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Stress is a significant risk factor for the development of psychopathology, particularly
symptoms related to reward processing. Importantly, individuals display marked variation
in how they perceive and cope with stressful events, and such differences are strongly
linked to risk for developing psychiatric symptoms following stress exposure. However,
many questions remain regarding the neural architecture that underlies inter-subject
variability in perceptions of stressors. Using functional magnetic resonance imaging
(fMRI) during a Monetary Incentive Delay (MID) paradigm, we examined the effects of
self-reported perceived stress levels on neural activity during reward anticipation and
feedback in a sample of healthy individuals. We found that subjects reporting more
uncontrollable and overwhelming stressors displayed blunted neural responses in medial
prefrontal cortex (mPFC) following feedback related to monetary gains as well monetary
losses. This is consistent with preclinical models that implicate the mPFC as a key site
of vulnerability to the noxious effects of uncontrollable stressors. Our data help translate
these findings to humans, and elucidate some of the neural mechanisms that may underlie
stress-linked risk for developing reward-related psychiatric symptoms.
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INTRODUCTION
Alterations in reward-seeking and goal-directed behavior are a
common symptom of mental illness. In the broadest sense, such
alterations usually reflect a shift in how different options in the
environment are valued and pursued, resulting in either a reduced
motivation for experiences that were previously found to be
rewarding (Treadway and Zald, in press), or a heighted sense of
craving for particular rewards (e.g., drugs, food) (Volkow, 2004;
Everitt and Robbins, 2005). While progress has been made in
identifying the neural systems that participate in reward process-
ing behavior, many questions remain as to how these systems
become dysfunctional in clinical populations.

Exposure to stress is a central risk factor in the development of
psychiatric conditions characterized by prominent abnormalities
in reward-related processes, such as depression, schizophrenia,
and substance use (Kessler, 1997; Kendler et al., 1999, 2004;
Sinha, 2001, 2008; Yuii et al., 2007). The term stress describes
physically or emotionally demanding circumstances, frequently
involving the real or imagined threat of loss or pain (McEwen,
2007). This can include either physical or emotional pain, and
may occur in the context of professional, social and famil-
ial relationships. A wealth of data suggests that stress expo-
sure alters how individuals process and make decisions about
rewards in their environment (Bogdan and Pizzagalli, 2006; Koob
and Kreek, 2007; Pascucci et al., 2007; Pizzagalli et al., 2007;
Arnsten, 2009; Dias-Ferreira et al., 2009; Schwabe and Wolf,
2009; Cavanagh et al., 2010; Cabib and Puglisi-Allegra, 2011;

Mather and Lighthall, 2012; Shafiei et al., 2012). In particular,
stress has been found to blunt sensitivity to new information
about future rewards, a phenomenon that has been demon-
strated across a variety of experimental paradigms. For example,
under conditions of elevated stress, subjects were less sensi-
tive to reinforcement contingencies during a signal-detection
paradigm (Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2007;
Bogdan et al., 2011). Similarly, subjects show diminished rein-
forcer devaluation immediately following stress, suggesting that
stress can produce habitual response patterns that are resistant
to changes in external or internal conditions (e.g., satiety) (Dias-
Ferreira et al., 2009; Schwabe and Wolf, 2009; Lemmens et al.,
2011).

