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Neural synergy in visual grouping: when good continuation meets
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Abstract

A modified version of the ‘path finder’ display consisting of many small oriented Gabor patches was used to study the joint
contributions of spatial and temporal structures to shape perception. A two-interval forced-choice procedure measured detectabil-
ity of curved ‘paths’ defined by orientation (‘good continuation’) and/or by temporal synchrony of change in motion direction
(‘common fate’). When orientation was completely random (no spatial ‘path’ cue) temporal synchrony still supported reliable
performance, but only when correlation of change among ‘path’ elements was high. When combined, these two weak spatial and
temporal structures yielded performance in excess of probability summation: ‘paths’ weakly defined by orientation were highly
conspicuous when the constituent Gabors underwent synchronized changes in direction of motion, even though the individual
directions of path elements were uncorrelated. Spatial grouping from temporal structure may arise from correlated transients
associated with synchronized changes in motion direction. Evidently these two mechanisms for promotion of spatial grouping
interact synergistically. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Last century the Gestalt psychologists identified sev-
eral important principles of visual perceptual grouping,
including common fate and good continuation (Koffka,
1935). Good continuation, a spatial organizing princi-
ple, states that neighboring visual features tend to
group together forming an extended contour when
those features are spatially aligned. Common fate, a
temporal organizing principle, states that visual ele-
ments moving in the same general direction at the same
speed tend to be grouped into a single global object. In
recent years refined examples of the operation of these
two principles have been developed (e.g. Regan &
Hamstra, 1992; Field, Hayes, & Hess, 1993), and possi-
ble neural instantiations of these principles have been
proposed (e.g. Gilbert, 1993; Lamme, 1995). These
recent developments now set the stage for asking how
spatial and temporal structure interact jointly to specify

visual shapes and to support figure/ground segmenta-
tion (Fahle & Koch, 1995; Kiper, Gegenfurtuer, &
Movshon, 1996; Alais, Blake, & Lee, 1998; Usher &
Donnelly, 1998; Roelfsema, Scholte, & Spekreijse, 1999;
Gepshtein & Kubory, 2000). In this report we show
that common fate and good continuation synergistically
interact to specify the presence of an object within a
cluttered background. These results are novel in that
they utilize stochastic temporal events to define ‘com-
mon fate’.

We utilized the so-called ‘path-finder’ displays (Fig.
1b) first devised by Beck (1983) and subsequently
refined by others (Grossberg & Mingolla, 1985; Kell-
man & Shipley, 1991; Kovacs & Julesz, 1993; Field et
al., 1993). These displays consist of an array of irregu-
larly spaced contours whose orientations are random-
ized except for a small subset of neighboring ‘target’
contours whose orientations are aligned to create a
smoothly curved ‘path’. The orientation of each ‘target’
contour, however, can deviate, within a given range,
from the orientation defined by the path (the value � in
Fig. 1a). As the range of possible angular deviations
increases, the ‘path’ becomes more difficult to detect
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because the spatial property promoting ‘good continua-
tion’ is degraded. To implement common fate within
these path-finder displays, we made the contours within
each stationary patch move in one of two directions
orthogonal to their orientation, with the direction of
motion reversing irregularly over time. Points in time at
which reversals occurred were uncorrelated among
‘background’ elements but were correlated to varying
degrees among the nine ‘target’ elements defining the
path (the value r in Fig. 1c). In addition, the contrast of
each element was randomly set; this irregularity in
contrast throughout the display precluded creation of
extraneous cues from temporal integration (Adelson &
Farid, 1999; Lee & Blake, 1999b). Using a two interval,
forced-choice procedure we measured path detectability
for different values of spatial structure (�) and different
levels of temporal structure (r). It is important to note
that the directions of motion of individual ‘path’ ele-
ments were completely uncorrelated and, therefore, mo-
tion grouping provided no clue about the location of
the path.

