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ABSTRACT

Functional neuroimaging often generates large amounts of data on regions of interest. Such data can be
addressed effectively with a widely-used statistical technique based on measurement theory that has not
yet been applied to neuroimaging. Confirmatory factor analysis is a convenient hypothesis-driven modeling
environment that can be used to conduct formal statistical tests comparing alternative hypotheses regarding
the elements of putative neuronal networks. In such models, measures of each activated region of interest are
treated as indicators of an underlying latent construct that represents the contemporaneous activation of the
elements in the network. As such, confirmatory factor analysis focuses analyses on the activation of hypoth-
esized networks as a whole, improves statistical power by modeling measurement error, and provides a
theory-based approach to data reduction with a robust statistical basis. This approach is illustrated using
data on seven regions of interest in a hypothesized mesocorticostriatal reward system in a sample of 262
adult volunteers assessed during a card-guessing reward task. A latent construct reflecting contemporaneous
activation of the reward system was found to be significantly associated with a latent construct measuring
impulsivity, particularly in males.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Confirmatory factor analysis (CFA) is a hypothesis-driven variant
of exploratory factor analysis that is based on measurement theory
and represents a special case of structural equation modeling (SEM)
(Bollen, 1989). Measurement theory is the branch of applied mathe-
matics and statistics concerned with the measurement of phenomena
in science and applied settings. The measurement model underlying
CFA treats each specific observed measure, or indicator, as one of
multiple fallible manifest indicators of an underlying latent (unmea-
sured) construct. In measurement theory, each observed measure re-
flects both the underlying “true” score on the latent construct plus
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measurement error. CFA allows statistical tests of measurement
models (hypotheses regarding loadings of multiple manifest indica-
tors on the underlying latent construct). Because CFA models allow
for measurement error in the manifest variables, inferences about
the latent constructs can be interpreted as if the latent constructs
were measured without error.

CFA-based measurement models are readily embedded in broader
SEMs to test hypotheses regarding associations among latent con-
structs and other important variables, taking advantage of the re-
duced measurement error in the latent construct. Similarly, the
latent construct can be formally tested for associations and interac-
tions with other variables such as sex or diagnostic status in CFA/
SEM to address systematic heterogeneity (Bollen, 1989; Brown,
2006).

Mathematically, the SEM for the association between two latent
constructs defined by CFA measurement models (defined, for exam-
ple, by 7 and 3 manifest indicators, respectively) can be expressed
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as follows. Let X; be the jth of 7 manifest indicators of a latent con-
struct §, j=1, ..., 7, and let Y} be the kth of 3 manifest indicators for
a second latent construct 1, k=1, 2, 3. The model consists of two
CFA measurement models

Yie=Vie+ A + &

X] = a] + )\ng + SX',

and a structural regression model relating the two latent constructs
n=y6+¢,

where € is normally distributed with mean zero. In these models, ¢,
.osr &3, &1, ..., € xz and ¢ are all mutually independent of one another,
and are normally-distributed with mean zero as well. y is the regres-
sion coefficient relating 1) to §, and the residual ¢ represents the vari-
ability in 1) not explained by &. The residuals €y, and &,; represent
measurement error in Yy and X; relative to the true constructs 1) and
€, and vy and ¢ are the means of Yy and X;. The model estimation pro-
cedure makes a working assumption of multivariate normality of the
data (Y, ..., Y3, Xy, ... X7). This assumption is used to derive the result-
ing parameter estimates. However, the estimates themselves are ro-
bust to the normality assumption, and the standard errors and
resulting hypothesis tests for model comparison and testing are esti-
mated in this work via a procedure that is also valid even if the nor-
mality assumption is violated (Bollen, 1989; Brown, 2006).

When fully standardized, the factor loadings of each manifest indi-
cator on the latent factor and regression coefficients can be inter-
preted as marginal correlations and provide an easily interpreted
metric for determining the centrality of each manifest variable to
the latent construct. Thus, the square of the loading indicates the pro-
portion of variance in the manifest indicator accounted for by the la-
tent construct (Bollen, 1989; Brown, 2006).

Although CFA is a mainstay of research on behavioral constructs with
multiple indicators, including neuropsychological tests (Genderson et
al,, 2007; Wang et al., 2010), it has not been applied to data arising
from fMRI stimulation protocols. This is unfortunate, as the application
of this strategy to fMRI is straightforward and potentially quite benefi-
cial. An important instance of manifest variables in fMRI is the blood ox-
ygen level dependent (BOLD) response in each of several pre-specified
brain regions of interest (ROI). CFA would treat these BOLD responses
in the ROIs as fallible manifest indicators of a construct reflecting con-
temporaneous activation of the elements of a hypothesized neuronal
network.

Advantages of CFA relative to exploratory multivariate methods

CFA shares many of the advantages of traditional multivariate
methods such principal components analysis (PCA) (Butler et al.,
2007) and partial least squares (PLS) (Krishnan et al., 2011; Mclntosh
et al., 1996). Each method derives latent constructs that reflect correlat-
ed concurrent activations of multiple ROIs. Indeed, simply extracting
the first eigenvariate from a single “network ROI” defined by multiple
ROIs would similarly yield a single unit-free latent measure of activation
of the entire network (essentially a principal component) that would be
very similar to a latent construct derived from the same ROIs in a CFA
measurement model. Each of these approaches has the advantages of
focusing analyses on the network as a whole and providing a theory-
based method of data reduction. This reduction addresses the vexing
problem of multiple statistical comparisons in neuroimaging research
(and attendant adjustments of alpha levels for significance tests). As a
result, all multivariate methods can maximize the statistical power of
given sample sizes when validly specified. Nonetheless, there are a
number of advantages to the use of CFA over other multivariate
methods in neuroimaging research:

a. First and foremost, PCA, PLS, and related methods are inherently
exploratory and are not designed for formal statistical tests of al-
ternative hypotheses. In contrast, CFA and SEM are confirmatory
methods that allow formal statistical tests of multiple aspects of
hypothesized models of neuronal networks. Not all topics in neu-
roimaging research areas are currently mature enough to propose
testable hypotheses, but increasing numbers of topics are ready
and CFA provides a highly useful formal statistical method for ex-
posing testable hypotheses to risk of refutation.

