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It has been about 50 years since Hubel and Wiesel’s seminal experi-
ments demonstrating an orderly, columnar representation of orienta-
tion and ocular dominance preference across primary visual cortex1,2. 
Since then, optical imaging experiments have explicitly shown the 
two-dimensional layouts of these maps with their characteristic orien-
tation ‘pinwheels’ and ocular dominance ‘bands’3,4. Although it is 
unknown whether the existence of orderly functional maps benefits 
cortical processing5, their layout and alignment are likely to put con-
straints on the ability of V1 to represent all stimulus features for each 
eye and at each region of visual space. Early on, it was suggested that 
the tiling of feature space in V1 is optimized to overcome this con-
straint6. Indeed, optical imaging has demonstrated that orientation 
pinwheels align with ocular dominance bands7–9 and that the cortical 
magnification factor is lower along the axis of the ocular dominance 
bands10. Both relationships are consistent with an architecture that is 
optimized for uniform coverage and are perhaps the clearest demon-
stration of how multiple stimulus features are jointly encoded in V1. 
Spatial frequency is another important stimulus feature encoded in 
V1, yet the functional architecture of spatial frequency tuning is less 
clear than that of orientation tuning or ocular dominance. Most of 
the studies that mapped orientation and spatial frequency prefer-
ence in cats or ferrets concluded that the maps are systematically 
related11–13, but others reported otherwise14,15. Evidence on this topic 
in macaque V1 is much scarcer. Furthermore, the architecture of cat 
and ferret visual cortex is markedly different from that of primate 
V1, indicating that interactions between feature representations may 
not be universal.

Although previous studies have presented evidence for some degree 
of spatial frequency clustering in macaque monkey V1, the architec-
ture of spatial frequency tuning is essentially unknown. For instance, 
spatial frequency tuning is often similar between nearby cells mea-
sured with extracellular electrodes16–18, although the similarity is less 

pronounced than that for orientation2, and there is disagreement on 
the degree of continuity. Similarly, a study using 2-[14C]deoxyglucose 
(2DG) uptake showed that gratings of high or low spatial frequency 
yield patchy activation patterns19. Available evidence on the combined 
organization of spatial frequency tuning with other feature maps is 
even weaker, although orderly relationships seem plausible when pre-
vious observations are considered: neurons that prefer lower spatial 
frequency tend to cluster near the cytochrome oxidase ‘blobs’16–19, 
blobs lie at the center of ocular dominance bands20, and ocular domi-
nance maps are orthogonal to orientation maps7,8. Taken together, 
this suggests a systematic relationship between orientation and spatial 
frequency maps, which is of particular interest with regard to the 
ability of V1 to efficiently represent visual space. On the basis of the 
observation that spatial frequency tuning is clustered less than orien-
tation tuning, it seems likely that methodological limitations have pre-
vented a clear picture of these relationships from emerging: intrinsic 
signal imaging, for example, lacks single-cell resolution, and single- 
unit recordings lack sufficient sampling density. To fully address how 
orientation and spatial frequency are jointly represented, it is neces-
sary to measure their organization with single-cell resolution.

Here, building on previous studies using two-photon imaging of 
a bulk loaded calcium indicator21 to investigate functional micro-
architecture in visual cortex22, we characterized orientation and spa-
tial frequency tuning in layer II/III of macaque monkey V1. We found 
that two-photon calcium imaging allowed high-density sampling 
from large populations of macaque V1 neurons, yielding significant 
responses from about 94% of neurons. We quantified the degree of 
clustering for both parameters, on the basis of cell pairings at different 
cortical distances. The normalized degree of clustering was higher 
for orientation than spatial frequency tuning; however, both showed 
significant clustering. The substantial clustering of orientation tun-
ing is a reflection of its organization into precise compartments with 
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Orthogonal micro-organization of orientation and 
spatial frequency in primate primary visual cortex
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Orientation and spatial frequency tuning are highly salient properties of neurons in primary visual cortex (V1). The combined 
organization of these particular tuning properties in the cortical space will strongly shape the V1 population response to different 
visual inputs, yet it is poorly understood. In this study, we used two-photon imaging in macaque monkey V1 to demonstrate  
the three-dimensional cell-by-cell layout of both spatial frequency and orientation tuning. We first found that spatial frequency 
tuning was organized into highly structured maps that remained consistent across the depth of layer II/III, similarly to orientation 
tuning. Next, we found that orientation and spatial frequency maps were intimately related at the fine spatial scale observed with 
two-photon imaging. Not only did the map gradients tend notably toward orthogonality, but they also co-varied negatively from 
cell to cell at the spatial scale of cortical columns.
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well-defined borders, consistent with previ-
ous findings in the cat22. As also suggested by 
the clustering metric, spatial frequency pref-
erence was organized into highly structured 
maps that were consistent across the depth of layer II/III. Finally,  
we found that the orientation and spatial frequency maps were organ-
ized with respect to each other in a systematic fashion: their smoothed 
contours ran orthogonally to each other. Consistently, we also found 
that the joint distribution of their gradient magnitudes was signifi-
cantly anticorrelated at the finest spatial scale.

RESULTS
We imaged visual responses in layer II/III of monkey V1 using two-
photon imaging with the calcium indicator Oregon Green BAPTA-1 
AM (OGB-1). Imaging was performed at two spatial scales, which we 
refer to as ‘large-scale’ and ‘fine-scale’ imaging (Fig. 1). To achieve 
large-scale imaging, we made several adjacent OGB-1 injections and 
imaged a V1 region of about 800 × 800 µm at a resolution of ~3 µm 
pixel−1 with a 16× objective lens (Fig. 1a). Tuning curves were com-
puted on a per-pixel rather than a per-cell basis because the lower res-
olution made it difficult to separate the responses of cell bodies from 
that of the background neuropil. However, the large field of view results 
in a more global representation of the maps. For fine-scale imaging, 
we zoomed in on the maps, imaging a region of about 200 × 200 µm  
(~0.8 µm pixel−1) with a 40× objective to capture the cell-by-cell 
tuning organization (Fig. 1e). In this case, tuning curves were com-
puted for each cell individually. We used different stimuli to measure 
orientation and spatial frequency tuning at the two imaging resolu-
tions. For the large-scale imaging, we showed drifting gratings and 
quantified stimulus preferences as the center of mass of the tuning 
curves (Fig. 1c,d). For the fine-scale imaging, we showed a sequence 
of rapidly flashed gratings23 and calculated the expected response 
transient to each combination of orientation and spatial frequency, 
followed by subtracting the expected response to an interleaved 
blank. The dynamics of the transient shown in Figure 1f are typical. 
Across our population of neurons, the average time-to-peak of the raw 

