Journal Club

In line with our goal of understanding neuromodulatory systems in the mammalian neocortex, the NeuroDisney lab meets regularly to discuss relevant literature. See below for the list of papers used in our discussions.

Chiang, C., & Aston-Jones, G. (1993). A 5-hydroxytryptamine 2 agonist augments γ-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons. Neuroscience, 54(2), 409-420. Link

Maggi, L., Le Magueresse, C., Changeux, J. P., & Cherubini, E. (2003). Nicotine activates immature “silent” connections in the developing hippocampus. Proceedings of the National Academy of Sciences, 100(4), 2059-2064. Link

Takata, N., Mishima, T., Hisatsune, C., Nagai, T., Ebisui, E., Mikoshiba, K., & Hirase, H. (2011).
Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo.
The Journal of Neuroscience, 31(49), 18155-18165. Link

Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S., & Ahissar, E. (2000). A neuronal analogue of state-dependent learning. Nature, 403(6769), 549–553. doi:10.1038/35000586 Link

Dalley, J. W., Theobald, D. E., Bouger, P., Chudasama, Y., Cardinal, R. N., & Robbins, T. W. (2004). Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG–saporin-induced lesions of the medial prefrontal cortex. Cerebral Cortex, 14(8), 922-932. Link

Yu, A.J., Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4):681-692. Link

McGaughy, J., Dalley, J. W., Morrison, C. H., Everitt, B. J., & Robbins, T. W. (2002). Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. Journal of Neuroscience, 22(5), 1905-1913. Link

Wiley, R. G., & Kline Iv, R. H. (2000). Neuronal lesioning with axonally transported toxins. Journal of Neuroscience Methods, 103(1), 73-82. Link

Wiley, R. G., & Kline Iv, R. H. (2000). Neuronal lesioning with axonally transported toxins. Journal of Neuroscience Methods, 103(1), 73-82.  Link

Conner, J. M., Culberson, A., Packowski, C., Chiba, A. A., & Tuszynski, M. H. (2003). Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron, 38(5), 819-829. Link

Joshi S., Li Y., Kalwani R.M., Gold J.I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89:221-234. Link

Ibos, G., & Freedman, D. J. (2014). Dynamic integration of task-relevant visual features in posterior parietal cortex. Neuron, 83(6), 1468-1480. Link

Zaldivar, D., Rauch, A., Whittingstall, K., Logothetis, N. K., & Goense, J. (2014). Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex. Current Biology, 24(23), 2805-2811. Link

Hangya, B., Ranade, S. P., Lorenc, M., & Kepecs, A. (2015). Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell, 162(5), 1155-1168. Link

Hangya, B., Ranade, S. P., Lorenc, M., & Kepecs, A. (2015). Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback. Cell, 162(5), 1155–1168. Link

Lin, SC and Miguel A.L. Nicolelis, M.A.L. (2008). Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence. Neuron 59, 138–149. Link

Thomson, E., Lou, J., Sylvester, K., McDonough, A., Tica, S., & Nicolelis, M. A. (2014). Basal forebrain dynamics during a tactile discrimination task. Journal of neurophysiology, 112(5), 1179-1191. Link

Rasmusson, D. D., Smith, S. A., & Semba, K. (2007). Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience, 149(1), 232-241. link

Medalla, M., & Barbas, H. (2009). Synapses with inhibitory neurons differentiate anterior cingulate from dorsolateral prefrontal pathways associated with cognitive control. Neuron, 61(4), 609-620. link
Medalla, M., & Barbas, H. (2012). The anterior cingulate cortex may enhance inhibition of lateral prefrontal cortex via m2 cholinergic receptors at dual synaptic sites. The Journal of Neuroscience, 32(44), 15611-15625. link

Dalley, J.W., McGaughy, J., O’Connell, M.T., Cardinal, R.N., Levita, L. and Robbins, T.W. (2001). Distinct Changes in Cortical Acetylcholine and Noradrenaline Efflux during Contingent and Noncontingent Performance of a Visual Attentional Task. Journal of Neuroscience, 21(13):4908–4914. link

Cohen, M. R., & Maunsell, J. H. R. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience, 12(12), 1594–1600. link

Gronier, B., Perry, K. W., & Rasmussen, K. (2000). Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology, 147(4), 347-355. link

Gil Z., Connors B.W., Amitai Y. (1997). Differential regulation of neocortical synapses by neuromodulators and activity. Neuron, 19:679-686.

Kalwani, R.M., Joshi, S., & Gold, J.I. (2014).  Phasic activation of individual neurons in the locus ceruleus/subceruleus complex of monkeys reflects rewarded decisions to go but not stop.  The Journal of Neuroscience, 34:13656-13669. link

Carter, O.L., Burr, D.C., Pettigrew, J.D., Wallis, G.M., Hasler, F., and Vollenweider, F.X. (2005). Using Psilocybin to Investigate the Relationship between Attention, Working Memory, and the Serotonin 1A and 2A Receptors. Journal of Cognitive Neuroscience, 17:1497–1508. link

Aggelopoulos, N.C., Liebe, S., Logothetis, N.K. and Rainer, G. (2011). Cholinergic control of visual categorization in macaques. Frontiers in Behavioral Neuroscience, 5:73.   link

Huang, L. and Dobkins, K.R. (2005). Attentional effects on contrast discrimination in humans: evidence for both contrast gain and response gain.  Vision Research, 45:1201-1212. link

Robbins, T.W. and Roberts, A.C. (2007). Differential Regulation of Fronto-Executive Function by the Monoamines and Acetylcholine. Cerebral Cortex ,17:i151–i160. link