A variety of evidence highlights a corticostriatal circuit encom-
passing the striatum and medial prefrontal cortex (mPFC)
as a critical neurobiological substrate for stress-borne alter-
ations in reward processing. Data from preclinical studies sug-
gest that stress produces rapid changes in catecholamine levels
(Abercrombie et al., 1989; Pascucci et al., 2007), gene expres-
sion (Ons et al., 2010; Wang et al., 2010), and local circuit
remodeling (Arnsten, 2009) within these areas. Corroborating
observations have been made in human neuroimaging studies;
where stress has been shown to increase dopamine release (Scott
et al., 2006; Soliman et al., 2008; Lataster et al., 2011) and alter
neural responses to reward decision-making and anticipation
(Ossewaarde et al., 2011; Mather and Lighthall, 2012; Schwabe
et al., 2012).
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While these studies have helped identify the systems-level
mechanisms that underlie responses to an acute stressor, they gen-
erally do not address questions regarding the biological basis of
individual differences in how stressors are perceived. This issue
is critical for understanding how stress confers risk for devel-
oping psychopathology, as epidemiological studies reveal that
individuals who consider stressful experiences to be uncontrol-
lable and overwhelming are substantially more likely to develop
psychiatric symptoms following stress exposure (Kendler et al.,
1993, 2004; Kessler, 1997). This is particularly true for symptoms
related to impaired reward-reward processing, such as anhedonic
symptoms in depression and schizophrenia (Kuiper et al., 1986;
Docherty, 1996; Myin-Germeys et al., 2001; Hammen, 2005;
Myin-Germeys et al., 2005; Phillips et al., 2005; Rao et al., 2009).
Highlighting the importance of this distinction, rodent models
suggest that uncontrollable stressors produce a unique pattern
of neurobiological changes, particularly in the mPFC (Cabib and
Puglisi-Allegra, 1994, 2011; Bland et al., 2003; Amat et al., 2005;
Maier and Watkins, 2010). As compared to controllable stres-
sors (i.e., paradigms where instrumental action may alleviate the
stressor), repeated exposure to uncontrollable stressors can result
in learned helplessness behavior and anhedonia (Seligman et al.,
1968; Willner et al., 1992a,b; Amat et al., 2008).

The effects of recent stress perceptions on reward-processing
in otherwise non-stressful contexts has not been well-
characterized. Recent neuroimaging work in humans has
focused on the use of experimental paradigms that combine mea-
sures of reward processing with laboratory stress manipulations,
which can elucidate some of the neural mechanisms underlying
changes in reward-related behavior immediately following
exposure to stressful stimuli (Ossewaarde et al., 2011; Mather and
Lighthall, 2012; Porcelli et al., 2012). However, fewer studies have
examined how such networks are affected by perceptions of stress
over a longer time period. Consequently, the goal of the current
study was to explore associations between reward processing and
reported perceptions of stressors in the preceding month. The
advantage of this design is its ability to explore the consequences
of recent levels in perceived stress on neural networks supporting
reinforcement, which may help explain how prior stress exposure
can alter reward circuitry so as to confer risk for the subsequent
development of psychopathology.

To address this question, we recruited a sample of healthy com-
munity volunteers who completed a measure of perceived stress
over the past month, and then performed a behavioral reward-
processing task during a functional magnetic resonance imaging
(fMRI) scan. Recent levels of perceived stress were assessed using
the Perceived Stress Scale (PSS) (Cohen et al., 1983), a widely-
used instrument that measures the frequency, severity, and per-
ceived controllability of daily stressors over the previous 1-month
period. The PSS has been previously linked to risk for the devel-
opment of both physical and mental health symptoms (Kuiper
et al., 1986; Cobb and Steptoe, 1996; Culhane et al., 2001), as
well as elevations in stress hormones (Pruessner et al., 1999)
and inflammation (Maes et al., 1999). More importantly for the
aims of the current study, the PSS has been linked to alterations
in reinforcement learning assessed using a signal detection task
(Pizzagalli et al., 2007). To assess the effects of perceived stress

on reward processing, subjects were scanned while performing a
monetary-incentive delay (MID) task (Knutson et al., 2000). The
MID is a well-validated neuroimaging paradigm that probes neu-
ral responses to anticipation of reward (i.e., motor preparation to
pursue reward) as well as integration of reward feedback. While
the former condition typically engages the ventral striatum, the
latter condition recruits mPFC, including aspects of pregenual
anterior cingulate cortex (ACC), anterior cingulate sulcus, and
Broadmann area 10 (Knutson et al., 2003, 2005). Importantly, the
MID has previously been used to identify alterations in neural
responses to reward processing in psychiatric populations with
reward-related symptoms (Juckel et al., 2006; Pizzagalli et al.,
2009).

Given the evidence reviewed above that stress is associated
with diminished sensitivity to reward information (Bogdan and
Pizzagalli, 2006; Pizzagalli et al., 2007; Schwabe and Wolf, 2009;
Bogdan et al., 2011) and that the striatum and mPFC may be par-
ticularly critical nodes involved in responses to perceived stress
(Cabib and Puglisi-Allegra, 1994, 2011; Amat et al., 2005), the
MID appears especially well-suited as a task to probe neural activ-
ity in reward-related networks that may be a priori predicted to be
affected by levels of perceived stress.