response to the best grating was 278 (± 72 s.d.) ms and the average 
full-width at half-maximum was 479 (± 237 s.d.) ms. Tuning curves 
were taken at the time-to-peak and fit with a function to character-
ize their shape (Fig. 1g,h). We have previously shown advantages of 
using a randomized noise stimulus over drifting gratings to recover 
accurate tuning curves with calcium imaging24. Additionally, we 
found here that about 94% of the imaged neurons yielded reliable 
responses to the visual stimulus and that tuning curves could be well 
parameterized from about 93% of the remaining responsive neurons. 
A summary of the tuning parameters from this population is given in 
Supplementary Figure 1. Two-photon imaging in the monkey thus 
has advantages over other recording techniques in terms of its ability 
to measure neuronal tuning from a dense sampling of neurons in a 
specified anatomical location.

Orientation and spatial frequency maps in layer II/III
Large-scale imaging of V1 revealed a highly structured map of spatial 
frequency in V1, in addition to the well-known orderly representation 
of orientation (Fig. 2). As expected, the orientation maps exhibited a 
pinwheel structure that was consistent at both depths (Fig. 2a,b,e,f ). 
Unlike orientation tuning, the layout of spatial frequency preference 
across V1 has been unclear. Our data demonstrate substantial struc-
ture in preferred spatial frequency—low or high spatial frequency 
preference is clustered with smooth transitions in between—and that 
this structure is consistent across the two depths tested here.

To compare the degree of consistency across the depth of layer 
II/III between the orientation and spatial frequency maps, we com-
puted a normalized metric for map similarity at the two imaging 
depths. The absolute difference in preferred orientation and spatial 
frequency between the maps at the two depths was taken for each pixel 
and then averaged across pixels. To normalize, this mean difference 
was then recomputed after random resampling of the two maps at  
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Figure 1 Two experimental two-photon imaging 
procedures. (a–d) Large-scale imaging.  
(a) We used a 16× objective lens (~3 µm pixel−1)  
and drifting gratings to measure orientation  
and spatial frequency tuning curves at each  
pixel (scale bar, 500 µm). (b) Mean and s.e.m. 
time course for each combination of orientation 
and spatial frequency for the pixel circled in red 
in a. Shown are the time courses for the best 
(blue) and worst (red) combinations. The thin 
black line represents the stimulus presentation 
period. (c,d) Orientation and spatial frequency 
tuning curves computed by taking the mean 
within the stimulus presentation period.  
(c) Orientation tuning for the pixel outlined in 
red in a. (d) Spatial frequency tuning curve 
for the same pixel. (e–h) Fine-scale imaging 
(scale bar, 50 µm). (e) To measure responses 
of individual neurons, we imaged with higher 
resolution (~0.8 µm pixel−1). Instead of drifting 
gratings, this paradigm used flashed gratings 
shown in rapid succession. (f) The average 
transient response to two gratings within our 
randomized flashed grating stimulus for the 
neuron circled in e. (g,h) Raw orientation tuning 
and spatial frequency tuning curves (black dots) 
and fits (red line).
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independent locations. On the basis of this metric, the orientation 
maps at the two depths were about three times more similar than 
the spatial frequency maps for both imaging regions (Fig. 2). These 
differences were significant (P < 0.01; bootstrap).

Cell-by-cell clustering of orientation and spatial frequency tuning
Having established an orderly representation of spatial frequency pref-
erence across V1 on a more global scale, we next studied the layout of 
spatial frequency preference at a finer resolution (Fig. 3). The fine-
scale imaging mode allowed us to determine orientation and spatial 
frequency tuning on a cell-by-cell basis (‘micro-maps’). Depth of 
imaging ranged from ~150 µm to ~250 µm for these maps. As previ-
ously shown in cat V1 with two-photon imaging22, our data confirmed 
that orientation tuning is highly organized in the primate (Fig. 3a). 
Consistent with the results of our large-scale imaging experiments, 
spatial frequency preference also progressed continuously over the 
localized patch of neurons (Fig. 3b). However, spatial frequency maps 
seemed to exhibit more scatter than the orientation maps.

We quantified how strongly orientation and spatial frequency 
preference were clustered across neurons by computing a clustering 
metric, C(d). This metric takes the expected tuning similarity between 
cell pairings separated by a given cortical distance d (Fig. 4a,b)  
and then normalizes by the local map statistics computed by random 
resampling. C(d) > 1 or C(d) < 1 indicates that two cells separated by 
d microns are likely to have tuning more similar or different than the 
average resampled pair, respectively. Resampling was performed two 
ways. In the first case, randomly selected cell pairs came from the 
same imaging region, which captured the extent of clustering within 
imaging regions (~200 × 200 µm). In the second case, the two neurons 
in each pair could be from different imaging regions, thus measuring 
the extent of clustering relative to the entire population of imaged 
neurons in our data set. The analyses are based on all 735 neurons 
and all ~30,000 neuron pairs in ten imaging regions.

Computing the degree of clustering relative to the distribution 
of orientation and spatial frequency tuning in each imaging region 
revealed that C(d) was >1 for distances less than ~100 µm and  
<1 for the larger distances (Fig. 4c). The gradual decline of C(d) with 
distance reflects the map continuity that exists within these small 
imaging regions (~200 µm). Although the general trend of C(d) was 
similar for orientation and spatial frequency maps, spatial frequency 
maps showed more scatter relative to the local map trend.

