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a b s t r a c t

Background: Choices requiring delay of gratification made during adolescence can have sig-
nificant impact on life trajectory. Willingness to delay gratification can be measured using
delay discounting tasks that require a choice between a smaller immediate reward and a
larger delayed reward. Individual differences in the subjective value of delayed rewards
are associated with risk for development of psychopathology including substance abuse.
The neurobiological underpinnings related to these individual differences early in life are
not fully understood. Using functional magnetic resonance imaging (fMRI), we tested the
hypothesis that individual differences in delay discounting behavior in healthy youth are
related to differences in responsiveness to potential reward.
Method: Nineteen 10–14 year-olds performed a monetary incentive delay task to assess
neural sensitivity to potential reward and a questionnaire to measure discounting of future
monetary rewards.
Results: Left ventromedial caudate activation during anticipation of potential reward was

negatively correlated with delay discounting behavior. There were no regions where brain
responses during notification of reward outcome were associated with discounting behav-
ior.
Conclusions: Brain activation during anticipation of potential reward may serve as a marker
for individual differences in ability or willingness to delay gratification in healthy youth.
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1. Introduction

Choices between immediate temptations and long-term
goals abound in daily life and the ability to delay gratifica-
tion improves long term outcomes. Understanding what
governs adolescents’ ability to delay gratification is of
particular interest because decisions made during adoles-
cence can have significant impact later in life. For example,
choosing to use alcohol or other drugs during adolescence
significantly increases risk for developing substance abuse
(Grant and Dawson, 1997; Chambers et al., 2003). Further-
more, capacity to delay gratification in early childhood has
been linked to adult health and well-being (Berman et al.,
2013; Casey et al., 2011; Mischel et al., 2011; Schlam et al.,
2012).

For a teenager, the decision to refrain from or use alco-
hol and other drugs is often a choice between long-term
goals such as academic achievement and the short-term
expected rewards of drug use. These expected rewards
often include not only the pharmacologic effects of getting
high or escaping negative affect, but also social approval
from peers (Donovan, 2004). In comparison, the subjec-
tive value of long-term goals is diminished because future
rewards are “discounted” as a function of their delay and
expected probability of occurring. Individual differences in
delay discounting are associated with obesity (Weller et al.,
2008), substance abuse (Kirby et al., 1999), and other psy-
chopathology (Alessi and Petry, 2003; Crean et al., 2000),
suggesting that discounting may be a trans-disease process
with relevance for many important public health chal-
lenges (Bickel et al., 2012).

Discounting of future rewards can be measured using
tasks that ask a person to choose between a smaller imme-
diate and a larger delayed reward. The comparison of each
reward’s subjective value requires accounting for both its
magnitude and the delay to delivery (Ainslie, 1975). A
number of fMRI studies have implicated ventral striatum,
ventromedial prefrontal cortex, and cingulate cortex in
tasks involving delay discounting choices (for review, see:
Peters and Büchel, 2011), brain regions in which abnor-
malities have been reported across several psychiatric
diagnoses including depression, anxiety, and substance
abuse (Blackford and Pine, 2012; Koob and Volkow, 2009;
Price and Drevets, 2009; Shin and Liberzon, 2009).

Studies in healthy adults have found some aspects of
impulsivity to be associated with increased responsive-
ness to reward. For example, greater discounting of delayed
rewards was positively correlated with brain activation in
ventral striatum during receipt of reward in adults (Hariri
et al., 2006), suggesting that individuals with very strong
responsiveness to reward may be unable to resist the urge
to pursue an immediately available reward. This inter-
pretation is consistent with models of impulsivity that
emphasize that strong approach behavior may outweigh
potential consequences or lost opportunities for future
rewards (Buckholtz et al., 2010). Conflicting evidence, how-
ever, supports the hypothesis that increased impulsivity is

associated instead with decreased ventral striatal function.
Imaging studies have found decreased ventral striatal acti-
vation during reward tasks in adults and youth with ADHD
in comparison to healthy controls with activation inversely
nitive Neuroscience 7 (2014) 43–52

correlated with impulsivity (Scheres et al., 2007; Strohle
et al., 2008). In studies of brain responses during discount-
ing tasks in healthy adults, individuals who were more
impulsive in terms of their intertemporal choice behavior
showed lower response to larger delayed rewards rela-
tive to smaller sooner rewards in comparison to those who
were less impulsive (Ballard and Knutson, 2009; Samanez-
Larkin et al., 2011). Further support for the hypothesis that
increased impulsivity may be related to diminished striatal
function can be found in a rodent model where lesions in
ventral striatum result in increased impulsivity (Cardinal
et al., 2001). Improved understanding of the brain circuitry
related to impulsive choice is needed to inform efforts to
improve prevention and treatment of disorders related to
impulse control such as substance abuse.

