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1  Introduction

Humpty Dumpty sat on a wall
Humpty Dumpty had a great fall
All the King’s horses and all the King’s men
Couldn’t put Humpty together again.

This familiar “Mother Goose” nursery rhyme captures the essence of what has
become a central problem in the field of visual science: how can an aggregate of
individuals working together reassemble a complex object that has been broken into
countless parts? In the case of vision, the “horses and men” comprise the many
millions of brain neurons devoted to the analysis of visual information, neurons
distributed over multiple areas of the brain (Van Essen et al. 1992; Logothetis, 1998).
And, in the case of vision, the source to be reassembled corresponds to the panorama
of objects and events we experience upon looking around our visual world. In
contemporary parlance, this “reassembly” process has been dubbed the binding
problem, and it has become a major focus of interest in neuroscience (Gray, 1999)
and cognitive science (Treisman 1999).

We have no way of knowing exactly why the King’s men and horses failed to
solve their particular version of the binding problem, but perhaps they possessed no
“blueprint” or “picture” of Humpty Dumpty to guide their efforts. (Just think how
difficult it would be to assemble a jig-saw puzzle without access to the picture on the
box.) Of course, the brain doesn’t have blueprints or pictures to rely on either, but it
can -- and apparently does -- exploit certain regularities to constrain the range of
possible solutions to the binding problem (Marr, 1982). These regularities arise from
physical properties of light and matter, as well as from relational properties among
objects. Among those relational properties are ones that arise from the temporal
structure created by the dynamical character of visual events; in this chapter we
present psychophysical evidence that the brain can exploit that temporal structure to
make educated guesses about what visual features go with one another. To begin, we
need to back up a step and review briefly how the brain initially registers information
about the objects and events we see and then outline several alternative theories of
feature binding.
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2  Early Vision and Possible Binding Mechanisms

It is generally agreed that early vision entails local feature analyses of the retinal
image carried out in parallel over the entire visual field. By virtue of the receptive-
field properties of the neurons performing this analysis, visual information is
registered at multiple spatial scales, ranging from coarse to fine, for different contour
orientations (DeValois and DeValois, 1988). Of course, we are visually unaware of
this multiscale dissection of the retinal image: from a perceptual standpoint, coarse
and fine spatial details bind seemlessly into harmonious, coherent visual
representations of objects. In addition to spatial scale, different qualitative aspects of
the visual scene -- color, form, motion -- engage populations of neurons distributed
among numerous, distinct visual areas (Zeki, 1993). But, again, the perceptual
concomitants of those distributed representations are united perceptually; it’s visually
impossible to disembody the “red” from the “roundness” of an apple. Evidently, then,
the process of binding -- wherein  the distributed neural computations underlying
vision are conjointly represented -- transpires automatically and efficiently.

Several possible mechanisms for feature binding have been proposed over the
years. These include:
• coincidence detectors - these are neurons that behave like logical AND-gates,

responding only when specific features are all present simultaneously in the
appropriate spatial arrangement (Barlow, 1972). This idea is implicit in Hubel and
Wiesel’s serial model of cortical receptive fields (Hubel and Wiesel, 1962), in
which a simple cell with an oriented receptive field is activated only when each of
its constituent thalamic inputs is simultaneously active. Coincidence detection has
also been proposed as the neural basis for registration of global, coherent motion
(Adelson and Movshon, 1982) and for the integration of information within the
“what” and “where” visual pathways (e.g., Rao et al, 1997). A principal objection to
coincidence detection as a mechanism of binding is the combinatorial problem:
there are simply not enough neurons to register the countless feature combinations
that define the recognizable objects and events in our world (e.g., Singer and Gray,
1995; but see Ghose and Maunsell, 1999, who question this objection).

• attention - distributed representations of object features are conjoined by the act of
attending to a region of visual space (Treisman and Gelade, 1980; Ashby et al,
1996). This cognitively grounded account, while minimizing the combinatorial
problem, remains ill-defined with respect to the actual neural concomitants of
attentional binding.

• temporal synchronization - grouping of object features is promoted by
synchronization of neural activity among distributed neurons responsive to those
various features (von der Malsburg, 1995; Milner, 1974; Singer, 1999). On this
account, the coupling of activity among neurons can occur within aggregates of
neurons within the same visual area, among neurons within different visual areas
and, for that matter, among neurons located in the separate hemispheres of the brain.