Figure 4d summarizes the degree of clustering relative to the over-
all distribution of orientation and spatial frequency tuning across all 
imaging regions. Under the assumption that our ten imaging regions 
represent an unbiased sample of orientation and spatial frequency 
tuning, this is the clustering relative to the distribution of orientation 
and spatial frequency tuning curves in layer II/III of parafoveal V1. 
The spatial decay of C(d) reflects the spatial scale and periodicity of the 
maps (for example, at larger distances C(d) may have another peak, and 
it will ultimately decay to 1). Although C(d) decayed at a similar rate 
for orientation and spatial frequency, C(d) for orientation was scaled 
higher, indicating that the orientation map was more continuous.

C(d) was computed using the correlation coefficient between pairs 
of tuning curves. The averages of these correlation coefficients within 
each bin of cortical distance (Fig. 4c,d) for orientation were 0.88, 0.76, 
0.64, 0.50 and 0.25 and for spatial frequency were 0.84, 0.76, 0.69, 0.64 
and 0.57. Unlike C(d), there was a tendency for the correlations to be 
higher for spatial frequency than orientation, which is most likely due 
to the sharper tuning of orientation than spatial frequency relative to 
the range of available peak locations.

Intersection of orientation and spatial frequency maps
As our data demonstrated that orientation and spatial frequency pref-
erence were both organized in a continuous fashion across V1, the 
question arose how the two maps are aligned with respect to each 
other. We first used data obtained from the large-scale imaging exper-
iments to characterize how orientation and spatial frequency maps 
intersect. Figure 5 shows the orientation and spatial frequency maps 
obtained from an imaging depth that is half the distance between 
the imaging planes shown in Figure 2. Before computing contours 
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Figure 2 Large-scale imaging of orientation and spatial frequency maps at 
different depths of layer II/III for two cortical locations. (a,b) Orientation 
preference maps at cortical depths of 210 µm and 310 µm. (c,d) Spatial 
frequency maps obtained from the same experiment. Both orientation and 
spatial frequency maps maintain a very similar structure across the two 
depths. Dark map regions indicate portions of the map with low SNR (see 
Online Methods). (e–h) A second cortical region at two depths: 180 µm 
and 280 µm. Scale bar, 0.5 mm (a–h).
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and gradients, we smoothed the raw data with a two-dimensional 
Gaussian (σ = 25 µm). Smoothing allowed us to capture the local 
trend of the gradients on the spatial scale of the smoothing operator. 
The contours of the orientation and spatial frequency maps appear to 
intersect orthogonally (Fig. 5c,h). To quantify the preferred angle of 
intersection, we first took the difference in the phase of the two map 
gradients at each pixel and binned these differences into a histogram 
(Fig. 5d,i). Indeed, the intersection histogram for each ROI showed 
peaks around ± 90°. The preferred intersection angle of the gradients 
was then computed as a function of the intersection histogram:

Preferredintersectionangle = angle H ei( )a a

a

2∑












where H(α) is the histogram value as a function of the intersec-
tion angle. Note that α is a direction (0° to 360°) and the preferred 
intersection angle is an orientation (0° to 180°). The preferred 
intersection angles for the two imaging regions in Figure 5 were 
94° and 84°. Supplementary Figure 2 also shows three imaging 

regions from two more animals that had 
preferred intersection angles of 95°, 79° and 
99°. A Rayleigh test showed that H(α) was 
significantly different from uniform for all 
regions (P < 10−100).

To compare the spatial  scale of the orien-
tation and spatial frequency maps, we com-
puted their autocorrelation as a function of 
absolute cortical distance. For spatial fre-

quency, we used the Pearson correlation coefficient at each shift 
to compute the autocorrelation. Because orientation is a circular 
variable, we chose to compute the autocorrelation function of the 
orientation map using a coherency-based metric. This metric is 
+1 if the original and shifted orientation maps are the same, −1 
if they are 90° apart and 0 if they are 45° apart or independent. 
In both regions, the autocorrelation functions of orientation and 
spatial frequency maps were similar (Fig. 5e,j). Both maps had a 
comparable rate of spatial decay, and they were both multimodal 
(‘periodic’) with a similar distance of ~800 µm (Fig. 5e, top) and 
~600 µm (Fig. 5e, bottom) between peaks. Similar periodicities for 
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Figure 4 Bootstrap analysis to examine clustering of micro-maps.  
(a,b) Pairwise analysis for an example cell pairing in an orientation (a) 
and spatial frequency (b) map (~160 µm deep). Scale bar, 50 µm. This 
particular pairing with a distance of ~70 µm has an orientation and spatial 
frequency correlation (rθ and rφ) of 0.98 and −0.68 on the basis of the 
Gaussian fits shown above. (c) Functional clustering (y axis) relative to the 
distribution of the individual imaging regions. The clustering metric is based 
on the average correlation coefficient across pairings within a particular 
distance range (x axis), normalized by a resampled average. In this case the 
resampling was limited to cell pairs in the same imaging region. Each tick 
mark on the x axis is located at the mean distance between pairs for the 
given population of pairings. Significance above or below 1 (chance level) 
was computed from multiple trials of resampling. Both maps are significantly 
different than one for all distances (P < 0.01; bootstrap). (d) Functional 
clustering relative to our entire population of imaged neurons. Clustering was 
computed similarly to that in c, but resampling was between any two neurons 
of the entire data set. Clustering is significantly above 1 for all distances of 
both orientation and spatial frequency maps (P < 0.01; bootstrap).
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Figure 3 Micro-maps of orientation and  
spatial frequency for three example regions  
(one per row), each ~150 µm deep. (a,b) Each 
neuron’s preference for orientation (a) and 
spatial frequency (b), color-coded. (c–e) For 
each region shown, average responses for two 
example neurons (circle and square).  
(c) Mean and s.e.m. response time course to 
the ‘best’ (blue) and ‘worst’ (red) combination 
of orientation and spatial frequency. Orientation 
(d) and spatial frequency (e) tuning curves 
(black dots) were computed at the optimal time 
delay and fit with Gaussian and difference-of-
Gaussians function (red curve), respectively. 
Scale bar, 50 µm.
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both spatial frequency and orientation are shown for three more 
imaging regions in Supplementary Figure 2.