METHODS
PARTICIPANTS
Participants were 38 volunteers recruited from the community.
Subject ages ranged from 18 to 34, with a mean age of 22.
Roughly equal numbers of men (n = 20) and women (n = 18)
participated. All subjects were screened for any contraindications
for participation in an MRI study, e.g., obesity, claustrophobia,
cochlear implant, metal fragments in eyes, cardiac pacemaker,
neural stimulator, and metallic body inclusions or other metal
implanted in the body, pregnancy.

MEASURE OF RECENT CHRONIC STRESS
To assess recent levels of chronic stress, all subjects were adminis-
tered the PSS. The PSS is a well-validated brief self-report measure
that has been widely used as an index of current-levels of chronic
daily-life stressors (Cohen et al., 1983). Subjects are asked to rate
the frequency and intensity of stressful events that have occurred
over the most recent one-month period. The PSS also incorpo-
rates items that ask subjects to rate the perceived predictability
and controllability of these stressors, as well has how over-
whelmed they felt. Examples of items from this measure include
“In the last month, how often have you felt difficulties were pil-
ing up so high that you could not overcome them?” and “In the
last month, how often have you felt nervous or ‘stressed?”’ Each
item is rated using a 0–4 scale where 0 is defined as “never” and
4 is defined as “very often,” and scores are generated by summing
across the total number of items (after appropriate reverse-coding
for 4 of the 10 items). Internal reliabilities (Cronbach’s-α) across
the 10-item scale were recently reported to be 0.91 in two separate
national surveys that each included 2000 participants (Cohen and
Janicki-Deverts, 2012). The maximum score on this measure is
40, and the minimum is 0. While the PSS is not a clinical instru-
ment and therefore has no “cut-off” score related to diagnostic
categories, it has been found to predict mental and physical health
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outcomes, including vulnerability to infections disease (Cobb and
Steptoe, 1996; Culhane et al., 2001) and depression (Kuiper et al.,
1986). More specifically to the domain of reward processing,
the PSS has been found to predict decreases in reward sensitiv-
ity using a signal-detection reinforcement task (Pizzagalli et al.,
2007).

MONETARY INCENTIVE DELAY (MID) TASK
The Monetary Incentive Delay (MID) task is a widely used assess-
ment of neural circuitry associated with reward anticipation and
processing of reward feedback (Knutson et al., 2000, 2003, 2005)
(see Figure 1). Details of our MID task and fMRI scanning pro-
tocol have been published previously (Buckholtz et al., 2010).
Briefly, during the task participants have the opportunity to win
or lose money by pressing a button during the very brief presen-
tation of visual target stimulus. For each trial, participants are
shown one of seven cues, indicating that they have the potential to
win money (reward magnitude range = $0.20, $1.00, $5.00; n =
74), the potential to avoid losing money (loss magnitude range =
$0.20, $1.00, $5.00; n = 69), or that no money was at stake for
that trial (No Change trials; n = 37). Subjects were instructed to
fixate on a cross-hair during a variable interval of 2000–2500 ms
(anticipatory delay phase), and then respond to a white target
square that appeared for a variable length of time (target phase,
160–260 ms) with a button press. For Potential Win trials, partic-
ipants were told that if they successfully pressed the button while
the target was onscreen (a “hit”) they won the amount of money
indicated by the cue, while there was no penalty for failing to press
the button while the target was onscreen (a “miss”). For Potential
Loss trials, participants were told that no money was won or lost
for hits, but misses would lead to a loss of the amount indicated by
the cue for that trial. A feedback screen (outcome phase, 1650 ms)
followed the target’s disappearance. The feedback screen notified
participants how much money they won or lost during that trial,
and indicated their cumulative total winnings at that point. Even
though no money was at stake during the No Change trials, par-
ticipants were instructed to rapidly press the button during the
display of the target stimulus.

