Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma

Alejandra Bosco,1,2,3 Denise M. Inman,5,4 Michael R. Steele,1,2 Guangming Wu,5 Ileana Soto,6,7 Nicholas Marsh-Armstrong,6 Walter C. Hubbard,8 David J. Calkins,5 Philip J. Horner,4 and Monica L. Vetter1,2

PURPOSE. In the context of the retinal ganglion cell (RGC) axon degeneration in the optic nerve that occurs in glaucoma, microglia become activated, then phagocytic, and redistribute in the optic nerve head. The authors investigated the potential contribution of retinal microglia activation to glaucoma progression in the DBA/2J chronic mouse glaucoma model.

METHODS. The authors treated 6-week-old DBA/2J mice for 25 weeks with minocycline, a tetracycline derivative known to reduce microglia activation and to improve neuronal survival in other models of neurodegenerative disease. They quantified RGC numbers and characterized microglia activation, gliosis, and both axonal integrity and retrograde tracer transport by RGCs in mice systemically treated with minocycline or vehicle only.

RESULTS. Minocycline reduced microglial activation and improved RGC axonal transport and integrity, yet it had no effect on the characteristic age-relatedocular changes that lead to chronically elevated pressure and did not alter Müller or astrocyte gliosis. Specifically, minocycline increased the fraction of microglia with resting ramified morphology and reduced levels of Iba1 mRNA and protein, a microglia-specific calcium ligand linked to activation. The reduction in microglial activation was coupled to significant improvement in RGC axonal transport, as measured by neuronal retrograde tracing from the superior colliculus. Finally, minocycline treatment significantly decoupled RGC axon loss from increased intraocular pressure.

CONCLUSIONS. These observations suggest that in glaucoma, retina and optic nerve head microglia activation may be a factor in the early decline in function of the optic nerve and its subsequent degeneration. (Invest Ophthalmol Vis Sci. 2008;49:1437–1446) DOI:10.1167/iovs.07-1337

Glaucoma progression toward chronic optic nerve atrophy and asynchronous death of retinal ganglion cells (RGCs) has two primary risk factors: age and high intraocular pressure (IOP). Lowering IOP decelerates, but does not halt, glaucoma, suggesting that therapies targeting the pathogenesis of neurodegeneration might be a more promising approach for intervention. Glaucoma involves gliosis and innate immune responses, suggesting a pathogenic function for microglia, which are the resident immune surveillance cells in the central nervous system and retina.

In the adult, microglia are quiescent unless pathogen, injury, or stress trigger their proliferation, migration, and activation. Within the healthy adult retina, perivascular and parenchymal “resting” microglia localize to the inner retina, becoming activated and migratory after RGC axotomy, ischemia, photoreceptor degeneration, and endothelin-induced optic neuropathy. In persons with glaucoma, microglia become activated and redistributed within the optic nerve head (ONH), producing proinflammatory cytokines, reactive oxygen species, neurotoxic matrix metalloproteins, and neurotrophic factors. Activated microglia produce cytokines/chemokines or cytotoxins and have phagocytic activity, but the specific influence of microglial factors on other retinal cells, including RGCs, is unclear, though potentially linked to glaucoma pathology.

Minocycline, a neuroprotective tetracycline derivative that suppresses chronic neuroinflammation and microglial activation, protects RGCs after axotomy and in optic neuritis models. We questioned whether retinal microglia deactivation during early glaucoma progression might protect the optic nerve from degeneration. The effects of systemic, long-term administration of minocycline on optic neuropathy and retinal microglia were studied in DBA/2J mice. This model of secondary glaucoma replicates key aspects of the human pathology, including IOP increase caused by blockage of the anterior drainage pathways of the eye, IOP-dependent loss of RGC axons, gliosis, and microglia proliferation in the vicinity of RGCs. We demonstrate that the reduction of retinal microglia activation reverses the typical loss of RGC axonal transport and integrity that normally accompanies IOP elevation (Inman DM, et al. JOVS 2007;48:ARVO E-Abstract 3291).