Consider five such highly informative statistical tests that can be
conveniently implemented in CFA/SEM. First, there is not a widely
accepted method for determining the number of components to
extract in PCA-based methods. In CFA/SEM, however, nested alter-
native models can be directly compared using likelihood ratio chi-
square statistics. A model is nested in another model when it is
based on the same elements, but uses a subset of the free parameters
of the parent model (Bollen, 1989; Brown, 2006). Second, if the
best fitting model in CFA involves more than one latent neuronal
factor, the test of the significance of the correlations among those
factors would provide an index of their connectivity. Third, CFA
provides statistical tests of the significance of the loading of each
ROI on the latent construct. Fourth, formal statistical tests of the
association of latent neuronal constructs with behavior and other
external criteria can be easily implemented in SEM. Fifth, one can
readily test for the significance of interactions between model
paths and key variables such as age or sex. This facility for statistical
testing provides a basis for well-found advances in understanding
neuronal networks and their correlates.

b. Furthermore, when the statistical fit of a hypothesized model is

found to be inadequate, CFA provides detailed information regard-
ing the degree and source of misfit within the model. This pro-
vides a strong empirical basis for modifying the model. When
empirical misfit information is considered in the light of theoreti-
cal understanding of the hypothesized network, informed model
modifications can be estimated and statistically evaluated. Modifi-
cation indices (Mls) identify specific areas of ill fit in a model and
quantify the extent to which the model y? would be reduced by
specific changes to the measurement model (Brown, 2006). MIs
are generated by most application software implementing CFA.
When MiIs are used to refine a model, the analysis is no longer
testing a fully a priori hypothesis, however. Because changes to
CFA models based on Mls can capitalize on chance associations,
their use adds an exploratory element that is appropriate during
early stages of research on a topic, but the modified model must
be independently verified in independent samples. In the case of
neuroimaging research, care also must be taken only to make
changes to measurement models for neuronal networks that are
consistent with neurobiological evidence.

c. CFA models error variance separately from unexplained variance in
the underlying constructs (Bollen, 1989; Brown, 2006). As a result,
the latent construct of activation of a neuronal network provided
by CFA is measured with less error than each of the ROIs that define
the network. Other things equal, this will yield greater statistical
power for hypothesis testing, relative to piecemeal ROI-specific ana-
lyses. Thus, CFA/SEM removes bias due to measurement error in the
estimation of relations among latent constructs. In contrast, because
PCA-based strategies do not distinguish common and error variance,
error is included in the extracted components, which can reduce the
reliability of component scores (Brown, 2006).

d. Another advantage of CFA's statistical model is that limitations of

the data in terms of uncertainty and the ability to compare com-
peting models are automatically integrated into the analysis. For
example, only models that are sufficiently parsimonious can be
fitted to the data; these models are referred to as “identified.”
Overly-flexible models may have more degrees of freedom than
the data or study design can support. Such models are
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“unidentified” because the data contain no information about the
model. A model that is “just identified” will fit the data perfectly,
indicated by goodness-of-fit statistics being equal to zero
(Bollen, 1989).

e. CFA and SEM can be used to evaluate both substantive and meth-
odologic issues in imaging research. By providing a framework for
testing differences in measurement models across groups, it al-
lows formal statistical tests of whether data can be combined
across samples, scanners, and groups (e.g., sexes or ethnic groups)
without misrepresenting relationships. This can be done in
multiple-group analyses that compare model parameters in differ-
ent groups or by testing interactions with covariates. We illustrate
both approaches in the present study to determine if data from
two different subject groups, obtained in different scanners using
the same probe paradigm, can be combined.

Illustration of the application of CFA

We provide an illustration of the use of CFA/SEM in an empirical
study that incorporates both multiple manifest indicators of a hypothe-
sized mesocorticostriatal (MCS) reward system and multiple manifest
indicators of the behavioral trait of impulsivity. There is substantial ev-
idence that reward functions related to impulsivity in humans are me-
diated by a MCS neuronal network consisting of at least the ventral
striatum (VS) and the anterior cingulate cortex (ACC) (Buckholtz et
al., 2010; Dreher et al., 2009; Kirsch et al., 2003; Stoeckel et al., 2008;
Tzschentke, 2000). In addition, the regulation of impulsive behavior
has been linked to the functioning of these same regions as well as
the ventrolateral prefrontal cortex (PFC) and parietal cortices (Casey
and Durston, 2006). Both to illustrate the use of CFA in testing hypoth-
eses regarding the ROIs participating in the hypothesized MCS reward
network and to test the hypothesis that activation of the MCS network
is significantly related to the trait of impulsivity, we assess neuronal re-
sponses to reward cues using an adaptation (Forbes et al., 2009b) of a
well-validated card-guessing task involving monetary reward
(Delgado et al., 2000) and related activation in the MCS reward system
to a widely used measure of impulsivity.

Impulsivity is an important trait because it is correlated with mal-
adaptive antisocial behavior, substance use disorders, personality disor-
ders, and bipolar disorder (Moeller et al., 2001). In one theoretical
model, higher levels of impulsivity are thought to reflect, at least in
part, higher sensitivity to rewards and lower inhibition of prepotent re-
sponses (Forbes et al, 2009a; Hahn et al,, 2009). Consistent with this
view, there is evidence of greater activation of the VS to cues indicating
rewards in individuals with higher scores on the trait of impulsivity
(Forbes et al., 2009a; Hahn et al., 2009). Using CFA/SEM, we test the hy-
pothesis that variations in contemporaneous activation of ROIs in the hy-
pothesized MCS reward system during reward trials of the card-guessing
task will be associated with variations in the latent trait of impulsivity.

To illustrate the correspondence between the latent MCS con-
struct derived in CFA and the corresponding principal component,
we took the first eigenvariate of a single “network ROI” defined by
all of the ROIs hypothesized to constitute the network. We then illus-
trated the advantages of CFA in providing the loading of each of these
ROI on the latent construct and testing its significance.

To provide illustrative tests of the robustness of CFA to variations
in preprocessing steps and to two kinds of model misspecification
(i.e., excluding an ROI that is central to the network and including
an ROI that is weakly related to the network) in the present data,
we conducted three sets of sensitivity analyses. First, all analyses
were repeated iteratively while eliminating each of the hypothesized
ROIs one at a time. Second, all analyses were repeated while adding
one ROI at a time that had not been hypothesized to be part of the
MCS reward system. For these analyses, we selected both extra-
network ROIs that are not thought to play roles in reward processing
and one ROI from an additional area commonly activated during the

processing of visual reward cues (Buckholtz et al., 2010; Gaffan et
al., 1988; Krawczyk et al., 2007). That is, the latter ROI could have
been hypothesized to be part of a more extended reward network.
Third, we varied the extraction of ROI data by relaxing the thresholds
(on p-values and required number of activated voxels) defining the
ROIs and repeated the integrated CFA/SEM modeling on these data.

Method
Participants

The use of CFA in fMRI research is illustrated using a heterogeneous
sample composed of 262 adult volunteers recruited and scanned at the
University of Pittsburgh and Duke University.