Before entering the scanner, participants completed a prac-
tice version of the task and were shown the money that they
could earn by performing the task successfully. Based on reac-
tion times obtained during the prescan practice session, target

durations were adjusted such that each participant succeeded
on approximately 66% of his or her responses. Each MID task
session is comprised of 4 functional runs, each approximately
7.73 min long. The MID was programmed in E-Prime (http://
www.pstnet.com/products/e-prime/) and run off of a dedicated
Pentium computer from the scanner control room. The visual
display was presented on an LCD panel and back-projected onto
a screen positioned at the front of the magnet bore. Subjects
lay supine in the scanner and viewed the display on a mirror
positioned above them. Manual responses were recorded using a
keypad (Rowland Institute of Science, Cambridge MA).

fMRI DATA ACQUISITION
All fMRI scans were performed on two identically configured
3 Tesla Phillips Achieva scanners located at the Vanderbilt
University Institute for Imaging Science (VUIIS). T1-weighted
high-resolution 3D anatomical scans were obtained for each
participant (FOV 256 × 256, 1 × 1 × 1 mm resolution). Fast
spin echo axial spin density weighted (TE = 19, TR = 5000,
3 mm thick) and T2-weighted (TE = 106, TR = 5000, 3 mm
thick) slices were obtained to exclude any structural abnor-
malities. Additionally, a field map was additionally collected in
order to remove distortion caused by inhomogeneity. Functional
(T2∗ weighted) images were acquired using a gradient-echo echo-
planar imaging (EPI) pulse sequence with the following param-
eters: TR = 2000 ms, TE = 25 ms, flip angle 90◦, FOV 240 ×
240 mm, 128 × 128 matrix with 30 axial oblique slices (2.5 mm,
0.25 mm gap) oriented approximately 15 degrees from the AC-PC
line. The slice prescription was adjusted for each subject to ensure
coverage of the midbrain, ventral striatum, amygdala, mPFC, and
orbital gyrus. Higher-order shimming was employed to compen-
sate for magnetic field inhomogeneity in the orbitofrontal/ventral
striatal region. fMRI volume acquisitions were time-locked to the
offset of each cue and each target, so were thus acquired dur-
ing anticipatory and during outcome periods. 242 volumes were
acquired for each functional run.

fMRI DATA PREPROCESSING AND ANALYSIS
Prior to random effects analysis in SPM5, all fMRI time series data
received conventional preprocessing, including slice-timing cor-
rection, spatial realignment, normalization into a standard stereo-
tactic space (MNI) and smoothed with a 6 mm full-width-half

FIGURE 1 | Schematic diagram of the Monetary Incentive Delay (MID) task

used in the current study. Participants began each trial presented with 1 of 7
reward cues indicating whether they had an opportunity to gain reward, lose
reward, or experience no change if they successfully pressed a button before a
visual target disappeared on the screen. After the trial cue presentation,

participants fixated on a centered cross-hair while waiting for the target to
appear (anticipatory delay). The target would then appear for a variable amount
of time during which subjects would attempt to press a button before the target
disappeared. Afterwards, subjects received feedback as to whether or not they
had been successful, and what the monetary outcome was for the trial.
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maximum gaussian kernel. Functional images were slice-time
corrected using the middle slice as a reference, motion corrected
via spatial realignment (4th degree B-spline) of all images to
a mean image after alignment to the first image of each run.
Following realignment, the Fieldmap toolbox was used to cre-
ate voxel displacement maps (VDMs) from static magnetic field
(B0) maps acquired during each scan session. These VDMs were
used to correct for susceptibility-X-movement-related distortions
in the EPI images. These distortion-corrected images were then
co-registered to the subject’s anatomical image. Images were
spatially normalized (4th degree B-spline) into a standard stereo-
tactic space (MNI template), re-sampled into 2 mm isotropic
voxels, and smoothed with a 6 mm full-width-half-maximum
gaussian kernel. We then applied a high-pass filter (128 s cut-
off) to remove low-frequency signal drift. Each subject’s data
were inspected for excessive motion—only subjects with <3 mm
motion in every direction across all runs were included in anal-
yses. For single-subject analyses, trials were pooled across the
levels of monetary value for a given condition. Onsets for the
anticipatory delay period and for the feedback period of each of
the three trial types were separately modeled using a canonical
hemodynamic response function (HRF) with a time derivative.
In addition, six head motion parameter estimates (translation
in x, y, z; roll, pitch, yaw) were included as covariates in the
design matrix. Each run was modeled separately. We then con-
trasted the beta-weights of repressors using a t-test between
trial types to create, for each subject, a contrast image show-
ing voxels that were differentially activated as a function of task
conditions.