MATERIALS AND METHODS

Mice

DBA/2J mice originally obtained from Jackson Laboratories (Bar Harbor, ME) were bred and housed in a pathogen-free barrier facility at the University of Utah, Salt Lake City, UT 84132; alebosco@neuro.utah.edu.

From the Departments of 1Neurobiology and 2Anatomy, University of Utah, Salt Lake City, Utah; 3Department of Neurosurgery, University of Washington, Seattle, Washington; 4Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee; 5Kennedy Krieger Institute, Baltimore, Maryland; and 6Solomon Snyder Department of Neuroscience and 7Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland.

3These authors contributed equally to the work presented here and should therefore be regarded as equivalent authors.

Supported by Catalyst for a Cure funding from the Glaucoma Research Foundation (MLV, DJC, PJI, NM-A) and the mass spectrophotometer by National Institutes of Health Grant 1S10 RR16798 (WCH).

Submitted for publication October 17, 2007; revised December 12, 2007; accepted February 18, 2008.

Disclosure: A. Bosco, None; D.M. Inman, None; M.R. Steele, None; G. Wu, None; I. Soto, None; N. Marsh-Armstrong, None; W.C. Hubbard, None; D.J. Calkins, None; P.J. Horner, None; M.L. Vetter, None.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Alejandra Bosco, Departments of Neurobiology and Anatomy, University of Utah, 517 Wintrobe, 20 North 1900 East, Salt Lake City, UT 84132; alebosco@neuro.utah.edu.
University of Washington Harborview Medical Center (Seattle, WA). Mice were maintained in a 12-hour light/12-hour dark cycle and fed ad libitum. Experiments and animal care procedures adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and to the guidelines of the University of Washington Institutional Animal Care and Use Committee.

IOP Measurement

IOP was measured (Tono-Pen XL; Medtronic Solan, Jacksonville, FL) as previously described.21 During each session (Fig. 1A), 20 measurements were averaged per eye. Here we report the actual IOP at each age (IOP), the last IOP measurement before kill (final IOP), or the average IOP across the life of the mouse (mean IOP ± SD).

Minocycline Administration

Experimental mice (n = 25) at 6 weeks of age received intraperitoneal minocycline hydrochloride (Sigma-Aldrich, St. Louis, MO; 120 mg/kg)24 until they were large enough for gavage (5 weeks). For the next 22 weeks, minocycline was delivered daily by gavage with a dose not exceeding 1% wt/vol25 using a blunt nonstick (Teflon)-tipped 20-gauge needle (Popper and Sons, New Hyde Park, NY). Vehicle mice (n = 25) received 5% sucrose in 0.9% saline solution by identical routes. Gavage needle (Popper and Sons, New Hyde Park, NY). Vehicle mice (n = 25) received 5% sucrose in 0.9% saline solution by identical routes. Gavage

RGC Retrograde Labeling

At dosing week 24, bilateral holes were drilled into the craniums (~4.0 mm) of a subset of mice (8 in the vehicle group, 7 in the minocycline group) under 2,2-tribromoethanol (1.3%) and tert-amyl alcohol (0.8%) in diH2O (Sigma-Aldrich) anesthesia in a stereotaxic device (David Kopf Instruments, Tujunga, CA). The superior colliculi (0.5 mm below dura) were injected with 2 µL of 1% neuronal retrograde tracer (Fluoro-Gold; Molecular Probes, Eugene, OR) in hydroxystilbamidine (diH2O) over 2 minutes, and holes were filled with sterile compressed sponge (Gelfoam; Pfizer, New York, NY) soaked in 5% neuronal retrograde tracer. Scalps were sutured with 4-0 silk.

Tissue Collection

Seven-month-old mice were perfused with 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4; brains, optic nerves, and eyes were removed, postfixed for 1 hour, and stored in PB until processing. The superior quadrant was marked in situ on all globes.