Duke sample

A total of 173 18-22 year old participants (102 women; mean age
19.76 4 1.28 years) were included from an ongoing parent protocol,
the Duke Neurogenetics Study (DNS), which assesses a wide range
of behavioral and biological traits among nonpatient, young adult stu-
dent volunteers. All participants provided informed consent in accord
with Duke University guidelines and were in good general health. The
participants were free of: (1) medical diagnoses of cancer, stroke, di-
abetes requiring insulin treatment, chronic kidney or liver disease, or
lifetime history of psychotic symptoms; (2) use of psychotropic, glu-
cocorticoid, or hypolipidemic medication; and (3) conditions affect-
ing cerebral blood flow and metabolism (e.g., hypertension).
Diagnosis of any current DSM-IV Axis I mental disorder, as deter-
mined by clinical interview using the electronic MINI (Sheehan et
al., 1998), was not an exclusion as the DNS seeks to establish broad
variability in multiple behavioral phenotypes related to psychopa-
thology (e.g., trait anxiety, impulsivity).

Pittsburgh sample

A total of 89 31-54 year old participants (51 women; mean age
44.24 4 6.80 years) were included from the Adult Health and Behavior
(AHAB) project, which assessed a wide range of behavioral and biolog-
ical traits among nonpatient, middle-aged community volunteers. All
participants provided informed consent in accord with University of
Pittsburgh guidelines, and were in good general health. The participants
were free of: (1) medical diagnoses of cancer, stroke, diabetes requiring
insulin treatment, chronic kidney or liver disease, and lifetime history of
psychotic symptoms; (2) use of psychotropic, glucocorticoid, or hypoli-
pidemic medication; and (3) conditions affecting cerebral blood flow
and metabolism (e.g., hypertension). One study showing greater activa-
tion of the VS by reward cues in individuals with higher impulsivity has
been published from the AHAB sample (Forbes et al., 2009a); other ele-
ments of the MCS reward system were not addressed. Unlike the DNS
sample, the AHAB sample was free of any current DSM-IV Axis I disorder
(but not lifetime history of diagnoses) as determined by clinical inter-
view using the Structured Clinical Interview for DSM-IV Axis [ Disorders
(SCID) (First et al., 1996).

Measures and procedures

Impulsivity

The trait of impulsivity was measured using the three subscales of
the reliable and valid Barratt Impulsiveness Scale (BIS), motoric im-
pulsiveness (BIS_M), nonplanning (BIS_N), and cognitive impulsive-
ness (BIS_C), which was completed by the participants (Patton et
al., 1995). The BIS principally measures a lack of constraint or effortful
control of thoughts and action tendencies and high scores on this
measure have been associated with reward sensitivity—a tendency
to respond quickly in ways that maximize immediate rewards at the
expense of achieving long-term goals (de Wit et al., 2007; Hariri et
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al., 2006). Minimal sex differences have been reported for this mea-
sure of impulsiveness (Cross et al., 2011).

MCS reactivity paradigm

An identical challenge paradigm designed to engage the reward
system was administered during fMRI to both the Duke and Pitts-
burgh samples. As described previously (Forbes et al., 2009a;
Gianaros et al., 2011; Hariri et al., 2006; Hariri et al., 2009) our
blocked-design paradigm consisted of pseudorandom presentation
of trials wherein participants played a card guessing game and re-
ceived positive or negative feedback (i.e., correct or incorrect guess)
for each trial. During each trial, participants had 3 s to guess, via but-
ton press, whether the value of a visually presented card would be
higher or lower than 5 (index and middle finger, respectively). The
numerical value of the card was then presented for 500 ms and fol-
lowed by appropriate feedback (green upward-facing arrow for posi-
tive feedback; red downward-facing arrow for negative feedback) for
an additional 500 ms. A crosshair was then presented for 3 s, for a
total trial length of 7 s. Each block comprised 5 trials, and the para-
digm consisted of 3 blocks of predominantly positive feedback (80%
correct) and 3 blocks of predominantly negative feedback (20%
correct) interleaved with 3 control blocks. During control blocks,
participants were instructed to simply make button presses during
the presentation of an “x” (3 s), which was followed by an asterisk
(500 ms) and a yellow circle (500 ms). Each block was preceded by
an instruction of “Guess Number” (positive or negative feedback
blocks) or “Press Button” (control blocks) for 2 s resulting in a total
block length of 38 s and a total task length of 342 s.

Participants were told that their performance on the card game
would determine a monetary reward to be received at the end of
the game. Participants were unaware of the fixed outcome probabili-
ties associated with each block and were led to believe that their per-
formance would determine a net monetary gain at the end of the
scanning session. We included one incongruent trial within each
task block (e.g., 1 of 5 trials during positive feedback blocks was in-
correct, resulting in negative feedback) to prevent participants from
anticipating the feedback for each trial and to maintain participants’
engagement and motivation to perform well.

BOLD fMRI data acquisition

Duke sample

Each participant was scanned using a research-dedicated GE MR750
3T scanner (General Electric, Milwaukee, WI, USA) at the Duke-UNC
Brain Imaging and Analysis Center. This scanner is equipped with
high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s slew
rate, and an eight-channel receive-only SENSE head coil for parallel im-
aging at high bandwidth up to 1 MHz. A semi-automated high-order
shimming program was used to maximize global field homogeneity. A
series of 34 interleaved axial functional slices aligned with the anterior
commissure-posterior commissure (AC-PC) plane were acquired for
full-brain coverage using an inverse-spiral (spiral in) pulse sequence
to reduce susceptibility artifact (TR/TE/flip angle =2000 ms/30 ms/
60°; FOV=240 mm; 3.75x3.75x4 mm voxels; interslice skip=0).
Four initial RF excitations were performed (and discarded) to achieve
steady-state equilibrium.

Pittsburgh sample

Each participant was scanned using a Siemens 3 T Allegra scanner
(Siemens AG, Medical Solutions, Erlangen, Germany) equipped with
40-mT/m gradients at 400 T/m/s slew rate and a 12-channel standard
radiofrequency birdcage coil. This scanner is developed specifically
for advanced brain imaging applications and characterized by in-
creased T2* sensitivity and fast gradients that minimize echo spacing,
thereby reducing echo-planar imaging geometric distortions and im-
proving image quality. An autoshimming procedure was conducted to

minimize field inhomogeneities. A series of 34 interleaved axial slices
aligned with the AC-PC plane were acquired with a gradient-echo
echo planar  Cartesian  imaging sequence  (TR/TE/flip
angle =2000 ms/25 ms/70°; FOV=200 mm, 3.125x3.125x3 mm
voxels; interslice skip=0). Two initial RF excitations were performed
(and discarded) to achieve steady-state equilibrium. However, the
first two acquired volumes were discarded during preprocessing to
further ensure steady-state equilibrium.