2. Methods

2.1. Apparatus

All gray-scale animations were displayed on a NEC
21-inch RGB monitor (frame rate 100 Hz; pixel resolu-
tion 1024×768; P104 phosphor) under low ambient
illumination using MatLab© in conjunction with the
Psychophysics toolbox (Brainard, 1997). Luminance

nonlinearities were corrected using a look-up table re-
sulting in 184 gray levels. The mean luminance of the
screen was 24.5 cd/m2.

2.2. Stimuli

Each animation frame consisted of 121 small ori-
ented Gabor patches distributed within an 11×11 ele-
ment array subtending 5.5×5.5 deg of visual angle.
The peak spatial frequency of every grating was 3.8
cycles per degree, filtered by a circular Gaussian envel-
ope with a S.D. of 6 arc min. Half of the displays
contained a ‘path’, shown as a bold line in Fig. 1a,
consisted of nine virtual line segments which were
correlated in terms of relative orientation. The length of
these virtual segments (D) was varied (�D= �0.02
deg) around 0.14 degree to make sure that the density
of the elements in the path are equated with the density
of the background elements. The curvature of the path
was determined by the angular difference among neigh-
boring segments (�=30 deg, ��= �5 deg). Placed at
the midpoint of each virtual segment was a Gabor
patch, and the orientation of each Gabor deviated from
the orientation of its corresponding path segment by an
amount that varied over trials. The range of the angular
deviations (�) was systematically varied from �10 to
�90 deg. In the ‘�90 deg’ condition, for instance, the
size of angular deviation in each path element was
randomly selected from the uniform distribution with
the range from −90 to +90 deg. After the locations
and orientations of the path elements were determined,
the background elements were distributed over the 112

Fig. 1. An example of the displays used in this study. (a) The ‘target’ path, shown as a bold line, consisted of nine virtual line segments. The length
D is the length of virtual segment on which a Gabor patch was placed. The angular difference among neighboring segments determined the overall
curvature of the path. The range of the angular deviations (�) was systematically varied in the experiments. (b) One example of a display
containing a ‘path’ composed of nine target Gabors appearing within an array of ‘background’ Gabors whose orientations are random. (c)
Temporal structure of individual elements was defined by irregular changes in direction of motion (in the first experiment) or in luminance contrast
(the second experiment). The series of small dots denote for all nine target elements and a couple of background elements the points in time at
which these changes occured. Average correlation in temporal structure (r) was always zero among background elements and varied from zero
to unity among target elements.
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square grids that were not occupied by the path ele-
ments. The orientation of each background element
was randomly determined and its location was ran-
domly jittered within a given square grid. Images for all
animations used in one block of experiment were made
and stored on the computer before each block of
experiment.

2.3. Experimental procedures

In both experiments a two-interval forced-choice
(2IFC) procedure was used to measure detectability of
the path. On each trial two successive displays were
sequentially presented each for 1 s, with a 0.5 s interval
between. One interval contained randomly oriented
Gabor patches only (no path) and the other interval
contained the nine aligned target elements defining the
path plus 112 ‘background’ elements. The shape and
location of the ‘path’ within the entire array varied
randomly over trials. On each trial observers fixated the
center of the array and reported in which interval the
‘path’ appeared, guessing if necessary. Feedback was
given following each trial.