This third hypothesis has motivated recent psychophysical work on the role of
temporal structure in spatial grouping, including work in our laboratory using novel
displays and tasks. In the following sections this chapter examines the extent to which
visual grouping is jointly determined by spatial and temporal structure. From the
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outset we acknowledge that there is considerable skepticism within the field of
biological vision about the functional significance of synchronized discharges among
neurons. This skepticism exists for several reasons. Some have argued that
synchronized activity may be an artifact that simply arises from the spiking behavior
of retinal and/or thalamic cells unrelated to stimulus-driven phase locking (Ghose and
Freeman 1997) or from the statistical properties of rapidly spiking cells (Shadlen and
Movshon 1999). Others question whether the noisy spike trains from individual
neurons possess the temporal fidelity for temporal patterning to be informationally
relevant (Shadlen and Newsome 1998). Still others argue that neural synchrony, even
if it were to exist, provides a means for signalling feature clusters but not a means for
computing  which features belong to an object, therefore leaving the binding problem
unsolved (Shadlen and Movshon, 1999). Finally, some have found stimulus induced
synchrony is just as likely between neurons responding to figure and background
elements as between neurons responding to figure elements only (Lamme and
Spekreijse 1998). Balanced overviews of these criticisms are provided in recent
reviews by Gawne (1999) and by Usrey and Reid (1999).

While not ignoring these controversies, our approach has been to study the
effect of externally imposed synchrony on visual perception. We reason that if
temporal synchronization were to provide a means for binding and segmentation,
psychophysical performance on perceptual grouping tasks should be enhanced
when target features vary synchronously along some dimension over time,
whereas performance should be impaired when features vary out-of-phase over
time. These predictions are based on the assumption that temporal modulations
of an external stimulus produce modulations in neural activity, within limits of

course.1 We give a more detailed exposition of this rationale elsewhere (Alais et al
1998). The following sections review evidence that bears on the question: “To
what extent do features changing together over time tend to group together over
space?” Next, we turn to our very recent studies using stochastic temporal
structure, the results from which provide the most compelling demonstrations to
date for the role of temporal structure in spatial grouping. The chapter closes with
speculative comments about whether the binding problem really exists from the
brain’s perspective.

3  Temporal Fluctuation and Spatial Grouping

Periodic Temporal Modulation The simplest, most widely used means for varying
temporal structure is to repetitively flicker subsets of visual features, either in-phase
or out-of-phase. If human vision exploits temporal phase for spatial organization,
features flickering in synchrony should group together and appear segregated from
those flickering in different temporal phases. The following paragraphs briefly
summarize studies that have utilized this form of temporal modulation.

                                                          
1 1. Most versions of the temporal binding hypothesis posit the existence of intrinsically

mediated neural synchrony engendered even by static stimulus features. On this model,
synchrony is the product of neural circuitry, not just stimulation conditions. Hence, one must
be cautious in drawing conclusions about explicit mechanisms of “temporal binding” from
studies using externally induced modulations in neural activity.
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Rogers-Ramachandran and Ramachandran (1991, 1998) created an animation
consisting of two frames (Figure 1a). Black and white dots were spatially distributed
against a grey background to create a texture border in the first frame. Then, in the
second frame, the luminance of all spots was reversed (black turned to white and vice
versa). Repetitively alternating the two frames created counterphase flicker of the two
groups of dots. When the display flickered at 15 hz, that is, the phase difference
between the two groups of spots was 15 msec, observers could still perceive the
texture boundary but could not discern whether any given pair of spots was flickering
in-phase or out-of-phase. Rogers-Ramachandran and Ramachandran termed this

Fig. 1. Examples of visual displays used to assess the contribution of repetitive flicker on
spatial grouping (redrawn from originals). A. Roger-Ramachandran and Ramachandran (1998).
Black and white spots formed a texture border in the first and second frames of a two-frame
“movie” -- the contrast of all spots reversed each frame. B. Fahle (1993). Rectangular arrays of
small dots forming the “figure” and the “background” were rapidly interchanged.  C. Kiper et al
(1996). Oriented contours form successively presented “background” and “figure” frames that
were rapidly interchanged. D. Usher & Donnelly (1998). A square lattice of elements (shown
here as filled circles) was presented with alternating rows presented successively or with all
elements presented simultaneously (not shown)
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boundary a “phantom contour” because clear texture segregation was perceived even
though texture elements themselves were indistinguishable.

Using a similar strategy, Fahle (1993) manipulated the stimulus onset asynchrony
between two groups of flickering dots and measured the clarity of figure-ground
segregation. He tested arrays of regularly and randomly spaced dots (Figure 1b). The
dots within a small “target” region (denoted by a rectangle in Figure 1b) were
flickered in synchrony while dots outside the target region flickered at the same rate
but with temporal phase the flicker delayed relative to that of the target dots.
Observers could judge the shape of the target region with temporal phase shifts as
brief as 7 msec under optimal conditions. Fahle concluded that the visual system can
segregate a visual scene into separate regions based on “purely temporal cues”
because the dots in figure and those in ground were undifferentiated within any single
frame, with temporal phase providing the only cue for shape. Kojima (1998)
subsequently confirmed this general finding using band-passed random dot texture
stimuli.