BOLD fMRI data analysis

Whole-brain image analysis of all fMRI data was conducted at the
Laboratory of NeuroGenetics at Duke University using the general lin-
ear model (GLM) of SPM8 (www.fil.ion.ucl.ac.uk/spm/doc/manual.
pdf; please consult SPM8 documentation for detailed information
about image processing and statistical analyses). Images for each sub-
ject were realigned to the first volume in the time series to correct for
head motion, spatially normalized into a standard stereotactic space
(Montreal Neurological Institute template) using a 12-parameter af-
fine model (final resolution of functional images=2 mm isotropic
voxels), and smoothed to minimize noise and residual difference in
gyral anatomy with a Gaussian filter, set at 6 mm full-width at half-
maximum. Voxel-wise signal intensities were ratio normalized to
the whole-brain global mean.

Variability in single-subject whole-brain functional volumes was de-
termined using the Artifact Recognition Toolbox (http://www.nitrc.org/
projects/artifact_detect). Individual whole-brain BOLD fMRI volumes
meeting at least one of the following two criteria were entered as re-
gressors of no interest during the determination of task-specific effects:
1) significant mean-volume signal intensity variation (i.e., within vol-
ume mean signal greater or less than 4 standard deviations of mean sig-
nal of all volumes in time series), and 2) individual volumes where
scan-to-scan movement exceeded 2 mm translation or 2° rotation in
any direction. Only 1.5% of all volumes were identified as artifacts and
accounted for in this manner, thus we believe this approach enhanced
our capacity to determine task-specific effects by excluding effects
due to volumes with substantial variability without compromising our
power to detect task-specific effects by excluding a large number of
volumes.

Following preprocessing, first-level condition-specific effects of
feedback (i.e., reward) were estimated for each individual using linear
contrasts (Positive Feedback>Negative Feedback), i.e., weighted sum
of the beta images derived with the canonical hemodynamic response
function. Individual contrast images were then used in second-level
random effects models accounting for scan-to-scan and participant-
to-participant variability to determine group mean condition-specific
regional responses using one-sample t-tests. Thresholds used were
p<0.05, FWE corrected and >10 contiguous voxels for VS analyses
and p<0.001 (uncorrected) and >10 contiguous voxels for whole-
brain analyses, from which parameter estimates were derived for the
additional ROIs.

VS masks of interest were constructed in MNI space using the Talair-
ach Daemon option of the WFU PickAtlas Tool, version 1.04 (Wake For-
est University School of Medicine, Winston-Salem, North Carolina). Two
spheres of 10 mm radius were created around MNI coordinates x =+
12, y=12 & z=—8 (mm) to encompass the VS in the right and left
hemisphere, respectively. Because of the relatively extensive raw fMRI
signal loss and noise typically observed in the VS and adjacent regions,
single-subject BOLD fMRI data were included in subsequent analyses,
including CFA, only if there was a minimum of 90% signal coverage
(i.e., presence of clear fMRI signal) in the VS masks bilaterally. For the
Duke sample, this criterion resulted in 173 single-subject data sets
(102 women; mean age 19.76 & 1.28 years) with adequate coverage,
and for the Pittsburgh sample in 89 data sets (51 women; mean age
44.24 4-6.80 years). Six additional cortical regions of interest for extrac-
tion from the whole-brain analyses (i.e., ACC, ventrolateral PFC and
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parietal cortex; details in Table 1) were selected based on prior work on
MCS reward and corticostriatal behavioral control networks (Casey and
Durston, 2006; Hariri et al., 2006; McClure et al., 2004).

BOLD parameter estimates for CFA

To facilitate CFA, BOLD parameter estimates from VS and cortical
clusters exhibiting a main effect of task (i.e., differential effects of posi-
tive versus negative feedback as described below) were extracted using
the VOI eigenvariates tool in SPM8 (www.fil.ion.ucl.ac.uk/spm/doc/
manual.pdf), effectively yielding a weighted mean of contrast estimates
over each region, where atypical voxels are downweighted. For the VS,
these BOLD parameter estimates were extracted from the entire func-
tional clusters within the left and right hemisphere VS ROI masks, re-
spectively. Because of the size and contiguity of functional cortical
clusters in the whole-brain analyses, parameter estimates were
extracted from a 5 mm radius sphere centered on the maximally re-
sponsive voxel within each ROI (see Fig. 1 and Table 2).

In addition to producing the necessary values for the identification
of latent factors through CFA, extracting parameter estimates from
functional clusters activated by our fMRI paradigm rather than clus-
ters specifically correlated with our independent variables of interest,
precludes the possibility of any correlation coefficient inflation that
may result from capitalizing on the same data twice (Viviani, 2010).
We have successfully used this more conservative and rigorous ana-
lytic strategy in recent studies (Carre et al., in press; Hyde et al.,
2011).

Statistical analyses

Sex, age, and site were included as simultaneous predictors in all an-
alyses to account for differences between the two samples. Two CFAs
were first fit using Mplus 6.0 (Muthén and Muthén, 2008) to test the
two hypothesized measurement models for (a) the three BIS impulsiv-
ity scores, and (b) BOLD responses during the card-guessing task in
eight preselected ROIs: bilateral VS, ventrolateral PFC, parietal cortices,
and the perigenual and dorsal ACC (see Table 1 for anatomical coordi-
nates). Maximume-likelihood estimation with robust standard errors
computed with a sandwich estimator (Kauermann and Carroll, 2001)
was used to reduce the impact of any non-normality.

Because BOLD response in the right and left VS were correlated at
r=.90, a single bilateral VS ROI (20 mm sphere centered at x=0,
y=10,z=—10 mm) was used in these analyses to simplify the mea-
surement model, resulting in the seven ROIs listed in Table 1. When
the right and left VS were entered separately to check this decision,
the results of the SEM were unchanged regarding the association be-
tween the latent MCS and impulsivity constructs, but the very high
correlation between right and left VS resulted in a non-positive

Table 1
Coordinates and t-values for the maximally responsive voxel within regions of interest
in the contrast of positive information on reward > negative information on reward.

Regions of interest Anatomical coordinates t
Ventral striatum Bilateral 0,10, —10 7.27
Parietal cortex R 42, —42, 44 533
L —42, —46, 38 494
Ventrolateral PFC R 42,48, —6 3.64
L —38,48, 2 3.82
Dorsal ACC L —2,18, 46 3.97
Perigenual ACC L —4,42,4 3.63

Note: L = left; R = right. For the cortical regions of interest, the peak voxel represents
the center of the 5 mm sphere from which parameter estimates were extracted; t
values are from whole-brain tests of activation by the reward task. Statistical thresh-
olds used were p<0.05, FWE corrected and >10 contiguous voxels for VS analyses
and p<0.001 (uncorrected) and >10 contiguous voxels for whole-brain analyses.

definite residual covariance matrix and robust standard errors could
not be computed.