Given the heightened impulsivity of children and ado-
lescents relative to adults (Spear, 2000, Steinberg et al.,
2009) and differences in relative maturity of striatal and
prefrontal circuitry (Casey and Jones, 2010; Somerville and
Casey, 2010), there may be unique associations between
neural response to reward and discounting behavior in this
population that are altered in the course of development.
In this study, we aimed to address the question of how indi-
vidual differences in brain response to reward are related
to delay discounting behavior in healthy youth.

We used a monetary incentive delay (MID) task as a
probe for several reasons. First, the MID task does not
require a choice between rewards, and thus provides an
estimate of general reward responsiveness. Second, the
MID task allows for a distinction between responses to
anticipation of potential reward and notification of the
reward receipt (Knutson and Greer, 2008). In the MID, the
reward anticipation phase involves cueing of a potential
reward opportunity and the preparation to take action to
potentially obtain the reward. This anticipation of poten-
tial rewards may be more closely related to intertemporal
choice behavior than responses to received rewards given
that temporal choice decisions involve future potential
rewards. Finally, by varying the magnitude of potential
reward it is possible to separately model responses to pres-
ence or absence of reward and responses to the relative
magnitude of rewards. An additional strength of the MID
task is that striatal responses to reward cues show high
reliability across time (Wu et al., 2014). We note that the
present approach differs from studies in which scanning
is performed during a temporal choice task. While such
paradigms provide extremely useful information, they are
difficult to interpret in terms of basic reward sensitivity
because the anticipated rewards are already subject to tem-
poral discounting, and the reward receipt often does not
occur until weeks after the scanning session is completed.

We were most interested in individual differences in
anticipatory reward responses because sensitivity to the
magnitude of the reward may be particularly important
for the ability to delay gratification. For instance, the sub-
jective value of an extra $50 delayed by 4 weeks will
depend upon whether this option is being compared to

a small immediate reward (e.g. $10) or a very large one
(e.g. $1000). Previous work has demonstrated a reliable
increase in activation in ventral striatum with increas-
ing reward magnitude that correlates with self-reported
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ositive affect (Knutson and Greer, 2008) and work in
umans and other animal models has shown that stri-
tal activation and dopamine signaling are important for
vercoming costs such as delay to reward receipt (Bjork
t al., 2004; Wade et al., 2000; Wardle et al., 2011). In a
ecent study of brain responses during an intertemporal
hoice task, ventral striatal activation was shown to vary
nversely with increasing discounting of future rewards
Ripke et al., 2012). The current study extends these results
y examining the relationship of differing response to
eward magnitude during a non-choice task with discount-
ng behavior in healthy youth.

We tested the hypothesis that brain activation during
nticipation and notification of potential reward would be
ssociated with differences in discounting, and the hypoth-
sis that differential responsiveness to increasing reward
agnitude would be more strongly associated with indi-

idual differences in discounting behavior.

. Methods

.1. Participants

Twenty-eight healthy children aged 10–14 years par-
icipated in the current study. Exclusion criteria included:
ny current or past psychiatric or medical illnesses; meet-
ng any DSM-IV diagnostic criteria for Attention-Deficit
yperactivity Disorder; current or past use of psychoac-

ive medications, current use of prescription medications,
r using over-the-counter medication more than four times
n the last month; lifetime use of alcohol, tobacco, or
annabis greater than five times, any use of other drugs;
onditions that preclude MRI scanning (e.g. implanted elec-
rical devices or metals, claustrophobia, or pregnancy);
istory of head injury with loss of consciousness; his-
ory of seizures; IQ less than 80 measured using Wechsler
bbreviated Scale of Intelligence (Wechsler, 1999); and

eft-handedness. Screening for medical and psychiatric ill-
ess was completed using a semi-structured interview
KSADS, Kaufman et al., 1996) performed by trained lab
ersonnel and reviewed by a child psychiatrist (MMB).
ata from 9 participants were excluded due to: exces-

ive motion during the scan (n = 4), incidental findings on
RI (n = 2), poor task performance (n = 1), responses on the

emporal discounting task being more than two standard
eviations away from the mean of the rest of the sample
n = 1), and not completing the MID task (n = 1), result-
ng in a final sample of 19 (12 males, 7 females, mean
ge 12, SD = 1.4). The study protocol was approved by the
nstitutional Review Board at Vanderbilt University and
onformed to principles of the World Medical Association’s
eclaration of Helsinki. Participants provided assent and a
arent provided informed consent prior to participation.