In the first experiment, the contours within each
stationary Gabor patch moved at 5.2 degree per second
in one of two directions orthogonal to their orientation
by phase-shifting the grating from frame to frame of
the animation by one-fifth of the grating cycle at every
10 ms; the starting phases of the gratings were random.
The contrast of all gratings was randomized within the
range 0.4–0.8 throughout the display to preclude extra-
neous cues from temporal integration (Adelson &
Farid, 1999; Lee & Blake, 1999b). Temporal structure
of individual elements was defined by irregular changes
in direction of motion. The series of small dots in Fig.
1c denote, for all nine target elements and a sample of
background elements, the points in time at which mo-
tion direction changed — each series of dots constitutes
what can be termed a ‘point process’ (i.e. a history of
the points in time at which change occurred). Temporal
structure was created by randomly deciding direction of
motion (probability of motion in each direction was
0.5) every animation frame (i.e. every l0 ms, given the
monitor’s 100 Hz refresh rate) with the constraint that
no more than three consecutive ‘change’ frames or
more than three consecutive ‘no change’ frames were
allowed. These restrictions, in conjunction with contrast
randomization, were introduced to remove potential
extraneous cues associated with temporal integration
(Lee & Blake, 1999b). Average correlation in temporal
structure was always zero among the background ele-
ments (r=0) and varied from zero to unity (r=1, as
illustrated in the figure) among the nine path elements.
On each trial, the average correlation in temporal struc-
ture among the target elements comprising the ‘path’
was one of five values (0, 0.25, 0.5, 0.75 or 1), with the

particular value varying randomly over trials. ‘Average
correlation’ was computed by averaging correlations
between all possible pairs of point processes for the
target elements (i.e. the average of 36 pairs of correla-
tions for the nine target elements). To produce a group
of point processes with a specific average correlation
value, we used a following algorithm. First, a ‘seed’
point process was generated. Nine point processes asso-
ciated with target elements were generated by shuffling
(switching positions between randomly selected points)
the ‘seed’ point process a certain number of times
(depending on a given average correlation value). This
shuffling procedure was repeated until the average cor-
relation among those newly generated point processes
fell within a narrow range around the desired correla-
tion value (e.g. 0.5�0.01).

In the second experiment gratings were stationary
and the contrast of the gratings alternated unpre-
dictably over time between two given values. The mean
contrast of each grating was randomly set to a value
within the range 0.25–0.5, and the contrast of each
grating was modulated by �0.24 log-units about its
mean value. The average correlation in temporal struc-
ture (the series of time points at which contrast
changed) among the target elements comprising the
‘path’ was one of three values — 0, 0.5, or 1 — with
the particular value varying randomly over trials.

Each block of trials consisted of 25 (in experiment 1)
or 15 (in experiment 2) conditions (as all possible
combinations of ‘five different ranges of the angular
deviations (�) of the path elements’ and ‘five (in exper-
iment 1) or three (in experiment 2) different levels of
temporal correlation (r) among the path elements’) with
ten trials in each condition. Each block was repeated 12
times on different days (two or three blocks on each
day) resulting in a total of 120 trials in each condition.

2.4. Statistics

To test for statistical significance, we used a boot-
strapping procedure (Efron & Tibshirani, 1986, 1993)
to estimate the threshold and confidence interval associ-
ated with a given psychometric function. This proce-
dure consisted of the following steps. Step 1 involved
obtaining the best-fit psychometric function to the ob-
tained percent correct values using the cumulative nor-
mal curve:

p=0.5�
�

(2�)−1/2� z

−�

exp(−u2/2) du
n

+0.5,

z= (x− t)/sig, (1)

where t and 1/sig specify the threshold and the slope of
the curve, respectively. (The value 0.5 was used to
rescale the cumulative normal function since the lower
asymptote is 0.5 in a 2IFC task.) In Step 2 a bootstrap
sample P*={P*1 , P*2 , …, P*m} was generated based on
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Fig. 2. Results from experiment 1. (a) Proportion-correct performance for observer SL on the path detection task where the range of angular
deviation of the target elements relative to the path (�) and the average correlation in temporal structure among the target elements (r) were
manipulated. Each data point is based on 120 trials. Solid lines show psychometric functions fit by cumulative normal functions to data sets for
each of the five temporal correlation values. (b) Psychometric curves for observer SL predicted from probability summation. (c) For each of the
three observers, gray bars represent 75% thresholds estimated from the psychometric functions for each of five values of temporal correlation;
error bars represent 68% confidence intervals which were estimated from the 5000 bootstrap samples (see Section 2.4). Thick dark lines indicate
threshold values predicted by probability summation. *Confidence interval �95%; **confidence interval �99.5%; ***confidence interval
�99.99%.