The association between the latent impulsivity and latent reward
system constructs derived from the two separate measurement
models was tested in a single SEM in the same software using robust
maximum likelihood estimation. For illustrative purposes, two differ-
ent tests of interactions were conducted to determine if there were
statistically significant differences between the sexes and the sites
(and their samples and scanners) in the association between the la-
tent constructs that would argue that data should not be combined
across sites or sexes. First, these interactions were added to the final
model and tested using trapezoidal numerical integration (Chawla
et al.,, 1996) with 15 integration points per dimension in Mplus. Sec-
ond, because sex and site are binary variables, these interactions also
were tested in multi-group analyses in Mplus, by constraining the
factor loadings and item means to be the same across groups. The
multi-group specification allows the latent model to vary between
groups; a constraint can then be imposed to test whether the coeffi-
cient of latent reward in the regression of latent impulsivity can be
held constant across groups.

Results

Means and standard deviations of BOLD responses in each ROI in
the hypothesized MCS reward system are presented in Table 2 for
the combined full sample, by sex in the full sample, and by site. Pear-
son partial correlations controlling sex, age, and site between the
seven ROIs and the three subscales of the BIS are presented in
Table 3. Although the total score of the BIS was not used in the
CFAs, it is presented in Table 3 for reference.

Measurement model for the MCS reward system

Differential BOLD responses for the seven ROIs hypothesized to
participate centrally in the MCS reward system were first subjected
to CFA to construct the measurement model for the latent neuronal
system. One latent neuronal network factor was hypothesized. All
loadings were significant at p<0.0001, which exceeded the adjusted
alpha correcting for testing multiple factor loadings (.05/7 =.007).

Two widely used fit indices were used to quantify and evaluate the
fit of the hypothesized measurement model for the seven ROIs to the
data (Browne and Cudeck, 1993): Root mean square error of approx-
imation (RMSEA) and standardized root mean square residual
(SRMR). In the initial model, these fit indices did not indicate an ac-
ceptable fit to the data for this model: RMSEA=0.15; SRMR=0.07;
which were both outside the conventional limits of acceptable
model-to-data fit (RMSEA <0.10 and SRMR <0.05) (Browne and
Cudeck, 1993). However, the modification indices for this CFA of the
MCS reward system ROIs indicated that several pairs of ROIs were
correlated to a greater extent than was fully explained by their contri-
butions to the latent MCS reward system construct: right with left
ventrolateral PFC, right with left parietal cortices, bilateral VS with
perigenual ACC, and perigenual ACC with dorsal ACC. Because these
correlations identified by the modification indices are consistent
with both structural and functional data on neural reward processing,
these ROIs were allowed to correlate freely in a revised CFA model.
When these changes were made to the neuronal measurement
model shown in Fig. 2, the fit indices were both in the traditional
“close” fit ranges (Browne and Cudeck, 1993): RMSEA: 0.04 (90%
C1=0.02-0.06); SRMR = 0.04.

To illustrate the formal method of testing alternative models de-
fined by different numbers of latent neuronal factors in CFA, we com-
pared this 1-factor model to a 2-factor model in which the highly
correlated bilateral VS, perigenual ACC, and dorsal ACC comprised a
second factor. The fit of the 2-factor model was significantly worse
than the 1-factor model, y*=22.80, DF=1, p<.001.
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Fig. 1. Task-evoked group-level activations for selected ROIs. Bilateral VS can be seen in (a), bilateral parietal cortex in (b), left vIPFC in (c), right vIPFC in (d), and dorsal and peri-
genual ACC in (e) (all p<0.001 uncorrected, 10 voxel extent threshold). VS activation at the p<0.05 FWE corrected, 10 voxel extent threshold used in VS analyses is shown in (f).

Measurement model for impulsivity

CFA of the three subtests of the impulsivity scale was conducted.
All three subtests loaded significantly on the latent impulsivity con-
struct at p<.0001, which were significant after correcting for multiple
testing. A model with three manifest indicators is “just identified”
with zero degrees of freedom (Reichardt, 2002) in the sense that a
single latent construct is sufficient to explain all pairwise correlations
among the three manifest indicators.

Association between the MCS reward system and impulsivity

As illustrated in Fig. 2, the two CFA measurement models were em-
bedded in a single SEM to test the association between the latent MCS
reward system and latent impulsivity constructs. Robust maximum-
likelihood estimation of the full SEM model achieved a “close” fit of
the model to the data according to both fit indices: RMSEA =.043
(95% confidence interval 0.022-0.062); SRMR = 0.044. The path be-
tween the latent neuronal construct and the latent construct for impul-
sivity revealed a significant positive association, fully standardized
p=0.145,p=0.021.

Comparison of CFA/SEM to univariate tests and other methods of com-
bining ROIs

To illustrate the advantages of using such CFA/SEM models over
individual tests of associations, seven individual tests of associations
were conducted between BOLD responses in each of the ROIs and in
the hypothesized MCS reward system and impulsivity. To make
these “univariate” tests parallel to the full CFA/SEM shown in Fig. 1,
they were conducted in SEM using the same latent impulsivity con-
struct defined by three subtests of the Barrett Impulsiveness Scale,
controlling sex, age, and site. As reported in Table 4, two of the uni-
variate associations were nominally significant at .05, but none was
significant after Bonferroni correction for multiple testing (o =.05/

Table 2

Means (standard deviations) for BOLD response eigenvariates for contrasts in
condition-specific unit-less effect parameter estimates in each region of interest of
the hypothesized mesocorticostriatal reward system.

Combined sample

Regions of Full Males Females Pittsburgh  Duke

interest

Bilateral ventral 0.08 (0.22) 0.11 (0.24) 0.06 (0.22) 0.09 (0.22) 0.08 (0.22)
striatum

Right parietal  0.08 (0.26) 0.12 (0.30) 0.06 (0.24) 0.11 (0.22) 0.07 (0.28)
cortex

Left parietal 0.08 (0.26) 0.10 (0.28) 0.06 (0.26) 0.10 (0.22) 0.07 (0.28)
cortex

Right 0.09 (0.39) 0.13 (0.33) 0.06 (0.42) 0.06 (0.28) 0.10 (0.44)
ventrolateral
PFC

Left 0.09 (0.37) 0.14 (0.37) 0.05(0.37) 0.07 (0.26) 0.10 (0.42)
ventrolateral
PFC

Dorsal ACC 0.09 (0.40) 0.15(0.45) 0.06 (0.36) 0.10 (0.28) 0.09 (0.45)

Perigenual ACC  0.09 (0.42) 0.16 (0.51) 0.04 (0.35) 0.01 (0.32) 0.13 (0.47)

7 =.007) or the less conservative Holm step-down method. This con-
trasts with the significant association between the latent MCS and la-
tent impulsivity constructs shown in Fig. 1, which does not require
Bonferroni correction because only one test of the association be-
tween the MCL and impulsivity latent constructs was conducted.