.2. Behavioral measure of temporal discounting

Participants completed a computerized version of the

onetary Choice Questionnaire (MCQ; Fig. 1a; Kirby, 2009)

mplemented in E-Prime outside the fMRI scanner on a
eparate visit to the lab (mean time between study vis-
ts = 22.4 days). The MCQ is a measure of delay discounting
nitive Neuroscience 7 (2014) 43–52 45

consisting of 27 choices between a smaller immediate
reward ($11–80) and a larger reward ($25–85) delayed by
7–186 days. The procedure for estimating a participant’s
discounting function (k) using this task is detailed in an
early study by Kirby et al. (1999). Because of the limited
number of trials in this measure of discounting, estimation
of k with this procedure results in selection of one of 10 pos-
sible values making it somewhat limited compared to other
procedures (Kowal et al., 2007; Richards et al., 1999; Yi
et al., 2010). For the primary measure of discounting behav-
ior in this study, we used the proportion of choices in which
the smaller sooner reward was selected. An advantage of
the proportion score over other indices of discounting is
that it uses a more straight-forward calculation that does
not make assumptions about the hyperbolic shape of the
discount function. Nevertheless, the proportion score was
highly correlated with the slope of the hyperbolic discount-
ing function, k, (r = .92, p < .001). Although it is not the most
common measure of discounting, other groups have used
proportion scores to estimate preference for immediate
over delayed reward (Magen et al., 2008; Ersner-Hershfield
et al., 2009).

2.3. Measurement of brain activation

As a probe for individual differences in responsiveness
to reward, we used an event-related monetary incentive
delay (MID) task (Fig. 1b; Knutson et al., 2000). Participants
pressed a button as fast as possible in response to a target
stimulus to earn monetary rewards. Specific cues indicated
the value of a potential reward for each trial ($0, $1, or $5).
After the cue, which lasted 2500 ms, participants waited
2000–2500 ms for a target to appear and attempted to press
a button while the target was visible. After a brief delay
(946–2855 ms), a feedback screen lasting 2500 ms indi-
cated the outcome (“Hit!” or “Miss!”) for each trial. Target
duration (which varied from 170 to 400 ms in this sam-
ple) was determined during the session based on individual
performance to keep success rate at 60%. If success rate
dropped below this target percentage, 30 ms were added
to target duration. If success rate rose above the target per-
centage, 30 ms were subtracted from the target duration.
Participants completed 120 trials over four runs, each last-
ing six minutes, for a total of 48 trials with each gain cue
($5 and $1) and 24 trials with $0 cues. This version of the
task showed the dollar values available for each trial rather
than an ambiguous cue to eliminate any learning effects
(Samanez-Larkin et al., 2007; Wu et al., 2014). We included
only gain (and not loss) trials in the task to increase the
total number of trials per condition for greater statistical
power. Participants were told that they would receive the
money they won from the MID run with the greatest earn-
ings (range: $36–43) in addition to compensation for their
time.

Images were acquired using a 3 T Phillips Intera Achieva
MRI scanner (Phillips Medical Systems, Andover, MA). The
experimental task was projected from behind on a mir-

ror mounted on the head coil. Functional runs consisted of
168 dynamics collected over 28 slices, 4.5 mm thick with
.45 mm gap, FOV = 240 mm × 240 mm, flip angle = 79, TR 2 s,
and TE 35 ms.
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Fig. 1. Task description. (a) Participants completed a computerized version of the Monetary Choice Questionnaire (MCQ) outside the MRI scanner. This
task consists of 27 choices between a smaller immediate and a larger delayed reward shown on a screen with yellow arrows under each option. After
making a selection by pressing a button, the yellow arrows disappear and a red arrow appears, indicating the choice. Participants were told that there are

have. T
y Incent
ation of
no right answers and they should choose the option they would prefer to
participants completed an MRI scanning session that included a Monetar
by pressing a button while a target appeared on the screen. (For interpret
web version of this article.)