The results from these two studies imply that very brief temporal delays between
“figure” and “background” elements provide an effective cue for spatial grouping and
texture segregation. However, other studies using rather similar procedures have
produced conflicting results. Kiper,

Gegenfurtner and Movshon (1991, 1996) asked whether onset asynchrony of
texture elements influences performance on tasks involving texture segmentation and
grouping. Observers discriminated the orientation (vertical vs horizontal) of a
rectangular region containing line segments different in orientation from those in a
surrounding region (Figure 1c). Kiper et al varied the angular difference in orientation
between target and background texture elements, a manipulation known to affect the
conspicuity of the target shape. They also varied the onset time between target and
background elements, reasoning that if temporal phase is utilized by human vision for
texture segmentation, performance should be superior when “target” texture elements
are presented out of phase with the “background” elements. To the contrary, however,
temporal asynchrony had no effect on the ease of texture segmentation; performance
depended entirely on the spatial cue of orientation disparity.

Using a novel bistable display (Figure 2), Fahle and Koch (1995) also failed to
find evidence that temporal cues promote spatial organization. When the two identical
Kanizsa triangles formed by illusory contours partially overlapped, observers
typically experienced perceptual rivalry: one triangle appeared nearer than the other,
with the depth order reversing spontaneously every several seconds. When one
triangle was made less conspicuous by misaligning slightly the inducing elements, the
other, unperturbed triangle dominated perceptually. However, introducing temporal
offsets between the different inducing elements of a triangle had no significant effect
on its perceptual dominance.

How can we reconcile these conflicting results? In those studies where temporal
phase mattered (Roger-Ramachandran and Ramachandran, 1991, 1998; Fahle, 1993;
Kojima, 1998), there were no spatial cues for segmentation -- all elements in the
displays were identical in form, orientation, disparity and other static properties. In
contrast, obvious spatial cues were present in displays revealing little or no effect of
temporal phase (Kiper et al, 1991, 1996; Fahle and Koch, 1995). Perhaps, then, the
salience of temporal structure on spatial grouping is modulated by the presence and
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strength of spatial cues. Leonards, Singer and Fahle (1996) explicitly tested this idea
using texture arrays like those used by Kiper et al (1991; 1996). Figure and
background could be defined by a difference in temporal phase alone, by a difference
in orientation alone, or by both temporal phase and orientation differences (Figure
1c). In line with Roger-Ramachandran and Ramachandran (1991, 1998), Fahle (1993)
and Kojima (1998), the effect of temporal cues on texture segmentation was
significant when figures were defined only by temporal phase difference or when
temporal cues and spatial cues defined the same figures. When figures were well
defined by spatial cues, temporal phase had no influence on figure/ground
segregation. Based on their results, Leonards et al proposed a flexible texture
segmentation mechanism in which spatial and temporal cues interact.

Comparable results have been reported by Usher and Donnelly (1998), who used a
square lattice display (Figure 1d) in which elements appear to group into either rows
or columns. When the elements in alternating rows (or columns) of the lattice were
flickered asynchronously, the display was perceived as rows (or columns)
correspondingly. In the second experiment, Usher and Donnelly presented arrays of
randomly oriented lines segments and asked observers to detect collinear target
elements. Performance was better when target and background line segments
flickered asynchronously than when they flickered in synchrony. Under this
condition, it should be noted, temporal and spatial cues were congruent. However, the
efficacy of temporal phase waned when the same target elements were randomly

Fig. 2. Display used by Fahle & Koch (1995). When viewed without flicker, the two
superimposed illusory Kanizsa triangles fluctuate in perceptual dominance, with one appearing
in front of the other for several seconds at a time. The temporal configuration of the
components of the illusory triangles was manipulated by briefly presenting all three pacmen for
one triangle simultaneously followed by brief, sequential presentation of the three pacmen
forming the other triangle. (In this schematic, the lightly stippled pacmen were not actually
presented during the sequence and are shown here as reference for the positions of the single
pacmen)
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oriented and no longer collinear. Now the temporal lag had to be extended to about 36
msec before target elements were segregated from background elements. These
results, together with those of earlier works, indicate that the potency of temporal
information for spatial segmentation and grouping depends on the salience of
available spatial cues.