Minocycline Mass Spectrometry

After 2 weeks of intraperitoneal minocycline, retinas (n = 6) and brains (n = 3) from saline-perfused mice were frozen in liquid N2 and homogenized in ice-cold PB saline (5 mL/g). The internal standard (0.15 µg tetracycline) and H3PO4 (20 nL) were added to 1 mL homogenate and centrifuged (2000 rpm for 30 minutes at 4°C). The redissolved supernatants were combined and cleaned up with 1 mL/30 g extraction cartridges (Oasis HLB; Waters, Mildford, MA). Samples were eluted with 1 mL methanol and evaporated under a nitrogen stream (40°C), and the residue was dissolved in 200 µL and measured in a mass spectrometer (PE Scieix API4000; Applied Biosystems, Foster City, CA) coupled with a liquid chromatograph (model 1100; Agilent Technologies, Wilmington, DE). Chromatographic resolution used a 50 × 4.6-mm column, 5-µm particle size (Zorbax Eclipse XDB MS C8; Agilent Technologies), with 5% formic acid/0.5% formic acid methanol gradient. For identification, multiple reaction monitoring (MRM) transitions used m/z 458 > 441 and 458 > 352 for minocycline and m/z 445 > 427 for tetracycline. The signal at the MRM transitions at m/z 458 > 441 and 445 > 427 was used to quantify minocycline levels. Parameters were optimized for declustering potentials, collision energies, and ext potentials. Values are expressed per tissue and are not based on tetracycline, avoiding the inaccuracy of wet
weight values. For brain data, raw values and those relative to tetracycline were nearly identical.

Immunolabeling

Retinas dissected in PB saline were processed and immunolabeled as previously described for cryosections and flatmount preparations. Primary antibodies included GFAP (1:1000; Advanced Immunochemicals), Iba1 (1:300; Wako Chemicals, Inc., Tokyo, Japan), cleaved caspase 3 (1:50; Cell Signaling, Danvers, MA), and NeuN (1:500; Chemicon, Temecula, CA). Secondary antibodies conjugated to diverse fluorophores (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) were used for single to triple immunolabeling, showing no specific binding to the tissue after primary antibody omission. Serial sections were stained with hematoxylin-eosin for histologic analysis of the eye anterior segment.

Stereology and Axon Counts

Numbers of NeuN-positive and neuronal retrograde tracer-positive RGCs, GFAP-positive astrocytes, and Iba1-positive microglia in flat-mounted retinas were estimated by unbiased stereological analysis (StereoInvestigator; MicroBrightfield, Middlebury, VT). Cells were counted, at 20× magnification, throughout 2.14% to 3.42% of the retinal surface (40 sampling sites), at all focal planes. Central quadrants were traced as a circle (radius, 1500 μm) centered on the ONH, and the peripheral quadrants were traced along the retinal periphery. Total cell density was determined by summing the total areas for each sampling sector and dividing by the summed value of the stereological estimate of the cell population for all sectors. Cell numbers were also quantified by retinal quadrant and eccentricity.

Counts of RGC axons in 1- to 2-mm lengths of optic nerve proximal to the posterior eyecup were obtained as previously described. The cross-sectional area of every axon counted was quantified as the axoplasm area contained within the best-fitting polygon around the axon perimeter defined by the myelin sheath (ImagePro; Media Cybernetics, Bethesda, MD).

Morphometry and Densitometry

Microglial cell ramification was calculated for all cells within 60× microscope fields spaced 500 μm along the superior-inferior and nasal-temporal retinal axes beginning at the ONH (Fig. 2A). Cells localized from the outer plexiform layer (OPL) to the ganglion cell layer (GCL). Primary processes and process tips were counted for each cell; ramification is the number of tips divided by number of primary processes (Fig. 2A). There were 3 to 15 cells per microscope field, 20 fields per retina, and 6 retinas for each group. Those retinas in which microglial ramification was measured also had their RGCs retrogradely labeled with neuronal retrograde tracer, which allowed us to correlate levels of microglia activation and numbers of neuronal retrograde tracer-positive RGCs.