In addition to quantifying the orthogonality between orientation and 
spatial frequency in the large-scale maps (Fig. 5), we tested whether a 
similar trend could be detected on the basis of the global gradient within 
our fine-scale imaging regions. This analysis required that we develop a 
metric that quantifies the axis of maximum change for each orientation 
and spatial frequency map by using the spatial layout of tuning curves 
at the discrete points of the cell bodies. To define this metric for the 
orientation map, we first defined a function that is its main depend-
ency: fθ(λ) = median[(1 − rθ)/d|λ]. In this equation, rθ is the correlation 
coefficient between the orientation tuning curve fits of two cells, d the 
distance between the cells and λ the angle of the line connecting the two 
cells (binned). In this and following equations, θ will denote orienta-
tion and φ will denote spatial frequency. To compute fθ(λ), we divided 
all cell pairs into 10° bins on the basis of the angle of their connecting 
line and then computed fθ(λ) as the median of (1 − rθ)/d across all cell 
pairs within each bin centered at λ. The axis of maximum change for 
an orientation map (Fig. 6a) can now be defined as

A f eiq lq
l

l
= ∑













angle ( ) 2

For spatial frequency maps (Fig. 6b), Aφ was defined by replacing rθ 
with rφ. Finally, the angle of intersection for each imaging region was 
computed as 90° − ||Aθ − Aφ| − 90°|, which yields values near 0° for 
parallel gradients and values near 90° for perpendicular gradients. The 
distribution of these intersection angles clustered at 90° (Fig. 6c).

Fine-scale alignment of feature maps
We also analyzed the alignment of orientation and spatial frequency 
maps on a cell-by-cell basis, using the data obtained in the fine-scale 
imaging experiments. As in the measurements of map continuity 
(Fig. 4), the analysis is based on the tuning similarity between all cell 
pairs across all regions of interest, computed as the correlation coef-
ficient between the tuning fits of orientation, rθ, and spatial frequency, 
rφ. We first binned the cell pairs into three cortical distances on the 
basis of the 33rd and 67th percentiles of the distance distribution. 
Within each distance bin, we generated a scatter plot where each 
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point compares rθ and rφ for the cell pair. These scatter plots were 
smoothed with a two-dimensional Gaussian (σ = 0.01) to create the 
density plots (Fig. 7). At the shortest cortical distance (d < 72 µm),  
the maps did not show a significant interdependence. This is most 
likely because they are dominated more by noise than by their gra-
dients at this scale. However, with increasing cortical distance, the 
relationship became strongly anticorrelated as assessed by the Pearson 
correlation coefficient. This relationship shows that if a given pair of 
cells had the same tuning for orientation, they were likely to have dif-
ferent spatial frequency tuning, and vice versa, an observation that is 
consistent with the orthogonal contours determined in the large-scale  
imaging experiments.

For a more complete illustration of this trend in the density plots, 
we also computed the expected value of rθ as a function of rφ: E(rθ|rφ). 
For this analysis, cell pairs in each scatter plot were divided into three 
bins on the basis of their rφ value and the expected value of rθ was 
computed across all the cell pairs in each bin. Bins were constructed 
such that they contained equal numbers of cell pairs. In a similar 
fashion, we also computed E(rφ|rθ). This analysis confirmed that 
as rφ increased, the expected value of rθ decreased, and vice versa.  
This result was replicated by showing that the local variance of the 
orientation map is anticorrelated with the local variance of the spatial 
frequency map (Supplementary Fig. 3c).

DISCUSSION
We used two-photon Ca2+ imaging to study the microarchitecture of 
orientation and spatial frequency tuning in layer II/III of macaque 
monkey V1. Like orientation preference, spatial frequency prefer-
ence had a notably smooth progression over the cortical surface. We 
quantified the cell-by-cell continuity of both orientation and spatial 
frequency tuning as a function of cortical distance in the horizon-
tal dimension. Both maps showed significant continuity based on 
our bootstrap statistic; however, orientation maps were about twice 
as continuous as spatial frequency maps at the shortest distances. 
Using a similar metric, we also quantified the similarity of the maps 
at two depths separated by 100 µm. The similarity of the spatial fre-
quency maps across depth was obvious, although statistically not as 
strong as the orientation map similarity for the same regions. Next we 
examined how the orientation and spatial frequency maps are jointly 
represented. We first captured the alignment of the map gradients 
determined in large-scale and fine-scale imaging experiments and 
showed that orientation and spatial frequency maps had orthogonal  
contours. Finally, we measured this relationship by means of the 

pairwise comparisons of the tuning curves of individual cells. This 
showed that the maps had a systematically antagonistic relationship 
on a cell-by-cell basis.

Previous studies on spatial frequency maps
To our knowledge, this is the first study to show the precise layout 
and continuity of the spatial frequency map in Old World primates, as 
well as its alignment with the orientation map. Previous studies on the 
organization of spatial frequency tuning in these species are relatively 
sparse and have yielded inconsistent results. The first study to look 
for spatial frequency maps in macaques was based on 2DG uptake, 
which demonstrated that presentation of gratings with high or low 
spatial frequency resulted in a patchy activation pattern across V1  
(ref. 19). However, this technique makes it difficult to quantify 
whether local transitions of spatial frequency preference exist. 
Subsequent single cell recordings lent support to clustering of spatial 
frequency preference, yet they came to different conclusions on the 
distribution and organization of spatial frequency tuning. Two stud-
ies reported gradual changes in spatial frequency preference along 
tangential recordings16,18, whereas a third study found abrupt changes 
in spatial frequency preference17. It seems probable that a lacking con-
sensus in the primate is simply a consequence of insufficient sampling 
density and spatial resolution in a map that is relatively noisy.