2.4. Statistical analysis

Imaging data were analyzed using SPM8 (Wellcome
Department of Cognitive Neuroscience, London, UK). Dur-
ing preprocessing, images were slice time corrected,
realigned to the mean image, normalized to the SPM EPI
template, and smoothed using an 8 mm full width half max-
imum Gaussian smoothing kernel. Motion during a single
run for one participant and during two runs for another
participant prevented the inclusion of these runs in the
analysis. The data from the remaining runs for these 2 sub-
jects were included and weighted accordingly (multiplied
by a factor of 4/n, where n is the number of runs of useable
data).

A general linear model (GLM) was estimated using the
following 10 regressors: 3 cue conditions ($0, $1, $5), 1
regressor for target, 3 hit conditions ($0, 1, 5), and 3 miss
conditions ($0, 1, 5). We first analyzed brain response
to anticipation of potential reward and outcome notifica-
tion. For anticipation, we conducted a repeated measures
ANOVA with a single within-subject factor (magnitude)
and tested for a main effect of magnitude. For notification,
we conducted a repeated measures ANOVA with 2 within-
subject factors (outcome and magnitude) and tested for
a main effect of outcome. The observed pattern of task-
based activation is similar to other reports using the MID
task (Fig. 2). We then conducted a regression analysis with
preference for immediate reward as a covariate within the

task-relevant regions. We used this approach to ensure
that we analyzed activation in task-relevant brain regions
and to reduce the number of comparisons. To control for
type 1 error, we used Monte Carlo simulation executed
here was no time limit for this task. (b) During a separate visit to the lab,
ive Delay (MID) task in which they had opportunities to win $0, $1, or $5
the references to color in this figure legend, the reader is referred to the

in AlphaSim (http://afni.nimh.nih.gov/afni/) to determine a
cluster threshold for family wise error correction to p < .05.
Using a voxel-wise threshold of p < .001 and accounting for
the intrinsic smoothness of the data, the cluster threshold
was 80 voxels for the anticipation mask which included
bilateral striatum, cingulate, brainstem, cerebellum, insula,
visual, and motor cortex (59,904 voxels) and 70 voxels
for the outcome mask which included bilateral striatum,
medial prefrontal cortex, posterior cingulate, thalamus,
medial temporal lobe, anterior parietal lobe, and precuneus
(49,871 voxels, see Fig. 2). In a post hoc analysis to ensure
that the effect was not driven by outliers, we extracted
parameter estimates from the cluster where activation
was significantly correlated with discounting behavior and
display the scatterplot in Fig. 3b. For further analysis of
magnitude effects, we performed post hoc tests of the cor-
relation between discounting behavior and BOLD signal for
the contrasts of $5 vs. $0, $5 vs. $1, and $1 vs. $0, using
Bonferroni-corrected statistics.

Given that brain maturation occurs non-linearly and
asymmetrically in VS and PFC, we expected that age might
affect the results even in this rather narrow range of 4
years. Thus, age was entered into the GLM as an additional
covariate to test for effects on the correlation of discounting
behavior with brain activation during the MID task.

All statistical analyses outside SPM used SPSS 20. Nor-
mality was assessed using a Kolmogorov–Smirnov test.
Descriptive statistics were used to summarize demo-

graphic data and means and standard deviations are
reported. Pearson correlations were used to estimate
the strength of the association between continuous vari-
ables. A paired t-test was used to compare reaction

http://afni.nimh.nih.gov/afni/
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Fig. 2. Task based activation during monetary incentive delay task. Repeated measures ANOVA (FWE corrected p < .05) was used to identify task-related
brain activation. (a) During anticipation of potential reward, the main effect of reward magnitude resulted in statistically significant activation of 59,904
voxels encompassing bilateral striatum, cingulate, brainstem, cerebellum, insula, visual, and motor cortex. (b) During notification of reward, the main effect
of outcome resulted in statistically significant activation of 49,871 voxels encompassing bilateral striatum, medial prefrontal cortex, posterior cingulate,
thalamus, medial temporal lobe, anterior parietal lobe, and precuneus. Coronal sections are located at y = 8 mm and sagittal sections are located at x = 0 mm.
These clusters of task-based activation were used as regions of interest for the regression of discounting behavior.