the assumption that pi at stimulus xi is generated
from a binomial distribution with the standard
error:

�i=�pi�(1−pi)/ni, (2)

where ni is the number of trials at stimulus xi. In
Step 3 the bootstrap sample (P*) was fitted based on
Eq. (1) to estimate a 75% threshold (t*). Step 1 and
step 2 were repeated 5000 times, resulting in 5000
bootstrap estimates of threshold (t*1 , t*2 , …, t*5000). In
Step 4 the mean of the bootstrap threshold estimates:

t= �
5000

b=1

tb*/5000, (3)

was used as the final estimate of the threshold of the
psychometric function P={P1, P2, …, Pm}. In Step 5
the 95% confidence interval of the threshold was de-
termined by finding the 2.5th and 97.5th percentiles
of the bootstrap thresholds (t*1 , t*2 , …, t*5000) since the
actual distribution of t* may be skewed rather than
normal.

2.5. Obser�ers

Four observers, with normal or corrected vision,
participated in the experiments. One of them was one
of the authors (SL), and the other three observers were
unaware of the purpose of the experiments.

3. Results

3.1. Experiment 1

The results are summarized in Fig. 2. As expected
path detectability varied with the degree of good con-
tinuation, i.e., angular difference in orientation of a
target from the path (Field et al., 1993); this was true
for all levels of temporal structure. In the absence of
correlated temporal structure, the task eventually be-
came impossible when the path targets were completely
unconstrained in local orientation (in Fig. 2a, r=0;
�= �90), which makes sense because global spatial
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structure has been destroyed. when these spatially un-
structured path targets all shared the same temporal
structure (�= �90; r=1), however, observers were
able to perform the task at above-chance levels (Fig.
2a). In other words, temporal structure alone can pro-
mote spatial grouping, as shown in earlier work (Lee &
Blake, 1999a). More revealing, however, was perfor-
mance under conditions where spatial structure was
weak but present. Here some degree of common tempo-
ral structure among path targets facilitated detection,
by an amount greater than that expected on the basis of
probability summation estimated from performance
levels measured in the absence of spatial structure and
in the absence of temporal structure.

To quantitatively evaluate this synergistic interaction
between spatial structure and temporal structure, 75%
thresholds were estimated from the psychometric func-
tions for different values of temporal correlation (gray
bars in Fig. 2c). Then, these values were compared to
corresponding thresholds predicted by probability sum-
mation values (indicated by dark lines in Fig. 2c). These
predictions were derived using two sets of probability
values: P�(i )�r=0, probability of correct detection across
different values of � in the absence of temporal struc-
ture, and Pr( j )��= �90, the probability of correct detec-
tion across different values of temporal correlation in
the absence of spatial structure (�= �90). Using these
values, we derived psychometric curves (Fig. 2b) pre-
dicted on the basis of probability summation:

P ��(i),r( j)=1− (1−P ��(i)�r=0)�(1−P �r( j)��= �90), (4)

where P �= (P−c)/(d−c), d=1 and c=0.5 in a 2IFC
task, and derived 75% thresholds from these psycho-
metric curves. Thresholds derived from the actual data
exceed those predicted from probability summation. To
test the statistical significance of these differences, we
applied t-tests with the null hypothesis that the mea-
sured threshold equals the predicted threshold. We
estimated the confidence intervals for the measured
thresholds using the parametric bootstrapping proce-
dure (see Section 2.4). In most of the comparisons
across observers (10 out of 12), the measured thresholds
were significantly higher than the thresholds predicted
from probability summation. This enhanced perfor-
mance in excess of probability summation is a hallmark
of neural synergy among multiple sources of visual
information (Graham, 1989).

