Microarray Analysis of Retinal Gene Expression in the DBA/2J Model of Glaucoma

Michael R. Steele,1 Denise M. Inman,2 David J. Calkins,3 Philip J. Horner,2 and Monica L. Vetter1

PURPOSE. The DBA/2J mouse is a model for secondary angle-closure glaucoma, due to iris atrophy and pigment dispersion, which ultimately lead to increased intraocular pressure (IOP). The study was undertaken to correlate changes in retinal gene expression with IOP elevation by performing microarray analysis of retinal RNA from DBA/2J mice at 3 months before disease onset and at 8 months after IOP elevation.

METHODS. IOP was monitored monthly in DBA/2J animals, and animals with normal (3 months) or elevated IOP (8 months) were identified. RNA was prepared from three individual retinas at each age, and the RNA was amplified and used to generate biotin-labeled probe for high-density mouse gene microarrays (U430.2; Affymetrix, Santa Clara, CA). A subset of genes was selected for confirmation by quantitative RT-PCR, by using independent retina samples from DBA/2J animals at 3, 5, and 8 months of age and compared to retinas from C57BL/6J control animals at 3 and 8 months.

RESULTS. There were changes in expression of 68 genes, with 32 genes increasing and 36 genes decreasing at 8 months versus 3 months. Upregulated genes were associated with immune response, glial activation, signal, and gene expression, whereas downregulated genes included multiple crystallin genes. Significant changes in nine upregulated genes and two downregulated genes were confirmed by quantitative RT-PCR, with some showing changes in expression by 5 months.

CONCLUSIONS. DBA/2J retina shows evidence of glial activation and an immune-related response after IOP elevation, similar to what has been reported after acute elevation of IOP in other models. (Invest Ophtalmol Vis Sci. 2006;47:9777–985) DOI: 10.1167/iovs.05-0865

Glaucoma is a progressive eye disease that leads to blindness due to loss of retinal ganglion cell (RGC) viability and degeneration of the optic nerve.1,3,5,7,8 Elevation in intraocular pressure (IOP) is a significant risk factor for glaucoma and can lead to optic nerve damage.2,3,5,8,10,11 However, although sensitivity to IOP can be a significant initiating event, other factors must contribute to neurodegeneration in this disease. For example, not all patients with elevated IOP have glaucoma. Conversely, there are also patients with normal IOP who exhibit optic nerve disease and vision loss characteristic of glaucoma.8 Furthermore, in the DBA/2J mouse model of glaucoma in which IOP increases with age due to pigment dispersion from the iris and obstruction of the trabecular meshwork, high-dose radiation followed by syngeneic bone marrow transfer almost completely rescues optic nerve damage and RGC loss, without altering the course of IOP elevation.9 This raises the question of whether there are factors intrinsic to the retina that contribute to RGC disease as glaucoma progresses.2,8,9

Animal models are critical for obtaining a detailed molecular analysis of retinal changes in glaucoma. For example, IOP can be experimentally elevated in the rat or monkey by injecting hypertonic saline into the episcleral vein or by laser photocoagulation of the trabecular meshwork, and this elevation is associated with optic nerve damage, loss of RGC viability, and blindness.6,10 These acute models of glaucoma mimic many aspects of the disease and have been used to analyze both cellular and molecular changes associated with increased IOP. Significant changes in the optic nerve correlate with induced elevations in IOP. These include disruption in retrograde axonal transport along the optic nerve6,11; blockage of both BDNF and TrkB transport, which may result in neurotrophin deprivation at the soma3,4; and remodeling of the optic nerve head, which mimics the cupping of the optic nerve head in humans.5,10 Within the retina, RGCs undergo apoptotic death,12–15 and there are changes in other retinal cell populations as well. For example, there is evidence that Müller glia and retinal astrocytes become activated after IOP elevation16–19 and microglial activation has been reported in association with degenerating RGCs.20 Molecular analysis of the retina using microarrays or quantitative reverse transcription polymerase chain reaction (RT-PCR) has shown that IOP elevation elicits changes in the expression of multiple genes, including those involved in iron regulation, glial activation and an immune response.14–19