Several studies have looked at spatial frequency organization in 
other species, with most studies focusing on the cat. As in the monkey, 
the evidence regarding the layout of spatial frequency preference using 
electrophysiology and 2DG uptake is unsettled. Spatial frequency 
preference has been suggested to be organized in a laminar25,26 or 
a columnar27 fashion, or to lack consistency in either direction28. 
Recording from neighboring neurons in cat visual cortex, it was found 
that cell pairings share similar spatial frequency tuning preference, 
suggesting a clustered representation of spatial frequency in area 17 
(ref. 29). However, another study using different stimuli but otherwise 
similar techniques did not find significant clustering of spatial fre-
quency tuning30. Intrinsic signal imaging promised a more global and 
controlled analysis of spatial frequency organization. However, given 
that spatial frequency tuning is less clustered than orientation tuning 
as determined by electrophysiology29, it is not surprising that the 
imaged spatial frequency maps are weaker and exhibit a less obvious 
structure than the orientation maps. Some authors propose that the 
spatial frequency maps are divided into regions of high and low spatial 
frequency preference11,31, whereas others support a more continu-
ous structure12,32,33. In terms of the alignment of spatial frequency 

Figure 7 Measuring orthogonality based on 
tuning curves of single neurons. (a–c) Joint 
distribution of pairwise orientation and spatial 
frequency tuning similarity. Similarly to the 
analysis for clustering in Figure 4, we computed 
the correlation coefficient between orientation 
(rθ) and spatial frequency (rφ) tuning curves 
for all cell pairs across nine imaging regions. 
Each cell pair was binned on the basis of the 
33rd and 66th percentile of cortical distance 
of separation. The three images are the density 
plots for each of the distances. The dark 
intensity at each location represents the number 
of superimposed data points. The text in each 
inset gives the distance range for the subpopulation, along with the correlation coefficient and P-value of the scatter plot. For shorter distances  
(<72 µm), there is not a significant relationship between the maps. However, for the other two scatter plots (>72 µm), pairwise tuning similarity is 
negatively correlated between the orientation and spatial frequency maps. To better illustrate the trend, we have also plotted the mean of rφ (blue)  
and rθ (red), for each of three intervals on the opposing axis. Intervals were chosen to contain equal numbers of cell pairs. The s.e.m. bars are smaller 
than the width of the line.
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and orientation maps, a statistically significant relationship has been 
reported11–13, yet it appears difficult to detect in most examples. 
Finally, the mere existence of spatial frequency maps in the cat has 
been called into question, largely on the basis largely of a reanalysis of 
data from these previous studies, with the claim that spatial frequency 
maps obtained with intrinsic imaging are an artifact of a nonspecific 
blood vessel–related response14. Perhaps the low signal-to-noise ratio 
in the spatial frequency maps acquired with intrinsic signal imaging 
is the root of the debate. In either case, the lack of regularity in spatial 
frequency organization requires that it be imaged at a cellular resolu-
tion for robust characterization.

Unique aspects of macaque monkey functional architecture
Many lines of functional and anatomical evidence indicate that V1 
of macaque monkeys is quite different from cat area 17 (refs. 34–37). 
For example, even though both species have prominent orientation 
and ocular dominance columns, features related to spatial frequency 
encoding are different. Whereas both species have geniculate input 
channels carrying different ranges of spatial frequency (parvo- and 
magnocellular in the macaque versus X and Y in the cat), these are 
segregated at the input layer (layer IV) in macaques but not cats. 
Furthermore, local circuits distributing this information to more 
superficial layers are much more highly organized in the macaque and 
have tight relationships to cytochrome oxidase blobs. In macaque mon-
keys, the blobs receive a mixture of direct koniocellular input and both 
M and P input relayed through layers 4Cα and 4Cβ, respectively36,37. 
In contrast, interblobs receive less M input from 4Cα, which has 
been suggested as the basis for a somewhat higher prevalence of low 
spatial frequency tuned cells in blobs than interblobs16. While blobs 
also correspond to lower spatial frequency in cats31, their blobs are 
less prominent than in macaques and it has been suggested that their 
low spatial frequency preferences arise from a stronger, direct Y-cell 
input31,38 rather than differences in local connectivity.

In view of the differences in circuit organization that might mediate 
a functional architecture for spatial frequency encoding in cats versus 
monkeys, it should not be surprising that the strength and regularity 
of any relationships between spatial frequency and other functional 
maps might also be different. The organization between orientation 
and spatial frequency maps reported from intrinsic imaging studies in 
cats is one of a ‘loose orthogonality’ whereby other feature maps can 
also be squeezed into the architecture without sacrificing too much 
coverage39. A similar result was also shown in the ferret13. In contrast, 
we have observed a much sharper and regular association between 
orientation and spatial frequency maps in the macaque monkey. It 
remains to be determined whether this relationship would appear 
stronger in cats or ferrets if the more sensitive two-photon imaging 
methods are used, but it is likely that the tight relationship between 
orientation and spatial frequency maps observed here does not exist 
in the other species studied. This is the case for other cortical maps. 
For example, there is a pronounced species-dependent difference in 
the alignment between cytochrome oxidase blobs and ocular domi-
nance bands. In the macaque (and human), blobs tightly align with 
ocular dominance columns, yet this relationship is nonexistent in 
squirrel monkeys and appears weak at best in the cat5. In addition, the 
relationship between orientation and ocular dominance is stronger in 
the monkey7,8 than in the ferret13,40,41 and perhaps the cat as well11. 
The tight orientation–spatial frequency and orientation–ocular 
dominance relationships in the monkey combine to suggest a parallel  
alignment of spatial frequency and ocular dominance maps, which 
is in stark contrast to what has been shown using intrinsic imaging 
in other species. Such a relationship between spatial frequency and 

ocular dominance maps is also consistent with the alignment between 
blobs and ocular dominance and the (likely) alignment between blobs 
and spatial frequency maps. Also, parallel spatial frequency and  
ocular dominance gradients do not necessarily imply a lack of spatial 
frequency coverage for each eye, as the spatial period of the ocular 
dominance map would be twice that of the spatial frequency map. 
More specifically, it suggests that the most monocular regions tend 
to have lower spatial frequency preference.