Fig. 3. BOLD signal change during anticipation of reward in left ventromedial caudate correlates with discounting behavior. (a) Regression of preference
for immediate reward with BOLD signal change in response to potential reward cues versus no reward cues identified a single cluster in left ventromedial
caudate of 155 voxels with peak t = 5.49 located at x = −4, y = 18, z = 2, where the relationship was statistically significant (FWE corrected p < .05). (b) BOLD
signal parameter estimates for each participant were extracted from this cluster and plotted against discounting behavior.
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times for immediate versus delayed choice on the MCQ
which was completed outside the scanner. For analy-
sis of effect of magnitude on response times, an ANOVA
with repeated measures using a Huynh–Feldt correction
was conducted with Bonferroni-corrected post hoc analy-
sis.

3. Results

3.1. Temporal discounting and MID task behavior

Preference for immediate reward was normally dis-
tributed across this sample of 19 healthy 10–14 year-olds.
(Z = .71, p = .70). The mean percentage of selections for the
immediate reward on the monetary choice questionnaire
was 64.1% (SD ± 10.5), corresponding with a discount rate,
k = .03 (SD ± .02). Age was not correlated with preference
for delayed reward (r = −.08, p = .74). Mean reaction time
across all decisions made during the discounting task (per-
formed outside the scanner) was 3283 ms (SD ± 1064).
Reaction time was similar for trials where the immediate
reward was chosen compared to trials where the larger
delayed reward was chosen (t18 = −.65, p = .52). In the MID
task, there was a statistically significant effect of the mag-
nitude of the reward on response times (F(2,1457) = 9.022,
p < .001), with $5 trials having shorter mean response times
than $0 trials and $5 trials having shorter mean response
times than $1 trials (p < .017). Across the sample, accuracy
was not statistically different from our target rate of 60%
(t18 = −1.2, p = .25), indicating that our adaptive target tim-
ing algorithm was effective.

3.2. Relationship between brain activation during
anticipation of reward and discounting behavior

Within the region that showed a main effect for antici-
pation of gain (Fig. 2a), preference for immediate reward
was significantly correlated with BOLD activation in left
ventromedial caudate (155 voxels with peak location −4,
18, 2, t = 5.49, p < .05 corrected, Fig. 3a). Increased pref-
erence for immediate reward on the monetary choice
questionnaire (MCQ) was associated with lower BOLD
signal in left ventromedial caudate during anticipation
of reward (Fig. 3b). Conversely, individuals with greater
activation in this region during anticipation of potential
reward were more likely to choose the larger delayed
reward. There were no brain regions within our mask
where preference for immediate reward was associated
with statistically significantly greater brain activation dur-
ing anticipation of reward.

The modulation of reward magnitude ($5 vs. $1 vs. $0) in
the MID task allows for examination of differences in brain
activation in response to differing reward magnitudes. We
considered whether the relationship between discounting
behavior and BOLD signal was driven by response to any
reward ($5 and $1 trials) compared to no reward (zero
trials) or by an increased activation in response to larger

reward ($5) compared to smaller reward ($1) trials. We
hypothesized that individuals with a greater increase in
BOLD signal to $5 versus $1 cues would be more likely
to prefer to wait for the larger reward. To examine this
nitive Neuroscience 7 (2014) 43–52

hypothesis, we tested for a statistically significant relation-
ship between discounting behavior and BOLD signal for
each of the following contrasts in SPM: $5 vs. $0, $1 vs.
$0, and $5 vs. $1. The relationship was statistically signifi-
cant for only the $5 vs. $0 contrast (119 voxels with peak
t = 4.42 located at −4, 16, 2, FWE corrected p < .017).

Age was not associated with discounting behavior in
this sample. However, given the importance of a potential
relationship between age and brain activation in striatum,
we considered whether the observed association between
discounting and brain activation was affected by age. When
age was entered into the regression model as a covariate,
there was no change in the activation pattern or observed
relationship with discounting behavior.

3.3. Relationship between brain activation during
notification of reward and discounting behavior

An advantage of the MID task is the ability to distinguish
anticipation of reward opportunity from notification of
reward (Knutson and Greer, 2008). Work in adults demon-
strating a positive relationship between preference for
immediate reward and brain activation in ventral striatum
used a reward notification task (Hariri et al., 2006). We
therefore expected that there may be a different relation-
ship between discounting behavior and brain responses
during the anticipation and notification phases of the MID
task. There were, however, no brain regions within our
mask where temporal discounting behavior was statisti-
cally significantly associated with brain activation during
notification of reward receipt.