Random Contrast Modulation The studies summarized above all used periodic
temporal modulation in which luminance values fluctuated predictably between
levels. In an effort to create more unpredictable temporal modulation, our laboratory
developed displays in which the contrast levels of spatial frequency components
comprising complex visual images (e.g., a face) are modulated over time. With this
form of temporal modulation, the amplitude of the contrast envelope increases and
decreases by random amounts over time without changing the space-average
luminance of the display. In our initial work (Blake and Yang, 1997), we found that
observers were better able to detect synchronized patterns of temporal contrast
modulation within hybrid visual images composed of two components when those
components were drawn from the same original picture. We then went on to show that
“spatial structure” coincides with the phase-relations among component spatial
frequencies (Lee and Blake, 1999a). These two studies set the stage for our more
recent experiments examining the role of synchronous contrast modulations in
perception of  bistable figures.

In one study (Alais et al, 1998), we created a display consisting of four spatially
distributed apertures each of which contained a sinusoidal grating that, when viewed
alone, unambiguously appeared to drift in the direction orthogonal to its orientation
(Figure 3). When all four gratings were viewed together, however, they intermittently
grouped together to form a unique “diamond” figure whose global direction of motion
corresponded to the vector sum of the component motions. Thus upon viewing this
quartet of gratings, observers typically experience perceptual fluctuations over time
between global motion and local motion. We found that the incidence of global
motion increased when contrast modulations among the gratings were correlated and
decreased when the component contrast modulations were uncorrelated. Similar
results were obtained using a motion plaid in which two gratings drifting in different
directions are spatially superimposed. Under optimal conditions, this display is also
bistable, appearing either as two transparent gratings drifting in different directions or
as one plaid moving in a direction determined by a vector sum of the velocities of
component gratings (Adelson and Movshon, 1982).

Again, the incidence of coherent motion was enhanced by correlated contrast
modulations and suppressed by uncorrelated contrast modulations.A second study
assessed the role of temporal patterning of contrast modulation in grouping visual
features using another bistable phenomenon, binocular rivalry. When dissimilar
patterns are imaged on corresponding areas of the retinae in the two eyes, the patterns
compete for perceptual dominance (Breese, 1899; Blake, 1989). Since binocular
rivalry is strongly local in nature, however, predominance become piecemeal with
small zones of suppression when rival targets are large or when small targets are
distributed over space (Blake, O’Shea and Mueller, 1992). Alais and Blake (1999)
investigated the potency of correlated contrast modulation to promote conjoint
dominance of two, spatially separated rival targets pitted against random-dot patches
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presented to corresponding portions of the other eye. The orientations of the two
gratings were either collinear, parallel or orthogonal, and they underwent contrast
modulations that were either correlated or uncorrelated. Correlated contrast
modulation promoted joint grating predominance relative to the uncorrelated
conditions, an effect strongest for collinear gratings. Joint predominance depended
strongly on the angular separation between gratings and the temporal phase-lag in
contrast modulations. Alais and Blake (1999) speculated that these findings may
reflect neural interactions subserved by lateral connections between cortical
hypercolumns.

Generalizing from the studies summarized in these last two sections, it appears
that temporal flicker cannot overrule explicit spatial structure - flicker, in other words,
does not behave like “super glue” to bind spatial structures that do not ordinarily form
coherent objects. Nor, for that matter, does out-of-phase flicker destroy spatial
structure defined by luminance borders. Based on the above results, one would
conclude that temporal flicker promotes grouping primarily when spatial structure is
ambiguous or weak. The generality and implications of these earlier studies must be
qualified in two ways:
• All the studies cited above utilized local stimulus features whose luminance or

contrast was modulated periodically, with only the rates and phases of flicker
varying among different components of the display. The use of periodic flicker is

Fig. 3. Display used by Alais et al (1998). Gratings drifted smoothly in the direction indicated
by the white arrows. When all four gratings are viewed simultaneously, the four occasionally
group to form a partially occluded ‘diamond’ whose direction of motion corresponds to the
vector sum of the component motions (“upward” in this illustration)
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grounded in linear systems analysis, which has played an important role in shaping
techniques used in visual science. Still, periodic flicker constitutes a highly
predictable, deterministic signal which could be construed as a somewhat artificial
event. In the natural environment, there exists considerable irregularity in the
temporal structure of the optical input to vision: objects can move about the visual
environment unpredictably, and as observers we move our eyes and heads to sample
that environment. In contrast, repetitively flashed or steadily moving stimuli, so
often used in the laboratory, are highly predictable events which, from an
information theoretical perspective, convey little information. In fact, periodically
varying stimulation may significantly underestimate the temporal resolving power
of neurons in primate visual cortex (eg Buracas et al 1998).

•  In those studies where evidence for binding from temporal synchrony was found,
successive, individual frames comprising a flicker sequence contained visible
luminance discontinuities that clearly differentiated figure from background; spatial
structure was already specified in given, brief “snapshots” of those dynamic
displays. Thus these studies do not definitively prove that human vision can group
spatial features based purely on temporal synchrony.