Based on our a priori hypotheses regarding the relationship
between perceived stress and corticostriatal function, our group
analyses included associations between PSS scores and neural
activity during both the anticipatory and feedback phases. For
the anticipatory phase, we separately examined the relationship
between PSS scores and contrasts of Potential Win Anticipation >

No Change Anticipation and Potential Loss Anticipation > No
Change Anticipation. Note that these analyses included all tri-
als for each of the conditions regardless of the outcome of the
trial. In contrast, analyses of the feedback phase were depen-
dent upon the outcome of the trial. Because we were primar-
ily interested in responses to gains or losses, analysis of the
Feedback phase focused on the contrasts of Win Feedback > No
Change Feedback and Loss Feedback > No Change Feedback.
For the Win Feedback > No Change Feedback contrast, we only
modeled trials in which the subject had successfully achieved
a “Hit,” meaning they had responded before the target disap-
peared from the screen, and therefore received feedback indi-
cating a monetary gain of the amount available on the given
trial. Potential Win and No Change trials where the subject
failed to respond quickly enough (a “Miss”) were not included
in this contrast because there was no change in money in those
trials. Conversely, for Loss Feedback trials, we only modeled
trials in which the subject failed to respond before the target
disappeared from the screen (“a Miss”), and received feedback
informing them that they had lost money. For the Loss Feedback
contrast, we did not model Potential Loss or No Change tri-
als in which the subject achieved a “Hit” and avoided a loss

of money because there was no change in money on those
trials.

Random effects analyses of fMRI data were performed in
SPM5 by regressing subjects’ perceived stress scores against
contrast images with subject sex and scanner as covari-
ates in the model. While effects of sex on reward process-
ing were not the focus of the current study, past studies
have suggested the possibility of sex differences in response
to stress (e.g., Mather and Lighthall, 2012). Consequently,
to control for the possible differences of sex, we included
it as a covariate. This approach has been used in a num-
ber of prior publications involving individual differences
in reward processing from our lab (e.g., Buckholtz et al.,
2010).

All analyses were whole-brain, and SPMs were explored using
a voxel-wise threshold of p < 0.005 (uncorrected) and a min-
imum cluster extent of 20 voxels. Whole-brain correction for
multiple comparisons was achieved using a cluster-extent cor-
rection procedure as implemented in SPM5. Only results sur-
viving this cluster-correction (pcluster < 0.05) are reported. For
contiguous clusters that spread across multiple regions, the auto-
mated labeling atlas (AAL) was used to divide clusters so as
to differentiate between structures. After significant clusters had
been identified, parameter estimates reflecting task-dependent
changes in BOLD signal for each subject were extracted and
entered into SPSS19 (IBM, Armonk, NY) for the purposes of
visualization.

RESULTS
PSS SCORES
Subject scores on the 10-item PSS ranged from 0 to 32 (M = 14.7,
SD = 7.5) out a maximum possible score of 40 on the instrument.
These results are consistent with normative data on this instru-
ment for subjects within this age range (M = 14.2, SD = 6.2)
(Cohen and Williamson, 1988).

NEUROIMAGING DATA: MID RESULTS
Win and loss feedback
Consistent with numerous prior studies using the MID task,
a contrast of Win Feedback > No Change Feedback revealed
increased BOLD signal in bilateral mPFC encompassing aspects
of pregenual cingulate and medial prefrontal gyrus (Peak:
x = −6, y = 44, z = −2; Z-score = 6.13; k = 763; pcluster <

0.001) [all coordinates are given in the stereotactic space of
the Montreal Neurological Institute (MNI)]. A similar region
of mPFC of was identified in the processing of monetary losses
during the contrast of Feedback Loss > No Change Feedback,
where subjects received feedback that they had missed the tar-
get and therefore experienced a monetary loss (Peak: x = −8,
y = 48, z = 14; Z-score = 4.01, k = 140, pcluster = 0.034) (see
Table 1).

Potential reward and loss anticipation
Also in keeping with prior findings using the MID, we observed
robust activation in the ventral striatum during the contrast of
Potential Win Anticipation > No Change Anticipation, as well
as activity in amygdala, hippocampus, insula, mPFC, thalamus
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Table 1 | Brain regions activated during reward anticipation and feedback conditions of the MID task.