4. Discussion

The current study sought to clarify the relationship
between the ability to delay gratification and aspects of
reward responsiveness in healthy youth. Individual differ-
ences in delay discounting behavior were associated with
the level of activation in left ventromedial caudate dur-
ing anticipation of potential reward. Youth who preferred
a smaller immediate reward had lower responses in this
region. Given existing models that conceptualize ventral
striatal responses as reflecting immediate reward sensi-
tivity (McClure et al., 2004) and developmental data that
emphasizes the link between ventral striatum activation
and approach/go behavior (Casey and Jones, 2010; Ernst
et al., 2006), it may seem counter-intuitive that youth who
are more willing to wait for a later reward would have
increased striatal responses. However, it may prove use-
ful to consider the responses in relation to the evaluation
of the reward. Geier et al. (2010) provide evidence that
difference in striatal responses can distinctly arise during
reward evaluation versus other phases of reward tasks.
In that study, young adults showed significantly greater
ventral striatal responses during reward evaluation, even
though teenagers showed greater responses during a sub-
sequent motor preparation phase. It is possible that this

maturational difference is similarly reflected here at the
individual differences level, with the striatal responses
explicitly reflecting a more “mature” reward evaluation
process that helps optimize long-term outcomes (an effect
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hat appears to increase across adulthood e.g., Samanez-
arkin et al., 2011). Within this context, increased striatal
esponsiveness to potential reward may reflect a reward
valuation that could lead to a greater ability to make
hoices that maximize potential future rewards even when
hat requires waiting for the larger reward. Of course, the
ecision making process is complex and encompasses more
han just striatal response, likely reflecting the interaction
etween approach and inhibition signals and a summation
f these at the neural level. Further study of these interac-
ions using tasks that can distinguish the role of prefrontal
s well as striatal responses is needed.

Unfortunately, the MID task as applied here does not
llow us to disentangle the reward evaluation and reward
reparation phase, and similar issues of disentanglement
rise in other studies. Nevertheless, it is clear that psy-
hiatric conditions associated with higher impulsivity are
ften marked by decreased activation in the ventral stri-
tum in response to reward-related stimuli. For example,
ecreased ventral striatal activation during reward antici-
ation has been seen in ADHD (Scheres et al., 2007; Strohle
t al., 2008) and alcohol use disorder (Beck et al., 2009),
oth of which are associated with heightened impulsivity,

ncluding steeper temporal discounting (MacKillop et al.,
011; Scheres et al., 2010; Jarmolowicz et al., 2012).

Ventral striatum, typically defined as the portion of stri-
tum that is ventral to a line intersecting a point at the
entral corner of the lateral ventricle with a point at the
ermination of the internal capsule (Mawlawi et al., 2001),
as been a focus of a great deal of recent work explor-

ng developmental aspects of reward processing and the
ole of reward in vulnerability for substance abuse. The
recise location of the region where we found that acti-
ation in response to reward anticipation was associated
ith discounting behavior is too dorsal to be formally called

ventral striatum” and corresponds instead to a central
egion of the striatum which receives its primary pro-
ections from association cortices including ventromedial
refrontal cortex (vmPFC) and orbitofrontal cortex (OFC,
aber and Knutson, 2011). Activation in vmPFC is con-

istently linked to computation of value signals across
emporal delays and commodities (Ballard and Knutson,
009; Kable and Glimcher, 2007; McClure et al., 2004;
amanez-Larkin et al., 2011) and anatomical studies show
hat this cortical region projects to the most medial portion
f the caudate nearest the ventricle (Haber and Knutson,
011). Neighboring portions of the caudate receive pro-

ections from OFC, an area that plays a critical role in
elative reward processing (Tremblay and Schultz, 1999)
nd nuanced features of reward processing (O’Doherty and
olan, 2006), including a sensitivity to temporal factors

Zald, 2009). Input from these regions is certainly relevant
or maximizing reward and the current study suggests that
ndividual variability in responses to reward may be linked
o this valuation process. Given that activation measured
sing fMRI has been suggested to heavily reflect gluta-
atergic input to a brain region (Logothetis and Wandell,
004) the activation observed in the current study may
eflect increased input from these association cortices that
romote better ability to delay gratification and wait for
larger later reward. Interestingly, a recent study found
nitive Neuroscience 7 (2014) 43–52 49

that at the individual subject level, the location of the peak
activation during a temporal discounting task shifted from
ventral to dorsal with increasing self-reported impulsivity
(Onoda et al., 2011).