To measure microglial solidity, sagittal retinal sections spanning the ONH (two retinas from different individuals per group) were examined at 200× and imaged as 10 μm-deep stacks at 0.5 μm intervals. The best confocal microscope (Fluoview; Olympus, Tokyo, Japan), sampling at least 15 × 125-μm2 areas, maintaining identical settings and eccentricity. For each microglial soma (at least 15 cells per quadrant), a cell silhouette was hand traced, and a polygon was drawn enclosing the entire cell; then the cell and the polygon area and perimeter were measured. Solidity was calculated as the ratio of cell area over polygon area. In the same retinal sections, the relative intensity of Iba1 immunofluorescence within the defined cell area (10 cells per quadrant) was quantified and reported as mean values (range, 0 – 4095 AU; Fluoview 4.5; Olympus); focus coincided with the highest pixel intensity at the soma center.

Another set of retinal sections (two retinas from different individuals per group) was examined at 100× and imaged as 20 μm-deep stacks (every 1.5 μm) to measure GFAP immunofluorescence relative intensity in each optical slice along lines transecting the GCL, inner nuclear layer (INL), inner plexiform layer (IPL), and OPL, from the superior to the inferior retinal margins. Identical x-y positions were averaged across the stack and analyzed by eccentricity. Data presented are means for the line scan crossing each layer.

qRT-PCR

Total RNA was extracted from 7-month-old mouse retinas (n = 6 per group) using published methods. Real-time PCR reactions were completed using the following primer sets: Iba1, 5′-CCTTGGATTGAGGTGAGTGTCAC-3′ and 5′-GGCTACAGCTGTTCCTTTTTTCC-3′; GFAP, 5′-CCGTTCTCTGGAGACACTGAA-3′ and 5′-TGGAGGGAATGGTTGGATT-3′; β-actin, 5′-TGGAGGGAATGGTTGGATT-3′ and 5′-TGGTGCCAAATGATGACCTG-3′. Changes in gene expression levels were determined relative to β-actin, a reference that did not change significantly in our samples.

Statistical Analysis

Data are presented as mean and error bars as SEM, except for IOP measurements, which are presented as SD. Analysis of variance was performed for IOP comparisons, with a Dunn post hoc multiple comparison test. Student’s t-test was performed for comparisons of cell numbers, ramifications, protein, and mRNA expression.

RESULTS

Unchanged Anterior Segment Pathology and IOP Elevation

To determine whether the inhibition of retinal microglia activation in DBA/2J mice during the onset of glaucoma would affect its progression, we investigated whether long-term minocycline administration could suppress retinal microglia activation and rescue RGC axonopathy. Minocycline, a semisynthetic derivative of tetracycline, readily crosses the blood-brain barrier. Starting at 6 weeks of age, before the onset of retinal pathology in DBA/2J mice, minocycline (n = 25) or vehicle (n = 25) was administered intraperitoneally for 3 weeks and then administered by oral gavage for 22 weeks (Fig. 1A). As determined by liquid chromatography–tandem mass spectrometry, the tissue levels of minocycline after 2 weeks of intraperitoneal delivery were 0.44 ± 0.2 μg/brain (n = 3) and 0.29 μg/retina (n = 6), values that exceed efficacy levels for minocycline. Although the DBA/2J strain is prone to audiogenic seizure, the occasional seizure was observed in the minocycline group only, suggesting that its long-term administration contributed to the seizure incidence.

DBA/2J mouse IOP increases from 3 to 9 months of age as a result of aqueous humor drainage block from iris stromal atrophy and pigment dispersion. Here, long-term minocycline treatment did not alter the anterior segment pathology at 7 months of age because vehicle- and minocycline-treated mice showed similar degrees of iris pigment dispersion and iridocorneal angle closure (Figs. 1C, 1D). Periodic applanation tonometer (Tono-Pen; Reichert, Depew, NY) measurements during treatment (Fig. 1A) revealed no IOP differences in vehicle- and minocycline-treated mice except at 18 weeks of dosing, when the IOP variance was significantly different between the groups (Fig. 1B; P < 0.05). At 20 and 24 weeks of dosing, IOP converged to similar levels in both groups and was comparably elevated in both groups at 24 weeks (Fig. 1B). At each age, the average IOP of both groups was comparable to that of previously published values for DBA/2J mice. Together, these results indicated that minocycline did not alter the course of anterior segment disease and the concomitant IOP elevation.