To validate our analytic formulation of probability
summation, we performed a control experiment which
included a condition in which the interaction between
temporal and spatial structure cannot exceed that asso-
ciated with probability summation. In this condition,
two separate, independently generated target paths
were presented simultaneously, one path defined only
by spatial structure and the other defined only by
temporal structure. Thus on each trial of this condition,

the observer could judge the correct interval based on
detection of either of these two independent paths.
Performance on this condition should be superior to
that measured when only a single path is presented,
since the observer has two independent chances to
detect. This ‘two-path’ display thus provides an empiri-
cal estimate of the level of performance expected on the
basis of probability summation.

The experiment, performed using two observers, con-
sisted of four conditions: (i) a ‘spatial path’ condition in
which a single target path defined only by spatial
structure was presented (�= �35, r=0 for observer
SL, and �= �20, r=0 for observer CA); (ii) a ‘tempo-
ral path’ condition in which a single target path defined
only by temporal structure was presented (�= �90,
r=1 for SL and �= �90, r=1 for CA); (iii) a ‘two-
path’ condition in which two target paths were pre-
sented simultaneously at two different locations, one
path defined only by spatial structure (�= �35, r=0
for SL and �= �20, r=0 for CA) and the other only
by temporal structure (�= �90, r=1 for SL and
�= �90, r=1 for CA); (iv) a ‘single path’ condition in
which a single target path defined by both spatial and
temporal structure was presented (�= �35, r=1 for
SL and �= �20, r=1 for CA). When generating
displays for the ‘two-path’ condition, we discarded
displays in which the two paths shared more than one
element because spatial and temporal structure cannot
be defined independently when element overlap exceeds
one. These four conditions were randomized within a
given block of trials.

Fig. 3 shows the results. Once again, the combination
of spatial and temporal structure in a single-path dis-
play (condition (iv)) yielded a performance significantly
better than the probability summation prediction
shown by the dotted line (P�0.0001 in SL and P�
0.01 in CA). Performance on the two-path condition,
however, was not significantly different from that pre-
dicted by probability summation (P�0.9 in SL and
P�0.3 in CA). This latter finding validates the use of
Eq. (4) as an analytic expression of probability summa-
tion and further supports our conclusion that spatial
and temporal structure are interacting synergistically in
these pathfinder displays.

It is known that stationary objects carrying local
motion cues (like Gabor elements in our displays) are
perceived as being displaced in the direction of motion
(De Valois & De Valois, 1991). This implies that per-
ceived locations of local Gabor elements in our displays
are jittered over time due to unpredictable changes in
motion vectors as recently demonstrated by Hayes
(2000). It should be stressed, however, that this effect
cannot account for enhanced detectability of paths
whose elements shared a common temporal changes in
direction of motion since the initial motion directions
of local elements in our displays were randomly
determined.
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3.2. Experiment 2

By definition the orientations of contours defining
the ‘path’ are related to some degree and, of course,
their directions of motion are constrained by their
orientations. Is it possible, therefore, that observers
were utilizing some sense of global motion, not syn-
chronized change in direction, as the temporal cue for
grouping? This seems unlikely since neighboring targets
differed in orientation, on average, by 30 deg and the
specific directions of motion among path targets were
always uncorrelated. Still, to ascertain that it was syn-
chronized change that supported grouping, we repeated
this experiment now using changes in contrast as the
embodiment of temporal structure. Contours within
each Gabor patch were stationary, but their contrast
values changed irregularly over time according to a
Poisson process. Again, the individual contrast values
of both ‘target’ and ‘background’ elements were ran-
domized throughout the array. The time points for
contrast changes were uncorrelated among ‘back-
ground’ elements but were correlated to varying degrees
among ‘path’ elements. It should be stressed that con-
trast per se provided no cue for grouping, for the
variations in contrast for all elements were unrelated in
direction and value.

Using contrast modulation as the carrier of temporal
structure, we found the same pattern of results (Fig. 4):
both observers tested on this condition were able to
detect paths at a detection rate in excess of probability
summation when the elements defining a path were
jointly determined by spatial and temporal information.
This result reinforces our conviction that observers
were relying on ‘change’ and not motion per se in our
first experiment.