Another possible interpretation of the primary finding
in the current study is related to overcoming costs to obtain
reward. Dopamine signaling is important for overcoming
costs such as effort expenditure and delay to reward receipt
(Bjork et al., 2004; Treadway et al., 2012; Wade et al., 2000;
Wardle et al., 2011). While striatal activation is not a proxy
for dopamine signaling, the responsivity of this ventral
caudate region to potential rewards may scale with a will-
ingness to overcome costs in order to maximize long term
attainment of rewards. Such an enhanced sensitivity would
allow individuals to remain focused on long-term goals in
the face of immediate temptation.

We hypothesized that sensitivity to increasing reward
magnitude in the anticipation reward phase would be
associated with stronger associations with discounting
behavior, however in the current sample, increased sen-
sitivity to individual reward magnitudes did not appear
to be associated with individual differences in discount-
ing behavior in healthy adolescents. Interestingly, a recent
study found that for adolescents, affective ratings do not
vary with reward magnitude (Jarcho et al., 2012) in con-
trast to studies in adults where both affective ratings and
brain activation increase with increasing reward magni-
tude (Knutson and Greer, 2008). While the present data are
certainly consistent with Jarcho et al. (2012), we must note
that the $5 vs. $0 contrast showed a significant contrast
with discounting while the $1 vs. 0 did not reach statistical
significance. This suggests that some degree of sensitivity
to reward magnitude may contribute to the observed asso-
ciation, but that its contribution is at best relatively modest.
The small sample size and the limited range of potential
reward values in the present study may have been insuf-
ficient to capture a specific impact of reward magnitude
sensitivity. Visual inspection of the pattern of mean per-
cent signal change for each individual participant suggests
that some individuals did show an approximately linear
increase in mean signal with increasing reward magnitude,
while others showed a significant increase from $0 to $1,
then no change from $1 to $5, and others showed no dif-
ference between $0 and $1, but an increase from $1 to $5.
Further examination of individual differences in sensitivity
thresholds to varied reward magnitude may prove useful
in understanding differences in decision making and may
shed light on neurobiological vulnerability for psychiatric
illness.

It should be noted that while the MID task has been
widely used as a measure of brain response to opportu-
nity for reward, it has produced findings in developmental
contexts that contradict those of other tasks. During antic-
ipation of reward, adolescents sometimes show lower
activation in the striatum during anticipation of reward
with the MID task (Bjork et al., 2004, 2010), but increased
activation relative to adults during reward receipt using

other paradigms (e.g. Ernst et al., 2005; Galvan et al., 2006;
Geier et al., 2010; Van Leijenhorst et al., 2010). It is possible,
therefore, that the finding observed here is unique to the
monetary incentive delay task and further investigation of
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the role of specific task features in eliciting particular brain
activation patterns is needed. In addition, the MID task
used in the current study included only gain trials which
may affect the salience of positive cues given that the only
comparison is to zero cues rather than loss cues.

Recent reviews of the developmental reward literature
propose several hypotheses to explain the differences in
findings in different tasks (Jarcho et al., 2012; Richards et al.,
2013; Ripke et al., 2012). Differences between tasks in the
predictability of reward magnitudes on each trial may help
explain contradictory findings (Ripke et al., 2012). Unlike
the MID task where potential reward outcome values and
cue are linked and made explicit to the participant, in other
tasks reward outcomes are variable and the cue-magnitude
link is not explicit. In the MID task the value of the reward is
known at the time of the action. In these types of tasks, ado-
lescents consistently show lower activation than adults. In
tasks where the outcome is variable or not pre-determined,
adolescents show greater striatal activation than adults (for
further review of the effect of task differences in devel-
opmental response to rewards, see Richards et al., 2013).
Studies that directly compare within-subject differences in
responses to these two different task types would help to
clarify some of the discrepancies in the literature regarding
developmental aspects of reward response.