Together, the studies just described reveal a complex retinal response to the insult of elevated IOP. This response raises the question of how gene expression changes in retinal tissue during the progressive development of glaucoma, as occurs in humans, and whether these changes provide insight into the molecular events underlying the loss of RGCs. The inbred DBA/2J mouse strain has emerged as a useful model of secondary, angle-closure glaucoma. This mouse strain carries mutations in two genes, Tyrp1 and Gpmb, that trigger an immune response in the iris. The immune response leads to iris atrophy and pigment dispersion,23–25 which blocks aqueous humor drainage and ultimately causes increased IOP that worsens over time in an age-dependent manner, mimicking the progressive time course associated with human glaucoma.23–25 The DBA/2J is becoming increasingly relevant in light of recent advances in mouse genetics that have made it possible to manipulate gene expression and directly test the role candidate genes play in glaucoma progression. However, to date there has not been an analysis of retinal gene expression in the DBA/2J and an assessment of whether particular molecular
changes are associated with IOP elevation in this mouse. Thus, we have undertaken a microarray analysis of whole retina RNA from DBA/2J animals to obtain an initial survey of gene expression changes associated with IOP elevation. We also have used quantitative RT-PCR to compare expression of certain genes identified with the array at early and later time points after IOP elevation. The pattern of gene expression we describe is consistent with a glial response and upregulation of immune-related genes, including complement components, suggesting that these genes represent a response to elevated IOP in the DBA/2J retina. These changes in gene expression bear similarity to gene array results from other glaucoma models and also highlight parallels with other neurodegenerative diseases of the central nervous system.

Methods

Animals and IOP Measurement

DBA/2J and C57BL/6j animals were bred and handled according to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Twelve DBA/2J animals and seven C57BL/6j animals were used for the study. All animals were female. IOP in each eye was measured in DBA/2J animals every month, generally beginning at 3 months of age, with a handheld tonometer (Tono-Pen XL; Medtronic Solan, Jacksonville, FL) (Supplementary Table S1, available online at http://www.iovs.org/cgi/content/full/47/3/977/DC1). Although there were a few animals for which complete IOP history was not available. A minimum of 20 Tono-Pen measurements were recorded for each eye at each time point as described in Inman et al. (manuscript submitted). Because the working range of the Tono-Pen is 5- to 80-mmHg, pressures obtained outside this range were discarded. Animals were selected for each group based on IOP elevation, with a focus on identifying animals with IOP elevation of comparable duration, generally beginning at 5 to 6 months of age (Supplementary Table S1). We confirmed that the Tono-Pen could reliably detect changes in IOP by raising (with adenosine) or lowering (with MBS-1191) IOP in DBA/2J mice, including in older mice with substantial corneal occlusion (Inman et al., manuscript submitted; and data not shown).

RNA Isolation, Amplification, and Labeling

Whole retinas were removed from 3-, 5-, and 8-month-old animals and rinsed in ice-cold 0.1 M phosphate-buffered saline to remove blood. Individual retinas were homogenized in buffer (RLT; Qiagen, Valencia, CA) by using a micropestle and were pulled five times through a 22-gauge needle and flash frozen in liquid nitrogen. Total RNA was then isolated (RNeasy Kit; Qiagen). The quantity and quality of the RNA were assessed with a spectrophotometer (ND1000; NanoDrop Technologies, Rockland, DE) and a bioanalyzer model (2100; Agilent, Palo Alto, CA). For the 3- and 8-month samples, 20 ng of each retinal RNA sample was amplified, fractionated, and labeled with a biotin kit (Ovation; NuGen Technologies, San Carlos, CA) to generate probes for Affymetrix (Santa Clara, CA) microarray analysis.