We also compared the results of the CFA/SEM to two common
ways of capturing the variance in all 7 ROIs at the same time to dem-
onstrate that they yield similar results: taking the simple mean of the
7 measured ROIs and taking the first eigenvariate of all 7 regions trea-
ted as a single ROL The latent construct for impulsivity was regressed
on each of these in separate SEMs with the usual covariates. The mean
of the 7 mean ROIs just failed to exhibit a significant association with
latent impulsivity, 3=0.11, p=0.054. This is likely because this does
not generate a latent component score. The first eigenvariate of the
combined ROIs, which is a type of principal component, was associat-
ed with latent impulsivity to the same extent as the latent neural con-
struct from the CFA measurement model, 3=0.14, p=0.02.

Moderation of associations in CFA/SEM

To illustrate two methods of testing of moderators of the observed
brain-behavior relations in this modeling approach, additional
models were fit to test for moderation by data collection sites, and
separately, by the sex of the participant. When the interaction was di-
rectly tested, there was not a significant interaction with site (unstan-
dardized p= —0.72, p=0.69). Similarly, the multiple-groups test of
this interaction was not significant, y*=0.02, p=10.89, indicating
lack of evidence that data from the two sites should not be combined.

In contrast, the direct test of the interaction with sex was signifi-
cant (unstandardized 3= —3.01, p<0.05). Similarly, the multiple-
groups test of this interaction achieved borderline significance,
x>=3.65, p=0.056, suggesting that there may be stronger associa-
tion between the latent construct reflecting contemporaneous activa-
tion of the ROIs in the MCS reward network and impulsivity in males
than females. When the SEM was specified separately for the 109
males (RMSEA=0.05; 90% CI: 0.00-0.08; SRMR=0.05), the MCS

Table 3

Partial Pearson correlations controlling sex, age, and site between BOLD responses in
each of seven regions of interest hypothesized to be part of a mesocorticostriatal re-
ward system measured using a card-guessing reward paradigm in functional magnetic
resonance imaging and three subtests of the Barrett Impulsiveness Scale, separately for
109 males and 153 females.

Subscales and total score of Barratt Impulsiveness Scale

Regions of interest Nonplanning Motoric Cognitive Total score

M F M F M F M F

Bilateral ventral striatum .19+ .06 18+ .05 .29* .01 .25% .05

Right parietal cortex 18+ .00 12 .05 .13 —-.09 .17+ .00
Left parietal cortex .16 .05 .19 .08 .19* .00 .21 .06
Right ventrolateral PFC .01 .07 .05 .07 .09 —.07 .05 .04
Left ventrolateral PFC 16+ 14+ .12 .09 .18+ 04 17+ .12
Dorsal ACC 17+ .07 21 .03 .18+ .01 .22* .05
Perigenual ACC .09 .06 .08 .02 .07 —.04 .10 .03

Nominal significance levels: +p<.10; * p<.05; ** p<.01.
Note: M = males; F = females; PFC = prefrontal cortex; ACC = anterior cingulate
cortex.
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Fig. 2. Fully standardized path coefficients for best-fitting model, controlling for age,
sex, and site for the full sample of females and males (N=262). Fully standardized
path coefficients can be interpreted as marginal correlations between the two variables
on either side of the arrow.

reward network was positively associated with impulsivity (fully
standardized 3 =0.26, p<.005). In contrast, among the 153 females
(RMSEA=0.05; 90% CI: 0.02-0.08; SRMR=0.06), the association
was slightly negative and not statistically significant (fully standard-
ized 3= —0.01, p=0.86). As shown in Fig. 3, these associations be-
tween the latent MSC reward network and impulsivity constructs
correspond to Pearson correlations of r (109)=0.32, p<0.001 for
males and r (153) = —0.04, p=0.60 for females.

Robustness of CFA model to variations in preprocessing and model
misspecifications

Three series of analyses were conducted to provide illustrative
tests of the robustness of the CFA measurement model in the present
SEM.

Variations in preprocessing

Table 5 presents the results of a comparison of the results of the
primary CFA/SEM analysis shown in Fig. 1 to those of analyses
based on ROI values derived with more lenient thresholds and larger
spheres. Across three variations in preprocessing, the loadings of the
ROIs on the latent MCS reward factor changed very little and the re-
sults of the SEM regression analysis relating the latent MCS reward
factor to the latent impulsivity factors were essentially unchanged.

Omission of ROIs central to the latent construct

Series A in Table 6 presents the results of analyses that test the ro-
bustness of the CFA model in the present data when omitting one ROI
central to the construct at a time. Because the latent construct is

Table 4

Fully standardized associations between BOLD responses in each of the seven regions
of interest in the hypothesized mesocorticostriatal reward system and a latent impul-
sivity construct defined by three subtests of the Barrett Impulsiveness Scale, tested in-
dividually in separate structural equation models, adjusting for sex, age, and site.

Regions of interest B Nominal p=
Bilateral ventral striatum 0.14 0.02
Right parietal cortex 0.05 0.39
Left parietal cortex 0.11 0.06
Right ventrolateral PFC 0.02 0.72
Left ventrolateral PFC 0.07 0.12
Dorsal ACC 0.57 0.03
Perigenual ACC 0.04 0.49

Note: PFC = prefrontal cortex; ACC = anterior cingulate cortex; N=109 males and
153 females; none of the seven tests of associations were significant after correcting
for multiple testing at p=.05/7 =.007.

defined by the contributions of multiple ROIs, it is not surprising
that the results do not change appreciably at the level of both factor
loadings and SEM regression coefficients when one ROI is omitted.

Inclusion of ROIs not central to the latent construct

The first three columns in Series B in Table 6 show the results for
the CFA measurement model for the neuronal reward network and
the SEM regression of the latent reward construct on the latent im-
pulsivity construct when three ROIs not hypothesized to participate
in the MCS reward network were added one at a time to CFA neuronal
measurement model. The loadings for these additional ROIs were
each significant in this large sample at p<.0001. Nonetheless, the
loadings were modest, with the latent MCS reward construct explain-
ing only 15.5-19.0% of the variance in each added ROI. Because each
manifest variable only contributes to a latent construct in CFA only
to the extent of its factor loading, the addition of these extra-
network ROIs had minimal effects on factor loadings of the other
ROIs and no appreciable effect on the association between the two la-
tent constructs. Adding ROIs with near zero factor loadings would
have had essentially no effect.