Retinal Gliosis Unaffected

We reported previously that the DBA/2J retina initiates astrocyte and Müller cell nonproliferative reactive gliosis beginning...
at 3 months of age, whereas microglia numbers double between 4 and 10 months of age. Retinas from 7-month-old vehicle- and minocycline-treated mice were double-immunolabeled for astrocytic GFAP (glial fibrillary acidic protein) and microglial Iba1, a retinal microglia-specific (Figs. 2A, 2B) calcium-binding adaptor protein. Stereological cell counts revealed no difference in numbers of GFAP-positive astrocytes and Iba1-positive microglia in vehicle compared with minocycline retinas (Fig. 2C). Moreover, peripheral and central regions showed no significant differences in microglia number or distribution between treatment groups (data not shown).

To further determine whether minocycline affected retinal gliosis, as measured by GFAP levels in astrocytes and Müller glia, we performed qRT-PCR analysis of GFAP mRNA relative to β-actin in 7-month-old retinas (n = 6 per treatment). Figure 2D demonstrates that most retinas expressed comparable lev-
els of GFAP, regardless of treatment group. Similarly, immunofluorescence analysis showed comparable GFAP protein expression in both groups (Figs. 2E, 2F). Densitometry of GFAP immunofluorescence on sagittal retinal sections revealed similar relative intensities and distributions of GFAP expression in retinas from both treatment groups, across cell compartments corresponding to astrocytes and Müller cell end feet (Fig. 2G), at the level of the GCL and processes, and across the plexiform layers. Only the IPL within the inferior quadrant had higher GFAP levels in retinas of minocycline-treated animals compared with the vehicle-treated group (data not shown).

Reduced Retinal Microglial Activation

Activated microglia observed in human glaucomatous ONH suggest a link between microgliosis and axonopathy. With the knowledge that minocycline did not affect microglial cell number, we investigated whether minocycline reduced retinal microglial activation by using cell morphology as a readout for changes in the continuum between ramified/resting and solid/activated states (Fig. 3D). In different retinal preparations from 7-month-old mice, we measured cell ramification and solidity. Microglia ramification was assessed in flattened retinas immunolabeled for Iba1, at all depths and along each quadrant (Figs. 3A, 3B). Microglial cells were consistently more ramified (resting) in the microglial group than in vehicle-treated retinas, suggesting a reduction in their activation state (Fig. 3E). Furthermore, microglia located at midperipheral eccentricity (1000 μm from the ONH) showed significantly higher ramification in microcycine-treated mice (P < 0.05).

Iba1, which is involved in membrane ruffling through actin-bundling activity and through cell migration and phagocytosis, is upregulated in activated microglia. Thus, to further monitor microglial activation, we quantified the levels of Iba1 mRNA and protein in retinas after 25 weeks of minocycline or vehicle treatment. As assessed by qRT-PCR, whole retina Iba1 mRNA in minocycline-treated mice (n = 6 per treatment) was approximately 38% lower on average than in vehicle-treated mice (data not shown). The quantification of Iba1 protein expression by densitometry of immunofluorescence intensity in individual microglial cells (317 cells from two different retinas per treatment) revealed a significant reduction (43%) in Iba1 levels in cells from minocycline-treated retinas compared with the vehicle-treated group (Fig. 3F; P < 0.001). Finally, we generated histograms of Iba1 fluorescence intensity and microglial cell solidity, comparing vehicle- and minocycline-treated retinas. We found that cells of similar morphologic complexity (e.g., solidity) had significantly lower Iba1 intensity values if derived from minocycline-treated retinas than from vehicle-treated microglia (Fig. 3G), further confirming the selective decline of microglial activation by minocycline.