Stochastic Temporal Structure The two considerations presented in the previous
paragraph motivated us to develop stochastic animations in which individual frames
contained no static cue about spatial structure, leaving only temporal information to
specify spatial grouping. How does one remove all static cues from individual
frames? A hint for tackling this challenge came from an expanded notion of ‘temporal
structure’ conveyed by time-varying signals. There are three alternative ways to
define temporal structure (see Appendix, section A): (i) a time series of absolute
quantity, (ii) a collection of distinctive times when a particular event occurs (point
process), and (iii) a collection of times for events and magnitudes associated with
those events (marked point process). Among of these representations, the point
process contains information only about ‘time’ and not about magnitude. Thus we
reasoned that if it’s possible to create an animation display in which groups of local
elements differ only in terms of their respective point processes, but do not differ in
other stimulus properties when considered on a frame by frame basis, that display
would be devoid of static spatial cues.

To create these conditions, we created animation displays in which each individual
frame consisted of an array of many small sinusoidal gratings each windowed by a
stationary, circular gaussian envelope -- such stimuli are termed ‘Gabor patches’. All
Gabor patches throughout the array had the same contrast, and their orientations were
randomly determined. As the animation was played, grating contours within each
small, stationary Gabor patch moved in one of two directions orthogonal to their
orientation. Each grating reversed direction of motion irregularly over time according
to random (Poisson) process. Temporal structure of each Gabor element was
described by a point process consisting of points in time at which motion reversed
direction (Figure 4). When all Gabor elements within a virtual ‘figure’ region
reversed their direction of motion simultaneously while Gabor elements outside of
this area changed direction independently of one another, the ‘figure’ region defined
by temporal synchrony stood out conspicuously from the background. Here, the
‘figure’ region and the ‘ground’ region differed only in point process and they were
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not defined by static cues such as luminance, contrast and orientation in individual
frames. Furthermore, there was no information about the figure in any two successive
frames of the animation, for all contours moved from frame to frame. Therefore, only
the difference in point process (which specifies ‘when’ direction of motion changes)
distinguished figure from background.

Because all local elements throughout the display changed directions of motion
‘irregularly’ over time, we were able systematically to manipulate two variables that
reveal just how sensitive human vision is to the temporal structure contained in these
dynamic displays. One variable is the ‘predictability’ (or ‘randomness’) of temporal
structure conveyed by individual elements -- this is easily manipulated by changing
the probability distribution associated with the two directions of motion. Borrowing
ideas from information theory, this ‘predictability’ was quantified by computing the
entropy of temporal patterns of elements (see Appendix, section B). Since time-
varying signals with high entropy convey more dynamic, fine temporal structure, the
systematic manipulation of the entropy of all the elements made it possible to
examine how accurately human vision can register fine temporal structure contained
in contours irregularly changing direction of motion. The second variable was the
temporal relationship among elements in the ‘figure’ region -- this was manipulated
by varying the extent to which all possible pairs of those elements are correlated (see
Appendix, section C). Since the time points at which the elements change direction of
motion could be represented by point processes as described earlier, the index of
temporal relationship among those elements could be quantified by computing the
correlations among their point processes. By varying this index systematically, the
efficiency of human vision in utilizing temporal structure was examined.

Fig. 4. Display used by Lee and Blake (1999). One frame from an animation sequence
consisting of an array of small Gabor patches within which contours move in one of two
directions orthogonal to their orientation; from frame-to-frame motion direction changes
irregularly. Shown schematically on either side of the square array of Gabor patches are
enlarged pictures of several Gabor patches with double-headed arrows indicating the two
possible directions of motion. The time series indicate direction of motion, and the small dots
associated with each time series denote that time series’ point process - points in time at which
direction changed. Gabor patches within a virtual region of the array (dotted outline) have point
processes that are correlated while Gabor patches outside this virtual area are
uncorrelated.(Reprinted by permission from Science, volume 5417, p. 1166. Copyright 1999 ©
American Association for the Advancement of Science)
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Lee and Blake (1999b) found that these two factors (entropy and correlation) both
systematically affected the perceptual quality of spatial structure; the clarity of
perceived figure/ground segregation increased with increases in the entropy of the
entire display and with the correlation among elements within the ‘figure’ region. Our
results clearly show that human vision can register fine temporal structure with high
fidelity and can efficiently construct spatial structure solely based on the temporal
relationship among local elements distributed over space.