It is essential to note that the significant loadings of the extra-
network ROIs are not an artifact of CFA. Rather, they reflect the fact
that the raw Pearson correlations of these ROIs with the 7 ROIs hypoth-
esized to comprise the MCS reward network were themselves all small
but significant: angular gyrus (range=0.17-0.44; median=0.34; all
p<.005), occipital lobe (range =0. 12-0.44; median=0.31; all p<.05),
and retrosplenial cortex (range =0.13-0.57, median = 0.28).

In addition, an ROI in the ventral stream of the visual system (pos-
terior inferior temporal gyrus) was added to the model (last column
of Series B in Table 6) that was not hypothesized to be part of the
MCS reward network, but is known to be activated by visual reward
cues (Buckholtz et al., 2010; Gaffan et al., 1988; Krawczyk et al.,
2007). The loading of this ROI on the latent MCS reward construct
was considerable. Because of its high correlation with the hypothe-
sized ROIs, however, its addition did not appreciably change the fac-
tor loadings for the hypothesized ROIs or the association between
the latent MCS reward system and latent impulsivity factors. Thus,
had a more distributed reward system network including the posteri-
or inferior temporal gyrus been hypothesized, the results of the
model would not have changed appreciably. As long as the central
ROIs are included in the CFA, adding additional ROIs that do or do
not participate in the hypothesized network will have little effect,
with the degree of their participation in the network clearly indicated
by their factor loadings.

Discussion

We described the use of CFA measurement models in SEM to con-
duct formal statistical tests of hypotheses regarding the contempora-
neous activation of pre-selected ROIs measured in fMRI stimulation
paradigms when those ROIs are believed to be part of coherent neu-
ronal networks engaged by the stimulation task. In this strategy, the
contemporaneous activation of each ROI is conceived as a fallible
manifest indicator of the latent neuronal network.

The use of CFA in hypothesis-driven fMRI research on neuronal
networks offers numerous advantages. CFA is a fully developed and
evaluated statistical approach that can readily be used to evaluate
the extent to each pre-selected ROIs participates in a hypothesized
neuronal network. CFA models error variance separately and yields
a quantification of the activation of the network as a whole that is
measured with less error than each of the ROIs that define the net-
work, providing improved statistical power. Furthermore, using CFA
in neuroimaging provides a hypothesis-driven method for data re-
duction. As with exploratory multivariate methods based on PCA,
measurements of multiple ROIs can be reduced to a small number
of constructs with clear empirical and statistical meaning, thus
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Fig. 3. Scatter plots and best-fit linear regression lines with 95% confidence intervals for the association between the estimated latent MCS reward network and impulsivity con-

structs among males (n=109) and females (n=153).

improving power by reducing the number of statistical comparisons.
CFA differs from other multivariate methods that are also useful in
data reduction, however, both in the way in which error is modeled
and because CFA can easily be used to conduct formal tests of a priori
hypotheses.

Future studies should evaluate the power advantages inherent in
data reduction using CFA versus analyses of individual ROIs and
should directly compare the results of PCA-based methods and CFA
using simulated data sets. In addition, simulations could be used to
evaluate the effects of variations in pre-processing methods and the
inclusion of incorrectly specified ROIs.

Illustration of CFA

We provided a substantive illustration of the use of CFA with mul-
tiple manifest indicators of a hypothesized MCS reward system
assessed in fMRI during a reward-based stimulation task and multiple
manifest indicators of the behavioral trait of impulsivity. In the first
step of the analyses, we evaluated a measurement model for the

Table 5

hypothesized MCS reward system. Initially, the fit was fair but not
in the range generally regarded as acceptable. The modification indi-
ces for this CFA indicated that several biologically plausible changes
to the measurement model would improve the fit of the MCS mea-
surement model to the data. These indices indicated that several
pairs of ROIs should be allowed to correlate independent of their cor-
relations through the latent construct. These changes resulted in fit
indices in the “close” fit range. Although these modifications of the
model were reasonable and justified, the use of modification indices
means that the results of the analyses generate a hypothesis that
can be tested in future studies, but do not constitute a test of a fully
a priori hypothesis. Because adjustments to the measurement model
for the MCS do not bias the test of association with the latent reward
construct, however, these results yield a hypothesis that is plausible
and consistent with the present data.

As shown in Fig. 2, every ROI loaded significantly on the latent MCS
reward circuit construct, although there were highly informative varia-
tions in the magnitudes of these loadings. Note that the loading of the
perigenual ACC on the latent MCS reward system construct was

Comparison of the results of the primary CFA/SEM analysis to those of sensitivity analyses based on values derived with more lenient thresholds and larger spheres.

Primary analyses

Sensitivity analyses

20 mm bilateral VS 849 voxels;
5 mm others

30 mm bilateral VS 858 voxels;
10 mm others

30 mm bilateral VS 1651 voxels;
10 mm others

30 mm bilateral VS 4438 voxels;
10 mm others

Loadings on latent MCS reward factor

Dorsal ACC 0.809 0.856 0.864 0.877
Perigenual ACC 0.369 0.475 0.482 0.499
Bilateral VS 0.668 0.713 0.746 0.785
Left ventrolateral 0.724 0.751 0.747 0.738
PFC
Right 0.546 0.629 0.627 0.622
ventrolateral
PFC
Left parietal 0.836 0.883 0.877 0.869
Right parietal 0.738 0.815 0.809 0.797
Regression of latent impulsivity on latent MCS reward
Regression S.E. p= Regression S.E. p= Regression S.E. p= Regression S.E. p=
coefficient coefficient coefficient coefficient
0.145 0.063 0.021 0.132 0.060 0.029 0.130 0.060 0.031 0.123 0.060 0.040

Note: Primary analyses are those reported in Fig. 1; values for the three sensitivity analyses were based on a threshold of p<0.05, uncorrected (0 voxel extent threshold) and a
10 mm sphere for the cortical ROIs; for the bilateral VS ROI, we varied the thresholds from p<0.05 FWE corrected (10 voxel extent) to p<0.001 uncorrected (0 voxel extent) to
p<0.05 uncorrected (0 voxel extent) and a 30 mm sphere to obtain the indicated cluster sizes of 858, 1651 and 4438 voxels respectively; there were no variations in the loadings
of the three impulsivity subscales on the latent impulsivity factor in the sensitivity analyses.
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markedly lower than for the other ROISs. In this case, the latent MCS con-
struct accounted for only .369% = 13.6% of the variance in BOLD re-
sponse of the perigenual ACC. In contrast, the latent MCS construct
accounted for 29.8-66.9% of the variance in the other ROIs. Although ac-
tivation of the perigenual ACC in this task was significantly correlated
with activation of the other ROIs, the modest amount of explained var-
iance suggests that the perigenual ACC does not centrally participate in
this network. Rather its modest factor loading may reflect either wide-
spread nonspecific brain activation in response to reward cues or partic-
ipation in another network modestly related to reward processing.