Improved RGC Viability

RGC axonal retrograde transport and connectivity to the superior colliculi declines with age and IOP and serves as an early predictor of neuronal retrograde tracer-positive RGCs overall. As IOP increases in the aging DBA/2J retina, RGC axons are lost in the optic nerve proximal to the eye. Our own work demonstrates that even subtle differences in IOP can lead to substantial differences in the number of surviving axons in comparably aged animals. Thus, we sought to determine whether minocycline alters this IOP-dependent axonal degeneration by examining semithin cross-sections of optic nerve. An example of a vehicle group nerve demonstrates the usual pathology associated with elevated IOP in the DBA/2J retina, including disjoined myelin sheaths, thinning of axon density, and disorder within individual fascicles of axons (Fig. 5A). These features were far less prominent in a nerve from a minocycline-treated animal (Fig. 5B). To test these differences, we used digital light microscopy to quantify axon number and size in subsets of mice (n = 6 per group), as described. Importantly, mean IOP (±SD) did not differ among these mice (Fig. 5D).

Foremost, RGC axons in minocycline-treated nerves (Fig. 5B) appeared to have a greater cross-sectional area than their vehicle-treated counterparts (Fig. 5A); this difference was not uniform across all axons. Rather, when quantified, minocycline increased the fraction of axons of medium caliber size only (0.15–0.52 μm²) without significantly affecting the portion of axons with smaller or larger caliber (up to 1 μm²) (Fig. 5C). This increase in size did not accompany an overall difference in the total number of axons because mean axon number did not differ between the minocycline-treated (33,548 ± 11,980 axons) and the vehicle-treated groups (38,428 ± 15,059 axons; P = 0.31). This was not unexpected. In a previous study, we demonstrated that in each age group, differences in IOP trans-
late to differences in axon survival, so that each age group is represented by a large spread in axon number. When plotted against mean IOP for each nerve, the vehicle-only group demonstrated the typical IOP-dependent loss of RGC axons, as indicated by the negative slope of the best-fitting regression line (Fig. 5E). This loss ranged from approximately 5000 to 10,000 axons for each 1-mm Hg increment in mean IOP, similar to the rate of loss we documented for comparably aged animals in our previous work. However, in the minocycline-treated animals, we did not observe the expected loss of axons with
increasing IOP, even for the highest IOPs (IOP > 17 mm Hg). Analysis of covariance using indicator variables demonstrated that the best-fitting regression line for the minocycline group approached a slope of zero, indicating no dependence on IOP (*P* < 0.005), but that the difference between the slopes for the minocycline- versus vehicle-only group was highly significant (*P* < 0.001).

DISCUSSION

This study demonstrates that long-term and systemic treatment of DBA/2J mice with minocycline, commencing before clinical evidence of glaucoma, suppressed retinal microglial activation and improved ganglion cell integrity, supporting the hypothesis that retinal microglia may contribute to RGC pathology after IOP elevation.

Previous studies have shown microglial activation and redistribution in the human glaucomatous ONH and in retinas under acute ocular hypertension. It is known that microglia cells have extremely plastic morphology, transformable from finely ramified shapes during resting state to larger somata with a few broad processes and eventually to solid, globular phagocytes. Moreover, activated microglia upregulate specific genes, such as Iba1, after axotomy, ischemia, and neural disorders. We show that with long-term minocycline treatment, retinal microglia maintain a complex, ramified morphology, demonstrating a lack of activation. Here, minocycline also prevented retinal microglia from upregulating Iba1 mRNA and protein expression, confirming their reduced activation. Multiple reports demonstrate that minocycline can effectively suppress microglial activation in vivo and in vitro, preventing the production of inflammatory cytokines.