Region x y z Z -score k p (cluster)

REWARD FEEDBACK:WIN > NO CHANGE

Medial prefrontal cortex −6 44 −2 6.13 763 < 0.001

R posterior hippocampus 24 −40 0 4.90 190 0.004

REWARD FEEDBACK: LOSS > NO CHANGE

Medial prefrontal cortex −8 48 14 4.01 140 0.034

REWARD ANTICIPATION:WIN > NO CHANGE

L ventral striatum −6 8 −4 7.81 611 < 0.001

R ventral striatum 12 14 −4 7.29 647 < 0.001

L anterior insula −28 18 −4 7.29 685 < 0.001

R anterior insula 36 20 −8 6.76 467 < 0.001

L cerebellum −32 −54 −22 6.98 3800 < 0.001

R cerebellum 8 −66 −10 7.15 3800 < 0.001

L thalamus −8 −14 10 6.91 1068 < 0.001

R thalamus 4 −14 8 6.77 1068 < 0.001

L amygdala −20 0 −14 6.73 103 0.048

R amygdala 18 4 −16 6.54 121 0.025

L hippocampus −16 −26 −10 6.70 269 < 0.001

R hippocampus 18 −24 −12 6.34 152 0.004

Medial prefrontal cortex/dorsal ACC 0 30 26 5.72 810 < 0.001

REWARD ANTICIPATION: LOSS > NO CHANGE

L anterior insula −28 18 −4 6.18 505 < 0.001

R anterior insula 36 20 −8 8.95 398 < 0.001

L cerebellum −30 −56 −20 7.35 3907 < 0.001

R cerebellum 8 −66 −10 7.26 3907 < 0.001

L ventral striatum −8 10 −4 6.47 548 < 0.001

R ventral striatum 10 8 4 7.28 628 < 0.001

L amygdala −20 0 −12 6.73 105 0.047

R amygdala 20 2 −14 6.65 125 0.024

L thalamus −8 −14 10 6.71 1031 < 0.001

R thalamus 4 −14 10 6.41 1031 < 0.001

L hippocampus −20 −26 −8 6.26 197 0.001

R hippocampus 18 −28 −8 5.44 89 0.042

Medial prefrontal cortex/dorsal ACC −2 32 26 5.12 382 < 0.001

and cerebellum. A similar pattern of activation was obtained
during the contrast of Potential Loss Anticipation > No Change
Anticipation (see Table 1).

NEUROIMAGING DATA: CORRELATIONS WITH PERCEIVED STRESS
Reward and loss feedback
We regressed PSS scores against reward feedback activity dur-
ing the Win Feedback > No Change Feedback contrast, and
found a significant inverse association in bilateral mPFC, pri-
marily in pregenual ACC and cingulate sulcus (Peak: x =
0, y = 50, z = 4; Z-score = 3.53; k = 132, pcluster = 0.023)
(see Table 2; Figure 2). This association suggests that indi-
viduals reporting higher levels of stress in the preceding
month exhibited diminished amounts of BOLD signal in this
region.

We next examined the relationship between perceived stress
and reward feedback activation during the Loss Feedback >

No Change Feedback contrast, and again found a significant

Table 2 | Brain regions showing an association with PSS scores.

Region x y z Z -score k p (cluster)

REWARD FEEDBACK: WIN > NO CHANGE

Medial prefrontal cortex 0 50 4 3.53 132 0.023

REWARD FEEDBACK: LOSS > NO CHANGE

Medial prefrontal cortex −8 48 14 4.01 140 0.034

L anterior insula −6 46 8 3.62 132 0.041

REWARD ANTICIPATION: WIN > NO CHANGE

– – – – – – –

REWARD ANTICIPATION: LOSS > NO CHANGE

– – – – – – –

inverse association in mPFC (Peak: x = −6, y = 46, z = 8;
Z-score = 3.62; k = 132; pcluster = 0.041) as well as a region
of left anterior insula (Peak: x = −44, y = 26, Z-score = 4.17;
k = 182; pcluster = 0.009) (see Table 2; Figure 3). This finding

Frontiers in Human Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 180 | 5

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Treadway et al. Perceived stress and mPFC

FIGURE 2 | Association between Perceived Stress and mPFC BOLD

signal during a contrast of Win Feedback > No Change Feedback.

(A) SPM depicting mPFC cluster. Cluster is significant after correcting for
multiple-comparisons using a cluster-extent correction procedure
pcluster = 0.023. Color-bar indicates t-statistic. (B) Partial regression plot,

which normalizes variables relative to model-covariates, depicting the
relationship between perceived stress and mPFC BOLD response during Win
Feedback > No Change Feedback. NB: the effect is still significant when the
potentially influential data point in the bottom right corner of the graph is
removed.

suggests that higher PSS scores were associated with reduced neu-
ral responses in both mPFC and insula when subjects received
feedback that they had experienced a monetary loss.