Concluding remarks
The importance of characterizing V1 functional maps is twofold: to 
better understand how map continuity may benefit wiring efficiency 
yet restrict coverage42,43 and to constrain network models on the 
development and mechanisms of neuronal tuning in visual cortex44–48.  
These research avenues will benefit from the information provided 
by two-photon imaging, as they will ultimately require knowledge of 
the cell-by-cell distribution of tuning shape within the cortical space. 
The systematic relationship between orientation and spatial frequency 
tuning we have demonstrated here, along with other recent results 
on the exquisite layout of tuning in highly visual mammals22,49,50, 
are crucial steps toward establishing a complete picture of cortical 
feature maps in V1.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METhODS
Animal preparation and surgery. All procedures were conducted in accord-
ance with guidelines of the US National Institutes of Health and were approved 
by the Institutional Animal Care and Use Committee at the Salk Institute. We 
used five juvenile macaque monkeys (four Macaca fascicularis, one M. radiata; 
ages 9–18 months). Animals were anesthetized with ketamine (10 mg/kg, i.m.) 
and pretreated with atropine (0.04 mg/kg, i.m.). They were placed in a stere-
otaxic apparatus, in which initially the animal’s head was rigidly held in the stere-
otaxic frame by ear bars, eye bars and a palate clamp (David Kopf Instruments). 
Anesthesia was maintained throughout the experiment with sufentanil citrate 
(4–20 µg kg−1 h−1, i.v.), supplemented with isoflurane (0.5–2%) during surger-
ies. We additionally administered diazepam (50–100 µg/kg, i.v.) as needed. For 
one animal, we supplemented sufentanil anesthesia with low levels of isoflurane 
(around 0.5%) throughout the entire experiment. Animals were paralyzed using 
pancuronium bromide (0.1–0.2 mg kg−1 h−1, i.v.) and artificially ventilated using 
a small animal respirator (Harvard Apparatus or Ugo Basile). The EKG, EEG, 
SpO2, heart rate and body temperature were monitored continuously to judge 
the animal’s health and maintain proper anesthesia. Dexamethasone (0.1 mg/kg, 
i.m.) and cefazolin (25 mg/kg, i.v.) were administered every 24 h to reduce brain 
swelling and prevent infections.

We then attached a small metal post (about 1 × 2 cm) to the skull over frontal 
cortex using metal screws and dental cement (Grip Cement, Dentsply). For the 
rest of the experiment, we used this head post to hold the animal’s head by con-
necting it to the stereotaxic apparatus. At this point, ear bars and eye bars were 
removed, but the palate clamp remained in place. Securing the animal’s head 
by both head post and palate clamp helped to reduce the amount of breathing-
induced motion artifacts during imaging.

The skull over the occipital lobe was thinned, and a custom-made imaging well 
was attached over V1 (see Supplementary Fig. 4). Within the well perimeter, we 
made small craniotomies and durotomies (about 3 × 3 mm) to expose the brain. 
Dye was then injected as described in ref. 24. Briefly, we injected a solution con-
taining 2 mM OGB and 25% SR101 in ACSF21,51. After dye injection, the exposed 
brain was covered with agarose (1.5% in ACSF; type III-A, Sigma-Aldrich) and 
a coverslip (World Precision Instruments). To further reduce motion artifacts, 
the coverslip was gently pushed down by clamps attached to the imaging well. 
This was sufficient to remove most vertical movement. However, there was usu-
ally an appreciable amount of residual horizontal movement, which was cor-
rected offline using an optical flow–based method (Supplementary Fig. 5). 
After successful dye injections, we could often image neurons down to ~400 
µm; however our data was most often collected at depths between ~140 µm  
and ~300 µm. After collecting sufficient data from each imaging region, or when 
the dye loading failed to produce well-labeled neurons, we performed a new 
craniotomy and durotomy and repeated the dye loading in the new location. 
Usually, we were able to perform about five craniotomies/durotomies without 
having to move the imaging well. Whenever we could fit no more craniotomies 
within the imaging well, it was moved to a new position on the skull.

Eyes were dilated with 1% atropine and corneas protected with contact lenses. 
Refraction of the eyes was determined for two monitor distances (60 and 80 cm). 
In initial experiments, we used neural responses recorded on metal electrodes to 
determine the ophthalmic lenses yielding the ‘best’ spatial frequency tuning curves. 
For later experiments, we instead used responses from two-photon imaging.

two-photon microscope setup. We used the same two-photon microscope as 
described in ref. 24 and fixed the excitation wavelength at 920 nm. Large-scale 
imaging was performed using a 16×, 0.8 NA objective (Nikon); fine-scale imag-
ing experiments used a 40×, 0.8 NA lens (Olympus). Technical limitations of the 
microscope kept us from overfilling the back aperture of the 16× objective, which 
reduces the effective NA. The beam size was large enough to overfill the back aper-
ture of the 40× objective. For drifting grating experiments, images were acquired at 
a frame rate between 2 and 8 Hz. For flashed grating experiments, the frame rate 
was 16 Hz. ScanImage software was used for data acquisition (ref. 52).

Visual stimuli. Visual stimuli were generated using the Psychophysics Toolbox 
extensions for Matlab53,54 on a 17-inch CRT monitor (1024 × 768) with a refresh 
rate of 100 Hz. The monitor was gamma corrected using a Photo Research-701 
spectroradiometer. We ran a set of three preliminary stimuli to help optimize 
the spatial frequencies and retinotopic location of the stimulus for each imaging 

region. The first was a large (~60° × 60°) drifting square-wave grating stimulus at 
eight orientations, which gave the preferred orientations within the ROI. In the 
next experiment, we presented sine-wave drifting gratings at five spatial frequen-
cies (0.5, 1.0, 2.0, 4.0 and 8.0 cyc/deg), each at one or two directions. Finally, we 
ran a retinotopy stimulus as described in ref. 24. In subsequent experiments the 
size of the stimulus was then kept between 5° and 6°.