Microarray Data Analysis

Biotinylated probes were hybridized to high-density mouse Affymetrix arrays (U133a.2), according to the manufacturer’s protocol. All probes had highly similar 5’-3’ probe degradation plots. All preprocessing of Affymetrix data was performed using the Bioconductor Package in the R statistical environment (R: a language and environment for statistical computing, http://www.r-project.org/). Quality control evaluation was performed for each microarray by comparing similarity of density distributions of the raw and normalized data, allowing valid normalizations to the final data set. Data set analysis was performed with R version 2.12.0, version 1.9.0 on 6866 pc-linux-gnu: Bioconductor package “affy” version 1.4.3.2, “gcrma” version 1.1.0, “siggens” (R significance analysis of microarray [SAM]) version 1.0.6. Generally, .cel files were read in and analyzed in appropriate groups. They were background corrected using gcma, normalized with quantile normalization, and summary measures for probe sets were obtained by median polish. The Affymetrix data files are available through the National Center for Biotechnology Information’s (NCBI’s) Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/projects/geo/ provided in the public domain by the National Institutes of Health, Bethesda, MD) and have been assigned a series record number of GSE3554. For the SAM in R, the package siggenes was used on preprocessed data with a delta of 0.1112. The results of the SAM analysis were then filtered for a change of 1.8-fold or greater. Similar results were obtained using a rank product analysis (data not shown and Ref. 27).

Quantitative RT-PCR

Reverse transcription reactions were performed starting with 500 ng of total RNA for each sample and using the reverse transcription portion of a qRT-PCR lot (SuperScript III Platinum Two-Step qRT-PCR; Invitrogen, Carlsbad, CA) to produce cDNA. The real-time PCR reactions were completed (SYBR Green PCR Master Mix; Applied Biosystems, Inc. [ABI], Foster City, CA) and the following primer sets: β-actin, forward (F) 5’TATTGCAAGGAGGCGGTTC-3’ and reverse (R) 5’GGGATG- GAGGGCTTACGAGGTTC-3’; G6PDH, forward (F) 5’CGTATGCTTTAGAC- CTCTTTCTGG-3’ and reverse (R) 5’TCTGCTTTCTTCCACTATGCC-3’; chemokine ligand 12, F 5’CAGGAGAATCAACAACGAGCAG-3’ and R 5’- GGAACCTCAGGGGAAATTGAG-3’; chitinase 3-like 1, F 5’TTGGTGTTGGCAGCTGATGTT-3’ and R 5’-TCTGCTTGAGGCTTGAG-3’; complement component 1qβ, F 5’-ATGGATGCTAATCAGCAGG-3’ and R 5’-GCTGAGGTTTTCCAGGCTAAGG-3’; interferon-induced transmembrane protein 1, F 5’-CTGGTCTTACCATCCTGAC-3’ and R 5’- TTTGGCAGCGATAGACAGG-3’; lipocalin 2, F 5’-ACTGAATGGGT- GGTTAGTGTTG-3’ and R 5’-TCTGGCAACAGGAGAAAAATGGAG-3’; 5’-AGCACCCTACCAAGGACG-3’ and R 5’-TTTATTCAGCAACGAGG-3’; chemo-

RESULTS

Identification of Animals for Microarray Analysis

Because there is variability in the age of onset of IOP elevation in the DBA/2J strain, we monitored IOP in the mice chosen for this study generally beginning at 3 months of age, using a Tono-Pen (Medtronic Solan; Fig. 1; Supplementary Table S1, http://www.iovs.org/cgi/content/full/47/3/977/DC1). Elsewhere, we have shown that the Tono-Pen measurements are reliable for repetitive measurements over time, but consistently overpredict IOP measured by cannulation by a factor of
activated glia such as glial fibrillary protein (GFAP) and ceruloplasmin, as well as genes associated with chitinase 3-like (gp39), as well as genes associated with matrix components.