We found no statistically significant relationship
between delay discounting behavior and brain activation
during notification of reward outcome. This finding differs
from previous work in healthy adults where greater pref-
erence for immediate reward was associated with greater
striatal activation during notification of reward outcome in
a guessing task (Hariri et al., 2006). We considered whether
the relatively small sample size in the current study may
have limited the power to detect a relationship between
discounting behavior and brain activations in response to
notification of reward outcome (given the fewer number
of comparisons that can be made for outcome relative
to anticipation). To address this possibility, we lowered
the statistical threshold and still found no relationship
between discounting behavior and brain activations dur-
ing notification of reward outcome. Differences in the age
of the samples and in the tasks used to elicit reward
related brain activation may explain the discrepancy in
this finding. Given the known relationships between age
and discounting behavior (Steinberg et al., 2009) and age
and brain activation during reward processing (Casey and
Jones, 2010; Ernst et al., 2006) we included age in the anal-
ysis as a covariate to assess for age effects and found no
statistically significant relationship between age and dis-
counting behavior or brain activation patterns. The absence
of age related differences may be a result of the small size
of the sample and narrow age range. The limited age range
of the current study and the lack of an adult comparison
group do not allow for direct conclusions to be drawn about
age effects and may have obscured inferences about how
these data relate to previous work in adults. Direct com-
parison of responses in adolescents and adults using the

same paradigm would be necessary to definitively deter-
mine whether and how adolescents differ from adults in the
relationship of discounting behavior and brain responses to
notification of reward outcome.
nitive Neuroscience 7 (2014) 43–52

Adolescents are consistently more likely than chil-
dren or adults to engage in risky behavior, raising the
question of whether they have adequate cognitive capac-
ity to weigh options and make advantageous decisions
(Steinberg, 2007). In fact, the ability to weigh the costs
of risky decisions has been shown to be similar in adults
and adolescents when cognitive control is engaged (Ernst
et al., 2011; Ernst and Fudge, 2009; Geier and Luna, 2009;
Smith et al., 2011) but in emotionally charged contexts
such as those when reward are at stake, greater sensitivity
to reward may overwhelm these inhibitory mechanisms
resulting in poor decisions (Casey et al., 2011). The cur-
rent study did not specifically examine brain activation
related to these self-control mechanisms which are likely
to play a role in discounting behavior (Figner et al., 2010).
In addition to differences in activation patterns in partic-
ular brain regions, structural and functional connectivity
between regions is likely to play a large role in determin-
ing individual differences in discounting behavior. Recent
studies using diffusion tensor imaging to investigate how
individual differences in discounting related to differences
in white matter integrity found that increased white mat-
ter integrity is associated with less impulsive responding
(Christakou et al., 2011; Peper et al., 2012). This finding
along with emerging work using transcranial magnetic
stimulation of dorsolateral prefrontal cortex to alter dis-
counting behavior (Essex et al., 2012) supports the idea that
regulation of reward choice by inhibitory control regions is
highly relevant for understanding discounting. Given that
development of prefrontal cortex is not yet complete by
adolescence, strategies to improve the engagement of top-
down cognitive control during reward decisions may be
particularly important in this age group (Jarcho et al., 2012).

A potential limitation of the current study is the use
of a hypothetical rather than an incentive-compatible dis-
counting task. Several studies have compared responses
to hypothetical and real monetary reward conditions
(Johnson and Bickel, 2002; Locey et al., 2011; Scheres et al.,
2008). When the reward magnitude and duration of delay
are similar, behavioral responses do not differ significantly
between real and hypothetical tasks. It should be noted,
however, that behavior observed during tasks using small
rewards (e.g., 5–10 cents) and short delays (30–60 s) does
not correlate with larger sums delayed over longer periods
for either hypothetical or real conditions (Scheres et al.,
2008). In a study of brain activation in response to hypo-
thetical versus real rewards, Kang et al. (2011) found that
the same brain regions were activated, but with greater
intensity to real versus hypothetical rewards. In the cur-
rent study, the discounting task was performed outside the
scanner. In the MID task performed in the scanner, partici-
pants played for real money, thus we do not expect that any
differences in hypothetical versus real discounting proce-
dures would alter the observed result.

5. Conclusions
Exploring reward processing and its relationship to
decision-making in children and adolescents is particularly
important given the increase in risk taking associated with
this developmental stage (Spear, 2000). Finding ways to
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nhance the appeal of a delayed outcome may be critical
or efforts to promote motivation toward long-term goals
uch as finishing school rather than the immediate temp-
ation to engage in potentially dangerous behavior such
s drug and alcohol use. Further study of the interaction
etween age, discounting behavior, and brain activation
uring reward paradigms as well as during delay discount-

ng tasks is warranted to inform prevention efforts in youth
t-risk for pathology related to poor impulse control. Stud-
es that assess interventions aimed at increasing ability to
elay gratification may be especially relevant for promot-

ng healthy development in at-risk populations.
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