Potential reward and loss anticipation
There were no suprathreshold voxels showing an association
between PSS scores and neural activity during the anticipation
phase for either the Potential Win Anticipation > No Change or
Potential Loss Anticipation > No Change contrasts.

DISCUSSION
The present study tested the relationship between individual dif-
ferences in perceptions of recent life stressors and corticostriatal
circuit functioning during reward processing. We found that
higher levels of perceived stress were associated with diminished
neural responses in the mPFC when subjects received feedback
about monetary rewards and losses. These findings support a
growing body of evidence implicating the mPFC as a critical
region for stress-linked changes in reward processing.

The localization to mPFC is notable for several reasons.
First, mPFC is known to be structurally vulnerable to chronic
stress. Numerous independent studies in animals have shown
that chronic stress incites a retraction of dendritic morphol-
ogy within the mPFC (Cook and Wellman, 2004; Radley et al.,
2005, 2006a,b; Cerqueira et al., 2007); for a review, see McEwen
(2007), impairing its capacity to communicate with other stri-
atal and limbic regions involved in reward salience and learning
(Dias-Ferreira et al., 2009). While the mechanisms of this sus-
ceptibility are not fully understood, strong evidence suggests that
prefrontal glucocorticoid elevations play a key role (McEwen,
2007): along with the hippocampus, the mPFC expresses a high
number of glucocorticoid receptors (Chao et al., 1989; Ahima
and Harlan, 1990; Patel et al., 2000), and participates in negative

feedback regulation of glucocorticoid release (Akana et al., 2001;
Mizoguchi et al., 2003). Further, site-injections of glucocorticoids
have been found to mimic the structural consequences of chronic
stress within mPFC (Wellman, 2001; Cerqueira et al., 2005a,b,
2007). Consistent with these preclinical findings, elevated corti-
sol levels in humans have been found to correlate with reduced
gray matter volume in this region (Castro-Fornieles et al., 2009;
Treadway et al., 2009).

Such stress-related microdamage in mPFC impacts a variety
of cognitive processes (Liston et al., 2006; McEwen, 2007). In
the context of reward, stressors can increase habitual response
patterns that are insensitive to changing reinforcement context.
(Schwabe and Wolf, 2009; Soares et al., 2012). Importantly,
this stress-induced shift toward habitual responding has been
linked to diminished mPFC activity in response to reward
information (Schwabe et al., 2012). Consistent with the cur-
rent findings, these data suggest that stress-induced shifts in
mPFC function—possibly reflecting structural microdamage
(Dias-Ferreira et al., 2009)—may impair appropriate encoding
of value information. This proposed role for mPFC function
is consistent with electrophysiological data recorded in non-
human primates, where individual neurons within mPFC—
especially the ACC and cingulate sulcus—have been shown to
play a vital role in incorporating reward feedback informa-
tion as a means of encoding action-outcome relationships and
updating values for subsequent behaviors (Wallis and Kennerley,
2010). Our data would appear to corroborate this model, sug-
gesting that elevated stress reduces the capacity to accurately
encode the appropriate salience of new information. In keep-
ing with this proposal, individual differences in the PSS have
been previously linked to decreased sensitivity to reinforcement
information during a signal detection task (Pizzagalli et al.,
2007).
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FIGURE 3 | Association between Perceived Stress and mPFC BOLD

signal during a contrast of Loss Feedback > No Change

Feedback. (A) SPM depicting mPFC and insula clusters. Clusters are
significant after correcting for multiple-comparisons using a
cluster-extent correction procedure pcluster < 0.05. Color-bar indicates

t-statistic. (B) Partial regression plots depicting the relationship
between perceived stress and BOLD response during Loss
Feedback > No Change Feedback in mPFC and left anterior insula.
NB: the effect is still significant when potentially influential data point
in the bottom right corner of the graph is removed.