It is important to note, however, that inclusion of the perigenual
ACC in the latent MCS reward construct as hypothesized has little im-
pact on either the measurement model or the association between
the latent reward system and impulsivity constructs. This is because
data from the perigenual ACC play a role in the CFA/SEM only to the
extent of the loading of this ROI on the neuronal construct (i.e., its co-
variance with the other ROIs). This issue is addressed again below
when the robustness of the CFA model is addressed.

The CFA measurement model for the MCS reward system and the
CFA measurement model for impulsivity were combined in a single
SEM to test the association between the latent MCS reward system
and latent impulsivity constructs. As hypothesized, variations in the
latent MCS neuronal reward system construct were found to be pos-
itively correlated with variations in the impulsivity construct, and
tests of the interaction with sex indicated that the association of the
MCS reward system with impulsivity may be significantly stronger
in males. As shown in Fig. 2, variation in the latent MCS construct

Table 6

B.B. Lahey et al. / Neurolmage 60 (2012) 1982-1991

scores accounted for an estimated 10.2% of the variance in latent im-
pulsivity in males.

Tests of robustness of the CFA model

We conducted three series of illustrative tests of the robustness of
the CFA measurement model in these data to procedural variations in
preprocessing and two kinds of model misspecification (i.e., exclud-
ing an ROI that is central to the network or including an ROI that is
not strongly related to the network). When the results of these ana-
lyses reported in Tables 5 and 6 are considered together, it is clear
that the specified CFA/SEM was robust to each of these variations.
When the most important ROIs that define a neuronal latent con-
struct are included, the omission of a small proportion of the ROIs
often will not change the latent construct enough to influence find-
ings. Similarly, because of the way in which it is constructed, CFA is
highly robust to the inclusion of additional indicators regardless of
the magnitudes of their factor loadings. Additional ROIs that are high-
ly correlated with the hypothesized manifest indicators will not
change the model because, due to their high correlations, they pro-
vide little additional information on the construct. Conversely, the
addition of manifest indicators with low correlations with other
manifest indicators will contribute little to the latent construct. This
is reflected in their modest factor loadings. As long many of the
ROIs that centrally participate in the neuronal network are in the
model, CFA is highly robust to such misspecifications.

Results of two series of analyses to test the robustness of CFA when (a) each of the hypothesized ROIs is omitted one at a time, and (b) when ROIs not hypothesized to be centrally

related to the MCS reward system are included in the models.

A. series omitting one ROI hypothesized to be related to the MCS reward system at a time

Loadings on latent MCS reward factor

Dorsal ACC - 0.813 0.778
Perigenual ACC 0.329 - 0.335
Bilateral VS 0.628 0.669 -
Left ventrolateral ~ 0.739 0.730 0.732
PFC
Right ventrolateral 0.545 0.554 0.553
PFC
Left parietal 0.865 0.824 0.850
Right parietal 0.734 0.742 0.779
Regression of latent impulsivity on latent MCS reward
Regression Regression Regression

coefficient (S.E.)
0.136 (0.066)

coefficient (S.E.)
0.142 (0.064)

coefficient (S.E.)
0.127 (0.065)

0.836 0.808 0.845 0.799
0.370 0.365 0.432 0.352
0.683 0.668 0.666 0.681

- 0.724 0.695 0.720
0.541 - 0.554 0.526
0.800 0.839 - 0.839
0.722 0.733 0.736 -
Regression Regression Regression Regression

coefficient (S.E.)
0.141 (0.062)

coefficient (S.E.)
0.149 (0.062)

coefficient (S.E.)
0.142 (0.063)

coefficient (S.E.)
0.156 (0.064)

B. series adding three ROIs (5 mm spheres, p=1 uncorrected) not hypothesized to be related to the MCS reward system ROI one at a time

Occipital cortex

Retrosplenial cortex

Angular gyrus Posterior inferior temporal gyrus

-8-8618 -6-5618 -48 -64 20 48, -62, -6

Loadings on latent MCS reward factor

Dorsal ACC 0.812 0.821 0.808 0.809
Perigenual ACC 0.393 0411 0.396 0.421
Bilateral VS 0.686 0.703 0.683 0.695

Left ventrolateral PFC 0.724 0.717 0.726 0.706
Right ventrolateral PFC 0.539 0.538 0.541 0.535

Left parietal 0.830 0.816 0.834 0.831
Right parietal 0.725 0.710 0.731 0.752
Extra-network ROI [0.394] [0.411] [0.436] [0.733]

Regression of latent impulsivity on latent MCS reward
Regression coefficient
(SE)
0.141 (0.063)

(SE.)
0.141 (0.063)

Regression coefficient

Regression coefficient
(SE)
0.139 (0.063)

Regression coefficient
(S.E.)
0.135 (0.061)

Note: All loadings and regression coefficients are fully standardized; In series A, all regression coefficients for latent impulsivity on latent MCS reward were significant at
p=0.014-0.050; in series B, all regression coefficients were significant at p=0.025-0.027; in series B, the loadings for the ROIs not hypothesized to be related to the

MCS reward system are in brackets.
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Interpretation of CFA in terms of neuronal networks

When multivariate methods such as PCA yield a latent component
on which all ROIs substantially load, and when CFA yields a latent factor
on which the loadings of all ROIs are statistically significant, it is tempt-
ing to interpret such findings as evidence that all ROIs participate in the
same contemporaneously activated neuronal circuit. In this context, the
findings reported in the first three columns of Series B of Table 6 have
importance. As the functional neuroimaging field moves away from
studies of single ROIs in small samples to the measurement of multiple
ROIs in large samples, it will become necessary to confront the meaning
of small but statistically significant correlations between extra-network
ROIs and ROIs hypothesized to participate centrally in these networks. It
will be important to determine if these modest correlations reflect only
correlated measurement and processing artifacts, or if they reveal
something approaching “whole-brain” responses to stimulation para-
digms that involve many distributed nodes to varying degrees. Indeed,
robust correlations between a set of ROIs may reflect individual differ-
ences in BOLD responses throughout the brain that give the impression
that the specified ROIs are correlated when, in a broad sense, all ROIs
would be correlated in this scenario. It will only be possible to deter-
mine the relative association of each ROI network to the hypothesized
network by comparing their loadings to other ROIs thought not to be
part of the network. Although statistical methods have been developed
for studying some key properties of the brain as a whole (Rubinov and
Sporns, 2011), variations in factor loadings in CFA provide a convenient
way of addressing this phenomenon when relatively small numbers of
ROIs are studied by focusing on relative magnitudes of factor loadings
of ROIs.
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