Verification of Upregulated Genes by qRT-PCR

Seven of the upregulated genes were selected for confirmation by qRT-PCR, with a focus on genes identified in other microarray studies after acute IOP elevation in an attempt to identify common retinal responses to IOP elevation.\(^{16,22}\) Gene-specific primers were designed to yield PCR products between 80 and 200 bp in length, and β-actin was used a reference gene. We compared gene expression at 3 (n = 6 eyes), 5 (n = 4 eyes), and 8 months (n = 7 eyes) from retinas of DBA/2J animals (see Table 1), using individual retinal RNA samples that were independent of those used for the microarray analysis. For these experiments, we chose 3-month DBA/2J animals whose IOPs were at or below the colony average, 5-month animals with a broader spectrum of IOPs, and 8-month animals with IOPs at or above the colony average (Fig. 1). We chose 5 months as an intermediate time point to address which gene expression changes are evident shortly after elevation in IOP. To control for age-dependent changes in gene expression, we also compared levels of gene expression in the retinas of 3-month (n = 4 eyes) versus 8-month (n = 5 eyes) C57BL/6J animals.

We found that the seven genes tested were significantly upregulated at 8 months (Fig. 2). Several genes, including ceruloplasmin, complement component C1q, chemokine ligand 12, and chitinase 3-like 1, were modestly upregulated by 5 months, suggesting that they may represent an early response of the retina to elevated IOP. In general, the level of gene upregulation was significantly higher using the qRT-PCR method than was observed from the microarray results. For example, lipocalin2 was 6.1-fold upregulated on the array (Table 2), but was 30-fold upregulated by qRT-PCR in 8-month DBA/2J retinas (Fig. 2), suggesting that qRT-PCR is more sensitive for detecting changes in gene expression. No statistically significant changes in the expression of any of the genes tested in this study were detected using SYBR Green I RT-PCR.

Microarray Analysis of Retinal RNA

To allow us to correlate changes in gene expression with the IOP history for individual retinas, we avoided pooling of samples and isolated total RNA from three individual retinas at each age. We then performed a linear amplification of the RNA and incorporated biotin label to prepare probe for hybridization to high-density mouse gene chips (U430.2; Affymetrix), which represents more than 39,000 transcripts. SAM analysis\(^{31}\) using a 1.8-fold cutoff and a delta of 0.1112 revealed significant changes in expression of 68 genes, with 32 genes increasing (Table 2) and 36 genes decreasing (Table 3) at 8 months versus 3 months. Similar results were obtained using rank product analysis (data not shown and Ref. 27). Most notable among the upregulated genes were multiple immune-related genes, including complement factors, lipocalin2, chemokine ligand 12, and chitinase 3-like (gp39), as well as genes associated with activated glia such as glial fibrillary protein (GFAP) and ceruloplasmin. The downregulated genes included a large number of crystallin genes, as well as cytoskeletal and extracellular matrix components.

Retinal Gene Expression in the DBA/2J Model of Glaucoma
were observed in C57BL/6J animals at 8 months compared with 3 months, suggesting little contribution by age-dependent changes in gene expression. Because the microarray may have underrepresented the number of genes that were significantly increased at 8 months versus 3 months, we also tested for upregulation of one other candidate gene from the microarray results that fell below the 1.8-fold cutoff.

/H9252

2-Microglobulin is a light chain component necessary for expression of most major histocompatibility complex (MHC) class I proteins and was found to be upregulated twofold at 5 months and threefold by 8 months in DBA/2J retinas.

Verification of Downregulated Genes by qRT-PCR

In addition to the upregulated genes we also observed downregulation of multiple genes, including crystallin genes and cytoskeletal and matrix components. Two of the most significantly downregulated genes, major intrinsic protein of the lens and crystallin beta A4, were selected for confirmation by qRT-PCR on retinal RNA from 3-, 5-, and 8-month-old DBA/2J animals, as described earlier. Both genes were significantly downregulated by 8 months, with only a slight decrease apparent at 5 months (Fig. 3).

DISCUSSION

In this study, we were able to monitor IOP in DBA/2J animals and profile changes in gene expression on individual retinas with a known IOP history. We were further able to use qRT-PCR to assess whether gene expression changes were evident at early or later time points after IOP elevation. As discussed in detail below, a subset of the gene expression changes identi-
fied were comparable to those identified in previous microarray studies in rat and monkey after acute elevation of IOP.16,22 This suggests that these gene expression changes may represent a shared retinal response to IOP elevation that may enhance or limit the development of disease.