In fine-scale imaging experiments, we showed a random grating noise stimulus 
to one eye. Each presentation randomly pooled from a set of gratings of different 
orientation, spatial frequency and spatial phase. The stimulus set varied across 
experiments, but there were always four phases for each orientation and spatial 
frequency. The domain of orientations and spatial frequencies were organized 
into Cartesian coordinates. Spatial frequency was spaced either linearly or loga-
rithmically, with the range defined by the preliminary experiments. Depending 
on the experiment, the stimulus was updated every 150 or 200 ms and each trial 
lasted 60 s. Gratings were shown at full contrast, and a gray screen was shown 
instead of a grating 5% of the time.

For large-scale imaging, we presented drifting gratings because responses are 
more sustained and can thus be captured with a slower scan rate, which was 
required to image at an acceptable resolution. Furthermore, drifting gratings 
were deemed adequate since we were computing the preferred orientation/spatial 
frequency at each pixel and less concerned about distortion of the tuning curve24. 
Drifting gratings were shown to one eye at 8 directions (45° steps) and 5 spatial 
frequencies (0.5 to 8 cyc/deg). All combinations of direction and spatial frequency 
were randomly interleaved and shown 6 to 7 times.

computing the tuning curves. Large-scale imaging. The response time course 
of each pixel for each trial was first computed as (F(t) − Fo)/Fo, where Fo is the 
mean response to the gray screen before stimulus onset for the given trial. Next, 
each frame of the trial was smoothed with a narrow two-dimensional Gaussian 
(σ = 1.5 µm). We then computed the average and standard error response time 
course to each stimulus at each pixel (Fig. 1a–d). Responses were averaged across 
all presentations of the same stimulus and the time window from 0.2 to 3.0 s 
after stimulus onset. To compute the orientation and spatial frequency tuning 
curves at each pixel, we averaged over spatial frequency and orientation, respec-
tively. Orientation preference was measured as the direction of the resultant of 
response vectors. Spatial frequency preference was measured as the tuning curve’s 
center-of-mass, after taking the log of the domain. For further analysis, the imag-
ing region was cropped based on a signal-to-noise ratio (SNR) metric. We first 
computed the SNR at the time-to-peak of the best stimulus, at each pixel. SNR 
was measured as (µmax − µmin)/(SEmax + SEmin), where µmax and µmin are the 
mean responses to the best and worst stimulus, and SEmax and SEmin are the 
corresponding standard errors. Next, this ‘SNR image’ was smoothed with a two-
dimensional Gaussian (σ = 25 µm). The cropped ROI used for analyses (Figs. 2 
and 5) consisted of pixels with SNR > 2.

Fine-scale imaging. For each imaging region, we created a binary cell mask 
for each cell body to define the overlapping set of pixels24. To account for glia 
selectively labeled with SR101, cells were removed that were present in both 
the red (575 to 650 nm emission filter) and green (510 to 560 nm emission  
filter) channel. To compute the response of a neuron at each frame, we took the 
dot product between a Gaussian-smoothed (σ = 1 µm) binary cell mask and  
the raw image. Movement correction was implemented by shifting the location of 
the Gaussian before smoothing the mask (Supplementary Fig. 6). Supplementary 
Video 1 shows one trial, with the movement correction depicted for two neurons. 
See Supplementary Figures 7 and 8 for a comparison of responses at the cell 
body to those at the adjacent neuropil.

Prior to computing the kernels for the flashed gratings, we convolved the sig-
nal for each neuron with a difference-of-Gaussians function (σlowpass = 50 ms; 
σhighpass = 5,000 ms) to help remove noise. Responses from each neuron were 
then Z-scored within each 60 s trial. Next, we computed the mean and standard 
error of the fluorescence response (in Z units) to each type of grating in the 
ensemble, followed by subtracting the blank response from each time course. 
That is, the spatiotemporal kernel is defined as K(p,τ) = E[R|p,τ] − E[R|b,τ]. 
E[R|p,τ] is the expected response (R) given a set of stimulus parameters (p) and 
time after stimulus onset (τ). E[R|b,τ] is the expected response given that a ‘blank’ 
was presented. Orientation tuning curves were then computed from K(p,τ) as 
follows: (i) we averaged over spatial phase, (ii) took the slice at the time delay of 
maximum response, and finally (iii) took a weighted sum over spatial frequency, 
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where the weighting function is simply the mean of the kernel over orientation. 
Spatial frequency tuning curves were computed in the equivalent manner, such 
that the weighting function in orientation is the average over spatial frequency.

The first criterion for data selection was based on whether cells responded to 
the optimal stimulus reliably higher than to the worst stimulus. We included cells 
that had (µmax − µmin)/(SEmax + SEmin) > 1. Here, µmax = E[R|pmax,τpeak], µmin 
= E[R|pmin,τpeak], and SEmax and SEmin are the corresponding standard errors. 
Approximately 94% of neurons passed this criterion. The second criterion was 
based on the quality of the fits to the orientation and spatial frequency tuning 
curves. Orientation tuning curves were fit by a Gaussian and spatial frequency 
tuning curves by a difference-of-Gaussians. We only included cells for which 
both fits accounted for at least 60% of the variance, which was 93% of the cells 
that passed the SNR criterion. This second criterion was implemented to ensure 
the accuracy of our pairwise tuning similarity measurements, as they are based 
on the correlation coefficient between these fits.

