., and Alexinsky, T. (1994). Locus

coeruleus neurons in monkey are selectively activated by attended cues in a

vigilance task. J. Neurosci. 14, 4467–4480.

Aston-Jones, G., Rajkowski, J., and Kubiak, P. (1997). Conditioned responses

of monkey locus coeruleus neurons anticipate acquisition of discriminative

behavior in a vigilance task. Neuroscience 80, 697–715.

Aston-Jones, G., Rajkowski, J., and Cohen, J. (1999). Role of locus coeruleus

in attention and behavioral flexibility. Biol. Psychiatry 46, 1309–1320.

Aston-Jones, G., Rajkowski, J., Lu, W., Zhu, Y., Cohen, J.D., and Morecraft,

R.J. (2002). Prominent projections from the orbital prefrontal cortex to the

locus coeruleus in monkey. Soc. Neurosci. Abstr. 28, 86–89.
Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc. 199

http://dx.doi.org/10.1016/j.neuron.2013.04.037


Neuron

Neural Representation of Unexpected Uncertainty
Bach, D.R., Hulme, O., Penny, W.D., and Dolan, R.J. (2011). The known un-

knowns: neural representation of second-order uncertainty, and ambiguity.

J. Neurosci. 31, 4811–4820.

Badre, D., Doll, B.B., Long, N.M., and Frank, M.J. (2012). Rostrolateral prefron-

tal cortex and individual differences in uncertainty-driven exploration. Neuron

73, 595–607.

Behrens, T.E.J., Woolrich, M.W., Walton, M.E., and Rushworth, M.F.S. (2007).

Learning the value of information in an uncertain world. Nat. Neurosci. 10,

1214–1221.

Bland, A.R., and Schaefer, A. (2012). Different varieties of uncertainty in human

decision-making. Front. Neurosci. 6, 85.

Bouret, S., and Sara, S.J. (2004). Reward expectation, orientation of attention

and locus coeruleus-medial frontal cortex interplay during learning. Eur. J.

Neurosci. 20, 791–802.

Bouret, S., and Sara, S.J. (2005). Network reset: a simplified overarching the-

ory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582.

Bruguier, A.J., Quartz, S.R., and Bossaerts, P. (2010). Exploring the nature of

‘‘Trader Intuition.’’ J. Finance 65, 1703–1723.

Callan, A.M., Osu, R., Yamagishi, Y., Callan, D.E., and Inoue, N. (2009). Neural

correlates of resolving uncertainty in driver’s decision making. Hum. Brain

Mapp. 30, 2804–2812.

Carter, C.S., Mintun, M., and Cohen, J.D. (1995). Interference and facilitation

effects during selective attention: an H215O PET study of Stroop task perfor-

mance. Neuroimage 2, 264–272.

Cavanagh, J.F., Figueroa, C.M., Cohen, M.X., and Frank, M.J. (2012). Frontal

theta reflects uncertainty and unexpectedness during exploration and exploi-

tation. Cereb. Cortex 22, 2575–2586.

Christopoulos, G.I., Tobler, P.N., Bossaerts, P., Dolan, R.J., and Schultz, W.

(2009). Neural correlates of value, risk, and risk aversion contributing to

decision making under risk. J. Neurosci. 29, 12574–12583.

Chumbley, J.R., Flandin, G., Bach, D.R., Daunizeau, J., Fehr, E., Dolan, R.J.,

and Friston, K.J. (2012). Learning and generalization under ambiguity: an

fMRI study. PLoS Comput. Biol. 8, e1002346.

Collins, A., and Koechlin, E. (2012). Reasoning, learning, and creativity: frontal

lobe function and human decision-making. PLoS Biol. 10, e1001293.

Corbetta, M. (1998). Frontoparietal cortical networks for directing attention

and the eye to visual locations: identical, independent, or overlapping neural

systems? Proc. Natl. Acad. Sci. USA 95, 831–838.

Cox, R.W. (1996). AFNI: software for analysis and visualization of functional

magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173.

d’Acremont, M., Lu, Z.-L., Li, X., Van der Linden, M., and Bechara, A. (2009).

Neural correlates of risk prediction error during reinforcement learning in

humans. Neuroimage 47, 1929–1939.

Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., and Dolan, R.J. (2006).

Cortical substrates for exploratory decisions in humans. Nature 441, 876–879.

Deichmann, R., Gottfried, J.A., Hutton, C., and Turner, R. (2003). Optimized

EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19, 430–441.

Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., and Fiez, J.A. (2000).

Tracking the hemodynamic responses to reward and punishment in the

striatum. J. Neurophysiol. 84, 3072–3077.

Delgado, M.R., Li, J., Schiller, D., and Phelps, E.A. (2008). The role of the

striatum in aversive learning and aversive prediction errors. Philos. Trans. R.

Soc. Lond. B Biol. Sci. 363, 3787–3800.

Devauges, V., and Sara, S.J. (1990). Activation of the noradrenergic system

facilitates an attentional shift in the rat. Behav. Brain Res. 39, 19–28.

Di Martino, A., Scheres, A., Margulies, D.S., Kelly, A.M.C., Uddin, L.Q.,

Shehzad, Z., Biswal, B., Walters, J.R., Castellanos, F.X., and Milham, M.P.

(2008). Functional connectivity of human striatum: a resting state FMRI study.

Cereb. Cortex 18, 2735–2747.

Elliott, R., Friston, K.J., and Dolan, R.J. (2000). Dissociable neural responses in

human reward systems. J. Neurosci. 20, 6159–6165.
200 Neuron 79, 191–201, July 10, 2013 ª2013 Elsevier Inc.
FitzGerald, T.H.B., Seymour, B., and Dolan, R.J. (2009). The role of human

orbitofrontal cortex in value comparison for incommensurable objects.

J. Neurosci. 29, 8388–8395.

Frank, M.J., Doll, B.B., Oas-Terpstra, J., and Moreno, F. (2009). Prefrontal and

striatal dopaminergic genes predict individual differences in exploration and

exploitation. Nat. Neurosci. 12, 1062–1068.
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