Glial Activation

Glia play important roles in the homeostasis of the retina, and include Müller glia, retinal astrocytes, and microglia. We found upregulation of GFAP, consistent with reports of glial activation in both human tissue and animal models of glaucoma.17,22,32,33 After IOP elevation in monkey GFAP expression increased in both Müller glia and astrocytes.16,32 Ultrastructural analysis has also shown evidence of Müller glial activation in DBA/2J animals.34 Other glial populations such as retinal astrocytes or microglia show similar evidence for activation in glaucoma,16,17,20,32,33 and there is also activation of astrocytes in the optic nerve head.35 Thus, multiple glial populations may respond to IOP elevation in glaucoma, with potentially beneficial or detrimental consequences.36

Complement Pathway in Retinal Disease

Several complement components were elevated in DBA/2J retinas, including C4 and C1q\textbeta, which were significantly up-

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Gene Name</th>
<th>Change (x-fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_144761</td>
<td>Crystallin, gamma B (Crygb)</td>
<td>−3.4</td>
</tr>
<tr>
<td>NM_007776</td>
<td>Crystallin, gamma D (Crygd)</td>
<td>−1.8</td>
</tr>
<tr>
<td>NM_15076</td>
<td>Crystallin, gamma N (Crygn)</td>
<td>−2.3</td>
</tr>
<tr>
<td>NM_021352</td>
<td>Crystallin beta B3 (Crybb3)</td>
<td>−2.6</td>
</tr>
<tr>
<td>NM_008600</td>
<td>Major intrinsic protein of eye lens fiber (Mip)</td>
<td>−4.8</td>
</tr>
<tr>
<td>NM_021351</td>
<td>Crystallin, beta A4 (Cryba4)</td>
<td>−4.4</td>
</tr>
<tr>
<td>NM_177693</td>
<td>Lens intrinsic membrane protein 2 (Lim2)</td>
<td>−2.1</td>
</tr>
<tr>
<td>NM_023695</td>
<td>Crystallin, beta B1 (Crybb1)</td>
<td>−3.0</td>
</tr>
<tr>
<td>NM_021541</td>
<td>Crystallin, beta A2 (Cryba2)</td>
<td>−2.4</td>
</tr>
<tr>
<td>NM_013501</td>
<td>Crystallin, alpha A (Cryaa)</td>
<td>−1.9</td>
</tr>
<tr>
<td>XM_132470</td>
<td>Galectin-related interfiber protein (Grifin)</td>
<td>−2.0</td>
</tr>
<tr>
<td>NM_009965</td>
<td>Crystallin, beta A1 (Cryba1)</td>
<td>−2.1</td>
</tr>
<tr>
<td></td>
<td>Cytoskeletal/matrix proteins</td>
<td></td>
</tr>
<tr>
<td>NM_007773</td>
<td>Procollagen, type XIX, alpha 1 (Col19a1)</td>
<td>−1.9</td>
</tr>
<tr>
<td>NM_198104</td>
<td>T-complex-associated testis expressed 3 (Tcte3)</td>
<td>−2.1</td>
</tr>
<tr>
<td>AF064749</td>
<td>Procollagen, type VI, alpha 3 (Col6a3)</td>
<td>−2.2</td>
</tr>
<tr>
<td>NM_175836</td>
<td>Spectrin beta 2 (Spnb2)</td>
<td>−2.0</td>
</tr>
<tr>
<td></td>
<td>Enzymes/metabolic</td>
<td></td>
</tr>
<tr>
<td>NM_172466</td>
<td>Adamts18</td>
<td>−1.8</td>
</tr>
<tr>
<td>NM_010256</td>
<td>Phosphoribosylglycinamide formyltransferase (Gart/Prgs)</td>
<td>−2.1</td>
</tr>
<tr>
<td>NM_013743</td>
<td>Pyruvate dehydrogenase kinase, isoenzyme 4 (Pdk4)</td>
<td>−2.2</td>
</tr>
<tr>
<td>NM_009388</td>
<td>Transketolase (Tkt)</td>
<td>−1.8</td>
</tr>
<tr>
<td>NM_007531</td>