From the outset of this work, we carefully tried to identify and evaluate possible
stimulus artifacts that could underlie perception of shape in these displays. An artifact
would be any cue that does not depend on correlations among point processes for
shape definition. In the displays utilizing an array of Gabor patches, for example,
reversals in direction of motion mean that contours return to the same positions they
occupied one frame earlier. If contrast were summed over multiple frames, it is
possible that these 2-frame change sequences, when they occurred, could produce
enhanced contrast of that Gabor. When all Gabors in the figure region obey the same
point process, these “pulse” increases in apparent contrast could define the figure
against a background of irregular contrast pulses occurring randomly throughout the
background where changes were unsynchronized. To counteract this cue, we
randomly varied the contrast values of Gabor patches from frame-to-frame throughout
the array, thereby eliminating contrast as a potential cue. Spatial form from temporal
synchrony remains clearly visible. When the elements defining the figure are all
synchronized but the background elements are not, the background contains a more
varied pattern of temporal change, which means that the temporal frequency
amplitude spectra of the background - considered across all background elements -
may differ in detail from that of the figure, although both would be quite broad.
However, this difference does not exist when background elements all obey the same
point process (albeit one different from the figure) - still, shape discrimination
performance remains quite good for this condition, ruling out differences in temporal
frequency amplitude spectra as an alternative cue.

Another possible artifact arises from the possibility of temporal integration over
some number of consecutive animation frames in which no change in direction
occurs. If the grating contours were to step through one complete grating cycle
without change in direction and if the integration time constant were to match the
time taken for that event, the net luminance of pixels defining that grating would sum
to levels near the mean and effectively produce a patch of approximately uniform
brightness. For the synchronized condition, all Gabors in the figure would assume this
brightness level simultaneously while those in the background would not because they
are changing direction at different times on average - with time-integrated signals, the
figure region could occasionally stand out from the background simply based on
luminance. In fact, this is not at all what one sees when viewing these displays - one
instead sees smooth motion continuously throughout the array of Gabor elements.
Still, it could be argued that this putative integrated luminance cue is being registered
by a separate, temporally sluggish mechanism. To formalize this hypothesis, we have
simulated it in a MatLab program. In brief, the model integrates individual pixel
luminance values over n successive animation frames, using a weighted temporal
envelope. This procedure creates a modified sequence of animation frames whose
individual pixels have been subjected to temporal integration, with a time constant
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explicitly designed to pick up n-frame cycles of no change. We then compute the
standard deviation of luminance values within the figure region and within the
background and use those values to compute a signal/noise index. To the extent that
luminance mediates detection of spatial structure in these dynamic displays,
psychophysical performance should covary with this “strength” index. We have
created sequences minimizing the incidence of “no change” sequences by
manipulating entropy and by selectively removing “no change” sequences in an
animation - both manipulations affect the “strength” index. When we compare
performance on trials where this cue is potentially present to trials where it is not, we
find no difference between these two classes of trials.

Our work to date has focused on changes in direction of translational motion and
changes in direction of rotational motion. These were selected, in part, because
registration of motion signals requires good temporal resolution. There is no reason to
believe, however, that structure from temporal synchrony is peculiar to motion.
Indeed, to the extent that temporal structure is fundamentally involved in feature
binding, any stimulus dimension for which vision possesses reasonable temporal
resolution should in principle be able to support figure/ground segmentation from
synchrony. There must, of course, be limits to the abstractness of change supporting
grouping. Consider, for example, a letter array composed of vowels and consonants. It
would be very unlikely that irregular, synchronized changes from vowels to
consonants, and vice versa, in the array would support perceptual grouping (unless
those changes were accompanied by prominent feature changes, such as letter size or
font type). Grouping should be restricted to image properties signifying surfaces and
their boundaries.

4  Concluding Remarks

Our results, in concert with earlier work, lend credence to the notion that temporal
and spatial coherence are jointly involved in visual grouping. Biological vision, in
other words, interprets objects and events in terms of the relations -- spatial and
temporal -- among features defining those objects and events. Our results also imply
that visual neurons modulate their responses in a time-locked fashion in response to
external time-varying stimuli. Theoretically, this stimulus-locked variation in neural
response could be realized either of two ways depending on how information is coded
in the spike train. One class of models emphasizes temporal coding wherein fine
temporal structure of dynamic visual input is encoded by exact locations in time of
individual neural spikes in  single neurons; in effect, the “code” is contained in the
point processes associated with trains of neural activity.

Alternatively, a second class of models assumes that stimulus features are encoded
by ensembles of neurons with similar receptive field properties. The average firing
rate within a neural ensemble can fluctuate in a time-locked fashion to time-varying
stimuli with temporal precision sufficient to account for the psychophysical data
presented here (Shadlen and Newsome, 1994). Although the temporal coding scheme
allows neurons to more efficiently transmit information about temporal variations in
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external stimuli than the rate coding scheme, psychophysical evidence alone does not
definitively distinguish between the two models.