Payzan-LeNestour E., Dunne S., Bossaerts P., O’Doherty J.P. (2013). The neural representation of unexpected uncertainty during value-based decision making. Neuron, 79 (1):191-201. link

Watakabe, A., Komatsu, Y., Sadakane, O., Shimegi, S., Takahata, T., Higo, N., Tochitani, S., Hashikawa,T., Naito, T., Osaki, H., Sakamoto, H., Okamoto, M., Ishikawa, A., Hara, S., Akasaki, T., Sato, H. and Yamamori, T. (2009). Enriched Expression of Serotonin 1B and 2A Receptor Genes in Macaque Visual Cortex and their Bidirectional Modulatory Effects on Neuronal Responses. Cerebral Cortex, 19:1915–1928.  link

Parikh, V., Kozak, R., Martinez, R., & Sarter, M. (2007). Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales. Neuron, 56:141–154. link

Xiao, C., Miwa, J. M., Henderson, B. J., Wang, Y., Deshpande, P., McKinney, S. L., & Lester, H. A. (2015). Nicotinic Receptor Subtype-Selective Circuit Patterns in the Subthalamic Nucleus. Journal of Neuroscience, 35:3734–3746. link

Sara, S.J. and Herve-Minvielle, A. (1995). Inhibitory Influence of Frontal Cortex on Locus Coeruleus Neurons. PNAS, 92:6032-6036. link

Marrocco R.T., Lane R.F., McClurkin J.W., Blaha C.D., Alkire M.F. (1987). Release of cortical catecholamines by visual stimulation requires activity in thalamocortical afferents of monkey and cat. Journal of Neuroscience, 7:2756-2767. PMID: 3625272. link

Meyer, H.C., Putney, R.B., Bucci, D.J. (2015). Inhibitory learning is modulated by nicotinic acetylcholine receptors. Neuropharmacology, 89:360-367. link

Witte, E. A., Davidson, M. C., Marrocco, R. T. (1997). Effects of altering brain cholinergic activity on covert orienting of attention: comparison of monkey and human performance. Psychopharmacology, 132:324-334. PMID: 9298509. link

Shepard, K. N., Liles, L. C., Weinshenker, D., Liu, R. C. (2015). Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. Journal of Neuroscience, 35(6):2432-2437. PMID: 25673838. link

Yang, Y., Paspalas, C. D., Jin, L. E., Picciotto, M. R., Arnsten, A. F. T., Wang, M. (2013). Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. PNAS, 110(29):12078-12083. PMID: 23818597. link

Croxson, P. L., Kyriazis, D. A., Baxter, M. G. (2011). Cholinergic modulation of a specific memory function of prefrontal cortex. Nature Neuroscience, 14(12):1510-1512. PMID: 22057191. link

Monosov, I. E., Leopold, D. A., Hikosaka, O. (2015). Neurons in the primate medial basal forebrain signal combined information about reward uncertainty, value, and punishment anticipation. Journal of Neuroscience, 35(19):7443-7459. PMID: 25972172. link

Williford, T. and Maunsell, J. H. R. (2005). Effects of spatial attention on contrast response functions in macaque area V4. Journal of Neurophysiology, 96:40-54. PMID: 16772516. link

Aston-Jones, G., Rajkowski, J., Kubiak, P., Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task.  Journal of Neuroscience, 14(7):4467-4480. PMID: 8027789. link

Eickhoff, S. B., Rottschy, C., Zilles, K. (2007). Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex. Brain Structure and Function, 212(2-3):255-267. PMID: 17828418. link

Eickhoff, S. B., Rottschy, C., Kujovic, M., Palomero-Gallagher, N., Zilles, K. (2008). Organizational principles of human visual cortex revealed by receptor mapping. Cerebral Cortex, 18:2637-2645. PMID: 18321873. link

Astrand, D., Ibos, G., Duhamel J.-R., Ben Hamed S. (2015). Differential dynamics of spatial attention, position, and color coding within the parietofrontal network. Journal of Neuroscience, 35(7):3174-3189. PMID: 25698752. link

Poorthuis, R. B., Bloem, B., Schak, B., Wester, J., De Kock, C. P. J., Mansvelder, H. D. (2013). Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cerebral Cortex, 23(1):148–161. PMID: 22291029. link

Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F., Bear, M. F. (1999). Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. Journal of Neuroscience, 19(5):1599-1609. PMID: 10024347. link

Greuel, J. M., Luhmann H. J., Singer, W. (1988). Pharmacological induction of use-dependent receptive field modifications in the visual cortex. Science, 242(4875):74-77. PMID: 2902687. lin

Kilgard, M. P. and Merzenich M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357):1714-1718. PMID: 9497289. link

Ge, S. and Dani, J. A. (2005). Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. Journal of Neuroscience, 25(26):6084-6091. PMID: 15987938. link

Thiele, A., Herrero, J. L., Distler, C., Hoffmann, K.-P. (2012). Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. Journal of Neuroscience, 32(47):16602–15. PMID: 23175816. link

Hasselmo, M. E., McGaughy, J. (2004). High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Progress in Brain Research, 145:207-231. PMID: 14650918. link

Zhang, M., Wang, X., Goldberg M. E. (2014). A spatially nonselective baseline signal in parietal cortex reflects the probability of a monkey’s success on the current trial. PNAS, 111(24):8967-8972. PMID: 24889623. link

Yu, A.J., Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4):681-692. PMID: 15944135. link

Bloem, B., Schoppink, L., Rotaru, D. C., Faiz, A., Hendriks, P., Mansvelder, H. D., van de Berg, W. D., Wouterlood, F. G. (2014). Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. Journal of Neuroscience, 34(49):16234–16246. PMID: 25471564. link