4. Discussion

It has been suggested that the extended path defined
by aligned Gabor elements is not detected by a single
neural filter (Hess & Dakin, 1997). Instead, it is com-
monly believed that good continuation in these path-
finder displays is more likely to be promoted by
long-range lateral connections among orientation-selec-
tive neurons in neighboring cortical columns (Kovacs &
Julesz, 1993; Field et al., 1993; Grossberg & Mingolla,
1985). Indeed, there is anatomical and physiological
evidence for the existence of such connections (Das &
Gilbert, 1995; Bosking, Zang, Schofield, & Fitzpatric,
1997; Schmidt, Kim, Singer, Bonhoffer, & Löwel,
1997). According to this evidence, the long-range con-
nections are formed primarily among orientation
columns containing neurons exhibiting similar orienta-
tion preferences, with the length of those connections
being longer among orientation columns that are
collinear in orientation preference compared to orienta-
tions parallel to one another. These neural properties
dovetail with psychophysical findings using path-finder
displays (Field et al., 1993).

Given this view of the neural structure underlying
‘good continuation’ in these displays, our findings im-
ply that fine temporal structure in the optical input to
vision can modulate the effective strength of these
connections and, hence, the tendency of neighboring
figural elements to group into coherent, global shapes.
Furthermore, the synergistic interaction between spatial
and temporal structure in contour integration suggests
that the efficacy of temporal structure in modulating
connection strength is constrained by spatial factors
including orientation similarity and receptive field

Fig. 3. Proportion-correct performance for two observers, SL and CA, on the path detection task under four conditions: (i) the ‘spatial path’
condition, (ii) the ‘temporal path’ condition, (iii) the ‘two-path’ condition, and (iv) the ‘single path’ condition. Dotted lines indicate performance
predicted from probability summation (Eq. (4)). Error bars represent �1 S.ED. of the mean estimated from binomial distribution (S.E.=
(P*(1−P)/n)1/2, n=125 trials for each condition). *P�0.05; **P�0.005; ***P�0.0005.



S.-H. Lee, R. Blake / Vision Research 41 (2001) 2057–2064 2063

Fig. 4. Results from experiment 2. Details are the same as for Fig. 2 except that only three values of temporal correlation were tested and the
temporal structure in the animation displays was now carried by changes in contrast.

alignment. Temporally correlated visual input cannot
always promote visual grouping. For temporal correla-
tion to be effective in connecting local visual features, it
seems that built-in neural connections are required
among neural populations that encode those local fea-
tures. Taken together, by plausibly linking the efficacy
of temporal structure to underlying neural circuitry, our
findings provide a compelling account of results from
earlier studies showing an influence of temporal factors
on visual grouping (Ramachandran & Rogers-Ra-
machandran, 1991; Leonards, Singer, & Fahle, 1996;
Usher & Donnelly, 1998).

Finally, it should be stressed that temporal structure
of the sort used here is extrinsic in origin, being induced
by events contained in the optical input to vision. Thus
our results do not bear critically on the issue of the role
of internal temporal synchrony in feature binding
(Singer & Gray, 1995; Shadlen & Newsome, 1998;
Gray, 1999; Shadlen & Movshon, 1999). The spatio–
temporal interactions implicated in our study could be
mediated by correlated modulations in firing rate or by
synchronization in the temporal fine structure of action
potentials. Whatever the underlying mechanism, our
results underscore the inextricable link between spatial
and temporal structure in vision. Our dynamic visual
environment is spatially structured, and we, as observ-

ers, are constantly moving our eyes and bodies as we
explore our world visually. Consequently, the optical
input to vision jointly contains rich spatio-temporal
structure that, in principle, can be exploited by vision
for grouping and figure/ground segmentation (Conde,
Macknik, & Hubel, 2000). Our findings indicate that
spatial and temporal structure interact synergistically to
specify features belonging to the same objects, with this
synergy possibly being mediated relatively early in vi-
sual processing.
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