Regardless how this coding controversy is resolved, our results using stochastic
animations convincingly show that temporal structure in the optical input to vision
provides a robust source of information for spatial grouping. Indeed, one could argue
that vision’s chief job is extracting spatio-temporal structure in the interest of object
and event perception. After all, the optical input to vision is rich in temporal structure,
by virtue of the movement of objects and the movement of the observer through the
environment. Consequently, our eyes and brains have evolved in a dynamic visual
world, so why shouldn’t vision be designed by evolution to exploit this rich source of
information?

In closing, we are led to speculate whether the rich temporal structure
characteristic of normal vision may, in fact, imprint its signature from the outset
of neural processing. If this were truly the case, then concern about the binding
problem would fade, for there would be no need for a mechanism to reassemble
the bits and pieces comprising visual objects. Perhaps temporal structure insures
that neural representations of object “components” remain conjoined from the
very outset of visual processing. Construed in this way, the brain’s job is rather
different from that facing the King’s horses and men who tried to put Humpty
Dumpty back together. Instead of piecing together the parts of a visual puzzle, the
brain may resonate to spatio-temporal structure contained in the optical input to
vision.
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Appendix: Time-Varying Signals and Information Theory

Throughout this chapter we employ the term “temporal structure” in reference to
spatial grouping. In this appendix, we define “temporal structure” using information
theory and signal processing theory as conceptual frameworks.

A. Time-Varying Signals

According to signal processing theory, time-varying signals are defined by variations
of some quantity over time which may or may not be detectable by a given system
(Brook and Wynne, 1988). For the visual system, time-varying signals would be the
temporal fluctuations of visual properties of external stimuli. Thus, the temporal
structure of visual stimuli can be carried by any property which is potentially
detectable by human vision, including luminance, color, stereoscopic disparity, and
motion. When a vertically oriented sinusoidal grating shifts its spatial phase either
right-ward or left-ward over time, for instance, time-varying signals can be defined by
the temporal fluctuations of direction of motion.
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Deterministic vs Random Signals  Time-varying signals can be distinguished
depending on whether they are deterministic or random. Deterministic signals are
perfectly predictable by an appropriate mathematical model, while random signals are
unpredictable and can generally be described only through statistical observation (de
Coulon, 1986). Figure 5a shows an example of a deterministic signal and Figure 5b
shows a random signals. In Figure 5a, a deterministic time-varying signal, directions
of motion of a grating can be exactly predicted on the basis of time points where the
grating shifts its spatial phase because the two opposite directions of motion alternate
in a deterministic fashion. For the time-varying signals in Figure 5b, one cannot
predict in which direction the grating will be moving at time t + 1 by knowing in
which direction it is moving at time t, because direction of motion changes randomly
over time. Instead, one only can make a statistical prediction (e.g., “the grating is
more likely to move left-ward than right-ward”) by estimating the probabilities of the
two motion directions. Unlike most engineered communications systems that use
well-defined frequencies to transmit information, many biological systems must deal
with irregularly fluctuating signals.

Representation of the temporal structure of time-varying signals The temporal
structure contained in time-varying visual signals can be described in any of several
ways, depending upon what properties one wishes to emphasize.
(1) Time series of absolute quantity (Figure 5c). The time series plot of absolute
quantity is the most direct and simple description of temporal signals (Brillinger,
1994). Here, simply the absolute quantity of visual stimuli is plotted against time;

Y ( t ) ,    − 4 < t < + 4 

where t is time and Y represents the quantity of stimulus. When a dot changes in
luminance over time, for example, its temporal structure can be represented by
plotting the absolute level of luminance over time (Figure 5c).
(2) Marked point process (Figure 5d). An irregular time series representing both the
times at which events occur as well as the quantities associated with those times:

{ ( τ j ,  M j ) } ,   j = "  1 ,  "  2 ,  "  3 ,  ...

where Mj represents the magnitude of change associated with the jth event. In Figure
5d, the locations of vertical lines represent time points when a stimulus changes in
luminance and the directions and lengths of vertical lines represent the magnitude and
direction (increase or decrease in luminance) of changes, respectively.
(3) Point process (Figure 5e). If we are interested only in ‘when’ a given stimulus
quantity changes or ‘when’ events occur, we may specify a point process which is the
collection of distinctive times when a stimulus changes its quantity;

{ τ j } ,   j = 0 , "  1 ,  "  2 ,  "  3 ,  ...