Somewhat unexpectedly, we did not observe any associa-
tions between perceived stress and neural activity during the
anticipation phase. On the surface, this is surprising, as sev-
eral fMRI studies using acute stressors have observed direct
effects on reward anticipation and anticipatory decision-making,
rather than reward feedback (Ossewaarde et al., 2011; Mather
and Lighthall, 2012; Porcelli et al., 2012). This discrepancy may
partly reflect the fact that unlike studies that use an acute, in-
the-moment stress manipulation to examine neural responses
to stress (Ossewaarde et al., 2011; Mather and Lighthall, 2012;
Porcelli et al., 2012), the current study used the PSS to test the
association between a recent history of elevated stress perceptions
to reward and loss processing. It is increasingly recognized that
the neural mechanisms governing acute vs. chronic stressors are
somewhat distinct (Cabib and Puglisi-Allegra, 2011). Moreover,
animal models suggest that it is chronic stress that is most likely
to affect the various forms of structural microdamage in mPFC
discussed above. Consequently, the selective associations between
PSS scores and feedback-related activity may reflect the duration
of stress that is captured by the PSS. In addition to this tem-
poral dimension, the PSS assesses subjects’ perceptions of their

ability to cope with, control and adapt to stressful experiences.
Perceived controllability has marked effects on the neurobio-
logical consequences of stress, and has similarly been localized
to mPFC (Cabib and Puglisi-Allegra, 1994; Amat et al., 2005,
2008; Pascucci et al., 2007; Maier and Watkins, 2010). Additional
research will be required to fully understand the implications of
these divergent responses in mPFC as a function of chronicity
and subjective perception. That said, it should be emphasized
that it is stressors that are experienced as being chronic, unpre-
dictable and uncontrollable that are most likely to increase risk
for psychopathology, rather than acute stressors (Docherty, 1996;
Kessler, 1997; Kendler et al., 2004; Hammen, 2005).

It is also worth commenting on the similar pattern of results
observed for both the “Win” and “Loss” conditions. This stands
in contrast with a number of recent papers showing divergent
effects of stress on reward learning and decision-making, where
acute stress has been found to selectively facilitate learning about
wins while impairing learning about punishment (Petzold et al.,
2010; Cavanagh et al., 2011; Mather and Lighthall, 2012; Porcelli
et al., 2012). Interestingly, one distinction that emerged between
the two conditions was that perceived stress was associated with
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decreased left anterior insula activity during the Loss trials, but
not the Win trials. The anterior insula is increasingly recognized
as an important region in value-based decision-making in general
(Weller et al., 2009; Treadway et al., 2012) and punishment-
avoidance learning in particular (Kim et al., 2006; Pessiglione
et al., 2006; Samanez-Larkin et al., 2008; Palminteri et al., 2012).
Moreover, alterations in anterior insula activity during reward
decision-making have been observed as a consequence of stress
(Mather and Lighthall, 2012). Given the apparent valence-specific
role of the anterior insula in avoidance-learning, it is intrigu-
ing that neural activity in this region showed an association with
perceived stress only during the loss condition. As with mPFC,
reduced activity in this region during feedback may contribute to
decreased encoding of reinforcer information following stress.

In sum, the current findings help identify how variation in
perceived stress influence neural circuitry involved in respond-
ing to reward feedback information. Understanding how the
brain is affected by elevated stress load is important for under-
standing stress-linked risk for psychopathology. Our findings
primarily highlight the mPFC, which is widely implicated in a
number of fundamental cognitive processes related to affect reg-
ulation (Ochsner and Gross, 2005; Etkin et al., 2006), value-based
decision-making (Rushworth et al., 2004; Wallis and Kennerley,

2010), and self-evaluation and negative self-judgment (Enzi et al.,
2009). Importantly, structural, functional, and neurochemical
alterations in mPFC have been reported across a number of psy-
chiatric diagnoses (Coryell et al., 2005; Fitzgerald et al., 2008;
Goldstein et al., 2009; Koch et al., 2009; Shin et al., 2009; Fineberg
et al., 2010; Treadway and Zald, 2011; Gabbay et al., 2012; Keating
et al., 2012). Taken together these findings implicate mPFC as a
transdiagnostic nexus, wherein dysfunction predisposes diverse
forms of psychopathology that, while categorically distinct, may
be symptomatically related due to shared deficits in mPFC-
subserved cognitive processes (Buckholtz and Meyer-Lindenberg,
2012). While our study did not include a patient sample, the
present data indicate that associations with perceived stress can
be observed even in samples with no overt psychopathology.
Given the well-known link between perceived stress and the risk
for developing such disorders, our data support the hypothesis
that the mPFC is a critical node of vulnerability for developing
stress-linked reward processing symptoms.
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