From Optics to Actions

Joe Lappin
7 April 2004
A flowing optic array
General theme: The dynamics of an observer's actions — their timing, direction, and force — are effectively controlled by the continuously changing optical produced by the observer's movements.

- Why is this interesting? important?
- What is the optical information?
- What are the visual mechanisms?

Reading:
- Also relevant: Duffy, C.J. (2004). The cortical analysis of optic flow. (Ch. 85 in the same book).
Examples:

- Walking, running, skiing, skating, etc.
 (Demand accuracies of ~ 1-3 deg.)

- Driving cars, riding bikes, flying planes

- Games with fast-moving balls
 (Regan et al., 1995, calculate that bat-ball intersections in cricket & baseball must occur within a space-time window of about 10 cm x 2.5 msec!)

- Anticipating & controlling collisions, time-to-contact: \(\tau = \theta / \theta / \text{dt.} \) (David Lee's research with long-jumpers and diving birds — indirect evidence of optical control of timing. Yilmaz & Warren (1995) provided more direct evidence in experiments on braking in response to computer-generated displays.)
Brief review of some principal ideas:

- Gibson (1950) coined the term “optic flow” to refer to the changing structure of optical images produced by observers’ movements through 3D environments.
 - visual importance of changing rather than static images
 - visual importance of the active observer
 - Locomotion (e.g., of pilots in planes) must be controlled by the changing structure of optical patterns.
 - focus of outflow (of expansion, FOE) specifies heading direction
- Gibson (1979): “ecological approach” — perception, environment, & action as inseparable
 - David Lee (e.g., 1980, Proc. Royal Society) develops theory and evidence to show that the rate of optical expansion, $\tau = a/a^*$, provides visible information about time-to-contact.
 - Differential geometry of optic flow (Koenderink & van Doorn, 1970s, 1986): 1st-order differential components: div [divergence, expansion], curl [rotation in image plane], def [deformation, slant]
Issue: Optic flow or retinal flow?

- Can the expansion component and heading direction be extracted from retinal images produced by both observer translation and eye movements?

- Retinal coordinates or relative motions & image deformations?

- RFs of some MSTd cells change with active eye movements.
MST neurons have very large RFs, often > 40° diameter. Thus, they will integrate large areas of optic flow.

Differentiation (via center-surround antagonism) also occurs in both area MT and MST.

The images at the right show the complex RF of a neuron in MSTd. (from Duffy, 2004)
Thank you for your attention!