where the tj is a time point for the jth event. For instance, asterisks in Figure 5e denote
the times when a stimulus element changes its luminance, without regard to the value
of luminance itself. In a point process, the characteristics of temporal structure in
time-varying signals can be described by analyzing the distribution of events in a
given time period and also the distribution of time intervals between events.
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Fig. 5. Time series indicating direction of visual motion over time. (a) Deterministic time-
varying signal. Direction of motion is entirely predictable and specifiable mathematically. (b)
Random time-varying signal. Direction of motion reverses randomly over time according to a
Poisson process. (c) - (e) show three types of representations of temporal structure. (c) Time
series of absolute quantity. The absolute luminance level of a given visual stimulus is plotted
against time. (d) Marked point process. The locations of vertical lines represent points in time
when the stimulus changes in luminance, and the directions and lengths of vertical lines
represent the magnitude and direction of change in luminance, respectively. (e) Point process.
Asterisks denote times when the luminance value changes.
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B. Time-Varying Signals as Information Flow

How well does human vision respond to the temporal structure generated by
unpredictable time-varying visual signals? Information theory  (Shannon and Weaver,
1949; Mansuripur, 1987) sheds light on how we can conceptualize this problem.
According to information theory, ‘time-varying visual signals’ can be treated as
information flow over time as long as they are an ensemble of mutually exclusive and
statistically independent messages. For example, the time series of motion direction in
Figure 5b can be understood as an ensemble of ‘left-ward motion’ messages and
‘right-ward motion’ messages. These messages are mutually exclusive because the
grating cannot move in two opposite directions simultaneously. They are also
statistically independent since the probability of one message does not depend on the
probability of the other. If we assign a symbol ‘0’ to the left-ward motion signal and
‘1’ to the right-ward motion signal, the time plot in the top part of Figure 5b can be
translated into an information flow composed of ‘0’ and ‘1’ as illustrated in the
bottom portion of Figure 5b.

Furthermore, information theory allows us to have a measure of uncertainty or
randomness about the temporal structure of visual stimuli. We can quantify the
amount of information as ‘entropy’ if the probability distribution of messages
comprising time-varying signals is known. Suppose that a time series of signals, S, is
an ensemble of n different messages, {m1, m2, . . ., mi, . . ., mn}, and the probabilities
for those messages are {p1, p2, . . ., pi, . . ., pn}. Then the information (expressed in
binary units called “bits”) attributed to each message is defined by

 Hi=-log2(pi)

and the averaged amount of information,

H ( S ) = − 
N 

3  
i = 1 

p i ∗ log2 ( p i ) 

is the probability-weighted mean of information contained in all the messages. This
equation implies that the averaged amount of information is maximized when all of
the possible messages are equally probable. In the earlier example of time-varying
stimuli, the direction of motion is the most unpredictable when the two directions of
motion are equally probable.

While H(S) represents the uncertainty of time-varying signals, the temporal
complexity of signals can be evaluated by the rate of flow of information

 H(S)/T

where T is the average duration of messages from the ensemble, weighted for
frequency of occurrence, that is,

T = 
N 

3  
i = 1 

p i ∗ T i 

The high value of H(S)/T indicates that the relatively large amount of information
(high value of H(S)) flow in a short duration (low value of T). Thus, human
vision’s ability to process the temporal structure of signals can be evaluated by
finding the maximum information flow rate which can be processed by human
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vision. If the visual system successfully processes time-varying signals with a
specific information flow rate, it should (i) reliably generate identical outputs in
response to identical input signals and (ii) accurately discriminate among
different signals. By measuring these abilities, reliability and accuracy, while
varying the rate of information flow, the capacity of human vision for time-
varying signals can be determined (e.g., Mainen and Sejnowski, 1995).

C. Characterization of Relationship
among Spatially Distributed Temporal Structures

In the visual environment, the sources of time-varying signals are often distributed
over space. It seems reasonable to assume that time-varying visual signals arising
from the same object are likely to have related temporal structures. Since this is the
case, is the visual system able to detect important relations among temporal structures
of visual signals? If so, what kinds of relationship among temporal structures is
human vision sensitive to?

Once the temporal structures of time-varying signals are defined quantitatively by
one of the ways mentioned above (time series of absolute quantity, point process and
marked point process), the relationship among stochastic time series can be
quantitatively expressed by computing  correlation coefficients in the time domain.
Suppose we have N observations on two series of temporal signals, x and y,

{x1, x2, x3, ..., xN}

{y1, y2, y3, ..., yN}

at unit time interval over the same time period. Then, the relationship between those
series can be characterized by the cross-correlation function,

ρ xy( k )   =   γ xy( k ) / [ γ xx( 0 ) γ yy( 0 ) ]   ,  k= "  1 ,   "  2 ,   "  3 ,  ...,   "  ( N − 1 ) 

γ xy( k )   =  Cov( x t , y t + k ) 

γ xx( 0 )   =   Cov( x 0 , x 0 + k ) 

γ yy( 0 )   =   Cov( y 0 , y 0 +k ) 

where k is a temporal phase lag between two signals.
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