<td>Solute carrier family 7 (cationic amino acid transporter, y+1 system), member 1 (Slc7a1)</td>
<td>−1.8</td>
</tr>
<tr>
<td>NM_024406</td>
<td>Fatty acid binding protein 4, adipocyte (Fabp4)</td>
<td>−1.9</td>
</tr>
<tr>
<td></td>
<td>Nucleic acid binding proteins</td>
<td></td>
</tr>
<tr>
<td>NM_027497</td>
<td>Enhancer of polycomb homolog 1 (Epc1)</td>
<td>−1.8</td>
</tr>
<tr>
<td>NM_183029</td>
<td>RIKEN cDNA C330012H03 gene (predicted nucleic acid binding)</td>
<td>−2.9</td>
</tr>
<tr>
<td>NM_011757</td>
<td>Zinc finger proliferation 1 (Zfp1)</td>
<td>−1.9</td>
</tr>
<tr>
<td></td>
<td>Regulators of signaling</td>
<td></td>
</tr>
<tr>
<td>NM_010303</td>
<td>Guanine nucleotide binding protein, alpha 13 (Gna13)</td>
<td>−1.8</td>
</tr>
<tr>
<td>NM_028472</td>
<td>BMP-binding endothelial regulator (Bmpr/Cv2)</td>
<td>−2.2</td>
</tr>
<tr>
<td>NM_009846</td>
<td>CD24a antigen</td>
<td>−2.2</td>
</tr>
<tr>
<td>NM_029571</td>
<td>RIKEN cDNA 1110001AJ2 gene (predicted nucleotide kinase)</td>
<td>−1.9</td>
</tr>
<tr>
<td>NM_013834</td>
<td>Secreted frizzled-related sequence protein 1 (Sfrp1)</td>
<td>−1.9</td>
</tr>
<tr>
<td>NM_010050</td>
<td>Deiodinase, iodothyroinine, type II (Dio2)</td>
<td>−2.1</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous/unknown function</td>
<td></td>
</tr>
<tr>
<td>NM_009150</td>
<td>Selenium binding protein 1 (Selenbp1)</td>
<td>−2.5</td>
</tr>
<tr>
<td>NM_008220</td>
<td>Hemoglobin beta, adult chain 1 (Hbzb1)</td>
<td>−2.1</td>
</tr>
<tr>
<td>NM_172205</td>
<td>Suprabasin (Sbsn)</td>
<td>−1.8</td>
</tr>
<tr>
<td>AK014666</td>
<td>RIKEN cDNA 4833408G04</td>
<td>−2.3</td>
</tr>
<tr>
<td>XM_283848</td>
<td>RIKEN cDNA 2810407C02</td>
<td>−1.8</td>
</tr>
</tbody>
</table>

Genes in bold were selected for confirmation by quantitative RT-PCR.
regulated by 5 months. Microarray analysis in both rat and monkey also showed elevated expression of multiple complement components after acute IOP elevation.\(^{16,22}\) In addition, increased complement gene expression has been reported in retinas from a mouse photoreceptor degeneration model and in Müller cells from a rat model of diabetic retinopathy.\(^{37,38}\)

Figure 2. Quantitative RT-PCR confirmation of select upregulated genes identified by microarray analysis. Gene-specific primers were used to perform quantitative RT-PCR on individual retinal RNA samples from DBA/2J animals at 3 (n = 6 eyes), 5 (n = 4 eyes), and 8 (n = 7 eyes) months or C57BL/6J animals at 3 (n = 4 eyes) and 8 (n = 5 eyes) months. Graphs represent average change relative to gene expression levels at 3 months for either DBA/2J or C57BL/6J mice. *Statistically significant differences (P < 0.01) by Student’s t-test.*
This is intriguing, given the recent finding that polymorphisms in complement factor H are associated with age-related macular degeneration in humans. Thus, changes in the expression of complement genes may be associated with retinal damage or disease.