Quantifying map similarity across depth. Orientation and spatial frequency 
maps were obtained at multiple depths with large-scale imaging (Fig. 2). To quan-
tify the degree of consistency that each feature map maintains across two imaging 
planes separated by 100 µm in layer II/III, we computed the following statistics: 

Depth consistencyorientation resampled actual= E E[| | ]/ [| | ]∆ ∆q q

Depth consistencyspatial frequency resampled ac= E E[| | ]/ [| |∆ ∆f f ttual ]

The denominators are the pixel-by-pixel absolute difference between the images 
at the two depths (|∆θ| = |θdepth1 − θdepth2|; mod 180) and spatial frequencies  
(|∆φ| = |log2(φdepth1/φdepth2)|), then averaged over pixels. The numerator is the 
average |∆θ| or |∆φ| from randomly sampled pixel locations at each depth (with 
replacement). The number of samples for each resampling trial equaled the number  
of pixels. If equation (1) value was greater than equation (2) value for more  
than 99% of trials, then the corresponding map was deemed significantly more 
consistent across depth.

characterizing functional map continuity. We compared the functional cluster-
ing between orientation and spatial frequency maps using a normalized measure 
of the average tuning difference between pairs of neurons (Fig. 4). Specifically, 
clustering is defined as

Clustering resampled actual( ) [ ]/ [ | ]d E r E r d= − −1 1

where d denotes the distance between cells, r is the correlation coefficient between 
the tuning curve fits (either orientation or spatial frequency, defined ‘rθ’ and ‘rφ’) 
of a cell pair and E is the expected value. Thus, the denominator is the average 
‘tuning dissimilarity’ between a pair of cells separated by a particular distance. 
The numerator is the average tuning dissimilarity between a randomly selected 
pair of cells. We created the pool of randomly selected cell pairs in two ways. First, 
the pool was created by resampling (with replacement) cell pairs contained in the 
same imaging region (Fig. 4c). For each resampling trial, the number of samples 

(1)(1)

(2)(2)

(3)(3)

from each imaging region equaled the actual number of cell pair combinations 
in that region. So the total number of samples for each trial equaled

n
n

R

RR

!
( )!2 2−∑

where nR is the number of cells in imaging region R. Second, we instead created the 
random pool by taking any two cell pairs (with replacement) in the entire data set 
of ten imaging regions (Fig. 4d). The number of selected pairs for each trial was the 
same as above. For each method of resampling, there were 1,000 resampling trials. 
If Clustering(d) was either >1 or <1 for at least 99% of the resampling trials, then we 
concluded that the map showed significant structure at the given distance.

characterizing the joint representation of orientation and spatial frequency. 
Large-scale imaging. Orientation and spatial frequency maps were smoothed before 
computing their contours and gradients (Fig. 5). To smooth the orientation map, we 
first converted it into a complex valued image. Specifically, θ(x,y) was converted to 
exp(i2θ(x,y)). The smoothed complex image was then converted back to orientation 
by taking the angle/2. For both orientation and spatial frequency maps, the smooth-
ing operator was a two-dimensional Gaussian with σ = 25 µm. The gradient of the 
smoothed orientation and spatial frequency maps were computed at each pixel, based 
on the tuning differences between pixels computed as described  for the variables in 
eqs. 1 and 2. That is, we computed ∆θ and ∆φ in the x and y dimensions to create real 
and imaginary components of complex-valued matrices. The difference in phase of 
the gradients was then computed as described in the Results section.

Fine-scale imaging. We binned cell pairs into three bins according to their cortical 
distance, using the 33rd and 67th percentile as the boundaries for the bins (Fig. 7). 
Within each distance bin, we quantified the joint distribution of rθ and rφ either by 
computing the Pearson correlation coefficient between the two values, or by com-
puting mean and standard error for rθ as a function of rφ or vice versa.

Autocorrelation of maps. For the large-scale maps, we computed the autocorrelation 
as a function of absolute cortical distance, R(d) (Fig. 5). For spatial frequency maps,  
R was computed as the correlation coefficient between the log of the maps for a given 
shift, d. For orientation maps we could not use the Pearson correlation coefficient, as 
it is a circular variable. Instead, R was computed based on the projection of the coher-
ency between the maps for each shift. Specifically, we first compute the coherency, 
Coh(d) = E[exp(–i2θd)exp(i2θ)], which is the mean of the pixel-by-pixel product 
between two complex images that are a function of the orientation map, θ, given that 
one has been shifted by d. We then take Rθ(d) = |Coh(d)| × cos[angle(Coh(d))] as the 
‘correlation coefficient’ for the orientation maps. This metric will be 1 if θ and θd are 
the same, −1 if they are 90° apart, and ~0 if they are 45° apart or independent. For 
both orientation and spatial frequency autocorrelation functions, we only take into 
account the pixels that overlap within the SNR defined imaging region (see above) 
for each shift. Thus, larger shifts use fewer pixels to compute R.
51. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N.D. & Helmchen, F. Sulforhodamine 101 as a 

specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).
52. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating 

laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).
53. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
54. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming 

numbers to movies. Spat. Vis. 10, 437–442 (1997).
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e r r ata

Erratum: Orthogonal micro-organization of orientation and spatial frequency 
in primate primary visual cortex
Ian Nauhaus, Kristina J Nielsen, Anita A Disney & Edward M Callaway
Nat. Neurosci. 15, 1683–1690 (2012); published online 11 November 2012; corrected after print 3 December 2012

In the version of this article initially published, the scale bar length for Figure 1e was misstated as 500 mm. The correct length is 50 mm. The error 
has been corrected in the HTML and PDF versions of the article.
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co r r i G e n Da

Corrigendum: Orthogonal micro-organization of orientation and spatial 
 frequency in primate primary visual cortex
Ian Nauhaus, Kristina J Nielsen, Anita A Disney & Edward M Callaway
Nat. Neurosci. 15, 1683–1690 (2012); published online 11 November 2012; corrected after print 9 January 2013

In the version of this article initially published, the computation performed to yield the values on the x axis of Figure 6c was incorrectly defined 
in the text and on the axis label as the absolute difference between Aq and Af (mod 90°). The correct computation is 90° – ||Aq – Af| – 90°|, 
which yields values near 0° for parallel gradients and values near 90° for perpendicular gradients. The error has been corrected in the HTML 
and PDF versions of the article.
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e r r ata

Erratum: Orthogonal micro-organization of orientation and spatial frequency 
in primate primary visual cortex
Ian Nauhaus, Kristina J Nielsen, Anita A Disney & Edward M Callaway
Nat. Neurosci. 15, 1683–1690 (2012); published online 11 November 2012; corrected after print 11 January 2013

In the version of this article initially published, in the equation for Aθ on p. 5, the subscript to the variable f was given as an e. The correct character 
is θ. The error has been corrected in the HTML and PDF versions of the article.
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