Although minocycline can directly suppress cell death pathways we observed comparable amounts of apoptotic RGCs between experimental groups, which suggests that apoptosis might not have been the primary mechanism of action of minocycline in our study. Consistent with this, RGC apoptosis is detectable but not significant at 6 months and peaks in 10- to 13-month-old DBA/2J mice. Other reported effects of minocycline, such as suppression of matrix metalloproteinase and nitric oxide and free radical production, might have
contributed to the improved RGC retrograde labeling we observed, though in some cases these actions were likely secondary to reduced microglial activation.

Anterior segment pathology and IOP elevation were unchanged with minocycline treatment. Although minocycline has suppressive effects on inflammatory cells, such as T lymphocytes and monocytes, the absence of inflammation and blood-barrier disruption in DBA/2J retina suggests that these also are not targets of minocycline action.

Having previously demonstrated that the DBA/2J retina mounts a reactive gliosis, consisting of astrocytic and Müller glia hypertrophy, we explored whether minocycline affects glial populations. Minocycline had no apparent effect on astrocyte numbers and hypertrophy or Müller gliosis, consistent with previous reports showing no difference in the number of activated astrocytes, but significant reductions in microglia numbers did result after minocycline treatment of mice modeling cerebrovascular amyloid deposition. However, in an experimental autoimmune encephalomyelitis model of optic neuritis, minocycline affected Müller cells and astrocytes. The nature of the central nervous system abnormality might have influenced the effect of minocycline on glia given that other studies have shown minocycline reducing astrocyte numbers and hypertrophy in models of spinal cord injury and Huntington disease. Although our findings argue that gliosis is not sufficient to drive RGC pathology, retinal glia alter their microenvironment, potentially contributing to glaucoma. Further studies will be needed to determine how interaction between RGCs, microglia, Müller cells, and astrocytes influence glaucoma progression.

Several different measures suggested a protective effect of minocycline treatment on RGC viability. Long-term minocycline treatment uncoupled the relationship between IOP elevation and declining axon density typical in DBA/2J optic nerves without changing the overall optic nerve axon density. Minocycline also promoted greater numbers of mid-caliber axons, and, because our axon area measurements excluded myelin wraps, increases in axon area most likely indicated increased content of structural proteins, suggesting a reversal in the progression toward axon degeneration normally observed in aging DBA/2J mice. Our observation of phosphorylated heavy chain neurofilament accumulation in RGC somata and proximal axons of severely affected DBA/2J retinas can indicate transport failure through declining axons. Minocycline may affect neurofilament and microtubule deposition directly by improving transport of these cargoes. Alternatively, it may maintain the expression of structural proteins because retinas from severely affected DBA/2J mice show significant
downregulation of neurofilament expression (Buckingham BP, et al., manuscript submitted), indicative of changes in axon caliber. In development, structural proteins increase in myelinated nerve regions, and there is evidence that activated microglia can influence oligodendrocytes, myelination, or both. Microglia may contribute to axon decline, as evidenced by microglia promoting the breakdown of axonal transport of synaptic precursors and neuritic budding preceding neuronal death, demonstrating a relationship with axonal integrity. Consistent with this, minocycline increased the number of retrogradely labeled RGCs while it reduced the activation state of retinal microglia, suggesting an improvement in axon transport function or connectivity to the central target.

Our findings are consistent with those of previous studies showing that minocycline improves RGC viability after axotomy, ocular hypertension, and experimental autoimmune encephalomyelitis optic neuritis. The underlying selective reduction of microglial activation points to a contribution for these neuroinflammatory cells to DBA/2 glaucoma, without excluding a role for other components. The fact that minocycline is protective in DBA/2 mice suggests that glaucoma may share overlapping cellular or molecular mechanisms with classic neurodegenerative diseases, which proved minocycline neuroprotective actions in animal models and has led to the testing of minocycline for therapeutic efficacy in several human trials. Future studies will determine whether features of glaucoma are shared with other neurodegenerative diseases.

Acknowledgments
The authors thank Holly M. Nguyen for mouse gavage and IOP measurement.

References

Microglia Deactivation Improves RGC Integrity