The complement system is a complex cascade consisting of approximately 30 proteins that can act through several possible pathways that ultimately converge on complement component C5, leading to formation of the terminal membrane attack complex. Although we detected increased expression of early pathway components in the DBA/2J retina with IOP elevation, the terminal complement pathway is compromised in this inbred mouse strain due to a deficiency in the C5 complement component. It is possible that the early complement components still contribute to disease in the DBA/2J retina, even in the absence of C5, due to their opsonization or chemoattractant activity, although this remains to be investigated.

Immune-Related Responses

Other immune-related genes were also increased with disease progression in the DBA/2J retina, specifically genes associated with acute inflammatory responses, including lipocalin2, interferon-induced transmembrane proteins, chemokine ligand 12, Serpina3n, and chitinase 3-like 1 (also known as gp39 or CD40 ligand). There is loss of immune privilege in the anterior chamber of the DBA/2J eye, and inflammatory leukocytes infiltrate and accumulate within the iris, raising the possibility that the inflammatory genes identified in our retinal microarray analysis are due to loss of ocular immune privilege. However, despite substantial inflammation of the iris, there is no evidence of macrophage infiltration into the retina. Furthermore, other microarray studies have shown similar upregulation of inflammatory genes in the retina after acute IOP elevation in the absence of iris inflammation. There is evidence that many immune-related genes can be upregulated in Müller glia, astrocytes, and RGCs in response to retinal stress or injury. In addition, microglia can function as antigen-presenting cells and have immune response properties. Thus, the gene expression changes could reflect a local response within the retina to IOP elevation.

Other Gene Expression Changes

Other genes were also increased by 8 months in the DBA/2J retina, including some that were not identified by microarray analysis after acute IOP elevation. This includes candidate regulators of gene expression and cell signaling, as well as multiple genes of unknown function. Further work is needed to validate these gene expression changes and determine their significance in glaucoma. Multiple downregulated genes were also identified, including many crystallin genes and other lens-related genes. Although the function of these genes is best understood in the lens, some are known to function outside of the lens as small heat shock proteins that act as chaperones and prevent protein aggregation in response to heat or oxidative stress. It will be interesting to determine which retinal cell populations express these genes and analyze how their expression changes after IOP elevation.

Timing of Gene Expression Changes after IOP Elevation

We found that some gene expression changes were apparent by 5 months, which is shortly after the onset of detectable disease in the optic nerve in animals with elevated IOP. In this parallel study, Inman et al. found that 4-month DBA/2J animals with IOP higher than the colony average already had
iridocorneal angle closure, increased corneal thickness, and reduced axon density in the optic nerve compared with animals with normal IOP. Thus, the gene expression changes that we identified by microarray analysis parallel the disease in the DBA/2J. Changes in immune response and complement genes may represent an early response to IOP elevation in multiple glaucoma models, because similar immune-related genes were upregulated in rat as soon as 8 days after acute IOP elevation.22 It is essential to assess whether these early responses play a role in glaucoma progression and whether these pathways are reasonable targets for therapeutic intervention.

CONCLUSIONS
In summary, our work has revealed changes in retinal gene expression in the DBA/2J mouse model of glaucoma, with some changes apparent relatively soon after detectable elevation of IOP. Changes in genes associated with immune responses and glial activation are shared with other glaucoma models after acute elevation of IOP.16,22 Future work is needed to determine the relationship between altered gene expression and the progression of neuronal disease in glaucoma.

Acknowledgments
The authors thank Shannon Odelberg for helpful discussions and advice; Robert Weiss, Diane Dunn, and Stan Smiley for outstanding technical support in the Affymetrix microarray experiments; and Kathryn Moore for comments on the manuscript.

References

